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ABSTRACT

The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic,
i.e., one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for
the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles
is usually formulated and solved. Particularly, we generalize the transformation formulae to allow for an explicit
choice of two principal local perpendicular diffusion axes. This generalization includes the “traditional” diffusion
tensor in the special case of isotropic perpendicular diffusion. For the local frame, we describe the motivation for
the choice of the Frenet–Serret trihedron, which is related to the intrinsic magnetic field geometry. We directly
compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid
Fisk and Parker fields. Subsequently, we examine the significance of the different formulations for the diffusion
tensor in a standard three-dimensional model for the modulation of galactic protons. For this, we utilize a numerical
code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present
the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from
those obtained with the “traditional” one (only valid for isotropic perpendicular diffusion) by up to 60% for energies
below a few hundred MeV depending on heliocentric distance.
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1. INTRODUCTION AND MOTIVATION

The most important transport process for energetic charged
particles in the heliosphere is their spatial diffusion as a con-
sequence of their interaction with the turbulent heliospheric
magnetic field (HMF). While rarely used in models of galactic
transport, the concept of anisotropic diffusion is well established
(see, e.g., Burger et al. 2000; Schlickeiser 2002; Shalchi 2009)
for models of heliospheric cosmic ray (CR) modulation. In most
studies the anisotropy refers to a difference in the diffusion coef-
ficient parallel (κ‖) and perpendicular (κ⊥) to the magnetic field,
and the perpendicular diffusion is treated as being isotropic.

Although the notion of fully anisotropic diffusion is not
new—see an early study by Jokipii (1973) considering
for the first time anisotropic perpendicular diffusion, i.e.,
κ⊥1 �= κ⊥2—it was not before the measurements made with the
Ulysses spacecraft that this concept had to be used to explain
the high-latitude observations of CRs; see, e.g., Jokipii et al.
(1995), Potgieter et al. (1997), and Ferreira et al. (2001). These
studies remained largely phenomenological and did not attempt
a rigorous investigation of anisotropic perpendicular diffusion.

More recently, in the context of studies of the transport of
solar energetic particles in the heliospheric Parker field, Tautz
et al. (2011) and Kelly et al. (2012) have determined the elements
of the diffusion tensor from test particle simulations in a local,
field-aligned frame. While the former authors find no conclusive
result, the latter authors clearly demonstrated that the scattering
in the inhomogeneous Parker field can indeed induce anisotropic
perpendicular diffusion.

Given this phenomenological and simulation-based evidence,
it is important to determine the principal directions of perpen-
dicular diffusion in the field-aligned local frame, because the
transformation of the diffusion tensor from a correspondingly

oriented local coordinate system into a global coordinate system
determines the exact form of the tensor elements in the latter, in
which the transport equation is usually solved. This is of partic-
ular importance in the case of symmetry-free magnetic fields,
like the so-called Fisk field (Fisk 1996). The latter is—although
in a weaker manner than originally suspected (Lionello et al.
2006; Sternal et al. 2011)—still a valid generalization of the
Parker field and takes into account a non-vanishing latitudinal
field component.

While it has been recognized that the use of the Fisk field
in models of the heliospheric modulation of CRs requires a
re-derivation of the diffusion tensor (Kobylinski 2001; Alania
2002; Burger et al. 2008), the formulae given in these papers
differ from each other and are either valid only for the case
of isotropic perpendicular diffusion (the former two papers) or
for a specific orientation of the local coordinate system (the
latter paper). Consequently, there are two open issues, namely
(1) to determine which of these formulae are correct (see also
Appendix A) and (2) to generalize these results to the case
of anisotropic perpendicular diffusion. With the present paper
we address both issues by deriving general formulae for the
transformation of a fully anisotropic diffusion tensor. In addition
to establishing the appropriate description, we apply the new
generalized formulae to a standard modulation problem in order
to demonstrate the physical significance of the approach.

2. GENERAL CONSIDERATIONS

Anisotropic perpendicular transport can, in principle, result
(1) from an inhomogeneous (asymmetric) magnetic background
field or (2) from turbulence that is intrinsically non-
axisymmetric with respect to the (homogeneous) local mag-
netic field direction (e.g., Weinhorst et al. 2008). While the
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Figure 1. Undisturbed (right) heliospheric magnetic field (projected into the
equatorial (top) and a meridional plane (bottom)) according to Parker (1958)
and its structure when field line random walk is included (left), taken from
Jokipii (2001).

latter case has been discussed in the context of energetic par-
ticle transport (Ruffolo et al. 2008) partly motivated by the
observed ratios of the power in the microscale magnetic field
fluctuations parallel and perpendicular to the background field:
δB2

⊥1 : δB2
⊥2 : δB2

‖ = 5 : 4 : 1 (where δ �B⊥1 is aligned to

the latitudinal unit vector and the normalized δ �B⊥2 completes
the local trihedron, see Belcher & Davis 1971; Horbury et al.
1995), recent analyses indicate that the perpendicular fluctu-
ations are probably axisymmetric (Turner et al. 2011; Wicks
et al. 2012). Therefore, we consider the first case of an inhomo-
geneous magnetic background field to be more likely to cause
fully anisotropic diffusion.

If the random walk of field lines due to turbulence is
significantly contributing to the perpendicular particle transport,
one generally has to expect the latter to be anisotropic. This
can be illustrated already for the simple case that the HMF is
represented by the Parker spiral (see Figure 1). Due to the field
geometry the field line wandering is not isotropic, neither in
radial direction nor in heliographic latitude, resulting in a field
line diffusion coefficient depending on both (Webb et al. 2009).

As soon as anisotropic perpendicular diffusion occurs, it is
necessary to determine the principal axes of the diffusion tensor
in a local field-aligned frame (κ̂L), because their orientation
determines the tensor elements in the global frame (κ̂) after a
corresponding transformation given by

κ̂ = Aκ̂LAT (1)

with

κ̂L =
(

κ⊥1 κA 0
−κA κ⊥2 0

0 0 κ‖

)
(2)

where, in general, κA denotes the drift coefficient, induced by a
non-axisymmetric turbulence and by inhomogeneous magnetic
fields. The latter drifts can always be described by a drift velocity
�vd in the transport equation (Tautz & Shalchi 2012; Burger
et al. 2008) and are therefore not considered in the following. In
Equation (1), analogous to the Euler angle transformation known
from classical mechanics, the matrix A = R3R2R1 describes

three consecutive rotations Ri with A−1 = AT . These rotations
are defined by the relative orientation of the local and the global
coordinate system with respect to each other.

Due to the latitudinal structuring of the solar wind and, in
turn, of the Parker spiral having a vanishing Bϑ -component,
one may argue that in that case the latitudinal direction remains
a preferred one so that the local coordinate system could always
be defined by the unit vectors �t (along the field), �eϑ (from a
spherical polar coordinate system) and �eϑ × �t . This, however,
can obviously not be the case for symmetry-free fields like the
Fisk field (Fisk 1996).

In general, the local trihedron will consist of a unit vector �t
tangential to the magnetic field and two orthogonal ones, �u and
�v, defining the remaining principal axes. With this notation the
transformation (1) reads, for an arbitrary choice of this local
trihedron:

κ11 = κ⊥1 u2
1 + κ⊥2 v2

1 + κ‖ t2
1 (3)

κ12 = κ⊥1 u1 u2 + κ⊥2 v1 v2 + κ‖ t1 t2 (4)

+ κA (u1 v2 − u2 v1)

κ13 = κ⊥1 u1 u3 + κ⊥2 v1 v3 + κ‖ t1 t3 (5)

+ κA (u1 v3 − u3 v1)

κ21 = κ⊥1 u1 u2 + κ⊥2 v1 v2 + κ‖ t1 t2 (6)

− κA (u1 v2 − u2 v1)

κ22 = κ⊥1 u2
2 + κ⊥2 v2

2 + κ‖ t2
2 (7)

κ23 = κ⊥1 u2 u3 + κ⊥2 v2 v3 + κ‖ t2 t3 (8)

+ κA (u2 v3 − u3 v2)

κ31 = κ⊥1 u1 u3 + κ⊥2 v1 v3 + κ‖ t1 t3 (9)

− κA (u1 v3 − u3 v1)

κ32 = κ⊥1 u2 u3 + κ⊥2 v2 v3 + κ‖ t2 t3 (10)

− κA (u2 v3 − u3 v2)

κ33 = κ⊥1 u2
3 + κ⊥2 v2

3 + κ‖ t2
3 , (11)

where the components of �t, �u, and �v are determined in the global
coordinate system. Consequently, the task is to determine the
unit vectors �t , �u, and �v for an arbitrary, symmetry-free magnetic
field.

Given that the perpendicular fluctuations are probably ax-
isymmetric (Turner et al. 2011; Wicks et al. 2012) as discussed
above, we assume κA = 0 in the following.

With this explicit formulation of the tensor elements we can
already address issue (1) defined in Section 1. For the case
that the perpendicular diffusion is isotropic, i.e., κ⊥1 = κ⊥2,
the formulae given by Burger et al. (2008), see Appendix A,
are identical to Equations (3)– (11), so that their correction of
the results found by Kobylinski (2001) and Alania (2002) and,
in turn, their subsequent analysis are validated. We emphasize,
however, that neither of these formulations (involving only two
rotation angles) allow the explicit definition of the perpendicular
diffusion axes, which are necessary to treat anisotropic diffusion
in the most general form.
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3. THE CHOICE OF THE LOCAL COORDINATE SYSTEM

In the absence of symmetries, there remain two distinguished
local directions that, at a given location within an arbitrary
magnetic field, are related to its curvature k and torsion τ
and are called the normal and the binormal direction. They
can be defined with the corresponding normal and binormal
unit vectors, respectively. Together with the tangential unit
vector, they constitute a local orthogonal trihedron fulfilling the
(k- and τ -defining) Frenet–Serret relations (e.g., Marris &
Passman 1969):

(�t · ∇)�t = k�n (12)

(�t · ∇)�n = −k�t + τ �b (13)

(�t · ∇)�b = −τ �n. (14)

If no other diffusion axes are preferred by any process, the
Frenet–Serret System constituted by the above definition of �t ,
�n, and �b is the most natural choice, i.e., �u = �n and �v = �b in
Equations (3)– (11).

The transformation of the local diffusion tensor into a global
coordinate system according to these equations thus requires
knowledge of the dependence of the Frenet–Serret vectors on
a given (non-homogeneous) magnetic field �B. Evidently, the
required relations are

�t = �B/| �B| (15)

�n = (�t · ∇)�t/k (16)

�b = �t × �n. (17)

This trihedron can, of course, only be established for a spatially
non-homogeneous field, but this (weak) condition is fulfilled
in most cases of interest. If there would exist a region where
the field is homogeneous, the choice of the vectors �n and �b is
arbitrary (signifying isotropic perpendicular diffusion) unless no
other preferential directions unrelated to the field geometry can
be specified. Other principal directions unrelated to the large-
scale geometry of the field could, for example, arise from non-
axisymmetric turbulence. The above Equations (3)–(11) remain
unaffected, however. One only needs to specify the appropriate
vectors �t , �u, and �v for the respective local coordinate system.

In the following, we illustrate the procedure with the example
of the well-studied HMF. We quantitatively compare the new
tensor with the “traditional” one, which is only valid for isotropic
perpendicular diffusion. This comparison reveals that a study of
fully anisotropic turbulent diffusion within more complicated
fields—like the much-discussed heliospheric Fisk field (Burger
et al. 2008; Sternal et al. 2011; Fisk 1996; Burger & Hitge
2004) or complex galactic magnetic fields (Ruzmaikin et al.
1988; Beck et al. 1996)—has to be performed with even more
caution than thought before.

4. AN EXAMPLE FOR THE NEW DIFFUSION TENSOR

4.1. The Heliospheric Magnetic Field

An analytical representation of the HMF, which is referred to
as the hybrid Fisk field, can be found in Sternal et al. (2011).
For a constant solar wind speed (usw = 400 km s−1) the HMF is

represented, using spherical polar coordinates, by the following
formulation:

Br = ABe

( re

r

)2
, (18)

Bϑ = Br

r

usw
ω∗ sin β∗ sin ϕ∗ (19)

Bϕ = Br

r

usw

[
sin ϑ(ω∗ cos β∗ − Ω	)

+
d

dϑ
(ω∗ sin β∗ sin ϑ) cos ϕ∗

]
(20)

with

β∗(ϑ) = βFs(ϑ)

ω∗(ϑ) = ωFs(ϑ)

ϕ∗ = ϕ +
Ω	
usw

(r − r	)

where

Fs(ϑ) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[tanh(δpϑ) + tanh(δp(ϑ − π ))
−tanh(δe(ϑ − ϑb))]2 0 � ϑ < ϑb

0 ϑb � ϑ � π − ϑb

[tanh(δpϑ) + tanh(δp(ϑ − π )) π − ϑb < ϑ � π

−tanh(δe(ϑ − π + ϑb))]2

(21)

is the transition function introduced by Burger et al. (2008). In
the case Fs = 0, the HMF reduces to the standard Parker spiral
magnetic field. For a quantitative comparison of different HMF
configurations, see Scherer et al. (2010).

In Equation (18), Be denotes the magnetic field strength at
re = 1 AU, r	 is the solar radius, and Ω	 = 2.9 × 10−6 Hz
is the averaged solar rotation frequency. The constant A = ±1
in Equation (18) indicates the different field directions in the
northern and southern hemisphere. The values for the angle
between the rotational and the so-called virtual axes of the Sun
β = 12◦ and the differential rotation rate ω = Ω	/4 are taken
from Sternal et al. (2011). The parameters δp = 5 and δe = 5
determine the respective contributions of the Fisk and Parker
fields above the poles and in the ecliptic while ϑb = 80◦ is the
cutoff colatitude for the Fisk-field influence. In the following,
we consider two cases, a pure Parker field (i.e., setting Fs = 0
in Equations (19) and (20)) and the hybrid Fisk field with Fs
from Equation (21). Both fields are illustrated by exemplary
field lines in Figure 2.

4.2. The Local Diffusion Tensor Elements

The elements of the local diffusion tensor are chosen follow-
ing the approach in Reinecke et al. (1993), i.e., as

κ‖ = κ‖0β

(
p

p0

)(
Be

B

)a‖
(22)

κ⊥1 = κ⊥0β

(
p

p0

) (
Be

B

)a⊥
(23)

κ⊥2 = ξκ⊥1, (24)
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Figure 2. Hybrid Fisk and Parker fields illustrated by red and black field lines, respectively. The two local trihedrons for the Parker field are indicated with the orange
and blue (Frenet–Serret) as well as the yellow and light blue (traditional) lines. Note that the traditional trihedron is always aligned to the Parker spiral cone of constant
ϑ , while for the Frenet–Serret trihedron one axis (the κ⊥2-binormal axis, orange) is nearly parallel to the z-direction. In the ecliptic, both coordinate systems coincide
by definition. All distances are in units of AU.

(A color version of this figure is available in the online journal.)

where β = v/c is the particle speed normalized to the speed
of light, p is the particle momentum with the normalization
constant p0 = 1 GeV/c and B is the magnitude of the magnetic
field. The scaling exponents have the values a‖ = 0.75 and a⊥ =
0.97. The parallel diffusion constant is κ‖0 = 0.9×1022 cm2 s−1

while κ⊥0 = 0.1κ‖0 . The anisotropy in perpendicular diffusion
is assumed to be solely determined by the factor ξ , which is set
to 2 for the following discussion. This is still a moderate choice
compared with the findings of, e.g., Potgieter et al. (1997).

Although these empirical formulae for the local diffusion
coefficients are not directly related to the turbulence evolution
in the heliosphere and more sophisticated theoretical models for
the corresponding mean free paths in parallel and perpendicular
direction exist, they are still a good approximation as can be
seen in the following. The result from quasilinear theory (QLT)
for the mean free path (see, e.g., Shalchi 2009) is given by

λ
(QLT)
‖ =

3lslab

16πC(ν)

(
B

δBslab

)2

R2−2ν

[
2

(1 − ν)(2 − ν)
+ R2ν

]
(25)

with

C(ν) = 1

2
√

π

Γ(ν)

Γ(ν − 1/2)
(26)

where Γ(x) is the gamma function, 2ν = 5/3 is the inertial range
spectral index, R = RL/lslab is the dimensionless rigidity, and
RL = pc/(|q|B) is the particle Larmor radius. If one scales the
bendover scale of slab turbulence as lslab = 0.03 ρ0.5 (where

ρ is the heliocentric distance in AU) and the slab turbulence
variance as δB2

slab = B2
e ρ

−2.15, the radial dependence of the
local tensor elements matches well with the approximative
Equations (22)–(24) as shown in Figure 3. It is interesting to
note that these scalings are similar to the assumptions made in
Burger et al. (2008). They use the same radial dependence for
lslab (their exponent of 1/lslab = kmin = 32 ρ0.5 is a typing error,
private communication with the authors) and an exponent of
−2.5 for the slab turbulence variance δB2

slab, which is slightly
larger. Similar arguments can be made for the perpendicular
diffusion. Employing for the perpendicular diffusion coefficient
the result of the nonlinear guiding center (NLGC) theory of
Matthaeus et al. (2003) and Shalchi et al. (2004), namely

κ
(NLGC)
⊥ =[

a2v
ν − 1

2
√

3ν

√
π

Γ(ν/2 + 1)

Γ(ν/2 + 1/2)
l2D

δB2
2D

B2

]2/3

κ
1/3
‖ (27)

(see formula (15) in Burger et al. 2008) with the constant
a = 1/

√
3. Scaling again the two-dimensional turbulence

correlation length l2D with ρ0.5 and the turbulence variance
δB2

2D even more weakly with ρ−1.2 yields results similar to
those obtained by Reinecke et al. (1993) for the perpendicular
diffusion, as shown in Figure 3 as well.

Given the uncertainties both in the actual magnetic turbulence
evolution in the heliosphere with radial distance and latitude
(see, e.g., Oughton et al. 2011 for a study in which they find a
much more complicated radial dependence of the slab variance)
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Figure 3. Dependence of the local and global tensor elements on heliocentric
distance in the ecliptic plane for the Parker field. The local elements from the
formulae of Equations (22)–(24) are shown as solid red (κ‖), green (κ⊥1), and

blue (κ⊥2) curves. The results for the parallel diffusion coefficient κ
(QLT)
‖ =

1/3vλ
(QLT)
‖ (Equation (25)) and the perpendicular coefficient from κ

(NLGC)
⊥

(Equation (27)) are drawn as dashed red and green lines, respectively, while the
dashed blue curve is just scaled as ξκ

(NLGC)
⊥ with ξ = 2. The overlaid, color-

matched symbols show the nearly perfect alignment of the κrr (green, ×), κϑϑ

(blue, •), and κϕϕ (red, + ) global diagonal tensor elements in the ecliptic, due to
the Parker field structure. All other tensor elements are almost indistinguishable
from zero, as indicated by the remaining symbols.

(A color version of this figure is available in the online journal.)

and their actual relation to perpendicular or even anisotropic
perpendicular diffusion in connection with three-dimensional
turbulence (Shalchi 2010; Shalchi et al. 2010), we stick, in the
following, with the empirical formulae of Equations (22)–(24)
for this principal study.

4.3. The Structure of the Global Diffusion Tensor

Employing the formalism described in Section 3 to calculate
the global diffusion tensor κ̂ results in tensor elements κij

that are different from those “traditionally” used, labeled κB
ij

here, with i, j ∈ {r, ϑ, ϕ}. The latter are derived following the
transformation presented by Burger et al. (2008), which for the
Parker field is equivalent to the assumption that the local system
can always be defined by �t , �n = �eϑ × �t , and �b = �eϑ (see
Appendix A for the detailed transformation formulae). Both
local systems are illustrated in Figure 2.

The different behavior of the tensor elements κij and κB
ij

with latitude at a heliocentric distance of 5 AU and longitude
ϕ = π/4 is displayed in Figure 4 for the Parker and hybrid Fisk
fields, respectively. By definition, both formulations yield the
same tensor elements in the ecliptic plane, i.e., for ϑ = π/2,
while for higher latitudes the differences become more and more
pronounced.

In the Parker case, e.g., the upper two rows in Figure 4, the
elements κrr , κrϕ , and κϕϕ show roughly the same behavior for
all latitudes. The strongest mixing of the local elements κ⊥1
and κ⊥2 occurs in κϑϑ , so that the deviations for high latitudes
are more pronounced. The main difference appears in the off-
diagonal elements κrϑ and κϑϕ , which are different from zero in
the general case discussed here, while they are equal to zero in
the traditional approach.

The differences between the hybrid Fisk field tensor elements
(shown in the lower two rows in Figure 4) are similar to those

of the Parker field described above, although they show a
more complicated ϑ dependence. Note that in the traditional
formulation the off-diagonal elements κrϑ and κϑϕ are already
nonzero for the hybrid Fisk field and become larger in the new
formulation.

The choice of longitude is arbitrary for the Parker field, since
it has no ϕ dependence. The Fisk field, however, has significant
longitudinal variations, therefore, we show the ratios of the
traditional and the new tensor elements for the hybrid Fisk
field with longitude (Figure 5). It can be seen that for large
heliocentric distances, the deviations between both formulations
vary strongly, illustrated here for a heliocentric distance of
r = 50 AU and a heliographic colatitude of ϑ = π/4.

We emphasize again that in the case of isotropic perpendicular
diffusion (ξ = 1), the traditional and the new formulations are
identical for any given magnetic field with non-vanishing curva-
ture. The differences between them scale with the perpendicular
anisotropy ξ (see Equation (24)).

5. APPLICATION TO THE MODULATION OF
COSMIC-RAY SPECTRA

To assess the impact of the new tensor formulation on CR
modulation, we employ a CR proton transport model by solving
the Parker equation (Parker 1965)

∂f

∂t
= ∇ · (κ̂∇f ) − �us · ∇f +

p

3
(∇ · �us)

∂f

∂p
(28)

to determine the differential CR intensity j (�r, p, t) =
p2f (�r, p, t) (with �r as the position in three-dimensional config-
uration space and p as momentum). The solar wind velocity �us

is radially pointing outward with a constant speed of 400 km s−1

and κ̂ is the diffusion tensor in the global frame for the Parker
spiral magnetic field. This implies the Frenet–Serret trihedron
of the form explicitly given in Appendix B.

The solution is obtained via a numerical integration of an
equivalent system of stochastic differential equations (SDEs;
Kopp et al. 2012; Gardiner 1994)

dxi = Ai(xi) dt +
∑

j

Bij (xi) dWj (29)

for an ensemble of pseudo-particles (phase space elements) with
κ̂ = B̂B̂T and d �W (t) = √

dt �N (t) where �N (t) is a vector of
normal distributed random numbers and xi denotes the phase
space coordinates. The stochastic motion d �W (t) is often referred
to as the Wiener process. The deterministic processes from
Equation (28) such as the advection with the solar wind flow and
the adiabatic energy changes are contained in the generalized
velocity �A. We employ the time-backward Markov stochastic
method, meaning that we trace back the pseudo-particles from a
given phase space point of interest, until they hit the integration
boundary. The solution to the transport equation (28) is then
constructed as a proper average over the pseudo-particle orbits.
For details on the general method and the numerical scheme,
especially in the case of a general diffusion tensor, see Kopp
et al. (2012), Strauss et al. (2011a, 2011b).

The local interstellar spectrum (LIS) of protons jLIS is
assumed at a heliocentric distance of r = 100 AU as a
spherically symmetric Dirichlet boundary condition. At the
inner boundary of one solar radius r = R	 the pseudo-particles

5



The Astrophysical Journal, 750:108 (8pp), 2012 May 10 Effenberger et al.

Parker field

 0  30  60  90  120 150 180
colatitude [deg]

0.0

2.0

4.0

6.0

8.0

10.0

10
22

 [
cm

2
/s

]

 0  30  60  90  120 150 180
colatitude [deg]

-0.6

-0.4

-0.2

0.0

0.2

0.4

10
22

 [
cm

2
/s

]

 0  30  60  90  120 150 180
colatitude [deg]

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

10
22

 [
cm

2
/s

] 

 0  30  60  90  120 150 180
colatitude [deg]

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

10
22

 [
cm

2
/s

]

 0  30  60  90  120 150 180
colatitude [deg]

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

10
22

 [
cm

2
/s

]

 0  30  60  90  120 150 180
colatitude [deg]

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

10
22

 [
cm

2
/s

]

Fisk field

 0  30  60  90  120 150 180
colatitude [deg]

0.0

2.0

4.0

6.0

8.0

10.0

10
22

 [
cm

2
/s

]

 0  30  60  90  120 150 180
colatitude [deg]

-0.6

-0.4

-0.2

0.0

0.2

0.4

10
22

 [
cm

2
/s

]

 0  30  60  90  120 150 180
colatitude [deg]

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

10
22

 [
cm

2
/s

] 

 0  30  60  90  120 150 180
colatitude [deg]

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

10
22

 [
cm

2
/s

]

 0  30  60  90  120 150 180
colatitude [deg]

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

10
22

 [
cm

2
/s

]

 0  30  60  90  120 150 180
colatitude [deg]

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

10
22

 [
cm

2
/s

]

Figure 4. The complete set of six independent tensor elements κB
ij for the “traditional” tensor formulation following Burger et al. (2008; solid line) and the new κij

using the Frenet–Serret trihedron (open circles) for a fixed radius of r = 5 AU, a longitude of ϕ = π/4 and for varying colatitude. The upper two rows show those for
the Parker field while the lower two rows show those for the hybrid Fisk field.

are reflected, which is equivalent to a vanishing gradient in the
CR density there. A standard representation of the proton LIS
is given by

jLIS = 12.14 β(Ekin + 0.5E0)−2.6 (30)

and was taken from Reinecke et al. (1993). The proton rest
energy E0 is equal to 0.938 and Ekin denotes the kinetic energy
of a particle (both in units of GeV).

The LIS and the resulting modulated spectra are shown in
Figure 6 for both tensor formulations and for several heliocentric
distances. The spectra for the new Frenet–Serret tensor are

higher by up to 60% at low energies for all heliocentric
distances. This is due to the enhanced diffusive flux from the
modulation boundary via an effective inward diffusion along
the polar axis. In the tensor formulation provided by Burger
et al. (2008) this diffusion (determined by κ⊥2) cannot transport
particles from the boundary into the inner heliosphere, it merely
distributes the particles on a shell of fixed heliocentric distance.
In the new tensor formulation exists thus a form of “pseudo-
drift” produced by the off-diagonal tensor elements in the
global frame, which were different or even equal to zero in
the traditional formulation. This reduced modulation effect is
relevant for higher energies at lower heliocentric distances, since
the particles have more time to adiabatically cool (see the right
panel of Figure 6).
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Figure 5. Ratios of the tensor elements kij = κB
ij /κij for the hybrid Fisk

field plotted against heliographic longitude for a fixed heliocentric distance of
r = 50 AU and a heliographic colatitude of ϑ = π/4. The elements shown are
krr (red), krϑ (green), krϕ (blue), kϑϑ (violet), kϑϕ (brown), and kϕϕ (black).

(A color version of this figure is available in the online journal.)

Figure 6. Modulated spectra for fully anisotropic diffusion of galactic protons
for both tensor formulations. The left panel shows the resulting spectra for four
heliospheric distances (1 AU, 25 AU, 50 AU, 75 AU, from bottom to top) and
the LIS modulation boundary at 100 AU (solid squares). The spectra, shifted
in the plot by powers of 10 for clarity (note the resulting high energy offsets),
converge to the LIS for high energies. While the symbols indicate the results
from the new tensor formulation with the Frenet–Serret orientation, the lines are
results from an analogous computation employing the “traditional” two-angle
transformation. In both cases is κ⊥2 = 2 κ⊥1. The right panel gives the relative
deviations (normalized to the new results) of corresponding spectra from each
other. The symbols are the same as in the left panel.

6. CONCLUSIONS

We have derived, in a global reference frame, the general
form of the diffusion tensor of energetic particles in arbitrary
magnetic fields. This new formulation particularly includes the
case of anisotropic perpendicular diffusion that arises from field
line wandering or scattering due to turbulence and requires a
determination of both principal (orthogonal) perpendicular dif-
fusion directions. Unless the turbulence is non-axisymmetric,
which appears to be unlikely for the solar wind, the natural
choice for these principal directions is the Frenet–Serret trihe-
dron associated with the curvature and torsion of the magnetic
field lines.

After the derivation of the formulae for all tensor elements in
dependence of the Frenet–Serret unit vectors, we have first quan-
titatively compared the results to those published previously for
the example of the heliospheric magnetic field. For the latter we
have discussed two well-established alternatives, namely the
Parker field and the hybrid Fisk field. While the old and new
tensor formulations coincide for the case of isotropic perpen-
dicular diffusion, the more general case of anisotropic perpen-
dicular diffusion cannot be treated consistently with the earlier
approaches. This is manifest in significant differences of cor-
responding tensor elements including additional non-vanishing
ones.

Second, we have demonstrated the consequences of the new
tensor formulation in application to the modulation of galactic
CR proton spectra in the Parker heliospheric magnetic field.
Solving the CR transport equation with the method of stochastic
differential equations allowed us to quantify the differences
between the spectra resulting from both tensor formulations
for the case of perpendicular diffusion with an anisotropy of
ξ = 2. We found those differences to amount up to 60% at
energies below a few hundred MeV. Given that we used for
this first principal assessment an anisotropy that is moderate as
compared with findings from detailed transport and modulation
studies, the fluxes can be influenced even more strongly and at
even higher energies.

Besides the fact that the above results indicate the necessity
to study the case of fully anisotropic diffusion in more detail
within the framework of more sophisticated models of helio-
spheric CR modulation, they can furthermore be expected to
be of importance for the particle transport in complex galactic
magnetic fields for which usually isotropic (scalar) diffusion has
been considered so far.

The work was carried out within the framework of
the “Galactocauses” project (FI 706/9-1) funded by the
Deutsche Forschungsgemeinschaft (DFG) and benefitted from
the DFG-Forschergruppe FOR 1048 (project FI 706/8-1/2),
the “Heliocauses” DFG-project (FI 706/6-3) as well as from the
project SUA08/011 financed by the Bundesministerium für
Forschung und Bildung (BMBF). We thank I. Büsching and
A. Kopp for providing the basis for the SDE numerical solver.
We also thank N. E. Engelbrecht for helpful discussions and an
anonymous referee for a constructive evaluation.

APPENDIX A

BURGER TRANSFORMATION FORMULAE

The transformation formulae for the diffusion tensor given in
Burger et al. (2008) read

κB
rr = κ⊥2 sin2 ζ + cos2 ζ (κ‖ cos2 Ψ + κ⊥1 sin2 Ψ)

κB
rϑ = sin ζ cos ζ (κ‖ cos2 Ψ + κ⊥1 sin2 Ψ − κ⊥2)

κB
rϕ = − sin Ψ cos Ψ cos ζ (κ‖ − κ⊥1)

κB
ϑϑ = κ⊥2 cos2 ζ + sin2 ζ (κ‖ cos2 Ψ + κ⊥1 sin2 Ψ)

κB
ϑϕ = − sin Ψ cos Ψ sin ζ (κ‖ − κ⊥1)

κB
ϕϕ = κ‖ sin2 Ψ + κ⊥1 cos2 Ψ (A1)

with tan Ψ = −Bϕ/

√
B2

r + B2
ϑ and tan ζ = Bϑ/Br . Note that

Kobylinski (2001) and Alania (2002) state a different formula
for Ψ, namely tan Ψ = −Bϕ/Br . Moreover, these formulae

7



The Astrophysical Journal, 750:108 (8pp), 2012 May 10 Effenberger et al.

involve only two angles in contrast to the general case described
with the matrix A in Equation (1) in Section 2. As discussed
in the text, these formulae in the given form can only hold for
κ⊥1 �= κ⊥2 in case of special magnetic fields with Bϑ = 0 like
that introduced by Parker.

APPENDIX B

THE PARKER FRENET–SERRET TRIHEDRON

Here, we derive the analytic expressions for the Frenet–Serret
trihedron for the Parker case of the HMF. Reducing
Equations (18)–(20) to the Parker field by setting Fs = 0 we
obtain

�t = �er − tan χ �eϕ√
1 + tan2 χ

(B1)

for the tangential vector, with tan χ = ω/usr sin ϑ . The
easiest way to derive the normal vector �n is to calculate
(�t · ∇)�t = k�n (where k is the curvature, see Equation (12))
and to normalize appropriately. After some straightforward
calculation, one arrives at

�n = −E(tan χ �er + �eϕ) + F �eϑ√
E2(tan2 χ + 1) + F 2

(B2)

where the abbreviations

E = tan2 χ

r
+

ω

us

sin ϑ

1 + tan2 χ
, F = tan2 χ cos ϑ

r sin ϑ
(B3)

have been introduced. The binormal vector is now simply the
cross product �b = �t × �n, which yields

�b = −F (tan χ �er + �eϕ) + E(tan2 χ + 1)�eϑ√
F 2(tan2 χ + 1) + E2(tan2 χ + 1)2

. (B4)

Equations (B1), (B2), and (B4) are the explicit formulae for
the Frenet–Serret trihedron in the case of the heliospheric
Parker field. Corresponding but much longer expressions can,
in principle, be obtained for the Fisk field as well.
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