Show simple item record

dc.contributor.authorGabeleh, M.
dc.contributor.authorOtafudu, O.Olela
dc.date.accessioned2018-07-27T08:09:57Z
dc.date.available2018-07-27T08:09:57Z
dc.date.issued2017
dc.identifier.citationGabeleh, M. & Olela, O.O. 2017. Markov-Kakutani's theorem for best proximity pairs in Hadamard spaces. Indagationes Mathematicae, 28:680-693. [https://doi.org/10.1016/j.indag.2017.02.004]
dc.identifier.issn0019-3577
dc.identifier.urihttps://doi.org/10.1016/j.indag.2017.02.004
dc.identifier.urihttp://hdl.handle.net/10394/30456
dc.description.abstractIn the current paper, we consider two classes of noncyclic mappings, called quasi-noncyclic relatively nonexpansive and noncyclic relatively u-continuous, and survey the existence of best proximity pairs as well as the structure of best proximity pair sets for these classes of mappings in Busemann convex spaces. We also study the existence of a common best proximity pair for families if noncyclic mappings in Hadamard spaces. In this way, we obtain a generalization of Markov-Kakutani's fixed point theorem in Hadamard spaces.
dc.language.isoen
dc.publisherElsevier
dc.subjectBest proximity pair
dc.subjectGeodesic metric space
dc.subjectNoncyclic mapping
dc.subjectProximal normal structure
dc.titleMarkov-Kakutani's theorem for best proximity pairs in Hadamard spaces
dc.typeArticle
dc.contributor.researchID24803812 - Olela Otafudu, Olivier


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record