• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modelling of cosmic ray modulation in the heliosphere by stochastic processes

    Thumbnail
    View/Open
    Table of contents (304.5Kb)
    Chapter 1 (76.49Kb)
    Chapter 2 (2.595Mb)
    Chapter 3 (2.095Mb)
    Chapter 4 (811.7Kb)
    Chapter 5 (3.018Mb)
    Chapter 6 (2.964Mb)
    Chapter 7 (2.956Mb)
    Chapter 8 (4.338Mb)
    Chapter 9 (115.1Kb)
    Bibliography (154.5Kb)
    Date
    2013
    Author
    Strauss, Roelf du Toit
    Metadata
    Show full item record
    Abstract
    The transport of cosmic rays in the heliosphere is studied by making use of a newly developed modulation model. This model employes stochastic differential equations to numerically solve the relevant transport equation, making use of this approach’s numerical advantages as well as the opportunity to extract additional information regarding cosmic ray transport and the processes responsible for it. The propagation times and energy losses of galactic electrons and protons are calculated for different drift cycles. It is confirmed that protons and electrons lose the same amount of rigidity when they experience the same transport processes. These particles spend more time in the heliosphere, and also lose more energy, in the drift cycle where they drift towards Earth mainly along the heliospheric current sheet. The propagation times of galactic protons from the heliopause to Earth are calculated for increasing heliospheric tilt angles and it is found that current sheet drift becomes less effective with increasing solar activity. Comparing calculated propagation times of Jovian electrons with observations, the transport parameters are constrained to find that 50% of 6 MeV electrons measured at Earth are of Jovian origin. Charge-sign dependent modulation is modelled by simulating the proton to anti-proton ratio at Earth and comparing the results to recent PAMELA observations. A hybrid cosmic ray modulation model is constructed by coupling the numerical modulation model to the heliospheric environment as simulated by a magneto-hydrodynamic model. Using this model, it is shown that cosmic ray modulation persists beyond the heliopause. The level of modulation in this region is found to exhibit solar cycle related changes and, more importantly, is independent of the magnitude of the individual diffusion coefficients, but is rather determined by the ratio of parallel to perpendicular diffusion.
    URI
    http://hdl.handle.net/10394/10217
    Collections
    • Natural and Agricultural Sciences [2757]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV