• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of demodulation algorithms for robust self-sensing active magnetic bearings

    Thumbnail
    Date
    2013
    Author
    Van Schoor, G.
    Niemann, A.C.
    Du Rand, C.P.
    Metadata
    Show full item record
    Abstract
    Active magnetic bearings (AMBs) play a key role in various industrial applications. In the ongoing challenge to reduce the number of external sensing devices and manufacturing costs of AMBs, self-sensing techniques have positioned themselves in a dominant role to provide sensorless estimation of rotor displacement. A self-sensing arrangement employs an estimation algorithm that uses the modulated coil voltage and current signals to determine the air gap information. However, filters in the demodulation path of the estimator introduce additional phase-shift that results in lower achievable stability margins. Furthermore, a disadvantage of modulation self-sensing approaches is that the position estimates are nonlinearly dependent on the power amplifier voltage duty cycle. This paper firstly evaluates the static and dynamic performance of different demodulation techniques via an experimentally verified transient simulation model. The direct current measurement (DCM) approach, which comprises a minimum number of filters, is proposed for position estimation of self-sensing AMBs. The DCM algorithm incorporates a novel PA switching method that only uses the bearing coil currents as input. The estimator facilitates duty-cycle invariant position estimates with minimal additional phase-shift. According to simulated as well as experimental results, the sensitivity level of this estimator is the lowest compared to the other examined techniques. A practical implementation of the DCM approach shows that robust estimation can be realized for a 10 A magnetically coupled AMB that lends itself to industrial application
    URI
    http://hdl.handle.net/10394/16215
    https://doi.org/10.1016/j.sna.2012.10.033
    https://www.sciencedirect.com/science/article/pii/S0924424712006504
    Collections
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV