• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The influence of thorium on the temperature reactivity coefficient in a 400 MWth pebble bed high temperature plutonium incinerator reactor

    Thumbnail
    View/Open
    Richards_GA.pdf (3.067Mb)
    Date
    2012
    Author
    Richards, Guy Anthony
    Metadata
    Show full item record
    Abstract
    Social and environmental justice for a growing and developing global population requires significant increases in energy use. A possible means of contributing to this energy increase is to incinerate plutonium from spent fuel of pressurised light water reactors (Pu(PWR)) in high-temperature reactors such as the Pebble Bed Modular Reactor Demonstration Power Plant 400 MWth (PBMR-DPP-400). Previous studies showed that at low temperatures a 3 g Pu(PWR) loading per fuel sphere or less had a positive uniform temperature reactivity coefficient (UTC) in a PBMR DPP-400. The licensing of this fuel design is consequently unlikely. In the present study it was shown by diffusion simulations of the neutronics, using VSOP-99/05, that there is a fuel design containing thorium and plutonium that achieves a negative maximum UTC. Further, a fuel design containing 12 g Pu(PWR) loading per fuel sphere achieved a negative maximum UTC as well as the other PBMR (Ltd.) safety limits of maximum power per fuel sphere, fast fluence and maximum temperatures. It is proposed that the low average thermal neutron flux, caused by reduced moderation and increased absorption of thermal neutrons due to the higher plutonium loading, is responsible for these effects. However, to fully understand the mechanisms involved a detailed quantitative analysis of the roll of each factor is required. A 12 g Pu(PWR) loading per fuel sphere analysis shows a burn-up of 180.7 GWd/tHM which is approximately double the proposed PBMR (Ltd.) low enriched uranium fuel burn-up. The spent fuel has only a decrease of 24.5 % in the Pu content which is sub-optimal with respect to proliferation and waste disposal objectives. Incinerating Pu(PWR) in the PBMR-DPP 400 MWth is potentially licensable and economically feasible and should be considered for application by industry.
    URI
    http://hdl.handle.net/10394/10585
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV