• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptations in corticospinal excitability and inhibition are not spatially confined to the agonist muscle following strength training

    Thumbnail
    Date
    2017
    Author
    Mason, Joel
    Howatson, Glyn
    Frazer, Ashlyn
    Horvath, Deanna M.
    Pearce, Alan J.
    Metadata
    Show full item record
    Abstract
    Purpose We used transcranial magnetic stimulation (TMS) to determine the corticospinal responses from an agonist and synergist muscle following strength training of the right elbow flexors. Methods Motor-evoked potentials were recorded from the biceps brachii and flexor carpi radialis during a submaximal contraction from 20 individuals (10 women, 10 men, aged 18–35 years; training group; n = 10 and control group; n = 10) before and after 3 weeks of strength training at 80% of 1-repetition maximum (1-RM). To characterise the input–output properties of the corticospinal tract, stimulus–response curves for corticospinal excitability and inhibition of the right biceps brachii and flexor carpi radialis were constructed and assessed by examining the area under the recruitment curve (AURC). Results Strength training resulted in a 29% (P < 0.001) increase in 1-RM biceps brachii strength and this was accompanied by a 19% increase in isometric strength of the wrist flexors (P = 0.001). TMS revealed an increase in corticospinal excitability AURC and a decrease in silent period duration AURC for the biceps brachii and flexor carpi radialis following strength training (all P < 0.05). However, the changes in corticospinal function were not associated with increased muscle strength. Conclusion These findings show that the corticospinal responses to strength training of a proximal upper limb muscle are not spatially restricted, but rather, results in a change in connectivity, among an agonist and a synergistic muscle relevant to force production
    URI
    http://hdl.handle.net/10394/27351
    https://doi.org/10.1007/s00421-017-3624-y
    https://link.springer.com/article/10.1007/s00421-017-3624-y
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV