Show simple item record

dc.contributor.authorGroenewald, G.J.
dc.contributor.authorTer Horst, S.
dc.contributor.authorKaashoek, M.A.
dc.date.accessioned2017-04-13T11:56:22Z
dc.date.available2017-04-13T11:56:22Z
dc.date.issued2016
dc.identifier.citationGroenewald, G.J. et al. 2016. The Bezout-Corona problem revisited: Wiener space setting. Complex analysis and operator theory, 10(1):115-139. [https://doi.org/10.1007/s11785-015-0477-4]en_US
dc.identifier.issn1661-8254
dc.identifier.issn1661-8262 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/21402
dc.identifier.urihttps://doi.org/10.1007/s11785-015-0477-4
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs11785-015-0477-4
dc.description.abstractThe matrix-valued Bezout-corona problem G(z)X(z)=Im, |z|<1, is studied in a Wiener space setting, that is, the given function G is an analytic matrix function on the unit disc whose Taylor coefficients are absolutely summable and the same is required for the solutions X. It turns out that all Wiener solutions can be described explicitly in terms of two matrices and a square analytic Wiener function Y satisfying detY(z)≠0 for all |z|≤1. It is also shown that some of the results hold in the H∞ setting, but not all. In fact, if G is an H∞ function, then Y is just an H2 function. Nevertheless, in this case, using the two matrices and the function Y, all H2 solutions to the Bezout-corona problem can be described explicitly in a form analogous to the one appearing in the Wiener settingen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectCorona problemen_US
dc.subjectBezout equationen_US
dc.subjectWiener spaceen_US
dc.subjectMatrix-valued functionsen_US
dc.subjectTolokonnikkov’s lemmaen_US
dc.titleThe Bezout-Corona problem revisited: Wiener space settingen_US
dc.typeArticleen_US
dc.contributor.researchID12066680 - Groenewald, Gilbert Joseph
dc.contributor.researchID24116327 - Ter Horst, Sanne


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record