Show simple item record

dc.contributor.authorMa, Wen-Xiu
dc.date.accessioned2018-07-27T08:08:56Z
dc.date.available2018-07-27T08:08:56Z
dc.date.issued2017
dc.identifier.citationMa, W. 2017. Trigonal curves and algebro-geometric solutions to soliton hierarchies I. Proceedings of the Royal Society A-mathematical Physical and Engineering Sciences, 473:1-20. [https://doi.org/10.1098/rspa.2017.0232]
dc.identifier.issn1364-5021
dc.identifier.issn1471-2946 (Online)
dc.identifier.urihttps://doi.org/10.1098/rspa.2017.0232
dc.identifier.urihttp://hdl.handle.net/10394/30346
dc.description.abstractThis is the first part of a study, consisting of two parts, on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. In this part, using linear combinations of Lax matrices of soliton hierarchies, we introduce trigonal curves by their characteristic equations, explore general properties of meromorphic functions defined as ratios of the Baker-Akhiezer functions, and determine zeros and poles of the Baker-Akhiezer functions and their Dubrovin-type equations. We analyse the four-component AKNS soliton hierarchy in such a way that it leads to a general theory of trigonal curves applicable to construction of algebro-geometric solutions of an arbitrary soliton hierarchy.
dc.language.isoen
dc.publisherRoyal Society
dc.subjectBaker-Akhiezer function
dc.subjectDubrovin-type equations
dc.subjecttrigonal curve
dc.titleTrigonal curves and algebro-geometric solutions to soliton hierarchies I
dc.typeArticle
dc.contributor.researchID30109760 - Ma, Wen-Xiu


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record