• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reconfiguring mine water reticulation systems for cost savings

    Thumbnail
    View/Open
    ConradieW.pdf (4.415Mb)
    Date
    2018
    Author
    Conradie, W.
    Metadata
    Show full item record
    Abstract
    Rising electricity costs in South Africa force companies, including gold mines, to minimise their energy consumption (EC). More than 30% of the total energy demand for deep-level mines is consumed by the water reticulation system (WRS). Energy intensive centrifugal pumps are housed in the dewatering system of the WRS. Significant energy and cost savings can be realised by decreasing the amount of water transferred through the dewatering system. To achieve this, cold-water supply or demand needs to be decreased. Water supply optimisation is a typical demand-side management (DSM) initiative that reduces EC of the dewatering system, by minimising cold-water supply to underground services. However, it only reduces water supply within the blasting shift, which is typically 6?8 hours per day. Load shifting (LS) is a DSM initiative that optimises the time-of-use operating schedule on dewatering pumps. Note that a decrease in water supply to underground tertiary air-cooling systems increases the LS performance of dewatering pumps. For a decrease in water demand for the entire day, the WRS can be reconfigured. This entails removing chilled water cars and replacing them with strategically placed centralised bulk air-coolers. This results in increased energy and cost savings over the entire duration of a day. A methodology was developed to accurately evaluate energy and cost savings of the dewatering system for a reconfigured WRS. Actual data obtained from the mine was verified through calculations and simulations. This data was then used as inputs to evaluate EC of the dewatering system for the original and reconfigured WRS. The methodology was applied on a reconfigured WRS of a gold mine in South Africa. The predicted energy-efficiency and cost saving was 49.1 GWh and R31.8 million per annum, respectively.
    URI
    https://orcid.org/0000-0001-6555-1231
    http://hdl.handle.net/10394/30898
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV