CHAPTER 6

Part 1 The Metabolic Degradation of Ochratoxin A by Yeasts

This chapter comprises a collaborative study between the University of the Free State (Bloemfontein) and Potchefstroom University of Christian Higher Education. The aim of the project was to find microorganisms that can degrade OTA to non-toxic compounds.

Contribution made by the candidate

The candidate was assisted by Ms. Tanja van Rooyen (Potchefstoom University) and Prof. Martie Smit (University of the Free State) in the screening for yeasts containing the ability to degrade OTA. The candidate was, however, responsible for the final screening of the yeasts, the quantitation of the hydrolysis and the compilation of the results.

Part 2 The Degradation of Ochratoxin A by Fungi

This study was a collaborative study involving Foodtek, CSIR, Pretoria and the Potchefstroom University of Christian Higher Education.

Contribution made by the candidate

Ms. Annelie Lübben and dr. Gert Marais were responsible for the preliminary experiments. The candidate did the inoculation for the final experiments at Foodtek and was also responsible for the analysis and the compilation of the data.

The Metabolic Degradation of Ochratoxin A

Keywords: Ochratoxin A, metabolism, microorganisms, degradation and prevention

INTRODUCTION

Mycotoxins are toxic secondary metabolites of microorganisms (fungi) that pose a serious threat to the health of both humans and animals (Marquardt and Frohlich, 1992; Steyn and Stander, 1999 and references cited). Ochratoxin A (OTA), a mycotoxin produced by various *Penicillium* and *Aspergillus* species is a common contaminant of various foodstuffs including; spices, coffee, wheat, beer and animal products. Considerable research has been undertaken to detoxify mycotoxins in food especially aflatoxin-containing peanuts and oilseeds; physical, chemical or biological approaches are employed (Scott, 1998). The Food and Agricultural Organisation of the United Nations outlined the following requirements for decontamination processes, the process must:

- 1. destroy, inactivate or remove the mycotoxin
- not produce or leave toxic or carcinogenic/mutagenic residues in the final products or in food products obtained from animals fed decontaminated feed
- 3. retain the nutritive value and acceptability of the products
- 4. not significantly alter important technological properties of the food or feed
- 5. destroy fungal spores and mycelium in order to avoid the formation of mycotoxins under favorable conditions

Several methods have been tested to detoxify ochratoxin contaminated foods including heat treatment (Josefsson and Moller, 1980; Boudra *et al.*, 1995), ammoniation (Chelkowski *et al.*, 1981), ensiling (Rotter *et al.*, 1989a; 1989b), increasing the dietary concentration of protein (Bailey *et al.*, 1989), cholestyramine (Madhyastha *et al.*, 1992) or phenylalanine (Bailey *et al.*, 1990, Rotter *et al.*, 1989a) or by the use of a non-specific absorbent, like charcoal (Rotter *et al.*, 1989b) but none of these methods showed sufficient results. Fermentation with the yeast *Saccharomyces cerevisiae* degrades patulin during cider manufacture (Doyle *et al.*, 1982; Scott, 1998).

For every biosynthetically formed compound there exists one or more microorganism that have the ability to degrade it either completely or partially; the degradation products can then be utilised by other organisms (Schlegel, 1986). This principle can be explained as follows: Green plants have been synthesising organic material for millions of years, such substances have not accumulated to any marked extent. Only a small fraction of these compounds has been conserved under complete exclusion of air as highly reduced carbon compounds (coal, petroleum and natural gas). This principle is, however, not flawless when it is applied to all compounds and not only biosynthetically produced compounds: no microorganism has yet been discovered that can degrade a number of synthetic compounds including plant-protective agents, detergents and highly polimerised materials (Schlegel, 1986). Microorganisms produce enzymes that catalyses the degradation of compounds. Although all enzymes are initially produced in the cell, some are secreted through the cell wall and function in the cell's environment (intracellular versus extracellular enzymes). Carboxypeptidase A is such an enzyme in mammalian cells that has the ability to hydrolyse OTA to phenylalanine and the non-toxic isocoumarinic acid, ochratoxin α (OTa) [See Figure 1, (Doster and Sinnhuber, 1972)]. Micoorganisms have been screened for their ability to degrade OTA, but we are aware of only two that have been identified as possessing this propensity (Wegst and Lingens, 1983; Hwang and Draughon, 1994). Phenylobacterium immobile, a Gram-negative soil bacterium was found to degrade OTA: The phenylalanine moiety was mostly attacked by the enzymes of the bacterium to form a phenol- and a dihydrodiol derivative of OTA and finally OTa (Wegst and Lingens, 1983). Hwang and Draughon (1994) screened a number of bacteria, yeasts and moulds for OTA degradation and found Acinetobacter *calcoaceticus* to degrade OTA to $OT\alpha$.

In an effort to find biological ways to destroy or inactivate OTA in contaminated food, it was decided to screen a number of fungi for ochratoxin degradation. The screening can be done in three possible ways: cells can be removed from a growing culture and resuspended in a non-nutrient solution (resting cells or non-growing but viable cells); or cells in a growing culture; or the enzymes can be extracted from the cells (Pelczar *et al.*, 1986).

Fungi are eucaryotic spore-bearing protists that lack chlorophyll and comprise the moulds and yeasts. Whereas moulds are filamentous and multicellular, yeasts are usually unicellular (Pelczar, *et al.*, 1986).

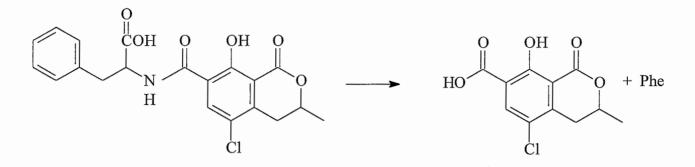


Figure 1: Structures of ochratoxin A (left) and ochratoxin α (right).

Part 1: The Metabolic Degradation of OTA by yeasts

ABSTRACT

Yeasts (323 different strains) were screened as a resting cell suspension for OTA degradation. Seven of these yeasts proved to degrade OTA, of which one, *Trichosporon mucoides* degraded OTA substantially within 48 hours in a growing culture.

Chemicals

OTA was extracted from Durum wheat inoculated with *Aspergillus ochraceus* (Stander *et al.*, 1999) (recrystallised from benzene, m.p. 91 °C, literature 90 °C, van der Merwe *et al.*, 1965). Ochratoxin α was obtained by hydrolysing OTA under reflux in excess 6 M hydrochloric acid for 60 hours. The three hydroxylated ochratoxins which were used as standards: (4*R*)- and (4*S*)-4-hydroxyochratoxin A and 10-hydroxyochratoxin A were supplied by Prof. R. Marquardt, Department of Animal Science, University of Manitoba, Canada. Yeast cultures were kindly provided by Professor Martie Smit University of the Free State, Bloemfontein, South Africa. Peptone, agar, potato dextrose agar, yeast extract and malt extract were obtained from Biolab (Merck). Potassium hydrogen phosphate, potassium phosphate, chloroform, methanol and dichloromethylsilane were obtained from Merck. Vanillin was purchased from Sigma.

Silinating glassware

The glassware was silinated to prevent the adsorption of OTA. Glassware was first treated with chromic acid for 24 hours, then left in water for 24 hours, rinsed three times with water, rinsed three times with distilled water and autoclaved (at 210 °C for 30 minutes). Glassware was placed in a desiccator in the presence of a beaker with dichloromethylsilane (10 ml). A vacuum was applied to the desiccator and it was kept under vacuum for an hour. The glassware was subsequently rinsed with double distilled water and autoclaved (at 210 °C for 30 minutes).

Thin layer chromatography (TLC)

Silica gel 60 aluminium sheets were purchased form Merck. A mobile phase of toluene/acetic acid (4:1) was used. The R_f values of OTA and of OT α under these conditions are: 0.50 and 0.23, respectively. Plates were viewed under UV illumination and non-fluorescing organic compounds were visualised by spraying the plates with vanillin/sulphuric acid and heating at 140 °C.

High Performance Liquid Chromatography (HPLC)

A Hewlett Packard 1090, HPLC system, fitted with a diode array (HP 1090) and fluorescence detector (HP 1100), autosampler and ChemStation software was used. Separations were achieved using a 4.6 mm × 150 mm, 5 μ m, C₁₈ analytical column (Discovery C₁₈, SUPELCO) fitted with a C₁₈ guard cartridge (Spherisorb ODS-2, SUPELCO) and a mobile phase of water/methanol/acetic acid (50:60:2). Injection volume was 20 μ l and flow rates of 1 ml/min were used. The fluorescence detector was set at an excitation wavelength of 250 nm and an emission wavelength of 454 nm. Results were quantified relative to the 0 hour values. The percentage recovery of the extraction in **Part 2** was calculated to be: 97.4 % ± RSD 2.79 % (n = 6).

Growth

Optical density was used as an indication of the growth of the yeasts. Samples (20 μ l) were taken from the cultures and diluted with physiological salt solution (180 μ l). Optical densities (OD₆₂₀) were read at 620 nm with a Labsystem iEMS reader MF.

SCREENING FOR YEASTS WITH THE ABILITY TO DEGRADE OTA Procedure

Inoculum liquid medium was prepared by dissolving yeast extract (3 g), maltose (20 g), peptone (10 g) and glucose (15 g) in double distilled water (500 ml). The above liquid medium was subsequently microwaved (5 minutes on high setting) and water (500 ml) added, and autoclaved (at 121 °C for 30 minutes). A selection of frozen cultures (-70°C) of yeasts were plated onto agar plates and kept at 25°C for 48 hours. The yeasts were harvested by adding a needle-eye full of the yeast to the inoculum medium (20 ml in 100 ml Erlenmeyer flasks). The flasks were shaken for 48 hours at 20 °C at 200 rpm. The optical densities (OD) of the cultures in the flasks were measured as described above. Samples (1 ml) of cultures with an OD₆₂₀ of 3.0 and higher were transferred to Eppendorf tubes. The tubes were centrifuged (10 000 rpm, 2 minutes at 10 °C), the supernatant was removed and the pellets were washed by mixing with 50 mM phosphate buffer (1 ml, autoclaved at 121 °C for 30 minutes), centrifuging (10 000 rpm, 2 minutes at 10 °C) and removing the supernatant again. The 50 mM phosphate buffer (1 ml, autoclaved at 121 °C for 30 minutes) was added to the pellets and it was mixed again. The suspended cells were pipetted into silinated vials; OTA (5 µl, 0.2 mg/ml) was added and shaken for 9 days. Samples (200 µl) were taken every three days from the vials and the samples extracted with ethyl acetate (100 µl) by vortexing (1 minute) and centrifuging (1 minute, 10 000 rpm) and subsequent analysis by TLC.

Genus	species	species Culture collection number			
Aeromonium	strictum		TVN 306		
Aureobasidium	pullulans			NRRL Y-02311-1	
Babjevia	anomalus	CBS 6740T			
Brettanomyces	anomalus			CSIR Y-0505	
Bullera	dendrophila	CBS 6074 T		CSIR Y-0499T	
Bullera	singularis/dendrophila	CBS 6460			
Candida	albicans			CSIR Y-0132	
Candida	albicans	CBS 0562		UOFS Y-0198	
Candida	albicans	CBS 5736			
Candida	albicans	CBS 562			
Candida	catehulata	CBS 0564			
Candida	cylindracea	CBS 6330			
Candida	diddensiae			CSIR Y-0060	
Candida	edax			CSIR Y-636T	

Table 1: A selection of yeasts screened for their ability to degrade OTA

Candida	edax	CBS 5657	[CSIR Y-0636
Candida	glabrata		CSIR Y-0007	
Candida	glaebosa	CBS 5691T		CSIR Y-0581
Candida	haemulonii	CBS 5149 T		
Candida	humilis	CBS 5658T		
Candida	inconspicua	CBS 2833		
Candida	inconspicua	CBS 0990		
Candida	inconspicua	CBS 0180 T		
Candida	inconspicua	CBS 4258		UOFS Y-0392
Candida	insectamans	CBS 6033T		
Candida	intermedia var. intermedia	CBS 7153		
Candida	magnoliae		CSIR Y-0118	
Candida	maltosa	CBS 5611 T		
Candida	mogii	CBS 2032 T		
Candida	parapsilosis	CBS 0604	CSIR Y-0685	
Candida	peltata	CBS 5564		
Candida	quercuum	CBS 6422		
Candida	rugosa		CSIR Y-0295	
Candida	rugosa			CSIR Y-0299
Candida	salmanticensis	CBS 5121		
Candida	shehatae			Y 0492
Candida	silvicultrix	CBS 6269	CSIR Y-0481	
Candida	sp. "saitoana"			Y 756
Candida	tenuis	CBS 2885	CSIR Y-0597	
Candida	tropicalis			OC 0003
Candida	tropicalis	CBS 0094 T		
Candida	vartiovaarai	CBS 4289		
Candida	wickerhamii		CSIR Y-0926	
Candida	wickerhamii		CSIR Y-0799	
Candida	wickerhamii			IGC3244
Candida	wickerhamii	CBS 6395		CSIR Y-0038
Chrysemonas	luteola		TVN 293	
Cryptococcus	albidus var. aerius	CBS 0155 T		
Cryptococcus	lamrentii		TVN 129	W 36
Cryptococcus	laurentii		TVN 329	
Cryptococcus	laurentii		TVN 300	UOFS Y-0217
Cryptococcus	terreus	CBS 1895T		
Cryptococcus	terreus	CBS 1895 T		
Debaryomyces	anomala	CBS 0076	CSIR Y-0504	
Debaryomyces	hansenii		TVN 163	G 210
Debaryomyces	hansenii			CSIR Y-0016
Debaryomyces	melissophilus	CBS 7060		
Debaryomyces	yamadae	CBS 7035		CSIR Y-0887
Debaryomyces Dekkera	bruxellensis			Y 0562
Dipodascopsis	tothii			UOFS Y 0811T
Dipodascopsis	uninudeata var. wickerhamii	CBS 741 74		
Dipodascus	ingens			UOFS Y-0104
Dipodascus	tetrasperma	CBS 765.70 T		
Exophiala	dermatitidis			UOFS Y-2048
Linopinunu	adi mananan	I	1	

CHAPTER 6: The Metabolic Degradation of Ochratoxin A

Exophiala	sp.		VDW 0067	
Fellomyces	penicillatus		TVN 314	
Galactomyces	geotrichum	CBS 0772.71 T		
Galactomyces	geotrichum			UOFS Y-0079
Galactomyces	geotrichum group a alt			UOFS Y-0078
Galactomyces	geotrichum group a alt			UOFS Y-0077
Galactomyces	sp.		VDW 24	
Geotrichum	candidum	CBS 0193.34		
Geotrichum	candidum	CBS 0774.71		CSIR Y-1004
Geotrichum	candidum			UOFS Y-0073
Geotrichum	candidum			UOFS Y-0094
Geotrichum	candidum			UOFS Y-0092
Geotrichum	candidum			UOFS Y-0088
Geotrichum	candidum			UOFS Y-0081
Geotrichum	candidum			UOFS Y-0095
Geotrichum	capitatum	CBS 0572.82		
Geotrichum	eriensis	CBS 694.83		
Geotrichum	fermentans	CBS 0439.83		
Geotrichum	fermentans	CBS 409.34		
Geotrichum	fragrans	CBS 0164.32		
Geotrichum	fragrans ·	CBS 0127.76		
Geotrichum	fragrans			UOFS Y 0107
Geotrichum	ingens			UOFS Y-0093
Geotrichum	ingens			UOFS Y-0099
Geotrichum	ingens			UOFS Y-0100
Geotrichum	klebahnii	CBS 0625.85		
Geotrichum	sericeum	CBS 0192.55 T		
Geotrichum	sericeum	CBS 0192.55 T		
Geotrichum	sericeum	CBS 750.85		
Geotrichum	sp.	0000		UOFS Y-0074
Geotrichum	sp.		VDW 0153	
Geotrichum	sp.		VDW 0152	
Geotrichum	sp. sp.		VDW 142	
Geotrichum			VDW 143	
Geotrichum	sp. sp.		VDW 149	
Geotrichum	-			UOFS Y-0111
Geotrichum	sp.		VDW 0145	
Geotrichum	sp.		VDW 0145 VDW 146	
Geotrichum	sp.		VDW 140	
Geotrichum	sp.		VDW 130 VDW 144	
Geotrichum	sp.		VDW 144 VDW 151	
	sp.		VDW 151	UOFS Y-0101
Geotrichum	sp. fragrans	CDS 0759 95		0013 1-0101
Geotrichum Geotrichum	spicifer	CBS 0758.85 CBS 0278.86 T		
Geotrichum	terrestre	02/8.80 1		
GM 108	, ,		TVN 294	
GM 116 GM 127			TVN 302	}
GM 127 GM 124			TVN 313	
GM 134			TVN 320	
GM 141			TVN 327	

153

.

CO CO CO	1	I		I
GM 144			TVN 330	
GM 145			TVN 331	
GM 146			TVN 332	
GM 147			TVN 333	
Hanseniaspora	guilliermondii	CBS 0465 T		
Hanseniasporum	guillermondi	CBS 0465T		
Hasegawaea	japonica var. versatilis	CBS 0099		
Kluyveromyces	delphensis	CBS 2170 T		
Kluyveromyces	lactis var. lactis	CBS 2103		
Kluyveromyces	lodderae	CBS 2757T		
Kluyveromyces	marxianus	CBS 4857		
Kluyveromyces	polysporus	CBS 2163 T		
Lipomyces	tetrasporus			UOFS Y 0158
Lipomyces	kockii			UOFS y O168
Lipomyces	kononenkoae	CBS 2514T		
Lipomyces	sp.			UOFS Y-0171
Lipomyces	sp.		TVN 272	
Lipomyces	tetrasporus			UOFS Y 2034
Lipomyces	tetrasporus			UOFS Y0179
Lipomyces	tetrasporus			UOFS Y-2032
Lipomyces	tetrasporus			UOFS Y-0190
Lipomyces	tetrasporus			UOFS Y-0188
Lipomyces	tetrasporus			UOFS Y-0192
Lipomyces	tetrasporus			UOFS Y-0189
Lipomyces	tetrasporus			UOFS Y-2082
Lipomyces	tetrasporus			UOFS Y-0193
Lipomyces	tetrasporus			UOFS Y-0180
Lipomyces	tetrasporus			UOFS Y 0191
LM10			VDW 30	
LM2			VDW 29	
M 183(38)			TVN 50	
M 190			TVN 164	
Candida	silvae		TVN 168	UOFS-Y0491
M 252			TVN 52	
M 292			TVN 170	
M 295(12)			TVN 54	
M 356(12)			TVN 58	
Pichia	pini		TVN 19	UOFS-Y0490
M 459			TVN 016	
M 464			TVN 25	
M 465			TVN 21	
M 468			TVN 23	
M 544			TVN 17	
M 568			TVN 199	
M 884(32)			TVN 87	
M 885			TVN 89	
M 888			TVN 202	
M>	pullchirina		TVN 138	G 300
Malay			TVN 310	GM 124

Myxozyma	lipomycoides	CBS 7038 T		
Oranges	sa		TVN 171	M 283
Oranges	sa		TVN 176	M 256
Oranges	vw		TVN 220	M 707
Pachitrichosporon	transvaalensis		TVN 132	
Pichia	membranaefaciens		TVN 154	G 104
Pichia	onychis	CBS 5587 T		
Pichia	cactophila	CBS 6926 T		
Pichia	etchellsii			Y 0858
Pichia	guilliermondii	CBS 2030 T		NRRL Y-2075 T
Pichia	haplophila	CBS 2028 T		CSIR Y-0225 T
Pichia	haplophilia	CBS 4329		
Pichia	holstii		TVN 33	
Pichia	jadinii	CBS 4885		CSIR Y-0227
Pichia	membranaefaciens	CBS 0107		CSIR Y-0035
Pichia	mississipiensis			Y 0306
Pichia	pini	CBS 0744 T		
Pichia	quercuum	CBS 2283T		
Pichia	quercuum	CBS 2283 T		
Pichia	scolyti	CBS 4803		CSIR Y-0445
Pichia	spartinae	CBS 6059 T		
Pichia	subpelliculosa		TVN 334	ъ.
Pine	suopennennesu		TVN 338	GM 152
Rhodotorula	minuta		TVN 341	UOFS Y-0138
Rhodosporidium	lusitaniae	CBS 7604 T		
Rhodosporidium	sphaerocarpum	CBS 6985		
Rhodosporidium	toruloiides	CBS 0014		
Rhodoturula	acuta	CBS 7053		
Rhodoturula	araucariae	CBS 6031 T		
Rhodoturula	aurentiaca		TVN307	UOFS Y-2049
Rhodoturula	foliorum	CBS 5234	CSIR Y-0017 T	
Rhodoturula	glutinis	000 5254	TVN 149	G 318
Rhodoturula	glutinis		TVN 311	UOFS Y-0123
	5	CBS 5827		00101-0125
Rhodoturula	lactosa	CD5 3627	TVN 350	
Rhodoturula	minuta		TVN 301	
Rhodoturula	minuta		TVN 286	
Rhoduturula	minuta	CBS 5951	1 VIN 200	
Rhodotorula	mucilaginosa	CD5 3931	TVN 321	
Rhodoturula	mucilaginosa		TVN 326	
Rhodoturula	philyta	CDS 5142	1 VIN 520	
Rhodoturula	sp.	CBS 5143	TY AT 200	
Rhodoturula	sp.		TVN 309	
Rhodoturula	sp.	000 1505	TVN 298	
Saccharomyces	buyanus	CBS 1505		
Saccharomyces	castellii	CBS Y309T		
Saccharomyces	cerevisiae	CBS 2814		
Saccharomyces	cerevisiae	CBS 2354		
Saccharomyces	cerevisiae	CBS 4903		
Saccharomyces	cerevisiae	CBS 1171 NT		

Saccharomyces	dairensis	CBS 633	I	
		CBS 6904		
Saccharomyces	dairensis	CDS 0904		CSIR Y-471
Saccharomyces	dairensis	CBS Y21T		CSIR Y-1392
Saccharomyces	dairensis	CBS 1211 CBS 0835		CSIR Y-0441
Saccharomyces	exiguus	CBS 0835		CSIR Y-0572
Saccharomyces	exiguus	ODG 270T		CSIK I = 0.572
Saccharomyces	exiguus	CBS 379T		
Saccharomyces	exiguus	CBS 6440		COD X 0249
Saccharomyces	exiguus			CSIR Y-0348
Saccharomyces	kluyverii	CBS 6545		
Saccharomyces	kluyverii	CBS S. 4104		
Saccharomyces	kluyverii	CBS 2861		
Saccharomyces	kluyverii	CBS 3082T		
Saccharomyces	paradoxus	CBS 7400		
Saccharomyces	pastorianus	CBS 1503		
Saccharomyces	pastorianus	CBS 1513		
Saccharomyces	pastorianus	CBS 1538		
Saccharomyces	sewazzii	CBS 7721		
Saccharomyces	unisporus	CBS 3987		
Saccharomyces	unisporus	CBS 399		
Saccharomyces	unisporus	CBS 3004		
Saccharomyces	unisporus	CBS 398T		
Saccharomycodes	ludwigii	CBS 5929		
Saccharomycodes	ludwigii			Y 0022
Saccharomycodes	sinensis	CBS 7075 T		
Saccharomycopsis	capsularis	CBS 5638		CSIR Y-0447
· -	japonicus var. japonicus	CBS 7116		
Schizosaccharomyces	octosporus var. octosporus	CBS 1804		CSIR Y-0934
Schizosaccharomyces	octosporus var. octosporus	CBS 6206		
Schizosaccharomyces Schizosaccharomyces		CBS 1058		
Schizosaccharomyces		CBS 1050		
	occidentalis	CBS 4668		CSIR Y-0828
Schwanniomyces		CBS 5937		CSIR Y-0144
Sporidiobolus	microsporus/johnsonii	CDS 3937		CSIR Y-0011
Sporidiobolus	pararoseus/johnsonii	CBS 7096		
Sporobolomyces	tsugae	IGC 4222		
Sporobolomyces	roseus			CSIR Y-0606
Sporopachydermia	quercuum	CBS 8070		CSIK 1-0000
<i>T102</i>			VDW 0084	
T16			VDW 0070	
T17			VDW 0068	
T21			VDW 0071	
<i>T63</i>			VDW 0072	
<i>T64</i>			VDW 0065	
<i>T69</i>			VDW 0075	
<i>T</i> 74			VDW 0074	
T75			VDW 0069	
T82			VDW 0076	
T88			VDW 0078	
T89			VDW 0079	
1	1			

T92		1	VDW 0080	
Torulaspora	glubosa			Y 0574
Tremella	fuciformis	CBS 6970		
Trichosporon	lodderae	CBS 1924		
Trichosporon	beigelii			UOFS Y-0063
Trichosporon	beigelii			UOFS Y-0113
Trichosporon	beigelii		VDW 0091	
Trichosporon	cutaneum			UOFS Y-0264
Trichosporon	cutaneum var. cutaneum	CBS 2466NT		
Trichosporon	ovoides			UOFS Y-0106
Trichosporon	pullulans	CBS 2535		
Trichosporon	sp.		VDW 109	UOFS Y-0118
Trichosporon	sp.		VDW 114	
Trichosporon	mucoides		VDW 0061	UOFS Y-2041
Trichosporon	sp.		VDW 0115	
Trichosporon	sp.		VDW 113	
Trichosporon	sp.		VDW 0111LN	
Trichosporon	sp.			Y 0561
Trichosporon	sp.		VDW 0108LN	
Trichosporon	sp.		VDW 0110	
Trichosporon	mucoides		VDW 61	UOFS Y-2041
Wingea	robertsiae	CBS 2934 T		CSIR Y-0208 T
Yarrowia	lipolytica			Y 0513
Yarrowia	lipolytica	CBS 5699		
Yarrowia	lipolityca	CBS 6114		
Yarrowia	lipolytica	CBS 0599 T		
Yarrowia	lipolytica			CSIR Y-0088
Yarrowia	lipolytica	CBS 6124.2		
Yarrowia	lipolytica		TVN 47	M663/5
Yarrowia	lipolytica	CBS 2073		
Zygozyma	sp.			UOFS Y-0182
2,802,	~ <i>F</i> ·		TVN 22	
			TVN 12	
			TVN 318	
			TVN 312	
			TVN 287	GM 101
			TVN 353	
		· · ·		UOFS Y-0230
				CSIR Y-0636 T
		·		UOFS Y-0225
			TVN 291	
			TVN 336	
			TVN 316	
			TVN 325	
			TVN 299	
				CSIR Y-0433T
			TVN 288	
			1 111 200	CSIR Y-0447
			TVN 297	
I	1	I		I

			ZZ6
			ZZ7
			ZZ3
			ZZ4
			ZZ2
			ZZ8
		TVN 166	
			ZZ9
	CBS 109/104		
		TVN 056	
			CSIR Y 1118

RESULTS

The yeasts reported in **Table 2** showed the ability to degrade OTA, as indicated by TLC. It was decided to substantiate the observations and to investigate the reaction kinetics of the degradation of OTA by these yeasts by quantifying the reaction(s) on HPLC. The presence of certain substrates can induce the production of enzymes that can catalyse the degradation of the substrate (Schlegel, 1986), it was therefore decided to investigate the hydrolysis of OTA by the yeasts that tested positive for degradation as growing cells.

Genus	Species	Culture collection number		
Rhodotorula	glutinis		TVN 311	UOFS Y-0123
Unidentified			TVN 318	UOFS Y-0132
fungus				
Rhodotorula	aurantiaca		TVN 307	UOFS Y-2049
Trichosporon	mucoides		VDW 61	UOFS Y-2041
Rhodotorula	minuta		TVN 341	UOFS Y-0138
Cryptococcus	laurentii		TVN 300	UOFS Y-0217
Pichia	guilliermondii	CBS 2030 T		NRRL Y-2075 T
Pichia	scolyti	CBS 4803		CSIR Y-0445
Aureobasidium	pullulans			NRRL Y-02311-1

Table 2: Yeasts that screened positive for OTA degradation

EXPERIMENTS TO SUBSTANTIATE THE ABILITY OF THE YEASTS IN TABLE 2 TO METABOLISE OTA

The liquid medium for inoculation was prepared in a similar manner as in the screening for the yeasts. The frozen cultures (-70°C) of the 7 yeasts that tested positively for OTA degradation were plated onto agar plates and kept at 25°C for 48 hours. The yeasts were harvested by adding a needle-eye full of the yeast to inoculum medium (20 ml in falcon tubes) in duplicate. The flasks including standards without yeasts were shaken for 48 hours at 25 °C at 200 rpm. OTA (100 μ l of a solution of 20 mg/ml in 0.1M sodium bicarbonate) was added to the flasks. The flasks were returned to the shaker and samples (500 μ l) were obtained at 0, 12, 24 and 48 hours after the addition of the OTA. The samples were extracted with ethyl acetate (1 ml), centrifuged at 1400 G for 10 minutes and 500 μ l of the ethyl acetate layer was dried under a stream of nitrogen, resuspended in methanol/water (1:1) and 20 μ l injected onto the HPLC.

RESULTS AND DISCUSSION

Only four of the yeasts reported in **Table 2** viz. *Trichosporon mucoides, Areobasidium pullulans, Rhodotorula glutinis* and *Pichia guilliermondii* showed a significant degradation of OTA (**Figure 2**). It was evident from **Figure 2** that one of the yeasts (*Trichosporon mucoides*) led to enhanced hydrolysis of OTA. The experiment was therefore, repeated with this yeast, at 3 concentrations of 2 mg, 4 mg and 8 mg of OTA added to 30 mg of yeast culture suspension. Samples were taken at 0, 6, 12, 24, 48, 60 and 84 hours after addition of OTA (**Figure 3**). In all four instances only hydrolysis of OTA (the formation of ochratoxin α) was observed; none of the known hydroxyochratoxins was observed (**Figure 4**). **Figure 3** illustrates the decrease in OTA concentration and the commensurate increase in OT α concentration as the OTA is hydrolysed over time by the yeast.

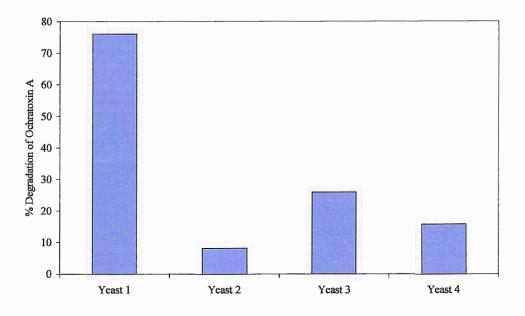
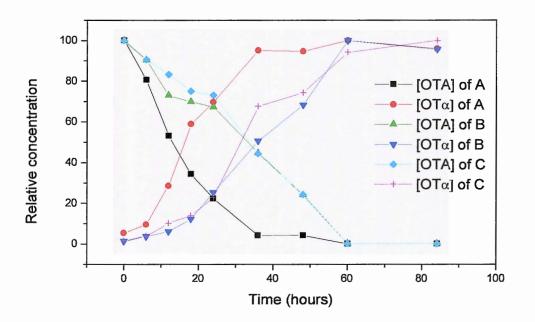
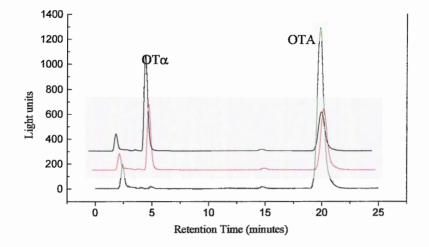




Figure 2: The degradation of OTA over a period of 48 hours by the four best yeasts: *Trichosporon mucoides* (1), *Areobasidium pullulans* (2), *Rhodotorula glutinis* (3) and *Pichia guilliermondii* (4).

Figure 3: The degradation of OTA and the formation of OT α in A: addition of 2 mg of OTA, B: addition of 4 mg of OTA and C: addition of 8 mg of OTA to media inoculated by *Trichosporon mucoides*.

Figure 4: HPLC chromatograms depicting the degradation of OTA and the formation of OTa: After 0 hrs (green line), after 24 hrs (red line) and after 48 hrs (black line) upon addition of OTA to media inoculated with *Trichosporon mucoides*.

From the foregoing it is evident that *Trichosporon mucoides* contains the propensity to effectively degrade OTA to $OT\alpha$ (Figure 4).

Part 2: The ability of fungi to metabolise OTA

The success achieved with the studies involving yeasts, particularly *Trichosporon mucoides* stimulated us to extend the study to a few other fungi, *Cochliobolus sativus* (MRC 10870), *Penicillium islandicum* (MRC 1583) and *Metarhizium anispoliae* (MRC 11853) [obtained from the culture collection of the CSIR, Pretoria]. *Metarhizium anispoliae* (Hyphomycetes) is available as a commercial mycoinsecticide under the name Metaquino and has been used for example to control the rhinoceros beetle (Oryctes) in the islands of Western Samoa and Tongatapu (Kendrick, 1992). *Penicillium islandicum* is often found on rice and *Cochliobolus sativus* is a parasite on wheat (Kendrick, 1992, Marasas, 1999).

Materials

See Part 1 for the chemicals used. NH₂-LC (aminopropyl, 3 ml sample capacity, 500 mg packing material) solid phase extraction columns were purchased from SUPELCO.

High Performance liquid chromatography (HPLC)

Similar HPLC conditions as in **Part 1** were used. The percentage recovery of the extraction in **Part 2** was calculated to be: 97.4 $\% \pm \text{RSD} 2.79 \%$ (n = 6).

PROCEDURE

Lyophilised frozen cultures of *Cochliobolus sativus* (MRC 10870), *Penicillium islandicum* (MRC 1583) and *Metarhizium anispoliae* (MRC 11853) were plated onto potato dextrose agar plates, and the petri dishes incubated at 27 °C for 12 days in the dark. Three different concentrations of OTA (0 mg, 50 mg and 150 mg) were used in duplicate for each of the 3 microorganisms grown in Erlenmeyer flasks (500 ml) containing malt extract (5 g), 0.1 M sodium bicarbonate (12.5 ml) and distilled water (250 ml). The above liquid media were inoculated with a spore suspension of the microorganisms (2 ml); and the flasks placed on a rotary shaker for 16 days.

EXTRACTION

Chloroform (100 ml) was added to the Erlenmeyer flasks containing the fermented materials. The content of the flasks were filtered through fluted filter paper and the two phases were separated. The chloroform layer was kept. Amino solid phase extraction columns were conditioned with chloroform (2.5 ml), whereafter the chloroform extracts (2 ml) were transferred to the columns. The columns were washed with chloroform (2.7 ml) and the samples were eluted with methanol/acetic acid (4:1, 2.5 ml).

ANALYSIS

N-(5-chloro-2-hydroxybenzoyl)-phenylalanine (100 μ l, 1.16 μ g/ml) was added to the OTA containing extracts to act as internal standard and it was subsequently injected onto the HPLC (50 μ l) under similar conditions as described in **Part 1**.

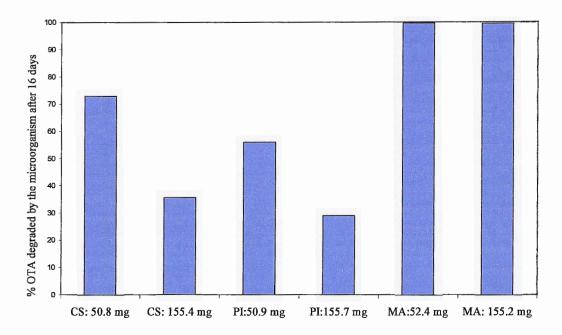


Figure 5: The degradation of OTA (amounts indicated) over a period of 16 days by *Cochliobolus* sativus (CS), *Penicillium islandicum* (PI) and *Metarhizium anispoliae* (MA).

RESULTS

All three of the fungi showed a promising ability to degrade OTA although the time required is very long (**Figure 5**). The concentration of OTA that was used for this study is much higher than the level of contamination in foods. *Cochliobolus sativus* (MRC 10870) and *Penicillium islandicum* (MRC 1583) showed a higher efficiency in hydrolysing the OTA at the lower concentration than at the higher OTA concentration. More work needs to be done into the ability of these fungi to degrade lower concentrations of OTA over shorter periods of time.

REFERENCES

Bailey, C.A., Gibson, R.M., Kabena, L.F., Huff, W.E. and Harvey, R.B. (1989). Ochratoxin A and dietary protein. 2. Effects on hematology and various clinical chemistry measurements. *Poultry Science*, **68**, 1664-1671.

Bailey, C.A., Gibson, R.M., Kabena, L.F., Huff, W.E. and Harvey, R.B. (1990). Impact of phenylalanine supplementation on the performance of three-week-old broilers fed diets containing ochratoxin A. *Poultry Science*, **68**, 420-425.

Boudra, H., Le Bars, P. and Le Bars, J. (1995). Thermostability of ochratoxin A in wheat under two moisture conditions. *Applied and Environmental Microbiology*, **61**, 1156-1158.

Chelkowski, J., Golinski, P., Godlewska, B., Radomyska, W., Szebiotko, K., and Wiewiorowska, M. (1981). Mycotoxins in cereal grains, Part IV. Inactivation of ochratoxin and other mycotoxin during ammoniation. *Nahrung*, **25**, 631-637.

Doyle, M.P., Applebaum, R.S., Brackett, R.E., Marth, E.H. (1982). Physical, chemical and biological degradation of mycotoxins in foods and agricultural commodities. J. Food Prot., 45, 964-971.

Doster, R.C., and Sinnhuber, R.O. (1972). Comparative rates of hydrolysis of ochratoxins A and B *in vitro*. *Fd. Cosmet. Toxicol.* **10**, 389-394.

Hwang, C.A., and Draughon, F.A. (1994). Degradation of ochratoxin A by Actinobacter calcoaceticus. Journal of Food Protection 57, 410-414.

Josefsson, B.G.E. and Moller, T.E. (1980). Heat stability of ochratoxin A in pig products. Journal of the Science of Food and Agriculture, **31**, 1313-1315.

Kendrick, B., (1992). The Fifth Kingdom, 2nd Edition, Mycologue Publications, Canada, pp. 225.

Madhyastha, M.S., Frohlich, A.A., and Marquardt, R.R., Effect of dietary cholestyramine on the elimination pattern of ochratoxin A in rats. *Fd. Chem. Toxic.*, **30**, 709-714.

Marasas, W.F.O. (1999). Personal communication.

Marquardt, R.R. and Frohlich, A.A. (1992). A review of recent advances in understanding ochratoxicosis. J. Anim. Sci., 70, 3968-3988.

Pelczar, M.J., Chan, E.C.S., and Krieg, N.R. (1986). *Microbiology*, 5th Edition, McGraw-Hill Book Company, Singapore.

Rotter, R.G., Marquardt, R.R., and Frohlich, A.A (1989a). Ochratoxin A toxicity in growing chicks: effect of supplemental dietary phenylalanine. *Nutrition Reports International*, **40**, 1091-1100.

Rotter, R.G., Frohlich, A.A., and Marquardt, R.R. (1989b). Influence of dietary charcoal on ochratoxin A toxicity in leghorn chicks. *Canadian Journal of Veterinary Research*, **53**, 449-453.

Schlegel, H.G. (1986). *General Microbiology*, 6th Edition, Cambridge University Press, Cambridge pp. 406.

Scott, P.M. (1998). Industrial and farm detoxification processes for mycotoxins. *Revue Méd. Vét.*, 149,6, 543-548.

Stander, M.A., Steyn, P.S., Lübben, A., Mantle, P.G., Miljkovic, A., and Marais, G. (2000). Influence of halogen salts on the production of the ochratoxins by *Aspergillus ochraceus* Wilh., accepted by *J.Agric. Food Chem*.

Steyn, P.S., and Stander, M.A. (1999). Mycotoxins with special reference to the carcinogenic mycotoxins: aflatoxins, ochratoxins and fumonisins. In Ballantyne B, Marrs TC and Syversen T (eds): *General and Applied Toxicology*, MacMillan Reference Ltd, London, pp. 2145-2176.

van der Merwe, K.J., Steyn, P.S., and Fourie, L. Mycotoxins. Part II. The constitution of ochratoxins A, B and C, metabolites of *Aspergillus ochraceus* Wilh. J. Chem. Soc. 1965, 7083-7088.

Wegst, W., and Lingens, F. (1983). Bacterial degradation of ochratoxin A. Federation of European Microbiological Societies Microbiology Letters 17, 341-344.