Show simple item record

dc.contributor.authorMehl, Christian
dc.contributor.authorRan, Andre C.M.
dc.date.accessioned2018-05-29T08:30:56Z
dc.date.available2018-05-29T08:30:56Z
dc.date.issued2017
dc.identifier.citationMehl, C. & Ran, A.C.M. 2017. Low rank perturbations of quaternion matrices. Electronic journal of linear algebra, 32:514-530. [https://doi.org/10.13001/1081-3810.3629]en_US
dc.identifier.issn1081-3810 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/26934
dc.identifier.urihttps://doi.org/10.13001/1081-3810.3629
dc.identifier.urihttp://repository.uwyo.edu/ela/vol32/iss/38
dc.description.abstractLow rank perturbations of right eigenvalues of quaternion matrices are considered. For real and complex matrices it is well known that under a generic rank-k perturbation the k largest Jordan blocks of a given eigenvalue will disappear while additional smaller Jordan blocks will remain. In this paper, it is shown that the same is true for real eigenvalues of quaternion matrices, but for complex nonreal eigenvalues the situation is different: not only the largest k, but the largest 2k Jordan blocks of a given eigenvalue will disappear under generic quaternion perturbations of rank k. Special emphasis is also given to Hermitian and skew-Hermitian quaternion matrices and generic low rank perturbations that are structure-preservingen_US
dc.language.isoenen_US
dc.publisherILASen_US
dc.subjectQuaternion matricesen_US
dc.subjectLow rank perturbationsen_US
dc.subjectJordan normal formen_US
dc.titleLow rank perturbations of quaternion matricesen_US
dc.typeArticleen_US
dc.contributor.researchID20000212 - Ran, Andreas Cornelis Maria


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record