Show simple item record

dc.contributor.authorMesserschmidt, Miek
dc.date.accessioned2016-09-06T08:37:48Z
dc.date.available2016-09-06T08:37:48Z
dc.date.issued2015
dc.identifier.citationMesserschmidt, M. 2015. Normality of spaces of operators and quasi-lattices. Positivity,19(4):695-724. [http://link.springer.com/journal/11117]en_US
dc.identifier.issn1385-1292
dc.identifier.issn1572-9281 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/18550
dc.identifier.urihttp://dx.doi.org/10.1007/s11117-015-0323-y
dc.identifier.urihttp://link.springer.com/article/10.1007/s11117-015-0323-y
dc.description.abstractWe give an overview of normality and conormality properties of pre-ordered Banach spaces. For pre-ordered Banach spaces X and Y with closed cones we investigate normality of B(X,Y) in terms of normality and conormality of the underlying spaces X and Y. Furthermore, we define a class of ordered Banach spaces called quasi-lattices which strictly contains the Banach lattices, and we prove that every strictly convex reflexive ordered Banach space with a closed proper generating cone is a quasi-lattice. These spaces provide a large class of examples X and Y that are not Banach lattices, but for which B(X,Y) is normal. In particular, we show that a Hilbert space H endowed with a Lorentz cone is a quasi-lattice (that is not a Banach lattice if dimH≥3), and satisfies an identity analogous to the elementary Banach lattice identity ∥|x|∥=∥x∥ which holds for all elements x of a Baen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subject(Pre)-ordered Banach spaceen_US
dc.subjectoperator normen_US
dc.subjectquasi-latticeen_US
dc.subjectnormalityen_US
dc.subjectconormalityen_US
dc.subjectLorentz coneen_US
dc.titleNormality of spaces of operators and quasi-latticesen_US
dc.typeArticleen_US
dc.contributor.researchID25788639 - Messerschmidt, Hendrik Jacobus Michiel


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record