• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sky, sea, and forest islands: diversification in the African leaf‐folding frog Afrixalus paradorsalis (Anura: Hyperoliidae) of the Lower Guineo‐Congolian rain forest

    Thumbnail
    Date
    2018
    Author
    Charles, Kristin L.
    Burger, Marius
    Bell, Rayna C.
    Blackburn, David C.
    Fujita, Matthew K.
    Metadata
    Show full item record
    Abstract
    Aim To investigate how putative barriers, forest refugia, and ecological gradients across the lower Guineo‐Congolian rain forest shape genetic and phenotypic divergence in the leaf‐folding frog Afrixalus paradorsalis, and examine the role of adjacent land bridge and sky‐islands in diversification. Location The Lower Guineo‐Congolian Forest, the Cameroonian Volcanic Line (CVL), and Bioko Island, Central Africa. Taxon Afrixalus paradorsalis (Family: Hyperoliidae), an African leaf‐folding frog. Methods We used molecular and phenotypic data to investigate diversity and divergence among the A. paradorsalis species complex distributed across lowland rain forests, a land bridge island, and mountains in Central Africa. We examined the coincidence of population boundaries, landscape features, divergence times, and spatial patterns of connectivity and diversity, and subsequently performed demographic modelling using genome‐wide SNP variation to distinguish among divergence mechanisms in mainland (riverine barriers, forest refugia, ecological gradients) and land bridge island populations (vicariance, overwater dispersal). Results We detected four genetically distinct allopatric populations corresponding to Bioko Island, the CVL, and two lowland rain forest populations split by the Sanaga River. Although lowland populations are phenotypically indistinguishable, pronounced body size evolution occurs at high elevation, and the timing of the formation of the high elevation population coincides with mountain uplift in the CVL. Spatial analyses and demographic modelling revealed population divergence across mainland Lower Guinea is best explained by forest refugia rather than riverine barriers or ecological gradients, and that the Bioko Island population divergence is best explained by vicariance (marine incursion) rather than overseas dispersal. Main conclusions We provide growing support for the important role of forest refugia in driving intraspecific divergences in the Guineo‐Congolian rain forest. In A. paradorsalis, sky‐islands in the CVL have resulted in greater genetic and phenotypic divergences than marine incursions of the land bridge Bioko Island, highlighting important differences in patterns of island‐driven diversification in Lower Guinea
    URI
    http://hdl.handle.net/10394/30778
    https://doi.org/10.1111/jbi.13365
    https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.13365
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV