• Login
    View Item 
    •   NWU-IR Home
    • Conference Papers
    • Conference Papers - Potchefstroom Campus
    • View Item
    •   NWU-IR Home
    • Conference Papers
    • Conference Papers - Potchefstroom Campus
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of bio-char based products as hydrotreating catalysts for the production of renewable fuel

    Thumbnail
    View/Open
    Evaluation_of_bio-char.pdf (774.6Kb)
    Date
    2017
    Author
    Venter, R.J.
    Booysen, J.G.
    Marx, S.
    Schabort, C.
    Metadata
    Show full item record
    Abstract
    Increasing demand for alternative fuel from fossil fuel exists which has led to the development of new technologies for the production of bio-fuels. One such technology involves the hydrotreatment of vegetable oils such as cottonseed oil to produce bio-hydrocarbons. The catalyst plays an important role in the hydrotreatment process and also makes up a significant part of the cost of hydrotreatment. The utilization of waste titanium tetrachloride in the production of hydrotreating catalysts could result in a situation where a waste material is transformed into useful product. Products from the hydrothermal liquefaction process was tested as catalysts during hydrotreatment of cottonseed oil. Five catalysts were prepared and tested as follows: 1) biochar produced at 260 °C, 2) Biochar produced at 320 °C, 3) ash of the 260 °C biochar, 4) ash of the 350 °C biochar and 5) the 320 °C biochar heated to 900°C under nitrogen atmosphere. Cottonseed oil was hydrotreatment in a 350 ml batch reactor using the 5 different catalysts. This was done under hydrogen atmosphere with an initial hydrogen pressure of 9 MPa, a retention time of 1 hour at a reaction temperature of 410°C. The liquid product produced using the 5 catalysts was compared with the liquid product produced with a commercial NiMo hydrotreating catalyst. The 320 °C biochar yielded the highest n-alkane content with a liquid product composition similar to that of the commercial NiMo hydrotreating catalyst as well as the fuel with the highest energy value of all 5 catalysts of 45.47 MJ/kg. The conversion of cottonseed oil for the 5 catalysts was lower compared to that of the commercial catalyst showing that direct co-liquefaction of the biomass with the metal does not result in a hydrotreating catalyst with high enough catalyst activity
    URI
    http://hdl.handle.net/10394/26683
    http://www.etaflorence.it/proceedings/index.asp?detail=13915&mode=topic&categories=T41&items=3AO%2E3%2E1
    https://doi.org/10.5071/25thEUBCE2017-3AV.3.30
    Collections
    • Conference Papers - Potchefstroom Campus [713]
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV