Show simple item record

dc.contributor.authorKollonige, Debra E.
dc.contributor.authorThompson, Anne M.
dc.contributor.authorJosipovic, Miroslav
dc.contributor.authorBeukes, Johan P.
dc.contributor.authorBurger, Roelof
dc.contributor.authorVan Zyl, Pieter G.
dc.contributor.authorLaakso, Lauri
dc.date.accessioned2018-02-21T11:36:35Z
dc.date.available2018-02-21T11:36:35Z
dc.date.issued2018
dc.identifier.citationKollonige, D.E. et al. 2018. OMI satellite and ground-based Pandora observations and their application to surface NO2 estimations at terrestrial and marine sites. Journal of geophysical research. Atmospheres, 123(2):1441-1459. [https://doi.org/10.1002/2017JD026518]en_US
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/26430
dc.identifier.urihttps://doi.org/10.1002/2017JD026518
dc.identifier.urihttps://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JD026518
dc.description.abstractThe Pandora spectrometer that uses direct-Sun measurements to derive total column amounts of gases provides an approach for (1) validation of satellite instruments and (2) monitoring of total column (TC) ozone (O3) and nitrogen dioxide (NO2). We use for the first time Pandora and Ozone Monitoring Instrument (OMI) observations to estimate surface NO2 over marine and terrestrial sites downwind of urban pollution and compared with in situ measurements during campaigns in contrasting regions: (1) the South African Highveld (at Welgegund, 26°34′10″S, 26°56′21″E, 1,480 m asl, ~120 km southwest of the Johannesburg-Pretoria megacity) and (2) shipboard U.S. mid-Atlantic coast during the 2014 Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) cruise. In both cases, there were no local NOx sources but intermittent regional pollution influences. For TC NO2, OMI and Pandora difference is ~20%, with Pandora higher most times. Surface NO2 values estimated from OMI and Pandora columns are compared to in situ NO2 for both locations. For Welgegund, the planetary boundary layer (PBL) height, used in converting column to surface NO2 value, has been estimated by three methods: co-located Atmospheric Infrared Sounder (AIRS) observations; a model simulation; and radiosonde data from Irene, 150 km northeast of the site. AIRS PBL heights agree within 10% of radiosonde-derived values. Absolute differences between Pandora- and OMI-estimated surface NO2 and the in situ data are better at the terrestrial site (~0.5 ppbv and ~1 ppbv or greater, respectively) than under clean marine air conditions, with differences usually >3 ppbv. Cloud cover and PBL variability influence these estimationsen_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.subjectOMIen_US
dc.subjectNitrogen dioxideen_US
dc.subjectTotal column observationsen_US
dc.subjectAir qualityen_US
dc.subjectSatellite validationen_US
dc.titleOMI satellite and ground-based Pandora observations and their application to surface NO2 estimations at terrestrial and marine sitesen_US
dc.typeArticleen_US
dc.contributor.researchID10092390 - Beukes, Johan Paul
dc.contributor.researchID21795827 - Laakso, Lauri
dc.contributor.researchID22648143 - Josipovic, Miroslav
dc.contributor.researchID10710361 - Van Zyl, Pieter Gideon


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record