• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental performance evaluation of an ammonia-fuelled microchannel reformer for hydrogen generation

    Thumbnail
    Date
    2014
    Author
    Chiuta, Steven
    Everson, Raymond C.
    Neomagus, Hein W.J.P.
    Bessarabov, Dmitri G.
    Metadata
    Show full item record
    Abstract
    Microchannel reactors appear attractive as integral parts of fuel processors to generate hydrogen (H2) for portable and distributed fuel cell applications. The work described in this paper evaluates, characterizes, and demonstrates miniaturized H2 production in a stand-alone ammonia-fuelled microchannel reformer. The performance of the microchannel reformer is investigated as a function of reaction temperature (450–700 °C) and gas-hourly-space-velocity (6520–32,600 Nml gcat−1 h−1). The reformer operated in a daily start-up and shut-down (DSS)-like mode for a total 750 h comprising of 125 cycles, all to mimic frequent intermittent operation envisaged for fuel cell systems. The reformer exhibited remarkable operation demonstrating 98.7% NH3 conversion at 32,600 Nml gcat−1 h−1 and 700 °C to generate an estimated fuel cell power output of 5.7 We and power density of 16 kWe L−1 (based on effective reactor volume). At the same time, reformer operation yielded low pressure drop (<10 Pa mm−1) for all conditions considered. Overall, the microchannel reformer performed sufficiently exceptional to warrant serious consideration in supplying H2 to fuel cell systems
    URI
    http://hdl.handle.net/10394/16649
    https://www.sciencedirect.com/science/article/pii/S0360319914006168
    https://doi.org/10.1016/j.ijhydene.2014.02.176
    Collections
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV