• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Antibiotic resistance in triclosan heterotrophic plate count bacteria from sewage water

    Thumbnail
    View/Open
    Coetzee_I_2015.pdf (2.053Mb)
    Date
    2015
    Author
    Coetzee, Ilsé
    Metadata
    Show full item record
    Abstract
    The concentration of triclosan in antiseptics, disinfectants and preservatives in products exceeds the minimal lethal levels. Extensive use of triclosan and antibiotics results in bacterial resistance to their active ingredients. The precise relationship between use and resistance, however, has been challenging to define. The aim of the study was to identify and determine antibiotic resistance profiles of triclosan tolerant heterotrophic plate count bacteria isolates from sewage influent and effluent. R2 agar supplemented with triclosan was utilised to isolate the triclosan resistant bacteria. To determine the minimum inhibitory concentration (MIC), organisms were incubated for 24 hours at selected concentrations of triclosan. Polymerase chain reaction (PCR) amplification of the 16S rRNA region was done to identify isolates. An assay for cross resistance to various antibiotics was performed. Determination of enhanced resistance to antibiotics by adding antimicrobials to the medium will be performed by using three antibiotics. High performance liquid chromatography was conducted to quantified levels of triclosan persistent in sewage water. Forty-four isolates were resistant to levels of triclosan ranging from 0.25 mg/l to 0.5 mg/l. Minimum inhibitory concentration values of these isolates ranged from 0.125 mg/l to >1 mg/l of triclosan. 16S rDNA methods were used and five main genera namely, Bacillus, Pseudomonas, Enterococcus, Brevibacillus and Paenibacillus were identified. Cell wall targeting antibiotics showed more pronounced relation with the triclosan concentration. Relation to triclosan concentration is not as apparent with the antibiotic targeting protein synthesis. Combination of antimicrobials indicated that at certain triclosan concentrations synergism or antagonism is observed. The importance of applying the correct concentration and combination of antimicrobials is observed. Levels of triclosan were found throughout the sewage water. HPLC values indicated the presence of triclosan at post-grid removal and effluent of the WWTP. The triclosan concentrations decrease through the WWTP but small concentrations enter our water bodies. The presence of bacterial species that are resistant to high concentrations of triclosan and multiple antibiotics enter our natural water bodies and is cause for concern.
    URI
    http://hdl.handle.net/10394/14910
    Collections
    • Natural and Agricultural Sciences [2757]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV