• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The quadratic variation of continuous time stochastic processes in vector lattices

    Thumbnail
    Date
    2017
    Author
    Grobler, Jacobus J.
    Labuschagne, Coenraad C.A.
    Metadata
    Show full item record
    Abstract
    We define and study order continuity, topological continuity, γ-Hölder-continuity and Kolmogorov–Čentsov-continuity of continuous-time stochastic processes in vector lattices and show that every such kind of continuous submartingale has a continuous compensator of the same kind. The notion of variation is introduced for continuous time stochastic processes and for a γ-Hölder-continuous martingale with finite variation, we prove that it is a constant martingale. The localization technique for not necessarily bounded martingales is introduced and used to prove our main result which states that the quadratic variation of a continuous-time γ-Hölder continuous martingale X is equal to its compensator 〈X〉
    URI
    http://hdl.handle.net/10394/20828
    https://doi.org/10.1016/j.jmaa.2017.01.034
    https://www.sciencedirect.com/science/article/pii/S0022247X17300562
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV