• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ETFE-g-pentafluorostyrene: functionalization and proton conductivity

    Thumbnail
    Date
    2015
    Author
    Atanasov, Vladimir
    Kerres, Jochen
    Metadata
    Show full item record
    Abstract
    In this study we propose a relatively simple and versatile method for the preparation of a polyelectrolyte membrane based on poly(pentafluorostyrene) (PFS) owing proton exchange functionalities for proton conducting applications. The method includes two steps: grafting of the PFS from an irradiated ETFE film, followed by post-functionalization. The advantage of our approach lies in grafting a polymer with highly reactive functional groups suitable for efficient post-sulfonation/phosphonation. The grafting step is optimized both in terms of the system (bulk, non-/solvent and gas-phase grafting) and the conditions (radiation doses, time and temperature) used. The kinetics of the grafting shows a linear increase of grafting degree with both time and temperature suggesting a lower diffusion control and a reduced termination reaction rate for the optimized grafting process. Both phosphonation and sulfonation of the PFS grafted ETFE result in a corresponding high functionalization degree of 50% and 70% with IEC values of 1 and 1.5 mequiv g−1 and conductivities of 170 and 90 mS cm−1 at 120 °C, 90% RH for the sulfonated and phosphonated ETFE-g-PFS respectively. The high conductivity is attributed to the homogeneous distribution of the PFS within the ETFE matrix (EDX-SEM micrographs) and relatively high acidities of the sulfonic and the phosphonic acids
    URI
    http://hdl.handle.net/10394/18635
    https://doi.org/10.1016/j.eurpolymj.2014.12.017
    https://www.sciencedirect.com/science/article/pii/S0014305714004479
    Collections
    • Faculty of Engineering [1136]
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV