Show simple item record

dc.contributor.authorVan Vuuren, G.
dc.contributor.authorYacumakis, R.
dc.date.accessioned2016-08-31T12:24:08Z
dc.date.available2016-08-31T12:24:08Z
dc.date.issued2015
dc.identifier.citationVan Vuuren, G. & Yacumakis, R. 2015. Hedge fund performance evaluation using the Kalman filter. Journal for studies in economics and econometrics, 39(3):1-23. [https://www.ber.ac.za/Research/S-E-E/]en_US
dc.identifier.issn0379-6205
dc.identifier.urihttp://hdl.handle.net/10394/18489
dc.identifier.urihttp://reference.sabinet.co.za/webx/access/electronic_journals/bersee/bersee_v39_n3_a1.pdf
dc.description.abstractIn the capital asset pricing model, portfolio market risk is recognised through β while α summarises asset selection skill. Traditional parameter estimation techniques assume time-invariance and use rolling-window, ordinary least squares regression methods. The Kalman filter estimates dynamic αs and βs where measurement noise covariance and state noise covariance are known - or may be calibrated - in a state-space framework. These time-varying parameters result in superior predictive accuracy of fund return forecasts against ordinary least square (and other) estimates, particularly during the financial crisis of 2008/9 and are used to demonstrate increasing correlation between hedge funds and the marketen_US
dc.language.isoenen_US
dc.publisherBureau for Economic Research and the Graduate School of Business, University of Stellenbosch.en_US
dc.titleHedge fund performance evaluation using the Kalman filteren_US
dc.typeArticleen_US
dc.contributor.researchID21277087 - Yacumakis, Ruan
dc.contributor.researchID12001333 - Van Vuuren, Gary Wayne


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record