Show simple item record

dc.contributor.advisorBezuidenhout, C.C.
dc.contributor.authorGoosen, Daniël Johannes
dc.date.accessioned2014-08-14T07:32:11Z
dc.date.available2014-08-14T07:32:11Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/10394/11080
dc.descriptionThesis (M Environmental Sciences)--North-West University, Potchefstroom Campus, 2012en_US
dc.description.abstractEnvironmental pathogens, such as Escherichia coli and Streptococcus uberis, are currently the major cause of mastitis within dairy herds. This leads to severe financial losses, lower production rates and deterioration of the general health of the herd. E. coli mastitis is becoming a major threat to high milk-producing dairy herds. This is because of its increasing resistance to antibiotics, rendering antibiotic treatment regimes against E. coli infections mostly ineffective. The aim of this study was to develop a method to select mastitis causing E. coli isolates for the formulation of effective herd specific vaccines. Two methods, namely a genotyping method (Random Amplification of Polymorphic DNA; RAPD) and an antibiogram based method, were used. A dairy farm milking approximately 1000 Holstein cows in the Darling area, Western Cape Province, was selected for this study. The study was conducted over a period of 48 months and mastitis samples were analysed for mastitis pathogens. Antibiogram testing (disk diffusion method) and an in-house developed RAPD analysis method were used to analyse the E. coli isolates. A total of 921 milk samples were analysed from which 181 E. coli isolates were recovered. The number of all other common mastitis pathogens combined was 99 isolates (Streptococcus uberis 18, Streptococcus dysgalactiae 46, Streptococcus agalactiae 1, Staphylococcus epidermidis 21, Arcanobacterium pyogenes 13). All E. coli isolates, except for one, were resistant to at least three antibiotics. Antibiotic variance profiles were also highly erratic. The RAPD analysis revealed high levels of polymorphisms and clear epidemiological trends were observed over time. No similarities in the variance profiles between the antibiotic variance data and phylogenetic data were observed. Formalin inactivated autogenous vaccines were produced containing E. coli isolated from the herd. The vaccines were formulated using the RAPD or antibiogram data of the E. coli isolates. A total of 5 vaccines were formulated using RAPD data (Rvaccines) and one vaccine was formulated using antibiotic variance data (A-vaccine). The RAPD formulated vaccines were more effective than the antibiotic variance formulated vaccine. After each R-vaccination, the number of E. coli mastitis cases declined within the herd. The A-vaccinations seemed to have had no effect, which lead to a rise in E. coli mastitis cases. RAPD analysis on new emerging isolates was able to detect genetic variation from vaccine strains, which in turn facilitated the formulation of new updated vaccines with higher effectiveness than the previous vaccine. Mastitis data prior to and after the vaccination period revealed significant higher incidences of mastitis in the herd than during the vaccination period. This study demonstrated that sufficient sampling practices coupled with a reliable genotyping method, resulted in the formulation of updatable vaccines which were highly effective in controlling E. coli mastitis within the herd.en_US
dc.language.isoenen_US
dc.subjectE. colien_US
dc.subjectMastitisen_US
dc.subjectRAPDen_US
dc.subjectAntibiotic resistanceen_US
dc.subjectAutogenous vaccinesen_US
dc.titlePhylogenetic and antibiotic resistance variance amongst mastitis causing E. coli : the key to effective controlen
dc.typeThesisen_US
dc.description.thesistypeMastersen_US
dc.contributor.researchID12540110 - Bezuidenhout, Cornelius Carlos (Supervisor)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record