Show simple item record

dc.contributor.authorVan Loggenberg, S.
dc.contributor.authorVan Schoor, G.
dc.contributor.authorUren, K.R.
dc.contributor.authorVan der Merwe, A.F.
dc.date.accessioned2017-01-20T08:31:05Z
dc.date.available2017-01-20T08:31:05Z
dc.date.issued2016
dc.identifier.citationVan Loggenberg, S. et al. 2016. Hydrocyclone cut-size estimation using artificial neural networks. IFAC-PapersOnLine, 49(7):996-1001. [https://doi.org/10.1016/j.ifacol.2016.07.332]en_US
dc.identifier.issn2405-8963 (Online)
dc.identifier.issn1474-6670
dc.identifier.urihttp://hdl.handle.net/10394/19834
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2405896316305390
dc.identifier.urihttps://doi.org/10.1016/j.ifacol.2016.07.332
dc.description.abstractThe hydrocyclone is widely used throughout the mineral processing industry when working with slurries. It is either used for classifying, desliming or dewatering. Hydrocyclones are inexpensive, application-efficient and relatively small to employ. In order to quantify its separation efficiency, models are utilised to estimate the cut-size and sharpness of classification coefficient, usually in the form of a partition curve. Most models are based on experimentally obtained data and are therefore not always universally applicable. Over the last decade researchers have started employing Artificial Neural Networks (ANNs) in order to obtain a dynamic model. This study endeavoured to use experimentally acquired data to develop models that predict the cut-size. The models are discussed and evaluated in detail and the best predicting model was compared to a conventional model from literatureen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectArtificial neural networken_US
dc.subjectModellingen_US
dc.subjectHydrocycloneen_US
dc.subjectCut-sizeen_US
dc.subjectPartition curveen_US
dc.subjectPlitt-Flintoffen_US
dc.titleHydrocyclone cut-size estimation using artificial neural networksen_US
dc.typePresentationen_US
dc.contributor.researchID12134457 - Van Schoor, George
dc.contributor.researchID12064203 - Uren, Kenneth Richard
dc.contributor.researchID10212361 - Van der Merwe, Abraham Frederik


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record