• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of cellular handsets through radio frequency signature extraction on an FPGA platform

    Thumbnail
    View/Open
    Hattingh_JP.pdf (1.912Mb)
    Date
    2015
    Author
    Hattingh, Johannes Petrus
    Metadata
    Show full item record
    Abstract
    Specific emitter identification refers to the process of performing identification of radio frequency transmitters by exploiting unique variations in emitted signals, caused by hardware variations. In previous research, specific emitter identification was successfully performed on GSM handsets. However, no research has been done on the implementation of specific emitter identification of GSM handsets on an FPGA platform. This study focuses on feature extraction and identification algorithms, as well as the implementation of the identification algorithm on an FPGA. During this study, phase modulation error was used, as previous research indicated that phase modulation error is an effective feature set for identification purposes. As the implementation of a classification algorithm on an FPGA was required, a trade-off between complexity and feasibility needed to be made during the selection process. The artificial neural network was selected as the optimal classifier for implementation on an FPGA. The algorithm was first implemented in software and used as the basis for the design on an FPGA. A piece-wise linear approximation of a sigmoid function was used to approximate the activation function, where a look-up table was used to store the parameters. The off-line training of the artificial neural network was performed in software using the back-propagation gradient descent algorithm. Good results for the identification of GSM handsets on an FPGA were obtained, with a true acceptance ratio of 97.0%. This result is similar to the performance obtained in previous research performed in software. In this study, it was found that specific emitter identification of GSM handsets can be performed on an FPGA. Real-world applications for this technology include general cellular handset identification and access control.
    URI
    http://hdl.handle.net/10394/15283
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV