Show simple item record

dc.contributor.authorChikamai, Lucy
dc.contributor.authorRodrigues, Bernardo G.
dc.contributor.authorMoori, Jamshid
dc.date.accessioned2016-10-30T13:08:38Z
dc.date.available2016-10-30T13:08:38Z
dc.date.issued2014
dc.identifier.citationChikamai, L. et al. 2014. Some Irreducible 2–Modular Codes Invariant Under The Symplectic Group S₆(2). Glasnik Matematicki, 49(69):235-262. [http://hrcak.srce.hr/index.php?show=casopisi_abecedno]en_US
dc.identifier.urihttp://hdl.handle.net/10394/19227
dc.identifier.urihttp://hrcak.srce.hr/130881
dc.description.abstractWe examine all non-trivial binary codes and designs obtained from the 2-modular primitive permutation representations of degrees up to 135 of the simple projective special symplectic group S6(2). The submodule lattice of the permutation modules, together with a comprehensive description of each code including the weight enumerator, the automorphism group, and the action of S6(2) is given. By considering the structures of the stabilizers of several codewords we attempt to gain an insight into the nature of some classes of codewords in particular those of minimum weight.en_US
dc.language.isoenen_US
dc.subjectDeriveden_US
dc.subjectSymmetric and quasi-symmetric designsen_US
dc.subjectSelf-orthogonal designsen_US
dc.subjectCodesen_US
dc.subjectOptimal linear codeen_US
dc.subjectAutomorphism groupen_US
dc.subjectModular representationen_US
dc.subjectSymplectic groupen_US
dc.titleSome irreducible 2–modular codes invariant under the symplectic group S₆(2)en_US
dc.typeArticleen_US
dc.contributor.researchID16434188 - Moori, Jamshid


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record