• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantifying the woody component of savanna vegetation along a density gradient in the Kalahari Bushveld: a comparison of two adapted point-centered quarter methods

    Thumbnail
    Date
    2014
    Author
    Dreber, Niels
    Harmse, Christiaan J.
    Götze, Albie
    Trollope, Winston S.W.
    Kellner, Klaus
    Metadata
    Show full item record
    Abstract
    Bush encroachment is a serious problem in savanna rangelands of southern Africa. There is a strong interest in practical and reliable assessment methods to quantify related vegetation changes in the woody layer such as the widely applied point-centred quarter (PCQ) methods. Several variations of these distance methods exist but their results differ due to differences in sampling effort and methodological accuracy. The aim of this study was to compare the performance of two recently developed adapted PCQ methods. These methods were used to estimate density, productivity and diversity of the woody layer of a semiarid savanna along a degradation gradient in the Kalahari rangelands. It was found that both adapted PCQ methods (APCQ10 and APCQ20, with the APCQ20 method using less recording points but a larger sampling area and higher sampling intensity per recording point) provided similar results for density, phytomass, available browse and browsing capacity in open, dense and encroached savanna types. Significant differences between the methods were obtained in differentiating height classes, which were, however, largely restricted to the woody layer above 2 m in open savanna types. There, applying the APCQ20 method avoided an under-sampling of larger shrubs and trees and increased precision in data assessment. This was confirmed by a better representation of species frequency distributions, as well as the density, phytomass and diversity status of the woody layer. These differences disappeared as the woody vegetation became denser with the APCQ10 method providing similar results to that of the APCQ20 method in densely vegetated and encroached savanna types. From a practical point of view, the APCQ10 method has a range of advantages in dense vegetation, where restricted movement impedes effective data collection. It is concluded that the APCQ20 method should be used to quantify open savanna communities, whereas the APCQ10 method is more suitable in dense stands of >1200 tree equivalents ha–1. Overall, the two APCQ methods were effective for assessing and monitoring woody savanna layers for management purposes but, for research, their accuracy still needs to be investigated in comparison to other assessment methods.
    URI
    http://hdl.handle.net/10394/19580
    http://dx.doi.org/10.1071/RJ13060
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV