• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel UPLC-MS/MS based method to determine the activity of N-acetylglutamate synthase in liver tissue

    Thumbnail
    Date
    2016
    Author
    Dercksen, Marli
    Duran, Marinus
    Ijlst, Lodewijk
    Kulik, Wim
    Ruiter, Jos P.N.
    Metadata
    Show full item record
    Abstract
    Background N-acetylglutamate synthase (NAGS) plays a key role in the removal of ammonia via the urea cycle by catalyzing the synthesis of N-acetylglutamate (NAG), the obligatory cofactor in the carbamyl phosphate synthetase 1 reaction. Enzymatic analysis of NAGS in liver homogenates has remained insensitive and inaccurate, which prompted the development of a novel method. Methods UPLC-MS/MS was used in conjunction with stable isotope (N-acetylglutamic-2,3,3,4,4-d5 acid) dilution for the quantitative detection of NAG produced by the NAGS enzyme. The assay conditions were optimized using purified human NAGS and the optimized enzyme conditions were used to measure the activity in mouse liver homogenates. Results A low signal-to-noise ratio in liver tissue samples was observed due to non-enzymatic formation of N-acetylglutamate and low specific activity, which interfered with quantitative analysis. Quenching of acetyl-CoA immediately after the incubation circumvented this analytical difficulty and allowed accurate and sensitive determination of mammalian NAGS activity. The specificity of the assay was validated by demonstrating a complete deficiency of NAGS in liver homogenates from Nags −/− mice. Conclusion The novel NAGS enzyme assay reported herein can be used for the diagnosis of inherited NAGS deficiency and may also be of value in the study of secondary hyperammonemia present in various inborn errors of metabolism as well as drug treatment
    URI
    http://hdl.handle.net/10394/23327
    https://doi.org/10.1016/j.ymgme.2016.10.004
    https://www.sciencedirect.com/science/article/pii/S1096719216303183
    Collections
    • Faculty of Natural and Agricultural Sciences [4817]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV