dc.contributor.author | Akhlaghi, Zeinab | |
dc.contributor.author | Khatami, Maryam | |
dc.contributor.author | Le, Tung | |
dc.contributor.author | Moori, Jamshid | |
dc.contributor.author | Tong-Viet, Hung | |
dc.date.accessioned | 2017-09-22T06:06:48Z | |
dc.date.available | 2017-09-22T06:06:48Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Akhlaghi, Z. et al. 2015. A dual version of Huppert's conjecture on conjugacy class sizes. Journal of Group Theory, 18:115–131. [https://doi.org/10.1515/jgth-2014-0039] | |
dc.identifier.issn | 1433–5883 | |
dc.identifier.issn | 1435–4446 (Online) | |
dc.identifier.uri | http://hdl.handle.net/10394/25633 | |
dc.identifier.uri | https://doi.org/10.1515/jgth-2014-0039 | |
dc.description.abstract | In [J. Algebra 344 (2011), 205–228], a conjecture of J. G. Thompson for PSLn(q) was proved. It was shown that every finite group G with the property Z(G) = 1 and cs(G) = cs(PSLn(q)) is isomorphic to PSLn(q) where cs(G) is the set of conjugacy class sizes of G. In this article we improve this result for PSL2(q). In fact we prove that if cs(G) = cs(PSL2(q)), for q > 3, then G ≅ PSL2(q) × A, where A is abelian. Our proof does not depend on the classification of finite simple groups. | |
dc.language.iso | en | |
dc.publisher | De Gruyter | |
dc.title | A dual version of Huppert's conjecture on conjugacy class sizes | |
dc.type | Article | |
dc.contributor.researchID | 23648902 - Le, Tung Thien | |
dc.contributor.researchID | 16434188 - Moori, Jamshid | |
dc.contributor.researchID | 23611294 - Tong-Viet, Hung | |