Show simple item record

dc.contributor.authorGrobler, Jacobus J.
dc.contributor.authorLabuschagne, Coenraad C.A.
dc.date.accessioned2016-09-02T09:01:35Z
dc.date.available2016-09-02T09:01:35Z
dc.date.issued2015
dc.identifier.citationGrobler, J.J. & Labuschagne, C.C.A. 2015. The Itô integral for Brownian motion in vector lattices. Part 2. Journal of mathematical analysis and applications, 423(1):820-833. [https://doi.org/10.1016/j.jmaa.2014.09.063]en_US
dc.identifier.issn0022-247X
dc.identifier.issn1096-0813 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/18516
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2014.09.063
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022247X14008968
dc.description.abstractThe Itô integral for Brownian motion in a vector lattice, as constructed in Part 1 of this paper, is extended to accommodate a larger class of integrands. This extension provides an analogue of the indefinite Itô integral in the classical setting which yields a local martingale. The assumption is that there exists a conditional expectation operator on the vector lattice and the construction does not depend on a probability measure space. The classical case of the extended Itô integral is a special case of the constructed integral in the vector latticeen_US
dc.description.sponsorshipNational Research Foundation (Grant No. 87502), South Africaen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectMartingaleen_US
dc.subjectBochner integralen_US
dc.subjectBrownian motionen_US
dc.subjectConditional expectationen_US
dc.subjectItô integralen_US
dc.subjectVector latticeen_US
dc.titleThe Itô integral for Brownian motion in vector lattices. Part 2en_US
dc.typeArticleen_US
dc.contributor.researchID10173501 - Grobler, Jacobus Johannes


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record