• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulation of a predominantly passive natural air cooling system

    Thumbnail
    Date
    2018
    Author
    Venter, P.V.Z.
    Van Eldik, M.
    Metadata
    Show full item record
    Abstract
    Climate control is an everyday challenge. With the rapid surge in electricity prices over the past few years, air conditioning operating expenses necessarily increased. The effects, furthermore, of global warming result in increased cooling, and therefore, energy demand. The purpose of this paper is to propose two models that simulate a natural air cooling system. The first model simulates cooling through an earth to air heat exchanger, utilising the soil as a heat sink. The second model simulates the transient cooling of a control volume, which receives cooled air and is open to the environment. A scale model of an earth-to-air heat exchanger system was designed, constructed and used to verify results from the proposed models. Following verification, a real-life size heat exchanger was simulated in order to cool down a room of 60 m3within one hour, using only the underground soil as a heat sink. Results showed that a room at an initial 30 °C can be cooled down to 20.5 °C with a 1.2 m underground heat exchanger and down to 17.8 °C if the length is increased to 2.0 m. Only fan power is needed to increase the air's dynamic pressure, resulting in flow conditions. As a result a coefficient of performance between 60 and 80 can be achieved
    URI
    http://hdl.handle.net/10394/30635
    https://ieeexplore.ieee.org/document/8384391/
    https://doi.org/10.23919/DUE.2018.8384391
    Collections
    • Conference Papers - Potchefstroom Campus [713]
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV