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Having much respect for the vision of Potchefstroom University for CHE, 
and for its faculty and staff, it gives me great pleasure to be appointed 
in the Department of Plant and Soil Sciences. For several years, I have 
enjoyed collaborating with the faculty here, especially with Prof. Ockie 
Bosch on a major research project concerning ecologically sound 
management of grazed pastures. In this inaugural address, I would like 
to explain my speciality and interests, and indicate how I hope to con­
tribute to the future work to be done here. 

For the past two decades, my research at Cornell University has focused 
upon the statistical analysis of ecological and agricultural data. Accord­
ingly, Part I of this address concerns multivariate analysis in communi~ 
ty ecology, and Part II the analysis of regional yield trials. Furthermore, 
because I think it vital to connect specialized knowledge with the broader 
features of human knowledge, Part Ill draws general implications for 
the scientific method and philosophy of science. This is a natural ex­
tension because statistics is essentially inductive logic, and logic is cru­
cial in science, philosophy, and theology - in all knowledge. 
Unfortunately, many of the world's universities lack the vision to truly· 
integrate human knowledge across specialities, or lack the freedom to 
pursue the distinctively Christian understanding which alone can see 
reality as it is. Accordingly, Christian universities have a great opportu­
nity and a high calling. But before considering these broader issues 
in Part Ill, let us begin with the more immediate matters of statistical 
analysis, first considering ecological applications. 

I. MULTIVARIATE ANALYSIS IN COMMUNITY ECOLOGY 

Community ecology concerns assemblages of plants and animals liv­
ing together, and the environmental and historical factors with which 
they interact. Plant community ecology is also termed 'phytosociology: 
Phytosociologists study a great diversity of plant communities. At each 
site, the abundance of each plant species is estimated in terms of some 
index, such as the percentage of the ground covered. The result is a 
two-way, species-by-samples data matrix. The two-way factorial experi­
ment, replicated or not, is the principal data structure addressed in my 
work. Multivariate analysis is that branch of statistics which examines 
numerous variables simultaneously, including the two-way matrix. Mul­
tivariate. data arise commonly in science because scientists are often 
interested in more than one trait of more than one individual, or like-
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wise the performance of more than one thing in more than one situation. 

Broadly speaking, the purposes of multivariate analysis are to address 
four difficulties or challenges. First, biological data are noisy: replicate 
samples are usually not identical. Some variation is interesting and 
repeatable, caused by environmental and otrler factors; but also some 
variation is idiosyncratic and unrepeatable, constituting merely sampling 
variation or noise. Multivariate analysis of a large data set in order to 
partition the total variation into a pattern-rich model and a noise-rich 
discarded residual. This increases accuracy and efficiency. Second, bio­
logical data are usually partially redundant- not every sample or spe­
cies is tremendously unlike everything else. For example, although an 
ecological survey may have several hundred samples, it probably will 
have no more than a dozen or so substantially different kinds of sam­
ples. Multivariate methods can describe trends and clusters in the data, 
thereby grouping similar entities and generating compact summaries. 
Third, biological data typically have numerous complex relationships 
among the samples, among the species, and among the samples and 
species considered jointly. The plant distributions also have additional 
relationships with environmental and historical causal factors. Multi­
variate methods can produce informative statistics and graphs that re­
veal important biological patterns, which humans simply cannot grasp 
from enormous tables of raw data often containing many thousands of 
numbers. Fourth, biological data sometimes contain outliers- peculiar 
samples resulting from disturbed or odd situations, or even from tech­
nical or transcribing errors. Multivariate analysis can detect outliers, al­
lowing them to be handled separately or appropriately. 

Multivariate methods useful in ecology are of three basic kinds: direct 
gradient analysis, ordination, and classification. 

Direct Gradient Analysis 

Direct gradient analysis displays the distribution of organisms along gra­
dientg of important environmental factors. For example, an ecologist may 
sample the vegetation along a moisture gradient- caused by undulat­
ing topography or whatever - and then graph the abundances of the 
species along this gradient. Some species are partial to the wet areas, 
others to intermediate moisture, and yet others to dry areas. Likewise, 
along a gradient of grazing pressure, some species flourish in lightly 
grazed places, some in intermediate conditions, and some unpalatable 
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species invade severely overgrazed areas. Hundreds of such analysis 
in a great diversity of plant and animal communities reveal that species 
typically have approximately Gaussian or bell-shaped distributions along 
an environmental gradient. Each species does best at some particular 
level of moisture or temperature or whatever, whereas its population 
declines to either side of its preferred mode. 

Direct gradient analysis is the simplest multivariate method, and has 
been enormously effective in many ecological studies. However, its fo­
cus on a known environmental gradient limits its use in situations where 
environmental factors are poorly understood. Furthermcire, an alterna­
tive perspective is to begin with analysis of the community data alone, 
and later use environmental data for interpretation of the results. For 
these and other reasons, ecologists complement direct gradient analy­
sis with additional multivariate methodologies. 

Ordination 

A two-way data matrix may be conceived geometrically with the sam­
ples as axes and the species as points (or the converse). The matrix 
and geometric representations contain identical information. The 
challenge is that given perhaps hundreds of samples and species, the 
resulting space with hundreds of dimensions cannot be graphed or 
imagined. Ordination projects the points in an incomprehensible high­
dimensional space into a manageable low-dimensional space, while in 
that process still minimizing the distortion of the distances between the 
points. Frequently, ordination results are ecologically meaningful for the 
profoundly significant reason that although the community data are in­
trinsically high-dimensional - with numerous species and numerous 
samples - nevertheless the important underlying environmental causal 
factors are ordinarily relatively few. Thus high-dimensional data contain 
a low-dimensional story. Consequently, ordination results frequently sum­
marize complex, large data sets quite successf.ully. Furthermore, these 
results are useful for geoerating hypotheses about the identity and rela­
tive influence of the underlying environmental causal factors. 

One specific statistical method for ordination is principal components 
analysis. It projects a high-dimensional cloud of points onto a space with 
fewer dimensions in such a manner as to maximize the sum of squares 
of the points in the principal components solution (or equivalently to 
minimize the sum of squares of the residuals). ·In other words, the first 
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principal components axis defines the least-square line through the mul­
tidimensional cloud of points, the•first two principal components axes 
define the least-square plane, and so on. 

The principal components analysis calculation is entirely objective in 
that a two-way data matrix is supplied, but nothing else is chosen or 
specified. Being objective and defining a least-square subspace might 
make principal components analysis sound ideal. However, like all 
statistical methods, principal components analysis h~s and presumes 
a particular underlying model. Consequently, only if this model happens 
to fit the data reasonably well in a given insta,nce can the results be 
satisfying. Its main assumption is that the species respond to the un­
derlying environmental causal factors in a linear fashion. But given the 
above result from direct gradient analysis that species responses are 
typically bell-shaped, this assumption of linearity is unrealistic unless 
a data set happens to sample only a relatively short gradient. This limi­
tation has motivated ecologists to employ additional ordination proce­
dures which can handle longer gradients successfully, such as reciprocal 
averaging and detrended correspondence analysis. 

Ordination has been an enormously important method in community 
ecology. In some cases, however, research purposes call for results 
stated in terms of classes or groups, rather than a spatial or graphical 
model. For example, a manager may want to classify pastures into one 
of several kinds. Consequently, the methodologies discussed so far -
direct gradient analysis and ordination - are complemented by a third 
methodlogy, namely classification. 

Classification 

Classification is the assignment of entities to classes or groups. Clas­
sification is a fundamental, ubiquitous mental activity. Accordingly, it is 
natural that the first conceptu·al framework for organizing community 
data was classification. However, the methods of early phytosociologists 
were informal and subjective, required an extended apprenticeship, and 
demanded long hours of tedious manipulations. When computers be­
came widely available to ecologists around 1960, numerical classifica­
tion methods were developed which were suitable for computer 
implementation and were more objective. 

In community ecology, the input data constitute a species-by-samples 
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matrix of species abundances, and the resultant output may classify 
the species or the samples or both. A non-hierarchical classification 
merely partitions entities into a number of classes, but hierarchical clas­
sification merely partitions entities into a number of classes, but a hier­
archical classification also places the classes into an overall 
arrangement which shows the relative similarity or dissimiliarty between 
any pair of classes. 

Computer Implementation 

The Cornell Ecology Programs series, which has gone to over four thou­
sand laboratories, offers programs ~or ordination, non-hierarchical clas­
sification, and hierarchical classification. Versions are available for both 
mainframe computers and microcomputers. A distinctive feature of this 
series is that most programs are implemented by algorithms with a linear 
workload, meaning that the amount of memory and time required rises 
only linearly with the amount of data. Consequently, even microcom­
puters can handle quite large data sets readily. 

From a historical perspective, plant community ecology - as well as 
the multivariate statistics used in ecology- have emphasized relative­
ly undisturbed, natural ecosystems. By contrast, disturbed, managed 
ecosystems are far more complex. Although it is natural that plant ecol­
ogy began with the simpler systems, the practical need to manage 
grazed pastures calls for tackling complex ecosystems often disturbed 
by overgrazing. During the past several years, Prof. Bosch, Dr. Booys­
en, and I have had to develop some new ecological models and new 
statistical methods in order to understand these complex ecosystems 
better. 

This year we will be working to finalize the first release of the Integrat­
ed System for Plant Dynamics (ISPD) program for grazed pasture 
management. Applications to various ecosystems throughout the world, 
together with possible extensions of its predictive component and eco­
nomics component, will present us with much challenge and work for 
many years. I expect this project to make a positive contribution to the 
agricultural needs of this and many other countries. 
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II. Sl"ATISTICAL ANALYSIS OF REGIONAL YIELD TRIALS 

Agricultural research ·helps farmers to produce a greater quantity, 
quality, and diversity of products within constraints of acceptable profita­
bility and risk. The central experiment in this research is the yield trial. 
Yield trials have proven informative for agronomic recommendations 
and breeding selections, but their value is often limited by inaccuracy 
and other ·problems. Although relatively new to agriculturalists, the Ad­
ditive Main effects and Multiplicative Interaction (AMMI) model has 
proven helpful for achieving accurate yield estimates, reliable selections, 
insightful models, and efficient designs. This model begins with ordi­
nary analysis of variance for the additive main effects, and then ana­
lyzes the residual non-additive interaction with principal components 
which is a multiplicative model. Typically yield is measured for G geno­
types grown in E environments with R replications, resulting in GER 
observations. These 'environments' are usually site and year combina­
tions such as Ithaca in 1990. Here each genotype environment combi­
nation is termed a 'treatment', so there are GE treatments. Thus the 
typical yield trial's design is a genotypes-by-environments two-way fac­
torial experiment, with replication. 

Agronomists and breeders use yield trials for a variety of research pur­
poses, which may be collected under four headings: accurate estimates, 
reliable selections, insightful models, and efficient designs. Individual 
research projects vary in the relative. importance of these four purposes, 
as well as in the inherent strength of the data for accomplishing these 
varied purposes. 

Accurate Estimates 

The most obvious and fundamental purpose for yield trial research is 
to provide accurate yield estimates for each genotype in each environ­
ment. Naturally, the practical value of a yield trial is critically depen­
dent upon its accuracy. Accurate yield estimates permit reliable 
recommendations and good selections, but inaccurate estimates may 
be misleading and practically worthless. 

But this simple term, 'accuracy', can be understood statistically in two 
different senses: accuracy in postdicting a yield observation already 
used in constructing a statistical model; and accuracy in predicting an 
observation not used in constructing the model, but instead used in 
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validating the model's success in fitting new or independent observa­
tions. This may sound like merely a philosophical distinction.'ln fact, 
this distinction leads to different model choices and hence to different 
yield estimates. Typically these AMMI refined estimates are as accurate 
as are ordinary estimates based upon several times as much field data. 
However, the cost of running a microcomputer briefly in order to per­
form AMMI calculations is trivial compared to the cost of actually col­
lecting several times as much field data. Hence AMMI offers a 
remarkably cost-effective means for gaining accuracy. In short, what be­
gins sounding like a philosophical distinction between prediction and 
postdiction turns out in the end to mean better research and more money 
in the oocket. 

Reliable Selections 

AMMI produces adjusted yield estimates, in general differing from the 
raw means. AMMI's different estimates often lead to different rankings 
of the genotypes within each environment, and hence to different selec­
tions of the best material. The greater AMMI accuracy implies better 
selections, even with less field data requirements. Furthermore, promis­
ing material can be identified earlier, so genetic gain can be achieved 
faster. In a typical scenario, AMMI selections can offer in just two years 
the same genetic gain as can regular selections in three years. Like­
wise, agronomic recommendations can be more reliable with AMMI. 

Insightful Models 

Estimation and selection, as just considered, address questions which 
are conceptually simple, focusing upon just one or several yields at a 
time. By contrast, other important research questions address a regional 
yield trial as a whole. AMMI results can provide various summary statis­
tics and graphical displays that have proven effective for answering these 
broad research questions. The major contribution is the biplot graph, 
so named because it contains two kinds of points to represent the geno­
types and the environments respectively. A biplot can be remarkably 
informative, showing both additive and interaction effects for both geno­
types and environments. This effective display may make· obvious by 
a moment's glance numerous complex yield patterns which will never 
be comprehended by even many days of tedious study of large tables 
containing thousands of numbers. Furthermore, a biplot often captures 
90% or more of the treatment variation. Especially considering that often 
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at least 5% to 10% of the treatment variation is noise, relegated by AMMI 
to a dis.carded residual,, biplots often capture essentially all of the real 
nattern in a vield trial data set. 

Efficient Designs 

From a practical perspective, effective yield·trial research is largely a 
matter of allocating limited resources in an efficient manner. The goal 
is to optimize agricultural progress relative to research costs. The cost 
of a yield trial depends upon many factors,.but to a first approximation 
it is a function of the number of yield plots. Given G genotypes, E en­
vironments, and R replications, a trial has GER yield plots. However, 
given some practical limit on the number of plots, researchers face a 
difficult choice be1.ween increasing replications R or else increasing treat­
ments GE. Increasing R increases the accurace of a yield trial. For ex­
ample, an agronomist would prefer to plant eight replications rather than 
only two, since the resulting yield estimates would be twice as accurate. 
On the other hand, increasing GE increases the scope of a yield trial. 
For example, a breeder would prefer to screen 300 plant introductions 
rather than only 50. Likewise, an agronomist would prefer to test a new 
variety in ten sites rather, than only three, and over five years rather than 
only two. More generally, given inevitable limitations in overall resources, 
yield plots allocated to one experiment preclude other experiments. 
Which choice of experiments will maximize agricultural progress? This 
choice deserves more consideration than it generally receives. Much 
more could be said, but the present point is simply that a more efficient 
AMMI statistical. analysis, delivering equivalent accuracy with fewer repli­
cations, can generate valuable new options for increasing the scope 
or .number of experiments. Better analysis at the end can call for a dif­
ferent and better design at the start. 

At Cornell University, Prof. Richard Zobel and I have been developing 
agricultural applications of AMMI. Last year a sabbatical visitor from 
Pretoria, Dr. Benjamin Eisenberg, greatly augmented our work. Prof. 
Zobel and I consider ourselves fortunate to have numerous helpful col­
laborato'rs from South Africa and many other nations. This year my main 
project at Cornell is to write a book on AMMI, which is to appear in both 
English and Chinese editions. 
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Ill. GENERAL IMPLICATIONS: PHILOSOPHY OF SCIENCE 

At present, most scientists are highly specialized. This is understanda­
ble and necessary because of the enormous quantity of scientific infor­
mation available in the modern world. In order to master the available 
knowledge and then make some new contribution, a scientist's effort 
must be focused narrowly. By contrast, my great-grandfather was a 
professor of 'Natural Science'. He lectured on everything from geology 
to agriculture to engineering to veterinary and human medicine. But 
again, now it is a life's work just to master a speciality such as propeller 
design, crop fertilization, or silicon compounds. 

On balance, however, much greater intellectual strength can result if 
specialized knowledge is combined with an accurate and insightful 
general understanding of the scientific method. This broad base lies 
at the interface between science and philosophy, and is called 
'Philosophy of Science' at English-speaking universities. Philosophy of 
science seeks to describe the proper methods of scientific inquiry, to 
define science's prospects and limits, and to interrelate s9ience with 
other branches of knowledge such as philosophy. Incidentally, my field 
of statistics has applications in science, but foundations in logic and 
philosophy, so it quite naturally involves philosophy of science. 

Now I submit that scientists would profit greatly from a minor effort in 
learning some basic philosophy of science. What I mean by a 'minor 
effort' is that, of the many courses required for a bachelor's degree in 
science, merely one such course would suffice. It might be team taught 
by faculty from several departments in the sciences and humanities, 
and likewise listed by several departments in order to allow students 
with diverse majors to meet their course requirements readily. This call 
for merely a few percent of a science student's curriculum to be in 
philosophy of science should not hinder the required acquisition of 
specialized scientific knowledge. And yet even this minor call represents 
a significant departure from the customary practices of many universi­
ties since most students who graduate with even a Doctor of Philosophy 
degree in science have never taken even a single course in philosophy. 

What benefits would accrue from science pursued with a deeper 
philosophical understanding? I submit that two specific benefits would 
accrue: better science, and better integration of science with philosophy 
and theology. 
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Better Science 

A few years ago, I was enjoying a trip in the Karoo to see the field sites 
of a graduate student in ecology from another university. While ex­
plaining his thesis research project, he began to describe their plans 
for checking their model's predictive accuracy. I was quite surprised and 
pleased because rather few ecological projects consider or check predic­
tive accuracy. However, I asked him, "Why are you interested in predic­
tive accuracy- why are you bothering to measure it?" The result was 
complete bewilderment and silence. I offered the suggestion that predic­
tive accuracy is important because it provides evidence of getting at 
the truth, and because it gives a realistic assessment of the accuracy 
that can be expected in future applications of the model. Furthermore, 
I wanted to discuss the technical details of his research design because 
scientists use the English word 'prediction' with diverse usages, and 
I wanted to make sure that his experiment concerned real prediction 
and not merely postdiction. Also, I suspected that a proper and ener­
getic assessment of prediction might confer several choices and 
strengths not yet understood by this graduate student. Anyway, the 
present point is just that students often develop much technical 
knowledge, but with an unfortunate lack of a broader scientific under­
standing. A little philosophy of science could give such a student a much 
deeper understanding of science in general, and of his own research 
in particular .. 

As another example, my recent research vyith appiying AMMI to yield 
trials has opened new possibilities for efficient experiments. The bot­
tom line is greater agricultural progress relative to research costs, and 
yet the point of departure is a philosophical distinction between predic­
tion and postdiction. I feel that my contribution to this area of agricul­
tural research was largely due to my acquaintance with the literature 
in philosophy of science. 

I hope that Potchefstroom University of CHE can increase somewhat 
its teaching of the foundations of scientific methodology. The result can 
be better scientists. I like to envision a group of twenty engineers work­
ing on some difficult problem, and a graduate from Potch gets the key 
insight because he or she can really understand science in depth. I like 
to envision a Potch graduate seeing how to redesign a big experiment 
~ith only a third of the original cost because he or she is really a scien­
tist, not merely a technician. Most fundamentally of all, I like to envision 
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a Patch graduate perceiving that the question circulating in a research 
group is somewhat tangential or vague relative to the real question that 
can stimulate great progress. In a word, I think that a little philosophy 
of science can make scientists better scientists. 

Better Integration of Knowledge 

This university has had a sustained effort for many years, involving all 
of its faculty and students, to integrate all human knowledge, and more 
specifically to look at all academic disciplines from a distinctively Chris­
tian perspective. Through numerous courses and publications, much 
has been accomplished, and yet still more .remains to be done. Because 
"Reality is in Christ;' as St. Paul declares (Colossians 2:17), this noble 
effort is both right and important. It is doubly important becaus~e so few 
of the world's universities pursue this vision. 

Space does not allow here for a systematic exploration of the relation­
ships between science, philosophy, and theology. Instead, we must settle 
for just one extended example. Consider Christian apologetics - that 
branch of theology which defends the truth of the Christian faith or 
religion. Three points follow regarding Christian apologetics:·first, that 
a historical review reveals three main approaches; second, that 
philosophical analysis can explain why there are exactly three ap­
proaches, and third, that a historical and philosophical overview can 
illuminate possibilities for making Christian apologetics stronger. 

First, the three main approaches are evidentialist, presuppositionalist, 
and philosophical apologetics. Evidentialist ·apologetics emphasizes 
historical and other evidence for the truth of Christianity. This approach 
dominated the first eighteen centuries of Christian apologetics, with Eu­
sebius' "Proof of the Gospels" being representative. Evidentialists claim 
that Christianity alone matches up with the objective facts of history and 
reality. By contrast, presuppositionalistic apologetics emphasizes the 
faith or unprovable presuppositions which lie at the base of every world­
view, including Christianity. It has come to be the most popular approach 
in the present century, especially in Reformed circles. Presupposition­
alists argue that Christianity provides the most comprehensive and satis­
fying view of life. Regarding yet another approach, philosophical 
apologetics attempts to prove that God exists by means of arguments 
whose premises are essentially logical or rational, as contrasted with 
premises making substantial appeal to empirical facts from history or 
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science. Thomas Aquinas, Anselm, and others proposed several such 
· arguments which continue to this day to have some influence, espe-
cially in Roman Catholic circles. · 

Second, the existence of these three approaches can be explained by 
understanding the general, pervading structure of any rational thought. 
It suffices to analyze a trivial common-sense question, namely "Does 
the jar contain cookies?" Using terminology from science, the roster 
of possible answers is the 'hypothesis set', here constituting the two pos­
sibilities "Yes" and "No". Comparison of these two hypotheses reveals 
both dissimilarities and similarities. The dissimilarity is most striking: 
one hypothesis says that the jar contains cookies, and the· other the 
opposite. Nevertheless, there are also similarities, and these are quite 
important: both hypotheses presume that the physical world and its jars 
and cookies actually exist, and both presume that human sense ex­
perience is reliable enough to satisfy our reaching some conclusion to 
this question. 

The crucial goal sought here how is a complete argument for holding 
either of these hypotheses as one's conclusion. Exactly how could one 
support the conclusion that, say, "Yes, the jar contains cookies," giving 
a complete account? Now the common-sense reason is that some ob­
servation, such as "I just saw cookies in the jar," would justify this con­
clusion. This argument has the structure "Seeing proves existence," 
or "S; therefore E:' In common sense this works because "seeing is 
believing" as the saying has it; however, in logic this is an invalid non 
sequitur- the conclusion E does not follow from the premise S. To say 
the least, this argument is incomplete. The required additional premise 
is the presupposition that the physical world and its jars and cookies 
exist, that sense experience is generally reliable, and so on, which 
together amount to saying that "S implies E." Thus amended, now the 
argument says "S; S implies E; therefore E," which is an instance of 
the valid argument form modus ponens. However, in order to be really 
complete, the argument can add a third premise explicitly declaring that 
modus ponens is a valid inference rule. Finally, in order to give an ab­
solutely complete disclosure of this entire argument, it could also be 
said that all of our knowledge deemed not relevant to the present ques­
tion - which philosophers term the 'background' - contains or hides 
nothing which is relevant and thus could impact, or even-reverse, our 
conclusion. 



This simple common-sense example suffices to reveal the basic struc­
ture of any rational justification: presuppositions plus evidence, operat­
ed upon by inference rules, produce a conclusion (while an irrelevant 
background is essentially ignored). This structure pervades rational 
thought in common sense, science, philosophy, and theology. Note the 
three inputs: presuppositions, evidence, and inferences. In essence, the 
presuppositions account for why we consider ourselves able to reach 
any conclusion at all to the question, the evidence accounts for why 
we select one particular conclusion over the other possibilities, and the 
inferences combine the various premises in order to produce the con­
clusion. Presuppositionalistic apologetics emphasizes presuppositions, 
evidentialistic apologetics emphasizes evidence, and philo~ophical 
apologetics emphasizes logic or inferences. Hence this general model 
of justification allows us to understand the existence of these three 
schools of Christian apologetics. 

Third and finally, the inherent clarity and strength of a complete argu­
ment points to possibilities for combining the valid insighrfrom these 
apologetics traditions into a new integrated approach with greater 
strength. Furthermore, by extending the same rational completeness 
into scientific reasoning, the relationship between science and theolo­
gy can become more clear and more cordial. However, this is a longer 
story than can be pursued here. 

The general point which this one example is intended to illustrate is that 
deeply integrating knowledge across fields can make each and every 
field stronger. My greatest hope is that Christian apologetics can be done 
better. Apologetics seeks to defend the faith - but whose faith? For 
many older persons their faith is reasonably secure. However, younger 
persons of the next generation will have to make their own choices. It 
is not principally for ourselves, but rather for. others - especially for 
the next generation, and most especially for those in doubt or trial or 
unbelief - that Christian apologetics must be as strong as possible. 
It is not adequate for Christian apologetics to be good enough for us; 
rather it must be good enough for others who are not yet Christians. 
This will require much work by many Christian scholars. For several 
years I have been working on a book which I intend to complete within 
a year. I hope that it will contribute toward clearer philosophy of science, 
and even toward stronger Christian apologetics. 

In conclusion, collaborations with this faculty over the past several 
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years have been very enriching to me, and I look forward to the con­
tinued collaboration made possible by my appointment here. A Chris­
tian university has a great calling; may God Qrant us Qrace. 

REFERENCES 

For Part I, Multivariate Analysis in Community Ecology: 

BOSCH, O.J.H. 1989. Degradation of the semi-arid grasslands of 
south·ern Africa. Journal of Arid Environments 16:143-147. 
BOSCH, O.J.H., and GAUCH, H.G. 1991. The use of degradation gra­
dients for the assessment and ecological interpretation of range .condi­
tion index. Journal of the Grassland Society of Southern Africa (in press). 
GAUCH, H.G. 1982. Multivariate Analysis in Community Ecology. Cam­
bridge University Press, Cambridge, England. 

For Part II, Statistical Analysis of Regional Yield Trials: 

AITCHISON, J., and DUNSMORE, I.R. 1975. Statistical Prediction Anal­
ysis. Cambridge University Press, Cambridge, England. 
BERGER, J.O. 1985. Statistical Decision Theory and Bayesian Analy­
sis, Second Edition. Springer-Verlag, New York, New York. 
BRADU, D., and GABRIEL, K.R. 1978. The biplot as a diagnostic tool 
for models of two-way tables. Technometrics 20:47-68. 
GAUCH, H.G. 1988. Model selection and validation for yield trials with 
interaction. Biometrics 44:705-715. 
GAUCH, H.G., and ZOBEL, R.W. 1988. Predictive and postdictive suc­
cess of statistical analyses of yield trials. Theoretical and Applied Gene­
tics 76:1-10. 
GAUCH, H.G., and ZOBEL, R.W. 1989. Accuracy and selection success 
in yield trial analyses. Theoretical and Applied Genetics 77:473-481. 
GAUCH, H.G., and ZOBEL, R.W. 1990. Imputing missing yield trial data. 
Theoretical and Applied Genetics 79:753-761. 
KEMPTON, R.A. 1984. The use of biplots in interpreting variety by en­
vironment interactions. Journal of Agricultural Science, Cambridge 
103:123-135. 
ZOBEL, R.W., WRIGHT, M.J., and GAUCH, H.G. 1988. Statistical 
analysis of a yield trial. Agronomy Journal 80:388-393. 

14 



For Part II, General Implications, Philosophy of Science: 

BURKS, A.W. 1977. Chance, Cause, Reason: An Inquiry into the Nature 
of Scientific Evidence. University of Chicago Press, Chicago, Illinois. 
GIERE, R.N. 1984. Understanding Scientific Reasoning, Second Edi­
tion. Holt, Rinehart and Winston, New York, New York. 
HOWSON, C., and URBACH, P. 1989. Scientific Reasoning: The Baye­
sian Approach. Open Court, La Salle, Illinois. 
JEFFREYS, H. 1983. Theory of Probability, Third Edition. Oxford Univer­
sity Press, Oxford, England. 

For Part Ill, G~meral Implications, Christian Apologetics: 

GEISLER, .N.L. 1976. Christian Apologetics. Baker Book House, Grand 
Rapids, Michigan. . 
GEISLER, N.L. (Editor). 1979. Inerrancy. Zondervan, Granp Rapids, 
Michigan. 
MONTGOMERY, J.W. 1978. Faith Founded on Fact: Essays in Eviden­
tial Apologetics. Thomas Nelson, Nashville, Tennessee . 

. SPROUL, R.C., GERSTNER, J., and LINDSLEY, A. 1984. Classical 
Apologetics. Zondervan, Grand Rapids, Michigan. 

15 




