• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and analysis for efficient simulation in petrochemical industry

    Thumbnail
    View/Open
    rossouw_ruan_francois_2008.pdf (7.670Mb)
    Date
    2008
    Author
    Rossouw, Ruan Francois
    Metadata
    Show full item record
    Abstract
    Building an industrial simulation model is a very time and cost intensive exercise because these models are large and consist of complicated computer code. Fully understanding the relationships between the inputs and the outputs are not straight forward and therefore utilizing these models only for ad hoc scenario testing would not be cost effective. The methodology of Design and Analysis of Simulation Experiments (DASE) are proposed to explore the design space and pro - actively search for optimization opportunities. The system is represented by the simulation model and the aim is to conduct experiments on the simulation model. The surrogate models (metamodels) are then used in lieu of the original simulation code; facilitating the exploration of the design space, optimization, and reliability analysis. To explore the methodology of DASE, different designs and approximation models from DASE as well as the Design and Analysis of Computer Experiments (DACE) literature, was evaluated for modeling the overall availability of a chemical reactor plant as a factor of a number of process variables. Both mean square error and maximum absolute error criteria were used to compare different design by model combinations. Response surface models and kriging models are evaluated as approximation models. The best design by model combination was found to be the Plackett - Burman Design (Screening Phase), Fractional Factorial Design (Interaction Phase) and the Response Surface Model (Approximation Model). Although this result might be specific to this case study, it is provided as a general recommendation for the design and analysis of simulation experiments in industry. In addition, the response surface model was used to explore the design space of the case study, and to evaluate the risks in the design decisions. The significant factors on plant availability were identified for future pilot plant optimization studies. An optimum operating region was obtained in the design variables for maximum plant availability. Future research topics are proposed.
    URI
    http://hdl.handle.net/10394/2522
    Collections
    • Natural and Agricultural Sciences [2757]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV