Show simple item record

dc.contributor.authorNnaji, Nnaemeka J.N.
dc.contributor.authorOlasunkanmi, Lukman O.
dc.contributor.authorEbenso, Eno E.
dc.date.accessioned2018-07-27T08:09:50Z
dc.date.available2018-07-27T08:09:50Z
dc.date.issued2017
dc.identifier.citationNnaji, N.J.N. et al. 2017. Morpholine and piperazine based carboxamide derivatives as corrosion inhibitors of mild steel in HCl medium. Journal of Molecular Liquids, 230:652-661. [https://doi.org/10.1016/j.molliq.2017.01.075]
dc.identifier.issn0167-7322
dc.identifier.issn1873-3166 (Online)
dc.identifier.urihttps://doi.org/10.1016/j.molliq.2017.01.075
dc.identifier.urihttp://hdl.handle.net/10394/30443
dc.description.abstractN-(2-chloroethyl)morpholine-4-carboxamide (NCMC), N-(2-chloroethyl)tiomorpholine-4-carboxamide (NCTC) and N,N-bis(2-chloroethyl)piperazine-1,4-dicarboxamide (NCPD) were studied as corrosion inhibitors for mild steel using atomic absorption spectroscopy (AAS) and gravimetry and thermometry. Results obtained from the three techniques are similar and reveal that the compounds inhibit mild steel corrosion. The inhibition efficiencies increased from 35.6% to 74.9% (NCMC), 44.5% to 82.4% (NCPD) and 52.6% to 90.1% (NCTC) at 30 °C when the inhibitor concentrations increased from 10 μM to 50 μM. The maximum inhibition efficiency values (at 50 μM) decreased to 46.6%, 58.1% and 61.2% for NCMC, NCPD and NCTC respectively, when the temperature was raised to 50 °C. The decrease in inhibition efficiency with increase in temperature suggested predominant physisorption mechanism in metal/inhibitor interactions. The formation of protective films of NCMC, NCPD and NCTC molecules on mild steel surface were confirmed by FTIR and XRD. The order of inhibitive strengths of the molecules is NCTC > NCPD > NCMC. Quantum chemical calculations revealed the prospective sites through which the molecules can interact with mild steel surface and some quantum chemically derived parameters were used to corroborate experimental.
dc.language.isoen
dc.publisherElsevier
dc.subjectCarboxamide
dc.subjectGravimetric
dc.subjectThermometric
dc.subjectAdsorption
dc.subjectQuantum chemical calculations
dc.titleMorpholine and piperazine based carboxamide derivatives as corrosion inhibitors of mild steel in HCl medium
dc.typeArticle
dc.contributor.researchID25656384 - Olasunkanmi, Lukman Olawale
dc.contributor.researchID22168370 - Ebenso, Eno Effiong


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record