• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Activity-based risk management for the acquisition of electronic mine safety equipment

    Thumbnail
    View/Open
    Activity_based.pdf (552.2Kb)
    Date
    2017
    Author
    Van der Merwe, G.P.R.
    Holm, J.E.W.
    Hoffman, A.J.
    Metadata
    Show full item record
    Abstract
    A new approach is proposed to perform relativistic comparisons between alternative operational risk management solutions by taking into account the impact of each operational activity on overall system performance. A specific case study, to which this new approach is applied, involves the deployment of safety systems in underground mining operations. Conflicting objectives to be satisfied are the minimization of risk to human lives and the minimization of production losses. As the focus in this case is primarily on the mitigation of risk, the approach that was applied is referred to as activity-based risk (ABR) analysis. Existing development process and risk management methods used in the South African mining environment were analysed by means of observations, a case study, technical documentation, and literature review. It was evident from this analysis that a discontinuity existed between the acquisition and operational phases in terms of the management of safety risk in the acquisition of electronic safety equipment when viewed from a full lifecycle perspective. This discontinuity could be addressed by defining a risk perspective in the system development phase by employing ABR in the preliminary design phase of a system’s engineering life-cycle. The focus of the ABR system development process is to find the functional definition and configuration of safety equipment that addresses both safety and productivity when taking into account human performance variability. In doing so, a balance between productivity and safety is found in a relativistic sense
    URI
    http://hdl.handle.net/10394/25424
    http://www.scielo.org.za/pdf/jsaimm/v117n6/05.pdf
    https://doi.org/10.17159/2411-9717/2017/v117n6a2
    Collections
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV