Show simple item record

dc.contributor.authorAkhlaghi, Zeinab
dc.contributor.authorKhatami, Maryam
dc.contributor.authorLe, Tung
dc.contributor.authorMoori, Jamshid
dc.contributor.authorTong-Viet, Hung
dc.date.accessioned2017-09-22T06:06:48Z
dc.date.available2017-09-22T06:06:48Z
dc.date.issued2015
dc.identifier.citationAkhlaghi, Z. et al. 2015. A dual version of Huppert's conjecture on conjugacy class sizes. Journal of Group Theory, 18:115–131. [https://doi.org/10.1515/jgth-2014-0039]
dc.identifier.issn1433–5883
dc.identifier.issn1435–4446 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/25633
dc.identifier.urihttps://doi.org/10.1515/jgth-2014-0039
dc.description.abstractIn [J. Algebra 344 (2011), 205–228], a conjecture of J. G. Thompson for PSLn(q) was proved. It was shown that every finite group G with the property Z(G) = 1 and cs(G) = cs(PSLn(q)) is isomorphic to PSLn(q) where cs(G) is the set of conjugacy class sizes of G. In this article we improve this result for PSL2(q). In fact we prove that if cs(G) = cs(PSL2(q)), for q > 3, then G ≅ PSL2(q) × A, where A is abelian. Our proof does not depend on the classification of finite simple groups.
dc.language.isoen
dc.publisherDe Gruyter
dc.titleA dual version of Huppert's conjecture on conjugacy class sizes
dc.typeArticle
dc.contributor.researchID23648902 - Le, Tung Thien
dc.contributor.researchID16434188 - Moori, Jamshid
dc.contributor.researchID23611294 - Tong-Viet, Hung


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record