• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molecular modelling of tantalum in an aqueous phase

    Thumbnail
    View/Open
    Molecular_modelling.pdf (340.9Kb)
    Date
    2017
    Author
    Ungerer, M.J.
    Van Sittert, C.G.C.E.
    Van der Westhuizen, D.J.
    Krieg, H.M.
    Metadata
    Show full item record
    Abstract
    The transition metals tantalum (Ta) and niobium (Nb) are of significant importance, for example in the nuclear energy sector where they are used as cladding materials, as well as in capacitors and specialized materials. For these applications a high-purity metal is needed. The separation of Ta and Nb is always a challenge since they are found together in nature and have similar chemical and physical properties, resulting in costly and laborious separation processes. A technology that has been used successfully for the separation of these metals entails solvent extraction (SX)1. While separation was achieved in a previous SX study using a sulphuric acid (H2SO4) medium with the extractants diiso-octyl phosphinic acid (PA) and di-(2-ethylhexyl) phosphoric acid (D2EHPA), due to the absence of speciation data for Ta and Nb it is not clear how the separation occurred. One method that might be suitable for determining the speciation of a reaction is molecular modelling. Calculations based on the densityfunctional theory (DFT) are now used not only for light elements and small molecules, but also metal complexes, heavy metals, and especially metal separation in SX2. In this study the aqueous phase used during SX was investigated by studying periodic systems of Ta, as a metal and in salt form, when it is in contact with H2O and H2SO4. The results were used to predict the reaction mechanism occurring during SX. Results showed that (i) in a 1:1 acid-water ratio, the deprotonation of H2SO4 was endothermic, (ii) in a 1:5 ratio deprotonation was exothermic forming HSO4 -, and (iii) in a 1:10 ratio double deprotonation occurred to form SO42- exothermically
    URI
    http://hdl.handle.net/10394/25423
    http://dx.doi.org/10.17159/2411-9717/2017/v117n6a4
    http://www.scielo.org.za/pdf/jsaimm/v117n6/07.pdf
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV