Show simple item record

dc.contributor.advisorDu Plessis, L.H.
dc.contributor.advisorSteenekamp, J.H.
dc.contributor.authorDu Toit, Lizl
dc.date.accessioned2014-06-24T09:47:28Z
dc.date.available2014-06-24T09:47:28Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/10394/10711
dc.descriptionMSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2014en_US
dc.description.abstractResearch on nanoparticles for pharmaceutical applications has become increasingly popular in recent years. N-trimethyl chitosan chloride (TMC) is a cationic polymer that can enhance absorption across mucosal surfaces. It has been explored as a nanoparticulate drug delivery system for the delivery of vaccines, vitamins, insulin and cancer medication. It has special interest for intravenous use, as it is soluble over a wide range of pH values. However, polycationic nanoparticles run a great risk for intravenous toxicity, as the positive surface charge allows easy electrostatic interactions with negatively charged blood components, such as red blood cells and plasma proteins. Additionally, the small size of the nanoparticles permits the binding of more proteins per mass, than larger particles do. These interactions can lead to extensive hemolysis, cell aggregation, complement activation, inflammation and fast clearance of the particles from the circulation. A decrease in the surface charge density can ameliorate these toxic interactions. Such a decrease is achieved by adding poly(ethylene) glycol (PEG) to the particle’s formulation. PEG creates a steric shield around the particles, preventing a certain extent of interaction between the particles and the blood components. To be able to use TMC nanoparticles as a successful drug delivery system, the hemocompatibility must first be determined, which was the aim of this study. The influence of particle size, concentration and the addition of PEG were also examined. The extent of hemolysis and cell aggregation caused by the experimental groups (20% and 60% concentration small TMC nanoparticles, 20% larger TMC nanoparticles and 20% cross-linked PEGTMC nanoparticles) were determined by incubating the groups with whole blood and/or blood components. Complement activation was determined with a Complement C3 Human enzyme-linked immunosorbent assay (ELISA) and plasma protein interactions were quantified through rapid equilibrium dialysis and a colorimetric assay. It was determined that 60% concentration small TMC nanoparticles caused 49.08 ± 2.538% hemolysis at the end of a 12-hour incubation period, significantly more than any other experimental group. This group had also caused mild aggregation of the white blood cells and platelets. This was the greatest extent of cell aggregation seen in any of the groups. No significant complement activation was seen by any of the experimental groups. Because of the cationic nature of the particles, all groups had more than 50% of the initial particles in the sample bound to plasma proteins after a 4-hour incubation period. However, at 90.68 ± 0.828%, the 60% small TMC nanoparticles had had significantly more interaction with the plasma proteins than the other groups. Through the experimental measurements it was revealed that TMC nanoparticles had hemotoxic effects at high concentrations. The addition of PEG to the particle formulation stabilized the particles and decreased their zeta potential , but had no significant effect on improving hemocompatibility. It was concluded that although further tests are needed, TMC nanoparticles seem to have potential as a successful intravenous carrier for high molecular weight active pharmaceutical ingredients.en_US
dc.language.isoenen_US
dc.subjectHemocompatibilityen_US
dc.subjectN-trimethyl chitosan chlorideen_US
dc.subjectNanoparticlesen_US
dc.subjectPoly(ethylene) glycolen_US
dc.subjectHemolysisen_US
dc.subjectAggregationen_US
dc.subjectComplement activationen_US
dc.subjectPlasma protein interactionen_US
dc.subjectBloedverenigbaarheiden_US
dc.subjectN-trimetiel kitosaan chlorieden_US
dc.subjectNanopartikelsen_US
dc.subjectPoli-etileen glikoolen_US
dc.subjectHemoliseen_US
dc.subjectAggregasieen_US
dc.subjectKomplement aktiveringen_US
dc.subjectPlasma proteïen interaksieen_US
dc.titleHemocompatibility of N–trimethyl chitosan chloride nanoparticlesen
dc.typeThesisen_US
dc.description.thesistypeMastersen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record