The effect of condenser backpressure on station thermal efficiency : Grootvlei Power Station as a case study
Abstract
Grootvlei Power Station’s thermal efficiency had been on a steady declining trend since it was re-commissioned in 2008, which had tremendous financial implications to the company at the time of writing. The main contributory factor to the thermal efficiency losses was identified to be the condenser back pressure losses that the station was experiencing. This loss was responsible for approximately 17% of the total efficiency losses. Therefore an investigation was conducted to determine the potential impact of the condenser back pressure loss on the thermal efficiency and the financial implications thereof. The deliverables were to determine the cause of the condenser back pressure loss and propose possible resolutions, to quantify the financial effect and to produce a cost benefit analysis in order to justify certain corrective actions.
Grootvlei Power Station is one of the older power stations in South Africa and it was used as the first testing facility for dry-cooling in South Africa. It consists of six 200MW units, two of which are dry-cooled units. In 1990 it was mothballed and due to rising power demands in South Africa, it was re-commissioned in 2008. Thermal efficiency has been playing a great role due to the power constraints and therefore it was deemed necessary to conduct this study.
The approach that was used was one of experimental and quantitative research and analyses, incorporating deductive reasoning in order to test various hypotheses of factors that could have been contributing to the back pressure losses. In order to do so, a logic diagram was designed which could be used to aid in the identification of possible causes of the condenser back pressure losses. The logic diagram was able to identify whether the problem had to do with the cooling tower or the condenser. It was able to identify which area on the condenser was defective i.e. whether the pumps were not performing, or whether the air ejectors were not performing. It was also able to indicate whether the inefficiency was due to air ingress or fouling. Alongside the logic diagram, a condenser efficiency analysis was used in order to strengthen and improve on the investigation. This analysis was able to identify whether the condenser was experiencing fouling conditions, air ingress, passing valves or low cooling water flow.
After the investigation commenced, it was decided to focus on the two largest contributing units since the largest contributor was a dry-cooled unit and the second largest contributor was a wet-cooled unit, thus some comparison between the units was incorporated. The condenser efficiency analysis on Unit 3 (wet-cooled unit) indicated a low cooling water flow, fouling as well as air ingress. The logic diagram indicated poor cooling tower performance, high air ingress as well as fouling. Further tests and analyses as well as visual inspections confirmed these phenomena and condenser fouling was identified to be the largest contributor to the back pressure loss on this unit. The condenser efficiency analysis on Unit 6 indicated that air was entering the condenser. The logic diagram indicated that a segment of the back pressure loss was due to poor cooling tower performance. Inspection of the cooling tower indicated damage and leaks. A cooling tower performance test was conducted and the result of the test indicated that the tower was in need of cleaning. Further analyses
according to the logic diagram indicated that the condenser was experiencing air ingress which concurred with the condenser efficiency analysis. A helium test, condensate extraction pump pressure test as well as
a flood test was conducted on this unit and various air in-leakage points were identified.
The financial implications of the back pressure losses were investigated and found to be costing millions each month. The condenser back pressure loss was contributing more than 2% to the thermal efficiency loss. The cost benefit analysis indicated that the cost of cleaning the condenser on Unit 3 would be made up within six months and a return on investment of 16,6% was calculated. The cost benefit analysis motivates for extended outage times for the purpose of cleaning the condensers from a financial perspective.
Therefore, it was recommended to clean the condenser on Unit 3 and fix all known defects on the unit as well as on Unit 6. The cooling towers were recommended to be refurbished. Further investigation was
recommended to determine the feasibility of installing an online cleaning system on the wet-cooled units’ condensers such as a Taprogge system. Alternative investigation methods were suggested such as smoke
stick analyses for air ingress determination. It was also recommended to review the maintenance strategies that were being used since many of the defects were found to be maintenance related. If the identified problem areas are attended to, the condenser back pressure loss will decrease and the condensers transfer heat more efficiently which will lead to financial gains for Grootvlei Power Station as well as efficiency gains, plant reliability and availability gains.
Collections
- Engineering [1418]