• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A seasonal trend of single scattering albedo in southern African biomass-burning particles: implications for satellite products and estimates of emissions for the world's largest biomass-burning source

    Thumbnail
    View/Open
    2013A_seasonal_trend.pdf (4.951Mb)
    Date
    2013
    Author
    Eck, T.F.
    Holben, B.N.
    Reid, J.S.
    Mukelabai, M.M.
    Piketh, S.J.
    Metadata
    Show full item record
    Abstract
    As a representative site of the southern African biomass-burning region, sun-sky data from the 15 year Aerosol Robotic Network (AERONET) deployment at Mongu, Zambia, was analyzed. For the biomass-burning season months (July–November), we investigate seasonal trends in aerosol single scattering albedo (SSA), aerosol size distributions, and refractive indices from almucantar sky scan retrievals. The monthly mean single scattering albedo at 440 nm in Mongu was found to increase significantly from ~0.84 in July to ~0.93 in November (from 0.78 to 0.90 at 675 nm in these same months). There was no significant change in particle size, in either the dominant accumulation or secondary coarse modes during these months, nor any significant trend in the Ångström exponent (440–870 nm; r2 = 0.02). A significant downward seasonal trend in imaginary refractive index (r2 = 0.43) suggests a trend of decreasing black carbon content in the aerosol composition as the burning season progresses. Similarly, burning season SSA retrievals for the Etosha Pan, Namibia AERONET site also show very similar increasing single scattering albedo values and decreasing imaginary refractive index as the season progresses. Furthermore, retrievals of SSA at 388 nm from the Ozone Monitoring Instrument satellite sensor show similar seasonal trends as observed by AERONET and suggest that this seasonal shift is widespread throughout much of southern Africa. A seasonal shift in the satellite retrieval bias of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer collection 5 dark target algorithm is consistent with this seasonal SSA trend since the algorithm assumes a constant value of SSA. Multi-angle Imaging Spectroradiometer, however, appears less sensitive to the absorption-induced bias.
    URI
    http://hdl.handle.net/10394/14298
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV