
Synthesis and evaluation of a
data management system for

machine-to-machine
communication

by

Pieter Willem Jordaan

A dissertation submitted to the Faculty of Engineering in
partial fulfilment of the requirement for the degree

Master of Engineering

in

Computer and Electronic Engineering

at the

North-West University

Study Leader: Prof. J.E.W. Holm

April 2013

Soli Deo Gloria
“For the glory of God alone”

Acknowledgements

It is with great reverence and adoration that I thank my Lord for be-
stowing favour and grace unto me to finish this research project.

A number of persons have been instrumental during this research
project and I wish to acknowledge them here:

Jeanne-mari Jordaan

Prof. J.E.W. Holm

Kobus Jordaan jnr.

Maria Ackerman

Kobus Jordaan snr.

Abstract

A use case for a data management system for machine-to-machine
communication was defined. A centralized system for managing data
flow and storage is required for machines to securely communicate
with other machines.

Embedded devices are typical endpoints that must be serviced by this
system and the system must, therefore, be easy to use. These systems
have to bill the data usage of the machines that make use of its ser-
vices.

Data management systems are subject to variable load and must there-
fore be able to scale dynamically on demand in order to service end-
points. For robustness of such an online-service it must be highly
available.

By following design science research as the research methodology,
cloud-based computing was investigated as a target deployment for
such a data management system in this research project. An im-
plementation of a cloud-based system was synthesised, evaluated and
tested, and shown to be valid for this use case. Empirical testing and
a practical field test validated the proposal.

Keywords: data management system, cloud-based computing, machine-
to-machine, NoSQL, MongoDB

Opsomming

’n Gevallestudie vir ’n databestuurstelsel vir masjien-tot-masjien kom-
munikasie is gedefinieer. ’n Gesentraliseerde stelsel vir die bestuur
van die berging en vloei van data is ’n vereiste vir masjiene om veilig
met mekaar te kommunikeer.

Ingebedde toestelle is tipiese eindpunte wat gediens word deur die
stelsel en die stelsel moet dus maklik bruikbaar wees. Dı́e tipe stelsels
moet rekening hou van dataverbruik van die toestelle wat gebruik
maak van die stelsel se dienste.

Databestuur stelsels is onderhewig aan veranderlike las en moet dus
dinamies kan skaleer volgens die aanvraag van die eindpunte wat ge-
diens moet word. Om robuust te wees moet sulke aanlyndiense hoogs
beskikbaar wees.

Deur ontwerpwetenskapsnavorsing as navorsingsmetodologie te gebruik,
is wolkgebaseerde berekening voorgestel as die teiken ontploöıngsme-
tode vir databestuur stelsels in d́ıe navorsings projek. ’n Implementer-
ing van ’n wolkgebaseerde stelsel is gesintetiseer, geëvalueer en getoets,
en validasie daarvan vir die gevallestudie is aangetoon. Empiriese
toetse en ’n praktiese veldtoets het die voorstel gevalideer.

Sleutelwoorde: databestuurstelsel, wolkgebaseerde berekening, masjien-
tot-masjien, NoSQL, MongoDB

Contents

Acknowledgements i

Abstract ii

Opsomming iii

List of Figures viii

List of Tables ix

Listings x

List of Abbreviations xi

1 Introduction 1
1.1 Overview . 1
1.2 Background . 4

1.2.1 Current Systems . 4
1.2.2 High-level System Architecture 5

1.3 Research Problem Statement 7
1.3.1 Hypothesis . 7
1.3.2 Primary Objective . 7
1.3.3 Secondary Objectives 7
1.3.4 Research Project Scope 8

1.4 Research Methodology . 8
1.4.1 Inputs . 9
1.4.2 Constraints . 9
1.4.3 Resources . 9
1.4.4 Research Process Methodology 10

1.5 Contribution to Research . 10
1.6 Summary . 12

iv

CONTENTS CONTENTS

2 Literature Study 13
2.1 Overview . 13
2.2 Databases . 13

2.2.1 Database Replication 14
2.2.2 Database Sharding . 15
2.2.3 Database Cluster . 15
2.2.4 Failover Replication . 15
2.2.5 Database Variants . 15
2.2.6 Selection of Database Management System 25

2.3 Scalable Computing . 26
2.3.1 Grid Computing . 26
2.3.2 Cloud Computing . 26
2.3.3 Load Balancing . 28
2.3.4 Selection of Scalable Computing Method 29

2.4 Security . 29
2.4.1 Authentication . 30
2.4.2 Cryptography . 30
2.4.3 Secure Sockets . 32
2.4.4 Selection of Security Method 33

2.5 Summary . 33

3 Preliminary Synthesis and Evaluation 35
3.1 Overview . 35
3.2 Preliminary Architecture . 35

3.2.1 Data Management System Protocol 36
3.2.2 Storage System . 38
3.2.3 Data Management System 39
3.2.4 Database Interface . 41

3.3 Evaluation . 42
3.3.1 Functional Capability 42
3.3.2 Performance Characteristics 44

3.4 Summary . 45

4 Detail Synthesis and Evaluation 46
4.1 Overview . 46
4.2 Detail Synthesis . 46

4.2.1 Data Management System Protocol 46
4.2.2 Storage System . 53
4.2.3 Data Management System 55
4.2.4 Database Interface . 61

4.3 Deployment . 62

Synthesis and evaluation of a data management system for machine-to-machine communication v

CONTENTS CONTENTS

4.4 Evaluation . 63
4.4.1 Functional Capability 63
4.4.2 Performance Characteristics 64

4.5 Summary . 65

5 Empirical Tests and Results 66
5.1 Overview . 66
5.2 Tests . 66

5.2.1 Functional Capability 67
5.2.2 Performance Tests . 79
5.2.3 Database Tests . 82
5.2.4 Availability . 82
5.2.5 Scalability . 82

5.3 Results . 83
5.3.1 Functional Capability 83
5.3.2 Performance Characteristics 83

5.4 Use Case Results . 89
5.5 Summary . 90

6 Conclusion 91

Bibliography 98

Synthesis and evaluation of a data management system for machine-to-machine communication vi

List of Figures

1.1 Problem illustration . 4
1.2 Conceptual architecture . 5
1.3 Research methodology . 8
1.4 Research method . 10

2.1 Database management system 14
2.2 Circular geographic replication 16
2.3 Typical MongoDB cluster . 23
2.4 Symmetric-key cryptography 31
2.5 Asymmetric-key cryptography 31

3.1 Preliminary architecture . 36
3.2 Preliminary client protocol state diagram 37
3.3 Preliminary storage system architecture 38

4.1 Handshake message sequences 47
4.2 Endpoint handshake packet definition 48
4.3 Server handshake packet definition 49
4.4 Acknowledgement packets . 50
4.5 Standard unsegmented packet 51
4.6 Segmented packet . 52
4.7 Destination packet . 53
4.8 Source packet . 54
4.9 Expiry packet . 54
4.10 Connection closing packets. 56
4.11 New data arrived packet definition. 57
4.12 Received packet states . 58
4.13 Transmitted packet states . 59
4.14 Protocol message sequence example 60
4.15 AWS large deployment example 62

5.1 Per packet latency . 85

vii

LIST OF FIGURES LIST OF FIGURES

5.2 Total data throughput . 86
5.3 Total packet throughput . 87
5.4 Total scaled data throughput 88
5.5 EC2 CPU usage. 89

Synthesis and evaluation of a data management system for machine-to-machine communication viii

List of Tables

2.1 EC2 instance types . 27

3.1 Requirements vs. architecture elements matrix 45

4.1 Header types . 50
4.2 Requirements vs. architecture elements matrix 65

5.1 Test/functional capability matrix 67
5.2 Test/functional capability results matrix 83

ix

Listings

2.1 SQL example . 16
2.2 Cassandra data model . 20
2.3 Simple MongoDB query . 21
2.4 Simple MongoDB C++ example 22
4.1 Billing map/reduce functions 61

x

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

ASIO Asynchronous Input/Output

AWS Amazon Web Services

BASE Basic Availability, Soft state, Eventual consistency

BSON Binary JSON

CRUD Create, Remove, Update, Delete

DBMS Database Management System

DNS Domain Name Server

EBS Elastic Block Storage

EC2 Elastic Compute Cloud

ECU Elastic Compute Unit

ELB Elastic Load Balancer

HA Highly Available

IaaS Infrastructure as a Service

IETF Internet Engineering Task Force

JSON JavaScript Object Notation

NoSQL Not only SQL

OID Object ID

xi

LIST OF ABBREVIATIONS LIST OF ABBREVIATIONS

ORDBMS Object-Relational DBMS

PaaS Platform as a Service

QoS Quality of Service

RDBMS Relational DBMS

RTT Round-trip Time

SaaS Software as a Service

SLA Service Level Agreement

SQL Structured Query Language

SSL Secure Sockets Layer

TLS Transport Layer Security

UEC Ubuntu Enterprise Cloud

Synthesis and evaluation of a data management system for machine-to-machine communication xii

Any intelligent fool can make
things bigger and more
complex... It takes a touch of
genius - and a lot of courage to
move in the opposite direction.

Albert Einstein
Chapter 1

Introduction

In this chapter the problem statement and aim for the project are discussed.
The objectives and scope of the project are defined. To conclude this chapter,
the research methodology that this project follows, is given.

1.1 Overview

The research theme, namely to synthesize and evaluate a cloud-based machine-
to-machine communication and billing system, originated from an actual
need in the physical security industry. Such a machine-to-machine commu-
nication and billing system basically comprises a centralized server-based
data management system as well as machines (units in the field) that com-
municate via the central data management system.

Instead of just developing a data management system, the question arose
whether a data management system should be hosted on a private or a pub-
lic cloud-based environment. This question was not easily answered, and
research followed to investigate the feasibility of such a system on a public
cloud.

Directed research requires (i) a practical component (the “real-world”
problem) and (ii) a research component (the “academic” or research prob-
lem). The research problem should be derived from the real-world problem
and should address a problem that is, in a sense, theoretical in nature (that
is, one is allowed to make certain assumptions that define the problem envi-
ronment as “controlled” in order to be scientific in nature).

1

Chapter 1. Introduction 1.1. Overview

Since a data management system is an actual need, a design science re-
search approach was followed. In line with the above discussion, the purpose
of this research is thus twofold: (i) to evaluate the functional capability and
performance of a cloud-based data management system in a “controlled” en-
vironment, and (ii) to synthesize (create) an artefact that represents a real-
world system.

Design science research is an outcome based research methodology in infor-
mation systems and computer engineering. [1] The contribution that follows
from design science research requires the following [1]:

• Identification of a relevant problem;

• Demonstration that an adequate solution does not exist in the public
domain;

• Synthesis of a novel artefact;

• Rigorous evaluation of the artefact;

• Communication of the added value from the artefact;

• Dissemination of the research output.

Validation and verification (“V-and-V”) of the artefact was achieved through
an empirical testing procedure. Functional tests and performance tests, indi-
vidually, provide verification of the research, while all tests combined, with a
field test, provide validation of this research.

In order to encapsulate the artefact (a data management system), a use
case was defined that required a system for machines to communicate with
other machines in a physical security context. Data management refers to
the logistical functionality to manage incoming and outgoing data. This
management functionality includes the storage, retrieval and forwarding of
data.

Machines in this use case may refer to an exhaustive list of devices, but
for this research project refer to embedded network-capable devices, mobile
telephones and network-capable computers that are called endpoints. The
use case’s specific functional requirements are summarized below:

• Authentication: the process whereby two machines can securely identify
each other;

Synthesis and evaluation of a data management system for machine-to-machine communication 2

Chapter 1. Introduction 1.1. Overview

• Session support : the ability to minimize data resends during failed
communication attempts by resuming a session, or in case of extreme
failures, cleaning a session;

• Guaranteed delivery of data packets : a data packet destined for a ma-
chine will eventually be delivered as long as the machine is in use - that
is, present in the network;

• Segmented packet support : large packets can exhaust an embedded sys-
tem’s memory resources and must, therefore, be able to send and receive
packets in segments;

• Persistent storage of data: the ability to query past events for audit
purposes and increased reliability;

• Packet forwarding : to enable machines to communicate via a central
system;

• Quality-of-service based data billing : machines can be billed accord-
ing to data usage per volume depending on a pre-arranged data rate,
allowing low priority machines to operate at lower costs.

The above functional requirements are subject to the following design
constraints in order to make the system practically feasible as listed below:

• Ease of use: the ability of low-end embedded systems to make use of the
data management system. Ideally it should be simplistic to interface
with the system;

• Scalability : a metric which describes the system’s ability to service a
highly variable load. If the load increases, the system should scale its
capacity accordingly. Conversely, if the load diminishes, the system
should decommission unused resources;

• Availability : the ability of a system to provide service without inter-
ruption - this is important for physical security systems;

• Security : provides confidentiality and integrity of messages between
machines.

Synthesis and evaluation of a data management system for machine-to-machine communication 3

Chapter 1. Introduction 1.2. Background

Figure 1.1 shows a typical use case scenario. Remote devices connect
to a centralized server to exchange data with its consumers, administrators,
and peers. The data is stored on the centralized server for in-time and
future delivery of data. Data traffic is also monitored and billing information
is generated. Consumers (users) in this figure represent 24-hour security
monitoring personnel. The devices represent security devices that are capable
of transmitting multimedia security data.

DevicesAdministrator

Data switching
Storage
Billing

Consumers

Figure 1.1: Problem illustration

1.2 Background

Embedded systems are often equipped with internet capable peripherals in
order to make use of online services. Several applications exist that require
online services to act as data management systems. These services are billed
according to upstream and downstream data and often the type of data it
contains. Furthermore, quality of service (QoS) can be billed according to a
service level agreement (SLA). [2]

The primary goal for these systems is to support the variable usage that
mobile end-users have. Especially with the advent of the mobile smart-phone
and other mobile thin-clients, the need for dynamic scalability has become
the focus for many developers. [3]

1.2.1 Current Systems

Currently, there is no publicly available integrated system that provides data
management services and billing capability, as defined in this research.

There exists, however, various e-billing and e-management systems for
remote energy billing. These systems are exclusively for energy meter billing
and are therefore not suitable for data traffic billing. [4, 5] There are other
billing systems not mentioned here, but to our knowledge these systems make
use of proprietary protocols and architectures that have not been published.

Synthesis and evaluation of a data management system for machine-to-machine communication 4

Chapter 1. Introduction 1.2. Background

Mobile telecommunication networks employ advanced billing strategies
to bill their clients. Clients are billed according to different billing models
depending on their need. QoS based billing has become a popular model,
but data is not stored during mobile data communication and is therefore
not suitable for a data management system. [6]

Great strides have been made towards the development of content-aware
internet traffic measurement and analysis. These methods can be used for
content-aware billing, but do not provide a means to store the data. [7]

1.2.2 High-level System Architecture

Figure 1.2 shows the high-level system architecture of the system under eval-
uation. This system provides an established platform that enables multiple
clients to manage their data through a simple interface (for example an API1).
The system provides a gateway that redirects inbound traffic to the storage

Internet Cloud

Account
Information

Gateway

Data
Measurement

Billing Invoicing

Storage
Web
Frontend

Devices

Remote
Administration

Clients

Client's
Developers

Client's
Consumers

Figure 1.2: Conceptual architecture

1An application programming interface (API) provides a standard set of methods by
which a developer can interface with a service.

Synthesis and evaluation of a data management system for machine-to-machine communication 5

Chapter 1. Introduction 1.2. Background

module. Upon establishing a connection, authentication must take place to
ensure security. All information, concerning the clients and their registered
services, is stored in an account database.

Inbound and outbound traffic is monitored and analyzed for specific pack-
ets. Measurements of data payloads (not application specific data) are posted
to the billing module that processes prices per volume or other custom pric-
ing rules. Invoices are then periodically created that can be delivered to
clients in any form.

An external administrative computer can access the internal network to
perform maintenance and administrative tasks remotely.

Recently, cloud-computing has taken flight with public and private clouds
easily available. Cloud-computing requires software to be designed to fail. Al-
though this may sound like a contradiction, the cloud application paradigm
follows good software engineering principles that lead to its remarkable char-
acteristics.

A list of notable characteristics of cloud-computing follows:

• High reliability;

• Versatility;

• Dynamic and infinite2 scalability;

• On demand service;

• Very low cost;

• High availability;

• Optimal resource handling.

It is obvious that the benefits are not to be ignored for this use case. Ap-
plying this kind of development to an application does not limit it to a cloud
environment. A cloud application can, in fact, run in any environment, but
by developing for the cloud, the application can effortlessly be deployed into
a cloud environment. [8, 9]

It is proposed in this research project that cloud-based design principles should
be used to implement a data management system for machine-to-machine
communication.

2Virtually infinite in a horizontal scaling sense, given the constraints of the hosting
environment.

Synthesis and evaluation of a data management system for machine-to-machine communication 6

Chapter 1. Introduction 1.3. Research Problem Statement

1.3 Research Problem Statement

In the context of design science research, a real-world problem is usually de-
fined and researched. Associated with the real-world problem, again in the
context of directed research, is a theoretical (or research) problem that is
typically addressed by following an engineering-scientific methodology. Such
a methodology is found in design science research.

The real-world problem was defined and is stated as follows:

Can a data management system for machine-to-machine communication
effectively function on a cloud-based platform?

1.3.1 Hypothesis

The theoretical research problem was defined as an hypothesis that was
formulated and tested. The hypothesis is stated as follows:

A cloud-based implementation can provide the functional capability and
performance characteristics for a data management system.

1.3.2 Primary Objective

The primary goal was to to synthesize and evaluate a cloud-based machine-
to-machine system. Synthesis was done by following engineering principles,
and evaluation was done by following engineering-scientific principles.

1.3.3 Secondary Objectives

In order to address the primary objective, a list of secondary objectives were
derived, as follows:

• Research, identification and selection of development environment;

• Deployment method identification and selection;

• Research, identification and selection of database(s);

• Protocol synthesis and evaluation;

• Software synthesis and evaluation.

Each of the above objectives were addressed in this research project.

Synthesis and evaluation of a data management system for machine-to-machine communication 7

Chapter 1. Introduction 1.4. Research Methodology

1.3.4 Research Project Scope

The research project was subject to constraints that are listed below:

• The cloud environment must be the primary deployment target;

• The project must be product-hardened so that it can be validated in
the field;

• Software must follow the cloud development paradigm - this is very
important;

• Upstream and downstream data must be monitored for billing pur-
poses;

• Billing reports must be generated;

• Profiling data3 must be generated and logged;

• The target operating system must be a *nix 4 variant;

• The requirements in section 1.1 must be met.

The above listed constraints were used to guide the artefact design.

1.4 Research Methodology

Figure 1.3 shows the research methodology that was followed during this
research project.

Research
Method

Constraints

Resources

Inputs Plausible Solutions

Figure 1.3: Research methodology

3Data throughput, access times, resource usage, uptime, etc.
4Unix, BSD and Linux

Synthesis and evaluation of a data management system for machine-to-machine communication 8

Chapter 1. Introduction 1.4. Research Methodology

The research methodology that was followed used the process of induc-
tion to verify and validate the output of the research method. If the input,
constraints, resources and research method are proven (or demonstrated) to
be correct, then the output into the plausible solution space must be valid.
Each of the elements of the research methodology is further discussed in the
sections that follow.

1.4.1 Inputs

The inputs to the research were derived from the real-world problem.
Real-world requirements were used to define a theoretical research problem
and the required functional capability of an artefact.

1.4.2 Constraints

The constraints must be realistic and feasible. Constraints for this research
project are listed below:

• Design constraints:

– Ease of use;

– Scalability;

– Availability;

– Security.

• Current technology limitations.

1.4.3 Resources

Resources are utilized by the research method, which include, but are not
limited to, the following:

• Engineering best practices;

• Literature study;

• Measurement tools;

• Development environments;

• Development kits;

• Laboratory environments;

• Development computer.

Synthesis and evaluation of a data management system for machine-to-machine communication 9

Chapter 1. Introduction 1.5. Contribution to Research

1.4.4 Research Process Methodology

The design science research method was followed in this research project.
An important aspect of the design science research method is defining the
research problem commensurate with the real-world problem. The research
method followed is illustrated in figure 1.4.

Define
a real-world

problem

Create and document results and new knowledge

Derive
a theoretical

research
problem

Perform
a literature

study

Do a
preliminary

synthesis and
evaluation

Create an
artefact and

evaluate

Rigorously
verify and

validate the
artefact

Figure 1.4: Research method

As shown in figure 1.4, the definition of the real-world problem and the
derivation of the research problem are followed by a literature study on rel-
evant topics. This, in turn, is followed by a preliminary synthesis which
entails the definition of a preliminary artefact for evaluation purposes. A fi-
nal artefact architecture is selected from the evaluation and is then designed
and implemented in detail. The final artefact is verified by means of func-
tional tests and performance tests. Final validation is achieved, again in
the spirit of design science research, when all verification tests have shown
success and by demonstrating added value in practice by means of practical
implementation.

Throughout the research process, a rapid prototyping life-cycle model was
followed. This model allowed the development to rapidly converge towards
a final artefact. [10]

1.5 Contribution to Research

This section summarizes the contributions made to this research project in
order to create, verify, validate and document the artefact. These contribu-
tions were spread over a period of two years. A list of contributions is shown
below:

• Identification of a real-world problem, namely to provide a data
management system for machine-to-machine communication;

Synthesis and evaluation of a data management system for machine-to-machine communication 10

Chapter 1. Introduction 1.5. Contribution to Research

• Deriving a research problem and relevant requirements and con-
straints, namely to investigate the practical feasibility of a cloud-based
data management system for machine-to-machine communication;

• Performing a literature study on relevant topics as listed below:

– Databases;

– Scalable computing;

– Security.

• Rigorous evaluation of identified technologies from the literature study
as listed below:

– Relational databases;

– Non-relational databases;

– Grid computing;

– Cloud computing;

– Load balancing;

– Authentication;

– Encryption.

• Definition of a preliminary architecture as shown in Chapter 3;

• Definition of detail elements of the system architecture as shown in
Chapter 4;

• Actual software implementation of the system (artefact);

• Actual implementation of an application programming interface (API)
in order to test the system;

• Functional capability testing of each element of the system as shown
in Chapter 5;

• Performance testing of the system as shown in Chapter 5;

• Physical deployment of the system on an Amazon AWS instance for a
field test of an actual physical security system;

• Critical review of test results as shown in Chapter 5;

• Verification and validation of the artefact, as is evident from the evi-
dence in Chapter 5;

• Documentation of the research.

Synthesis and evaluation of a data management system for machine-to-machine communication 11

Chapter 1. Introduction 1.6. Summary

1.6 Summary

This chapter illustrated the use of design science research as a method for
synthesis and evaluation of a cloud-based data management system.

Specific functional capability requirements for the data management sys-
tem were defined, as shown below:

• Authentication;

• Session support;

• Guaranteed delivery of data packets;

• Segmented packet support;

• Persistent storage of data;

• Packet forwarding;

• Quality-of-service based data billing.

The above requirements followed from a defined use case in a physical security
context.

In order to make the data management system practically feasible, the
following design constraints were identified:

• Ease of use;

• Scalability;

• Availability;

• Security.

The functional requirements derived from the real-world research problem
define the research method’s input. Constraints and resources define the
boundaries of the research project as outlined above.

By validating the inputs, constraints and resources, the validity of the
research project’s output can be determined by a process of induction. This
process of induction was used to validate the hypothesis:

A cloud-based implementation can provide the functional capability and
performance characteristics for a data management system.

Synthesis and evaluation of a data management system for machine-to-machine communication 12

Any man who reads too much
and uses his own brain too little
falls into lazy habits of thinking.

Albert EinsteinChapter 2

Literature Study

2.1 Overview

This chapter discusses the topics studied to aid in the synthesis and evalua-
tion phase. Technologies that were used in the research project are discussed
here. A reference architecture is provided as a guideline for the literature
study. Topics relevant to the following elements were investigated and are
reported on in the following sections:

• Databases;

• Scalability in computing;

• Security.

It is important to note that TCP/IP was used as the transport layer for the
system.

2.2 Databases

A database is used primarily to store a collection of end-user data and meta-
data in a structured fashion. Meta-data describe data relationships. Figure
2.1 shows a Database Management System (DBMS).

A DBMS is the fabric between a user and a database. It is responsible
for translating all application requests into complex database operations. It
hides the internals of the database from the application.

Databases are stored in a structure called a schema that defines relation-
ships and columns. The most notable advantages of using a DBMS are listed
on the following page: [11]

13

Chapter 2. Literature Study 2.2. Databases

End users

End users

DBMS
database

management system

Application
request

Data

Database structure

Metadata

Customers

Invoices

Products

End-user
data

Application
request

Data

Figure 2.1: Database management system

• Improved data sharing;

• Better data integration;

• Minimized data inconsistency;

• Improved data access;

• Improved decision making;

• Increased end-user productivity.

2.2.1 Database Replication

Data replication is a method to store copies of the data at several independent
sites. These sites can be geographically separated to allow for faster access
times for local users and also extra security.

Replication is an asynchronous process where a master site replicates to
one or more slave sites. All write operations still take place on the master
and are then replicated to the slaves. This improves read access times due
to redundant sources for reading. Write operations are slightly faster due to
read traffic being redirected to the slaves.

One can, for example, use a replicated site for analysis only. This can
alleviate the master’s work load. Backups can take place on any slave due to
the asynchronous operation and without any locking of the master unit. [11]

Synthesis and evaluation of a data management system for machine-to-machine communication 14

Chapter 2. Literature Study 2.2. Databases

2.2.2 Database Sharding

In order to scale write operations, one must segment data either horizontally
or vertically (by row or by column or both). This allows segments to be dis-
tributed (and also replicated) over various sites. Writes are then distributed
to the applicable site for the write operation. This can dramatically improve
write access times. Read access times are also improved by this method of
scaling, unless large queries across all shards or partitions are performed. [12]

2.2.3 Database Cluster

Various DBMS’s allow for synchronous replication of data to multiple nodes.
Replicated nodes together form what is referred to as a database cluster.
All transactions are performed synchronously, which enforces all nodes of
a cluster to always be an exact replica of the master at any given time,
assuming the master node does not fail during a synchronization attempt.

A cluster is used, almost exclusively, in a local network due to the over-
head of synchronous behaviour. A cluster does, however, allow for very fast
read access times.

This method of replication can be used in conjunction with asynchronous
replication, to form a multi-master circular replication structure, as shown
in figure 2.2, which allows for geographic distribution of databases. [12]

2.2.4 Failover Replication

Databases make use of replication to ensure failover support. Master-slave
replication allows a slave to be promoted to a master if the master fails.
Failover allows transactions to take place with 99.999% (also called the five
9’s) availability. This approach, however, requires more hardware resources
and server administration. [12]

2.2.5 Database Variants

Various implementations for DBMS’s exist, of which the RDBMS and NoSQL
databases are the most popular. [13, 14]

2.2.5.1 Relational Database Management Systems

Relational database management systems (RDBMS) have become the de
facto standard for databases since its introduction in the early 1970’s. RDBMS’s
are popular due to their ACID (Atomicity, Consistency, Isolation, Durability)
transactional properties.

Synthesis and evaluation of a data management system for machine-to-machine communication 15

Chapter 2. Literature Study 2.2. Databases

Cluster 1 Cluster 2

Cluster 3

A B C D

EF

Masters

Slaves

Asynchronous
replication

Synchronous
partitioning

Synchronous
replication for
failover

Figure 2.2: Circular geographic replication

RDBMS’s are mainly accessed by means of a language called structured
query language (SQL pronounced officially as “es-queue-el” and not “se-
quel”). An example query using SQL is given in listing 2.1. This simple query
creates a table in a preselected database and adds columns P_Id, LastName,
FirstName, Address and City. A primary key pk_PersonID is also defined.
[11]

1 CREATE TABLE Persons (

2 P_Id int NOT NULL,

3 LastName varchar(255) NOT NULL,

4 FirstName varchar(255),

5 Address varchar(255),

6 City varchar(255),

7 CONSTRAINT pk_PersonID PRIMARY KEY (P_Id,LastName)

8);

Listing 2.1: SQL example

Synthesis and evaluation of a data management system for machine-to-machine communication 16

Chapter 2. Literature Study 2.2. Databases

RDBMS’s are usually more apt for small, but frequent, read/write trans-
actions, and large batch read transactions. They generally do not function
well for the intensive workloads of large scale web services like Google, Ama-
zon, Facebook and Yahoo. [13]

Many RDBMS implementations exist, both open-source and commercial,
each with different features and levels of support.

2.2.5.1.1 Microsoft SQL Server SQL Server 2008 R2 is Microsoft’s
flagship database. Development tools ship with SQL Server that greatly re-
duce development and debugging times. SQL Server integrates effortlessly
with other Microsoft technologies such as Excel, Windows Server, Share-
point and Visual Studio. Windows is the only possible target environment,
however. [15]

SQL Server 2008 R2 Parallel Data Warehouse extend the base features
of SQL Server 2008 by allowing shard-like capability. [16]

SQL Server 2008 R2 Datacenter allows optimal resource usage by deploy-
ing to virtual environments. It makes use of Hyper-V technology to boost
performance of its virtual databases. [17]

2.2.5.1.2 Oracle Database Oracle’s Oracle 11g Database is a commer-
cial database that is rich in features and support. Oracle 11g has an advanced
scalable infrastructure through their Real Application Clusters (RAC). An
abbreviated list is given that shows some of Oracle 11g’s notable features:

• Partitioning;

• Replication;

• Cluster capability;

• Cross platform;

• Failover support.

[18, 19, 20]

2.2.5.1.3 PostgreSQL PostgreSQL is an open-source object-relational
database management system (ORDBMS). PostgreSQL implements most of
the SQL standard set of features and has extended it by adding the features
shown below:

• Data types;

Synthesis and evaluation of a data management system for machine-to-machine communication 17

Chapter 2. Literature Study 2.2. Databases

• Functions;

• Operators

• Aggregate functions;

• Index methods;

• Procedural languages.

ORDBMS’s offer the advantage of complex data, data type inheritance
and object behaviour. This allows for sophisticated schemas that aren’t
possible without dramatic workarounds in standard RDBMS’s. [21]

2.2.5.1.4 MySQL MySQL is an open-source RDBMS that has been
commercialized by Oracle. The commercial MySQL editions offered by Or-
acle include advanced support and tools but does not offer additional func-
tionality or performance for the database itself. MySQL is unique in that
it offers different database engines, each with different properties. These
engines serve as solutions for different use cases. MySQL is available on
virtually any platform, including embedded environments.

MySQL offers a cluster edition that supports multi-master replication.
Inside a cluster, automatic partitioning and sharding take place. Failover
is automatically implemented through a special management process that is
part of the cluster.

Each cluster comprises two data nodes that are grouped together, a man-
agement process and an optional MySQL server front-end. This group acts
as a failover for a specific set of shards and it is proven that an availability
of 99.999% is possible. Inside a cluster, it is possible to add new data nodes.
These nodes will automatically be utilized to balance the cluster’s data load.
[12]

2.2.5.2 NoSQL

With the growing scale of web service users, traditional RDBMS’s do not
perform well. NoSQL (not only SQL) systems have taken flight, due to the
lack of scalability in RDBMS’s. NoSQL implementations are categorized
under the following three main database types:

• Wide-column store;

• Document store;

• Key-value store.

Synthesis and evaluation of a data management system for machine-to-machine communication 18

Chapter 2. Literature Study 2.2. Databases

Each NoSQL variant has different advantages, drawbacks and limitations.
NoSQL databases are generally faster than relational systems and are inher-
ently scalable, but mostly lacking in ACID compliance. Most NoSQL systems
are rather BASE (Basic Availability, Soft state, Eventual consistency) com-
pliant. [13]

Three different systems were investigated, as discussed in the sections
that follow, namely:

• Cassandra - a wide-column store;

• MongoDB - a document store;

• Memcached - a key-value store.

2.2.5.2.1 Cassandra Cassandra was first developed by Facebook, before
being open-sourced in 2008. Apache made Cassandra a top level project and
is constantly improving it. Cassandra is a wide-column store, which implies
that data is stored in columns (a tuple). Column families are stored sep-
arately in a file and contain one or more columns, which are analogous to
tables in a relational system. Column families are contained within a row.
Super columns are also possible, which implies that a column field may con-
tain any number of other columns. Listing 2.2 shows a JSON1 representation
of a possible data set. [22]

Cassandra features a single-node system, where each node in a cluster
is essentially the same. In order for replication and sharding to function,
each node should know of at least one other node, which enables all nodes
to eventually know of every other node. Data is automatically distributed
among new nodes with the option of replication for failover. [22]

Cassandra does not make use of trees to store data, but rather stores
data sequentially on a disk. This reduces random disk I/O that, in turn,
delivers better write performance but slightly slower read performance than
other systems. In terms of indexing, Cassandra does not support secondary
indexes for super columns, which implies that data must be de-normalized.
A work-around exists for this shortcoming, by implementing reverse-indexes
[22, 23]

Cassandra delivers many client API’s, but it works mainly through Thrift’s
remote procedure call system. [22]

1JavaScript Object Notation. http://www.json.org

Synthesis and evaluation of a data management system for machine-to-machine communication 19

http://www.json.org

Chapter 2. Literature Study 2.2. Databases

1 UserContact = { // Keyspace

2 name: "user profile",

3 Pieter Jordaan: { // Column family

4 pieterAddress: { // Row Key

5 name: "pieterAddress",

6 value: { // Super column

7 city: {name: "city", value: "Potchefstroom"},

8 street: {name: "street", value: "555 Hoffman Street"},

9 zip: {name: "postalcode", value: "2531"}

10 }

11 },

12 kobusAddress: {

13 name: "kobusAddress",

14 value: {

15 city: ... ,

16 street: ...,

17 zip: ...

18 }

19 }

20 },

21 John Doe: {

22 ...

23 }

24 }

Listing 2.2: Cassandra data model

2.2.5.2.2 MongoDB 10gen’s2 MongoDB (from humongous) is a com-
mercially supported open-source NoSQL document store. It is developed in
C++ for optimal performance and is available for most platforms. It delivers
client API’s for most of the popular programming languages and also defines
a wire protocol.

MongoDB is document-oriented that easily maps to programming lan-
guage data types. Traditional table joins are exchanged for embedded doc-
uments that dramatically improve performance. Documents are schema-
less and can be dynamically changed. High performance and scalability are
achieved by single-document-only transactions.

MongoDB supports indexing in embedded documents and arrays to fur-
ther increase performance. Write latency can be greatly reduced by making
use of MongoDB’s streaming writes.

2http://www.10gen.com

Synthesis and evaluation of a data management system for machine-to-machine communication 20

http://www.10gen.com

Chapter 2. Literature Study 2.2. Databases

High availability is achieved by replication with automatic master failover.
Scalability is attained through automatic sharding and shard balancing.
MongoDB has a query router (mongos process) that automatically routes
queries to the appropriate shards.

The data model MongoDB uses is shown in the form of a list below:

• A MongoDB system contains a set of databases;

• Each database contains a set of collections;

• A collection consists of a set of documents;

• Documents are a set of fields;

• A field is a key-value pair;

• A key is a name (string);

• A value can be any BSON3 object.

MongoDB features a rich query language based on JSON objects. A simple
query that matches all documents with the name “John Doe” is shown in
listing 2.3. Queries may also contain regular expression searches. Listing 2.4
shows a C++ client example program that creates a “John Doe” object and
requests it. Each document by default receives a globally unique ID called
an OID (Object ID) that can be used to locate a specific document from a
default index created on the _id* field.

1 {name: {first: ’John’, last: ’Doe’}}

Listing 2.3: Simple MongoDB query

3Binary version of JSON. http://bsonspec.org

Synthesis and evaluation of a data management system for machine-to-machine communication 21

http://bsonspec.org

Chapter 2. Literature Study 2.2. Databases

1 #include <iostream>

2 #include <client/dbclient.h>

3 using namespace mongo;

4 using namespace std;

5 void run() {

6 // Connect to MongoDB

7 DBClientConnection c;

8 c.connect("localhost");

9 // Create a BSON object

10 BSONObj p = BSON("name" << "Joe" << "age" << 33);

11 // Insert

12 c.insert("tutorial.persons", p);

13 // Query

14 BSONObj q = c.findOne("tutorial.persons", QUERY("age" << 33));

15 cout << q.getStringField("name") << endl;

16 }

17 int main() {

18 try {

19 run();

20 cout << "connected ok" << endl;

21 } catch(DBException& e) {

22 cout << "caught " << e.what() << endl;

23 }

24 return 0;

25 }

Listing 2.4: Simple MongoDB C++ example

MongoDB clusters consist of shard servers, config servers and routers.
Each shard contains a replica set (each node runs a mongod MongoDB pro-
cess). Config servers are started by the same mongod process. The routers
are special mongos processes. A typical MongoDB deployment is shown in
figure 2.3.

Documents, at the time of this writing, have a 16Mb size limit, but for
applications where large or many files are to be stored, MongoDB’s GridFS
is a solution. GridFS is a MongoDB based distributed file system that allows
for the storage of files of virtually any size.

Map/reduce is a function that can aggregate data across multiple shards
concurrently. The mapping function is applied to all matching data and
emits only the required fields. The emitted data is then grouped together
according to a key field and is passed to a reduce function. Reducing the

Synthesis and evaluation of a data management system for machine-to-machine communication 22

Chapter 2. Literature Study 2.2. Databases

Shard 1

mongod

mongod

mongod

mongos mongos ...

Replica set Shard 2

mongod

mongod

mongod

Shard 3

mongod

mongod

mongod

Config servers

C mongod

C mongod

C mongod

Client

...

Figure 2.3: Typical MongoDB cluster [24]

data implies that the mapped (grouped) data is manipulated in some way
to provide a single element per key field. The reduction function’s output
should be in the same format as its input, due to the fact that the reduction
process can be run multiple times.

Map/reduce can be used, for instance, to calculate an average of some
field or fields. The mapper emits the field to be averaged for each matching
document, a counter field that is set to 1, and the key field that is grouped
on. The reduction function sums the field per key field and accumulates the
counter field. A finalize function can be called on the reduced data to take
the total and divide it by the count per key value. This provides a total,
count and average field grouped by the key field.

MongoDB provides a flexible map/reduce function that can be used to
aggregate and manipulate data. The output of such operations can also be
merged or even further reduced to allow for incremental aggregation.

Client drivers are supplied for popular programming languages such as
Java, C++ and python among others. The client drivers provide the following
capabilities:

• Connection pool;

• Queries;

• Replica set queries4;

• Inserts;

4These queries are only sent to replica sets.

Synthesis and evaluation of a data management system for machine-to-machine communication 23

Chapter 2. Literature Study 2.2. Databases

• Batch inserts;

• Find and modify operations;

• Consistency level options.

MongoDB has been successfully applied to the following use cases:

• Archiving and event logging;

• Content management systems;

• E-Commerce;

• Gaming;

• Mobile;

• Data store;

• Agile development environments;

• Real-time statistics and analytics.

[24]

2.2.5.2.3 Memcached A key-value store, like the open source memcached,
is used to improve data retrieval rates by using an in-memory cache. When a
key’s value is required, the cache is checked first for the key. If the key exists
in the cache, the data is retrieved from memory. Alternatively the data is
retrieved from the persistent database (that is slower) and is then stored in
the cache. When that same key is queried again, it can be retrieved from the
fast cache rather than the slow database. For data updates and deletions the
same principle applies. The higher the cache hit-ratio, the faster the data
retrieval rate is. [25]

Many popular web-services make use of memcached as stated on its web-
site5 at the time of writing:

• Twitter;

• YouTube;

• Flickr;

5http://memcached.org

Synthesis and evaluation of a data management system for machine-to-machine communication 24

http://memcached.org

Chapter 2. Literature Study 2.2. Databases

• Wikipedia;

• WordPress;

• Digg.

2.2.6 Selection of Database Management System

As the system will store data persistently, it is important to select a database
technology to address this requirement. Two technologies were surveyed
and evaluated: (i) relational databases, and (ii) non-relational (NoSQL)
databases.

Relational databases were found to be well-suited for small, but frequent,
read/write operations, but do not scale well for large-scale deployments due
to their transactional characteristic. In order to allow for infinite scalability
of the system, a NoSQL database was selected.

The key-value store memcached does not provide any means of scaling
and cannot represent complex data, and was therefore not applicable for this
use case.

Cassandra and MongoDB were both found to be applicable to the data
management system use case, as both can scale infinitely and both have flex-
ible data models. Cassandra, however, does not support secondary indexing
of fields and was therefore found not as suitable for the database manage-
ment system. MongoDB was thus selected as the DBMS for this system due
to its features, as listed below:

• Inherently scalable;

• Inherently redundant;

• Single rich document design;

• Secondary indexing;

• No referential integrity;

• Powerful aggregation capability;

• Easy deployment;

• Flexible schema.

Synthesis and evaluation of a data management system for machine-to-machine communication 25

Chapter 2. Literature Study 2.3. Scalable Computing

2.3 Scalable Computing

Systems can scale-up (vertical scaling) by using faster and larger resources.
Scale-up has an upper limit that is due to technology limitations. When
applications require more resources, a scale-out (horizontal scaling) approach
must be taken. [19]

Although this research focuses on cloud computing, it was necessary to
review alternatives for the sake of completeness. Two popular scale-out tech-
niques are grid computing and cloud computing and are discussed in the
sections below. [26]

2.3.1 Grid Computing

Grid computing is analogous to electrical grids. Wall outlets allow linking
to an infrastructure of resources. The resources are generated, distributed
and billed according to use. Where the power plant is located and how the
power is distributed is of no consequence to the user. Grid computing acts as
a fabric connecting disparate resources across a network in order to function
as a virtual whole. The goal of grid computing is to provide on-demand
resources for users.

Software that divides workload into fragments, to be distributed, is com-
pulsory in order to function in a grid environment. Grid computing is usually
used for scientific applications. [27]

Grids usually process batch-scheduled operations where a local resource
manager manages resources for a grid site. Users submit batch jobs to the
grid system. An example batch for a user could be:

1. Stage input data from a URL to local storage;

2. Run application for 60 minutes on 100 processors;

3. Stage output data to a remote FTP server.

From this batch, it is obvious that there is no user interaction and that the
grid must wait until 100 processors are available for 60 minutes. [26]

2.3.2 Cloud Computing

Cloud computing, in contrast to grid computing, is designed to provide ser-
vices rather than resources:

• Platform as a service (PaaS);

Synthesis and evaluation of a data management system for machine-to-machine communication 26

Chapter 2. Literature Study 2.3. Scalable Computing

• Software as a service (SaaS);

• Infrastructure as a service (IaaS).

These services are deployable across a large pool of computing and/or storage
resources, accessible through standard protocols. Each service can be scaled
up or down dynamically depending on application needs.

Clouds employ virtualization techniques to create an abstraction and en-
capsulation layer. Analogous to threads on a multi-core processor, user ap-
plications are deployed on many virtual machines (called instances) in order
to scale an application.

As instances are loosely coupled, the need for integration with other tech-
niques is necessary to provide high availability and failover support. Also,
collaboration between instances for distributed computing requires middle-
ware to negotiate tasks. [26]

2.3.2.1 Amazon AWS

Amazon provides a public cloud service named EC2 (Elastic Compute Cloud)
as part of Amazon Web Services (AWS) that offers affordable and flexible
cloud solutions. A per-usage billing model is followed by AWS, that allows
for flexible scaling with minimal costs.

A variety of EC2 instances are provided by AWS and table 2.1 compares
some of the basic instance types. CPU power is measured in terms of ECU’s
(Elastic Compute Unit) where one ECU is the equivalent of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor. EC2 instances can use elastic block-
storage (EBS) devices to increase storage space.

Table 2.1: EC2 instance types

Instance Cores ECU’s RAM Architecture I/O Storage

Micro 1 Up to 26 613MB 32/64-bit Low None7

Small 1 1 1.7GB 32/64-bit Moderate 160GB
Medium 1 2 3.75GB 32/64-bit Moderate 410GB
Large 2 4 4.5GB 64-bit High 850GB
Extra Large 4 8 15GB 64-bit High 1.69TB

6Micro-instances share available resources for short bursts.
7Micro instances can only use EBS.

Synthesis and evaluation of a data management system for machine-to-machine communication 27

Chapter 2. Literature Study 2.3. Scalable Computing

AWS also provides CloudWatch that monitors cloud service metrics and
can be configured to scale up or down automatically depending on the sys-
tem’s load.

Another service provided by AWS is the Elastic Load Balancer (ELB).
The ELB is used to distribute load to a collection of servers in a round-
robin fashion by default, but this behaviour can be customized. ELB’s can
be incorporated with the CloudWatch system to automatically scale with a
greater load. Automatic failover support is also inherent in ELB systems.

If a scalable DNS service is required, one can utilize Amazon’s Route 53.
Route 53 hosts domains with multiple zones and will automatically scale if
the load increases.[28]

2.3.2.2 Eucalyptus

Eucalyptus is an open-source private cloud solution that implements the
same API as EC2 and can also integrate with EC2. Ubuntu delivers a free
reference architecture for Eucalyptus in the form of Ubuntu Enterprise Cloud
(UEC). UEC can be installed on any computer with hardware-virtualization
support. [29]

2.3.3 Load Balancing

Load balancers are used to make web services highly-available (HA) and scal-
able in an unobtrusive (transparent) fashion. Load balancers route incoming
traffic to server farms in such a way that the total load is balanced over the
farm. This allows for greater loads than a single server could process. Fur-
thermore, failover for a server farm can be implemented on the load balancer.
[30] DNS and software load balancing are surveyed.8

2.3.3.1 DNS Load Balancing

DNS load balancing uses round-robin load balancing when domain names
are requested. A domain name zone can map to more than one public IP
in a round-robin fashion. DNS load balancing can also use IP filters to geo-
graphically load balance requests depending on the source IP of the request.
It is possible to dynamically change DNS entries for failover support on DNS
level.[31]

8Hardware load balancers are not applicable for a cloud environment.

Synthesis and evaluation of a data management system for machine-to-machine communication 28

Chapter 2. Literature Study 2.4. Security

2.3.3.2 Software Load Balancing

Software load balancers work on the TCP/IP level. Some balancers allow
for HTTP analysis in order to better distribute requests for HTTP back-
ends. HAProxy9 is a popular software load balancer and has successfully
been deployed to Amazon EC2.[32]

2.3.4 Selection of Scalable Computing Method

As the hypothesis requires a cloud-based implementation, Amazon’s AWS
was chosen as the deployment target. This choice, however, does not limit
the artefact’s capability to run on other platforms. Eucalyptus provides the
same API and can therefore be used as a drop-in replacement for private
deployments. Amazon provides affordable deployment options, and also the
ability to scale on demand depending on the load. The following services are
well established on Amazon AWS which allows for easy deployment:

• Load balancing;

• Domain name service;

• CloudWatch service monitoring;

• Dynamic block storage.

Depending on the deployment requirements, any or both of DNS and soft-
ware load-balancing can be used to distribute load. Due to a load-balancer’s
unobtrusive nature, the selection of specific load-balancing technology does
not directly impact the functionality or empirical performance of the system.

2.4 Security

Security methods address the following aspects usually by employing cryp-
tography:

• Confidentiality - only permitted users may take part in communication;

• Integrity - ensuring the message content is pristine;

• Authentication - establishing credibility of source and destination;

• Non-repudiation - proving origin and integrity of data.

[33]

9http://haproxy.1wt.eu/

Synthesis and evaluation of a data management system for machine-to-machine communication 29

http://haproxy.1wt.eu/

Chapter 2. Literature Study 2.4. Security

2.4.1 Authentication

In order to trust a sender or receiver, they must be authorized. Cryptog-
raphy techniques can be used to prove the authenticity of both sender and
receiver. User name and password combinations are the most basic form of
authentication. Certificates and keys provide a more secure and preferred
method of establishing authentication. [33]

Authentication can also be securely established by means of an nonce
digest exchange. In principle, a server sends a random string of bits (the
nonce, sometimes called a challenge or salt value) to the client and the client
responds with the nonce hashed together with a password. The hash function
is exclusively a one-way hash function such as SHA-256. This process ensures
that man-in-the-middle attacks cannot acquire the client’s password. If the
server sends a message with the password and same nonce hashed together,
the authenticity of the server can also be established. [34, 35]

2.4.2 Cryptography

Encryption (and its counterpart decryption) form the basis of cryptogra-
phy and is mostly used to ensure confidentiality. Two types of encryption
methods exist:

• Symmetric-key;

• Asymmetric-key.

[33]

2.4.2.1 Symmetric-key Cryptography

Symmetric-key cryptography uses a shared key between both sender and
receiver of a message. The sender encrypts the message with the key while the
receiver decrypts the message with the key. Figure 2.4 shows how symmetric-
key cryptography works. Popular symmetric-key algorithms in use are listed
below:

• Data encryption standard (DES);

• Advanced encryption standard (AES);

• International data encryption algorithm (IDEA);

• Blowfish;

Synthesis and evaluation of a data management system for machine-to-machine communication 30

Chapter 2. Literature Study 2.4. Security

• CAST-128;

• RC5.

[33]

Alice BobShared secret key

Encryption

Ciphertext

Decryption

Plaintext Plaintext

Figure 2.4: Symmetric-key cryptography

2.4.2.2 Asymmetric-key Cryptography

With asymmetric cryptography, a key is shared and used by senders for
encryption purposes. This key, however, cannot be used to decrypt encrypted
data. That would not be secure as the key is made available to the public.
Figure 2.5 shows how asymmetric-key cryptography functions. A private key
for Bob is generated and is only available to Bob. This key is the only key
able to decrypt ciphers previously encrypted by the public key. In this way
an encrypted message can only be decrypted by Bob. Common asymmetric
cryptography algorithms are Rivest, Shamir and Adleman (RSA) and Diffie-
Hellman. [33]

Alice Bob

Bob's private key

Encryption

Ciphertext

Decryption

Plaintext Plaintext

Bob's public keyTo the public

Figure 2.5: Asymmetric-key cryptography

Synthesis and evaluation of a data management system for machine-to-machine communication 31

Chapter 2. Literature Study 2.4. Security

2.4.3 Secure Sockets

Sockets can be secured by utilizing one or both of SSL (Secure Sockets Layer)
and TLS (Transport Layer Security). Both methods apply security at the
transport layer which implies that any TCP/IP based system can be encap-
sulated in secure sockets. [33]

2.4.3.1 SSL

SSL provides security and compression for application layer data. SSL is
usually used to secure HTTP data, but it can be used for any application
layer protocol. SSL provides the following services to applications:

• Fragmentation;

• Compression;

• Message integrity;

• Confidentiality;

• Framing.

[33]

2.4.3.2 TLS

IETF10 has standardized SSL in the form of TLS, which has deprecated (not
replaced) SSL. TLS only differs from SSL in the following aspects:

• Version number;

• Cipher suite;

• Cryptographic secret;

• Alert protocol;

• Handshake algorithm;

• Record protocol;

[33]

10Internet Engineering Task Force

Synthesis and evaluation of a data management system for machine-to-machine communication 32

Chapter 2. Literature Study 2.5. Summary

2.4.4 Selection of Security Method

Nonce authentication was preferred over standard username/password au-
thentication for improved security. The use of a hashed nonce-value makes
the system immune against man-in-the-middle attacks. Furthermore the
SHA-256 hash was found to be easily implementable and is not performance
intensive.

As TCP/IP was selected as the transport layer, it is fairly simplistic to
encapsulate an application protocol in a secure sockets layer. As TLS is the
revised standard, it was chosen as an optional encryption layer for the system.
Encryption will ensure message integrity and confidentiality of communica-
tion. Encryption is however performance intensive for embedded systems.

It is important to note that encryption was optional for increased security and
it was not a requirement for the research problem, although it was relevant
to the real-world problem.

2.5 Summary

The reference architecture was provided as a guideline for the literature study,
and databases, scalability and security technologies were studied.

NoSQL technology was selected due to relational databases being less apt
for large-scale deployments. MongoDB was selected as the specific NoSQL
DBMS for this system for reasons listed below:

• Inherent scalability;

• Inherent redundancy;

• Single rich document design;

• Secondary indexing;

• No referential integrity;

• Powerful aggregation capability;

• Easy deployment;

• Flexible schema.

As the hypothesis of this research requires cloud-based deployment of
the data management system, Amazon AWS was chosen as the target de-
ployment. Amazon AWS provides notable features as listed on the following
page:

Synthesis and evaluation of a data management system for machine-to-machine communication 33

Chapter 2. Literature Study 2.5. Summary

• Low cost deployment options;

• Automatic scalability depending on load;

• Well established cloud-based services.

In order to distribute load across cloud-based instances, DNS load balancing
and software load balancing were identified as distribution methods. De-
pending on the size of a deployment, either or both of DNS load balancing
and software load balancing can be used to distribute load across compute
instances.

Nonce authentication was selected as authentication method for the data
management system. Nonce authentication was shown to be easily imple-
mentable without compromising on security. Immunity against man-in-the-
middle attacks was achieved by utilizing nonce authentication.

TLS, being the new standard for secure socket communication, was se-
lected as an optional encryption layer to encapsulate an application protocol.
Encryption ensures message integrity and confidentiality during communica-
tion.

From the knowledge gained from the study and the technology selections
made, a preliminary architecture was defined to aid in the preliminary syn-
thesis and evaluation.

Synthesis and evaluation of a data management system for machine-to-machine communication 34

A common mistake that people
make when trying to design
something completely foolproof
is to underestimate the
ingenuity of complete fools.

Douglas Adams
Chapter 3

Preliminary Synthesis and
Evaluation

3.1 Overview

This chapter provides the preliminary synthesis on the basis of the literature
study. A preliminary architecture is provided for the elements that were
synthesized and for the system as it stands today. Each element is evaluated
on the basis of the stipulated requirements in Chapter 1.

3.2 Preliminary Architecture

Figure 3.1 shows the preliminary architecture of the core elements of the
system:

• Data management system (functional unit 1.0);

• Storage system (functional unit 2.0);

• Interface between the data management system and endpoints (inter-
face 1);

• The storage system’s interface with the data management system (in-
terface 2).

35

Chapter 3. Preliminary Synthesis and Evaluation 3.2. Preliminary Architecture

I/F 1

F/U 1.0 Data Management System

F/U 1.1

Connection
Management

F/U 1.3

Node
Management

F/U 1.4

Billing

F/U 1.2

Protocol
Handler

Endpoints

F/U 1.5

Diagnostics

I/F 2

F/U 2.0

Storage
System

Figure 3.1: Preliminary architecture

3.2.1 Data Management System Protocol

A protocol (I/F 1) defines the communication between the server and end-
points. The protocol is responsible for authenticating endpoints and nego-
tiating a session, which occurs in the handshaking phase. Furthermore it
encapsulates endpoint packets in a packet format that allows for validation
of the packet’s data integrity and provides packets with a session-unique
identifier. The identifier per packet allows for acknowledgements of suc-
cessful packet transmission and also for negotiating progress during session
establishment. The protocol functions the same in both directions with the
exception of the handshaking phase.

Synthesis and evaluation of a data management system for machine-to-machine communication 36

Chapter 3. Preliminary Synthesis and Evaluation 3.2. Preliminary Architecture

The handshaking phase uses a predetermined password that is only known
by the server and the endpoint. The authentication phase uses random data
and the password in a hashed form to exchange data between either end. In
the event that the password is incorrect, the derived messages will fail. Any
man-in-the-middle will not be able to derive the password from communica-
tion. In this manner, both the endpoint and server can securely establish a
connection.

A few important design requirements must be kept in mind for the pro-
tocol. The protocol must have negligible data overhead for efficient trans-
mission of data. Data integrity validation methods must be used that are
efficient with respect to processing time and additional data overhead. The
handshake phase should allow for declaring a new session or continuing with
an interrupted session. Packet segmentation should be possible to accommo-
date large packets.

Overall, the protocol must be easily implementable on any embedded ar-
chitecture and should be inexpensive in terms of processing overhead. Figure
3.2 shows the state diagram for a basic client protocol. The server side is
similar, with the exception that it listens for multiple connections.

Start

End

Make
Connection

Send
Packets

Receive
Packets

Do
Handshake

Figure 3.2: Preliminary client protocol state diagram

After successfully receiving a packet, an acknowledgement should be sent
back. A packet consists of the following fields irrespective of order, shown
on the following page:

Synthesis and evaluation of a data management system for machine-to-machine communication 37

Chapter 3. Preliminary Synthesis and Evaluation 3.2. Preliminary Architecture

• Either a source or destination identifier1;

• Unique packet ID for the session;

• Optional payload offset2;

• Payload size;

• Payload data;

• Verification data for payload.

3.2.2 Storage System

The storage system (F/U 2.0) is the central module of a data management
system. Packets, endpoints, accounts and billing information are stored,
updated and removed here. The storage system must be able to scale hori-
zontally for read and write operations, in order to make the overall system
scalable. The storage system should also have a redundancy layer to protect
the system from data loss and ensure high availability. Figure 3.3 shows the
preliminary architecture for the storage system.

I/F 2

F/U 2.0 Storage System

F/U 2.1

Query
Router

F/U 2.2

Storage
Node (0)

F/U 2.2

Storage
Node (n)

F/U 1.0 Data Management System

F/U 2.4

Diagnostics

...

F/U 2.3

Data
Replicator

Figure 3.3: Preliminary storage system architecture

1Source is for received packets while destination is for sent packets.
2In the case of segmented packets

Synthesis and evaluation of a data management system for machine-to-machine communication 38

Chapter 3. Preliminary Synthesis and Evaluation 3.2. Preliminary Architecture

Query Router (F/U 2.1)

The query router has the function of routing requests to the correct storage
nodes, which makes database sharding or partitioning possible. All requests
pass through the router first, after which the router forwards the query to
the correct partition or partitions. Queries include all CRUD operations and
also any storage system administration operations.

If the level of consistency of a read is not important, read operations can
be forwarded to replicas. By utilizing replicas for read operations, the load
on the primary nodes can be alleviated. Furthermore, replicas can be used
to perform backups without any downtime of the storage system.

Storage Nodes (F/U 2.2)

The storage nodes are database systems that store data and perform oper-
ations on data. There can be multiple storage nodes in both sharded and
replicated configurations. The combination of all the shards will be the com-
plete data set. Each shard can have any number of replicas. It should be
noted that a storage node will be a typical DBMS.

Data Replicator (F/U 2.3)

Storage nodes can be used as replicas for other storage nodes, providing
fail-over support for a shard. The data replicator is responsible for replicat-
ing data between the nodes and ensuring the required level of consistency
between all the replicas.

Diagnostics (F/U 2.4)

Profiling and status data is generated and stored by the diagnostics module.
The profiling and status data can be used to detect problems with storage
nodes and find possible bottlenecks in the storage system.

3.2.3 Data Management System

Figure 3.1 shows the data management system (F/U 1.0). The data man-
agement system serves as the front-end of the system to the endpoints. End-
points connect to the system and exchange data with the server via the
protocol interface.

Synthesis and evaluation of a data management system for machine-to-machine communication 39

Chapter 3. Preliminary Synthesis and Evaluation 3.2. Preliminary Architecture

The data management system acts as a shared-nothing system, with only
the central database as a failure point. The storage system, however, is also
a redundant system that has no single point of failure. The system can scale
horizontally depending on load and the storage system in a like manner.
Each instance of the scaled data management system will be referred to as a
node.

Connection Management (F/U 1.1)

A single node can manage multiple concurrent connections from endpoints.
It is necessary to be able to close connections on demand for consistent inter-
action between multiple nodes when units reconnect. F/U 1.1 also monitors
connection health and closes idle and broken connections after a predefined
period3. Connection times and any errors are logged in the storage system.

Each connection polls the storage system for new packets in the endpoint’s
queue and notifies the protocol handler to process the packet for transmission
to that endpoint. Rate limiting for incoming and outgoing packets are also
implemented in this functional unit.

Protocol Handler (F/U 1.2)

F/U 1.2 handles the data management system protocol. Every data packet
is processed according to the protocol definition. Any irregularities or incon-
sistencies are not tolerated and will lead to a connection being dropped.

Node Management (F/U 1.3)

Node management refers to the node’s ability to manage itself in terms of
other nodes. This includes monitoring heartbeats that are also stored on the
storage system. If any server fails, all other nodes will be notified within a
predefined minimum period and a backup or redundant node can take control
of the disconnected endpoints.

Nodes are also able to improve the polling delay for packets by directly
notifying the relevant node of new data that it has processed for an endpoint.
This leads to an event-driven system that is more efficient than a polling-
based system.

3This period will ideally be long as persistent connections are preferred.

Synthesis and evaluation of a data management system for machine-to-machine communication 40

Chapter 3. Preliminary Synthesis and Evaluation 3.2. Preliminary Architecture

Billing (F/U 1.4)

The billing function measures the amount of data processed by the protocol
handler. The cost for the amount of data is then appended to the account
holder’s bill according to a service level agreement.

Diagnostics (F/U 1.5)

Similar to the storage system’s diagnostic module, the data management
system’s diagnostic module keeps track of profiling data and any errors.

3.2.4 Database Interface

The database interface (I/F 2) is the component in the system that is the
most critical in terms of performance. This interface defines both the protocol
between the database management system and the storage system in terms
of CRUD operations as well as the actual data definition of objects that will
be stored or retrieved. The interface’s protocol is directly dependent on the
underlying DBMS chosen for the storage system.

The following list shows the basic data definitions required for the system
to function:

• Account information:

– Account holder details;

– Account QoS details;

• Endpoint information:

– Reference to account;

– Endpoint details;

– Account wide unique ID;

• Connection logs:

– Connection start and end timestamps;

– Any error conditions;

– Reference to endpoint that connected;

• Incoming packet queue:

– Reference to source endpoint;

Synthesis and evaluation of a data management system for machine-to-machine communication 41

Chapter 3. Preliminary Synthesis and Evaluation 3.3. Evaluation

– Session unique packet ID;

– Payload meta-data4;

– Payload data;

– List of destinations;

– Status of packet;

• Outgoing packet queue:

– Reference to destination endpoint;

– Reference to source endpoint;

– Session unique packet ID;

– Payload meta-data;

– Payload data or a reference to the data5;

– Status of packet;

• Billing logs:

– Reference account;

– Reference endpoint;

– Data usage;

– Price according to QoS;

3.3 Evaluation

The evaluation of the preliminary synthesis was performed by ensuring that
all requirements had been addressed (that is, linked) to relevant system func-
tional modules in the preliminary design architecture as obtained from Chap-
ter 1.

3.3.1 Functional Capability

Each of the defined functional capability requirements that were addressed
and evaluated is discussed in the following sections.

4The packet size and number of segments.
5If an incoming packet forwards data it is not necessary to duplicate the data.

Synthesis and evaluation of a data management system for machine-to-machine communication 42

Chapter 3. Preliminary Synthesis and Evaluation 3.3. Evaluation

3.3.1.1 Authentication

The handshake module of the protocol ensures authentication of both server
and endpoint.

3.3.1.2 Session Support

Session support was implemented in the handshake protocol. This provides
continuation of previously interrupted sessions and forcing clean sessions in
case of terminal failure.

3.3.1.3 Guaranteed Delivery of Packets

With the acknowledgement of packets, delivery can be guaranteed. In the
case where no acknowledgement has been received, it is clear that a packet
is still not successfully sent. During session negotiation, the progress will
reflect which packets have been delivered and can be acknowledged at that
stage.

Payload verification is used to guarantee that the payload is uncorrupted.
Any failure in the verification process will withhold acknowledgement and
force a retransmission.

3.3.1.4 Segmented Packet Support

Together the offset field and packet ID field provide segmented packet sup-
port. An offset of 0 declares a new packet, any offset after that, for the same
packet ID, will append the segment to the combined payload.

3.3.1.5 Persistent Storage of Data

Due to the storage system being a persistent data store, all packets will be
persistently stored and replicated.

3.3.1.6 Packet Forwarding

The destination and source fields in the packet allow for forwarding of pack-
ets. When the server parses the identifier in the destination field, the packet
is automatically appended to the destination’s packet queue.

3.3.1.7 QoS Based Data Billing

The QoS negotiated in the service level agreement indicates the price per
data unit. F/U 1.4 utilizes this metric to bill an account accordingly.

Synthesis and evaluation of a data management system for machine-to-machine communication 43

Chapter 3. Preliminary Synthesis and Evaluation 3.3. Evaluation

3.3.2 Performance Characteristics

In order to evaluate the practical feasibility of the system, the performance
characteristics of the preliminary synthesis are discussed. The evaluation was
performed on the basis of the performance characteristics defined in Chapter
1.

3.3.2.1 Ease of Use

Low-end embedded systems require interfaces which have minimal impact on
its communication, storage, and processing resources. It is for this reason
that the protocol should be structured in such a fashion that it does not
impact negatively on an endpoint’s primary functions.

As the protocol is the only interface that endpoints have with the system,
the ease of use is determined mostly by the protocol.

3.3.2.2 Availability

In order for the system to provide uninterrupted service to endpoints, it
should be highly available. This implies that redundant nodes should be in
place to replace disrupted nodes.

Due to the shared-nothing architecture of the data management system,
it is fairly simple to provide fail-over support. In the event of a node failure,
a backup node can assume the role of the failed node with no down-time.
Availability is also dependent on the storage system’s availability. The stor-
age system provides multiple replicas for each shard that in turn provides
fail-over support.

3.3.2.3 Scalability

The system can service a large number of endpoints and must therefore be
scalable. Furthermore the load can vary, which requires flexible scaling. As
load increases, the number of nodes should increase accordingly. As load
decreases, the number of nodes should decrease accordingly.

In the same manner that the system is available due to its shared-nothing
architecture, it is also scalable. Depending on the system’s load, more data
management nodes can be started. Likewise, if the storage system’s load in-
creases, more shards (and their replicas) can be started. If load decreases, the
data management nodes and storage nodes can be retired to free resources.

Synthesis and evaluation of a data management system for machine-to-machine communication 44

Chapter 3. Preliminary Synthesis and Evaluation 3.4. Summary

3.3.2.4 Security

For endpoints to securely communicate, the system must enforce strict secu-
rity measures.

Security is achieved through the authentication step during the handshake
process. Any intruder will not be able to pass the authentication phase. Also,
if the server’s domain or IP-address is hijacked, the endpoints will not be able
to pass the authentication phase.

Data packet integrity checks further improve the security of the system
as corrupted data will be rejected.

3.4 Summary

From the preliminary architecture, defined with the aid of the literature
study, a preliminary synthesis was performed. System elements were derived
and defined from the requirements stipulated in Chapter 1.

From the evaluation in this chapter it is evident that the requirements
have been met. A matrix that shows the requirements addressed by each
function or interface is shown in table 3.1. From the matrix, it can be seen
that all requirements were met by one or more functions or interfaces.

Table 3.1: Requirements vs. architecture elements matrix

Requirement
F/U I/F
1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 1 2

Authentication x x - - - - - - - x x
Session support x x x - - - - - - x x
Guaranteed delivery - x - - - - - - - - x
Segmented packets - x - - - - - - - x x
Persistent storage - x - - - x x x - - x
Packet Forwarding - x x - - - - - - x x
QoS billing x x - x - - - - - x x
Ease of use - - - - - - - - - x -
Availability x - x - x x x x x - x
Scalability x - x - x x x x x - x
Security x - - - x - - - x x x

Synthesis and evaluation of a data management system for machine-to-machine communication 45

All that is not perfect down to
the smallest detail is doomed to
perish.

Gustav MahlerChapter 4

Detail Synthesis and Evaluation

4.1 Overview

This chapter provides the refined preliminary synthesis by giving more detail
on the system. The synthesized system is evaluated with reference to the
system requirements, as is reported on in this chapter.

4.2 Detail Synthesis

The same architecture from section 3.2, that was shown in figure 3.1, applies
to the detail synthesis. The main system was developed in C++, but source
code is omitted for brevity.

4.2.1 Data Management System Protocol

The data management system protocol relies on TCP/IP as the transport
layer for the system to encapsulate the application protocol in.

It is important to note that the data management system protocol is
dependent on (and builds on) the TCP/IP features listed below:

• Guaranteed delivery of per session packets;

• FIFO ordering of packets queued per session;

• Low level checksums for packet integrity;

• Flow control;

• Encapsulation of payload data;

46

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

• Standardized protocol;

• Large support base.

[36]

4.2.1.1 Handshake

The handshaking phase of the protocol is used to authenticate the endpoint to
the server and also to authenticate the server to the endpoint. It is important
to ensure the credibility check succeeds for both the server and the endpoint
in order to provide secure data transfer. Figure 4.1 shows the handshake
phase’s message sequences.

The process is always initiated from the endpoint as the endpoints may
not have a predictable public IP address. As soon as a connection is estab-
lished with the server, the server transmits a random 16-byte string. This
string will be referred to as the cryptographic salt or challenge value. The
endpoint then sends its handshake packet (shown in figure 4.2 with bit 0
indicating the LSB) to the server. After successfully parsing the packet, the
server responds in kind with the packet shown in figure 4.3. All handshake
packets are appended with an SHA-256 hash digest. SHA-256 is easily im-
plemented and is secure in that the hashing process cannot be reversed in a
reasonable time.

Client Server
salt

client handshake

server handshake

Figure 4.1: Handshake message sequences

Descriptions of the fields in the both the endpoint and server handshake
packets are given here:

Version This indicates the version of the protocol. This can be updated
with newer releases of the protocol. Any backward compatibility with
newer versions is handled by the server side for increased ease of use
by endpoints.

Synthesis and evaluation of a data management system for machine-to-machine communication 47

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Version=0x01 FCS CRP Reserved

Channel

Maximum segment size

Length of account ID Length of endpoint ID

Account ID
...

Account ID [n-1] Endpoint ID
...

Endpoint ID [n-1] Expected packet ID

Partial packet progress (4 bytes)

}
CRP=1

SHA-256 hash: [Entire Packet][Password][Salt]
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 4.2: Endpoint handshake packet definition

FCS Forces a clean session, which implies all partial packets and unacknowl-
edged packets are flagged as broken. This is used when an endpoint is
first started or if either end loses synchronization or detects an error.

CRP Continues receiving a partial packet from a previous session. This is
field is mutually exclusive with FCS.

Backoff Backoff defines a period during which the server forces a client to
not reattempt connection. After sending its handshake packet, the
server will close such a connection. A backoff period is required to
prevent inactive or blacklisted endpoints from causing denial of service
problems.

Synthesis and evaluation of a data management system for machine-to-machine communication 48

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FCS CRP Reserved Backoff

Expected packet ID

Partial packet progress (4 bytes)

}
CRP=1

SHA-256 hash: [Entire Packet][Password][Salt]
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 4.3: Server handshake packet definition

Channel The channel of the endpoint that is attempting to connect. A
single endpoint may have multiple physical internet connections that
can be used to increase throughput.

Maximum segment size The maximum segment size that the server is al-
lowed to send. By default the server will send large packets in segments
of this maximum size in order to avoid additional data overhead.

Length of account ID The number of bytes in the account ID.

Length of endpoint ID The number of bytes in the endpoint ID.

Expected packet ID This is the packet ID that should be used with the
next transmission. The expected packet ID is used to acknowledge
packets to the other end without resending acknowledgements.

Partial packet progress If the CRP-bit is set, this field contains the progress
of the expected packet. Segmented packets can then be resumed from
an offset rather than resending all the data.

SHA-256 hash The entire packet (except the hash field itself) is hashed
together with the unique password of the endpoint and the session’s
salt. This has a two-fold use, firstly providing security and authenticity
checks and secondly, verifying the integrity of the handshake packets.
If the expected hash doesn’t match the received hash, it is either due
to data corruption or an unauthorized endpoint.

Synthesis and evaluation of a data management system for machine-to-machine communication 49

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

4.2.1.2 Packet Definitions

All protocol packets consist of a header with a CRC-8 checksum, followed
by an optional payload and an optional checksum for the payload. Packet
headers all start with a single byte indicating the type of packet. Message
packets can be prepended with meta-data packets such as destination and
source packets. Packet header types, with their corresponding hexadecimal
values, are shown in table 4.1.

Table 4.1: Header types

Header Hexadecimal Value

ACK 0x00

SEGACK 0x80

PACKET 0x01

SEGMENT 0x02

SEGMENT (Last) 0x42

SEGMENT (With Acknowledgement) 0x82

SOURCE 0x03

DEST 0x04

EXPIRE 0x05

The acknowledgement packet (figure 4.4(a)) is sent after successful recep-
tion of a message packet. Segmented acknowledgement packets (figure 4.4(b))
are used only when progress is requested with the send of a segmented packet.

0 1 2 3 4 5 6 7

ACK

Packet ID

CRC-8

(a) Standard acknowledgement

0 1 2 3 4 5 6 7

SEGACK

Packet ID

Offset (4 bytes)

CRC-8

(b) Segmented acknowledgement

Figure 4.4: Acknowledgement packets

Synthesis and evaluation of a data management system for machine-to-machine communication 50

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

Message packets, when not segmented, have a limit of 64Kb for a pay-
load. Figure 4.5 shows the standard unsegmented message packet definition.
Segmented packets have three types namely the first segment, intermediary
segments and the last segment. During standard operation an acknowledge-
ment is sent only for the last segment, unless the bit SEG is set in the segment
header. Last segments set the LAST bit in the packet header to indicate the
end of the stream.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PACKET Packet ID

Payload Size

Verification CRC-8

Payload
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Payload Checksum (optional)

Figure 4.5: Standard unsegmented packet

First segments can be sent to the server with any segment size and without
initially specifying the total payload size, as a last segment will signify the
end of the data stream. In the case where an endpoint chooses to omit the
total size, the field must be set to 0. Segmented packets’ definition is shown
in figure 4.6.

In order to forward packets to a recipient or recipients, a special forward
packet is defined in figure 4.7. Multiple forward packets can be chained to
forward a packet to multiple destinations. A single forward packet may also
contain a group name to forward to a whole group. The packet header type
allows for a special bit (CRS) to be set in the case of cross account forwarding.
Forward packets contain a special field for additional forwarding meta-data:
a null-terminated string that can be used to chain an entire routing table
for internal forwarding. Source packets (figure 4.8) show the source endpoint
that sent the packet. Source packets follow the same principle as destination
packets.

Synthesis and evaluation of a data management system for machine-to-machine communication 51

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SEGMENT LAST SEG Packet ID

Total Size (only on first packet) or Offset

Payload Size

Verification CRC-8

Payload
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Payload Checksum (optional)

Figure 4.6: Segmented packet

Message packets can be set to expire when unsent for a specific time since
the server has received the packet. These expiry packets have the definition
shown in figure 4.9. The expire time is given with 5-minute granularity
allowing for 227 days as the maximum expiry time.

All message packets receive a 1-byte session unique incremental ID. There
can be at most 255 active unacknowledged packets. If more packets are
sent, then an ambiguity occurs, upon which the endpoint disconnects and
requests the last ID, as it could refer to the initial packet or the last packet.
Acknowledgements are sent in chronological order to improve ease use.

4.2.1.3 User Defined Packets

With the data management system protocol, as defined above, it is straight-
forward to encapsulate user defined packets within the payload of message
packets. This provides any user of the protocol with a system with guaran-
teed delivery of packets and forwarding capabilities.

Synthesis and evaluation of a data management system for machine-to-machine communication 52

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

0 1 2 3 4 5 6 7

DEST CRS

Size

Account (if CRS=1) or Destination
hhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhh

Size (terminates chain if 0x00)

Additional meta-data
hhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhh

Size (terminates chain if 0x00)

Can
repeat
while
Size > 0

CRC-8

Figure 4.7: Destination packet

4.2.2 Storage System

As MongoDB was selected as the database management system in Chapter 2,
the functional units below describe MongoDB’s integration into the system
architecture.

4.2.2.1 Query Router (F/U 2.1)

For larger deployments where shards are available, the mongos router appli-
cation from MongoDB can be used. It is a query router created specifically
for sharded MongoDB deployments. The C++ MongoDB driver can connect
to mongod and mongos processes.

4.2.2.2 Storage Nodes (F/U 2.2)

Storage nodes are mongod processes in a sharded and/or replicated setup
depending on the choice of deployment.

Synthesis and evaluation of a data management system for machine-to-machine communication 53

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

0 1 2 3 4 5 6 7

SOURCE CRS

Size

Account (if CRS=1) or Destination
hhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhh

Size (terminates chain if 0x00)

Additional meta-data
hhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhh

Size (terminates chain if 0x00)

Can
repeat
while
Size > 0

CRC-8

Figure 4.8: Source packet

0 1 2 3 4 5 6 7

EXPIRE

Expire time in 5-minutes

CRC-8

Figure 4.9: Expiry packet

Synthesis and evaluation of a data management system for machine-to-machine communication 54

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

4.2.2.3 Data Replicator (F/U 2.3)

MongoDB replica sets provide the ability to replicate data among themselves
in a master-slave configuration. Each query can be specified to read from a
replica to leverage the redundancy for additional read throughput or from a
master for increased consistency. Writes and updates can specify the consis-
tency level that defines how many (if any) replicas must have the data before
indicating a successful operation.

4.2.2.4 Diagnostics (F/U 2.4)

Profiling data can be enabled on each mongod process that logs operations
that take longer than a specified time1. Furthermore MongoDB provides
mongostat and mongotop that are applications which show usage statistics
of MongoDB.

4.2.3 Data Management System

C++ is used as the programming language for the system and uses publicly
available libraries to extend C++’s standard libraries. Libraries used include
OpenSSL for cryptographic functions, Boost for asynchronous network sock-
ets and threads, and MongoDB’s C++ client driver.

4.2.3.1 Connection Management (F/U 1.1)

Socket operations are mostly blocking in nature but Boost provides an event-
driven asynchronous socket system named ASIO2 (Asynchronous Input/Output).
Event-driven software often have a lot of idle time and it is for this reason that
a pool of threads is used in the system rather than a thread per connection.
During high load, more threads can dynamically be added to the pool to ser-
vice more endpoints, but without more physical processors no performance
increase will be achieved. MongoDB’s client driver operations, however, are
blocking and thus more threads will be beneficial in this scenario, regardless
of the number of physical processors.

Embedded systems are often mobile and thus suffer from undetectable
connection loss that can cause invalid idle connections. As mentioned in the
preliminary synthesis all connections are monitored for idle time. If the idle
time exceeds 30 minutes, the connection is closed by the server.

1Default 10ms
2http://www.boost.org/doc/libs/1_49_0/doc/html/boost_asio.html

Synthesis and evaluation of a data management system for machine-to-machine communication 55

http://www.boost.org/doc/libs/1_49_0/doc/html/boost_asio.html

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

As each endpoint can have multiple channels, each connection is stored
in a hash-table with the hash-key created on the endpoint’s OID and channel
number. This allows for fast access to a specific connection object for man-
agement purposes. Each connection’s details are also logged to the database
for auditing purposes.

During the authentication phase the database is checked for consistency.
If it is detected that the connection has previously been owned by another
node, the node is contacted with a UDP packet to request that the connection
should be closed. When the connection is closed (or if it is already closed) on
the previous owning node, the node will respond with another UDP packet
indicating that the connection is closed. The UDP packet definitions are
shown in figure 4.10.

0 1 2 3 4 5 6 7

CLOSE=0x00

Endpoint OID (14 bytes)

Channel Number (2 bytes)

CRC-8

(a) Request connection close packet
definition.

0 1 2 3 4 5 6 7

CLOSED=0x01

Endpoint OID (14 bytes)

Channel Number (2 bytes)

CRC-8

(b) Acknowledge close of connection
packet definition.

Figure 4.10: Connection closing packets.

The connection manager periodically polls the storage system for any new
packets in each connection’s outgoing queue. In order to improve the latency
of the system, nodes send a UDP packet (figure 4.11) to the node who owns
the connection of an endpoint that should receive a new packet. This makes
the packet forwarding system event-driven with a polling fallback. For this
reason the polling period can be set to 30 seconds.

Synthesis and evaluation of a data management system for machine-to-machine communication 56

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

0 1 2 3 4 5 6 7

NEW=0x02

Endpoint OID (14 bytes)

Channel Number (2 bytes)

CRC-8

Figure 4.11: New data arrived packet definition.

4.2.3.2 Protocol Handler (F/U 1.2)

In addition to implementing the protocol, the protocol handler also enforces a
rate limit according to each account’s QoS agreement. The rate limit ensures
that endpoints cannot transmit or receive more data than the QoS agreement
stipulates.

F/U 1.2 also makes use of the database interface (I/F 2) to write status
changes of packets to ensure a consistent state for each endpoint/channel. It
is imperative to have a consistent state if an endpoint connects to a different
node, as an ambiguity can lead to data loss.

The protocol handler concurrently handles received and transmitted pack-
ets. Received packets follow the states in figure 4.12 and transmitted packets
follow the states in figure 4.13. A typical message sequence is shown in figure
4.14 where two packets are exchanged between an endpoint and the server.

4.2.3.3 Node Management (F/U 1.3)

Most of the node interoperation functions have already been discussed in
F/U 1.1. One aspect still remaining is the node heartbeat system. For
the interoperability function to work consistently, it is critical to be able to
determine the health status of another node. Each node will be assigned
a unique ID. With the storage system as the central point, all nodes can
periodically update their health status on the server. If an index on the
heartbeat timestamp and node ID is created, it is relatively easy to determine
the health status of any other node.

Synthesis and evaluation of a data management system for machine-to-machine communication 57

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

Idle or
not existing

Saving
destination list

No

Destination
List?

Segmented?

No

Yes

Sending Ack

Finished

Destination
List?

Yes

No
Forwarding

Pending data

MoreLast segment

Figure 4.12: Received packet states

If a node’s last heartbeat timestamp is older than a specific duration,
the node can be seen as offline. This status is essential to determine when
a connection is started on a new node. After a node has sent a CLOSE
request to the original owner of a connection, the node starts a timer. If the
timer expires before receiving the CLOSED response, the node will check the
health status of the previous owner. If the health check fails, the old node
is assumed inactive and the connection can be resumed. If the health check
passes, a new CLOSE message is sent again.

Synthesis and evaluation of a data management system for machine-to-machine communication 58

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

Idle or
not existing

Finished

More

Sending

Ready to
send

Awaiting
ack

Done

Figure 4.13: Transmitted packet states

4.2.3.4 Billing (F/U 1.4)

Billing is based on the QoS arrangement in the SLA. This implies that data is
billed per quantity depending on the agreed rate-limit. Also, every forwarded
packet is billed a small fixed amount.

In order to aggregate all the billing data, it is required that the database
keeps record of every sent, received and forwarded packet. MongoDB’s
map/reduce utility provides the aggregation capability required. The map/reduce
and finalize functions are shown in listing 4.1. Two iterations, that are re-
duced together, are required to aggregate both transmitted and received
data. The functions maprx and maptx emit received and transmitted data
respectively. All emitted data is reduced by reduce.

This map/reduce job can be run on a daily basis, each day accumu-
lating the data count. The query field of the map/reduce function is also
incremented daily to only measure new data. At the end of the month the
accumulated data can be used in the billing report sent to the account holder.

Synthesis and evaluation of a data management system for machine-to-machine communication 59

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

Client Server
packet 0

packet 1 forward

packet 0 ack

packet 0 source

packet 0

packet 1 expiry

packet 1 source

packet 1

packet 1

packet 0 ack

packet 1 ack

packet 1 ack

Figure 4.14: Protocol message sequence example

4.2.3.5 Diagnostics (F/U 1.5)

A special logging library is used3 to improve the logging capabilities of the
system. The library allows for multiple streams to be written to with a
single log, which implies that file, network and console logging can be done
without modifying any code. A verbosity level can be specified to allow
for flexible output options. By utilizing the logging library, diagnostic data
can be logged to a file that can be monitored periodically for any errors or
irregular performance issues.

3http://sourceforge.net/projects/cppmylogger/

Synthesis and evaluation of a data management system for machine-to-machine communication 60

http://sourceforge.net/projects/cppmylogger/

Chapter 4. Detail Synthesis and Evaluation 4.2. Detail Synthesis

1 function maprx()

2 {

3 emit(this.srcaccount,

4 {rxdata:this.total, rxcount:1, forwards: this.dests});

5 }

6

7 function maptx()

8 {

9 emit(this.srcaccount,

10 {txdata:this.total, txcount:1});

11 }

12

13 function reduce(key, vals)

14 {

15 var r = {rxdata:0, rxcount:0, forwards: 0, txdata: 0, txcount: 0};

16 values.forEach(function(v)

17 {

18 r.rxdata += v.rxdata;

19 r.txdata += v.txdata;

20 r.forwards += v.forwards;

21 r.rxcount += v.rxcount;

22 r.txcount += v.txcount;

23 });

24 return r;

25 }

Listing 4.1: Billing map/reduce functions

4.2.4 Database Interface

As MongoDB was chosen as the DBMS, all database communication utilizes
the MongoDB C++ client driver. In sharded deployments the mongos router
application is used as the connection endpoint, otherwise a direct connection
to the mongod server application will be made.

The database used by the system contains the following collections, with
the same basic structure as defined in the preliminary synthesis:

• Accounts;

• Endpoints;

• Connections;

• RXPackets;

• TXPackets;

Synthesis and evaluation of a data management system for machine-to-machine communication 61

Chapter 4. Detail Synthesis and Evaluation 4.3. Deployment

• Billing;

• Nodes.

4.3 Deployment

The deployment options are endless depending on the requirements of the
system. For small deployments it is entirely feasible to have a single node
with a single storage system. For larger deployments it is required to have
a load balancer before the data management systems in order to distribute
the load. Large systems also require multiple storage nodes in a sharded and
replicated fashion to scale on par with greater write and read requirements.

For the purpose of this research project, an illustration of a large deploy-
ment on Amazon EC2 is shown in figure 4.15. The front-end to the system
is a set of elastic load balancers (ELB’s) that are all listed in the Route 53
DNS records for the deployment’s domain name. This implies that requests
will be given the IP-address of an ELB in a round-robin fashion. The DNS is
the first tier of load balancing followed by the ELB’s as the second tier. Each
load balancer has a number of data management system nodes to distribute
its load to in a round-robin fashion.

Availability zone 1 Availability zone 2 Availability zone 3 Availability zone 4

Route 53

Endpoint 1 Endpoint 2

Elastic Load BalancerElastic Load Balancer

Storage
System

Data
Management
System

Figure 4.15: AWS large deployment example

In order to make the entire system scalable, the storage system consists
of multiple shard nodes, with each shard having two replicas for improved
redundancy and read-throughput.

Synthesis and evaluation of a data management system for machine-to-machine communication 62

Chapter 4. Detail Synthesis and Evaluation 4.4. Evaluation

Additionally, CloudWatch is used to monitor the load of the system. If
the storage nodes’ disk operations or CPU-usage exceed a threshold value,
more storage nodes (shards) are started to distribute the data load. Likewise,
if any data management system node exceeds a threshold value, more nodes
will be started and linked to an ELB.

The system is thus automatically infinitely scalable and highly available.

4.4 Evaluation

The evaluation of the data management system is performed in this section.
This is done by ensuring all requirements have been addressed functionally
and performance-wise.

4.4.1 Functional Capability

4.4.1.1 Authentication

The handshake module allows for authentication of both the endpoint and
of the server.

4.4.1.2 Session Support

By maintaining a persistent and consistent state in the storage system, the
handshake phase of the protocol provides session support.

4.4.1.3 Guaranteed Delivery of Packets

The protocol utilizes TCP’s per session guaranteed delivery of packets along
with the persistent state updated in the storage system to guarantee delivery
of packets.

4.4.1.4 Segmented Packet Support

The protocol and storage system provide support for segmented packets.

4.4.1.5 Persistent Storage of Data

Persistence of data is achieved by the storage system as MongoDB is a per-
sistent data store.

Synthesis and evaluation of a data management system for machine-to-machine communication 63

Chapter 4. Detail Synthesis and Evaluation 4.4. Evaluation

4.4.1.6 Packet Forwarding

Both the protocol and the storage system allow for forwarding of packets.
Nodes can interact to improve the latency between receiving a packet and
forwarding the packet.

4.4.1.7 QoS Based Data Billing

The billing module makes use of the stipulated rate-limit to achieve QoS
based billing of data usage. MongoDB’s map/reduce functionality makes the
process of aggregating the billed data effortless.

4.4.2 Performance Characteristics

4.4.2.1 Ease of Use

The protocol is easy to implement in any embedded system that supports
networking. SHA-256 is the only CPU-intensive operation, but only occurs
twice per handshake4.

Simplistic header-body-footer design of the protocol packets and the use
of an incremental ID per message packet further improve the usability.

4.4.2.2 Availability

Deployment of a highly available system is achieved by utilizing cloud tech-
nology. The shared-nothing architecture, that this system inherently has,
makes fail-over support trivial.

4.4.2.3 Scalability

By leveraging cloud services and architectures the system is infinitely scal-
able. By adding more nodes to load balancers, a greater load can be dis-
tributed. Adding more load balancers also increases the total capability of
the system. In order to scale on par with the data management system, the
storage system can add more shards and replicas.

4The endpoint’s hash and the server’s expected hash.

Synthesis and evaluation of a data management system for machine-to-machine communication 64

Chapter 4. Detail Synthesis and Evaluation 4.5. Summary

4.4.2.4 Security

The inherent security provided by cloud services, such as AWS, allows ap-
plications to run securely. Furthermore the handshake phase of the protocol
securely authenticates both ends of communication. To increase security the
entire protocol can be encapsulated in TLS/SSL for encryption of data, due
to it already being TCP/IP based.

4.5 Summary

Chapter 3 defined a preliminary architecture that served as an input to the
detail synthesis phase, with the preliminary architecture as basis. Each el-
ement in that preliminary architecture was described in more detail in this
chapter.

By evaluating the detail synthesis with respect to the defined research
requirements, it was shown that the synthesis is valid. Table 4.2 shows
requirements addressed by each function or interface.

With the synthesized system complete and evaluated, tests were per-
formed to empirically verify each functional capability and performance, and
to collectively validate the data management system.

Table 4.2: Requirements vs. architecture elements matrix

Requirement
F/U I/F
1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 1 2

Authentication x x - - - - - - - x x
Session support x x x - - - - - - x x
Guaranteed delivery - x - - - - - - - - x
Segmented packets - x - - - - - - - x x
Persistent storage - x - - - x x x - - x
Packet Forwarding - x x - - - - - - x x
QoS billing x x - x - - - - - x x
Ease of use - - - - - - - - - x -
Availability x - x - x x x x x - x
Scalability x - x - x x x x x - x
Security x - - - x - - - x x x

Synthesis and evaluation of a data management system for machine-to-machine communication 65

I didn’t fail the test, I just
found 100 ways to do it wrong.

Benjamin FranklinChapter 5

Empirical Tests and Results

5.1 Overview

With chapters 3 & 4 having defined the system that addresses the research
problem, practical tests were performed. The process of verification and vali-
dation for this research project that was followed, is presented in this chapter
by evaluating practical test results with respect to the research requirements.

All tests and experiments are fully described and results are provided, fol-
lowed by a summary. Functional and performance tests individually verify
the synthesized system, while the system is validated from collective func-
tional capability and performance measurements. Together with the func-
tional and performance test results, field test results finally validate the data
management system.

5.2 Tests

Due to the nature of client/server applications, it is not trivial to perform
unit tests. Functional capability tests have to be performed using both the
server, client and a consistent database setup concurrently. Performance
characteristic tests additionally have to be controlled in order to accurately
measure the metrics, and may require multiple client applications.

By using debugging breakpoints at critical points in the server and client
code, and manipulating the database, certain scenarios can be simulated for
robustness tests.

To aid the testing process, a client-side API was developed in Microsoft
.NET C#. The API implements the client-side protocol and relevant network
functions. A client application was developed with the API in order to run
the tests against the system.

66

Chapter 5. Empirical Tests and Results 5.2. Tests

A number of empirical tests are defined below, to provide verification
evidence of the complete system in terms of functional capability and perfor-
mance characteristics. For the sake of brevity, the following common features
of the tests are defined here:

• Timing measurements at key points were measured and logged;

• Breakpoints at key points were used to check if every process occurs
safely and consistently for robustness;

• All key events were logged;

• Database sizes were logged.

5.2.1 Functional Capability

Table 5.1 shows which functions were tested by each functional capability
test defined in the tests below. These tests’ results were used to verify the
data management system’s functional capability.

Table 5.1: Test/functional capability matrix

Function
Functional Test

1 2 3 4 5 6 7

Authentication x x x x - - -
Back-off x - - - - - -
Clean session x x x x - - -
Continue session - x - - - - -
Packet send - - x x - - -
Packet receive - - x x - - -
Segmented packet send - - x x - - -
Segmented packet receive - - x x - - -
Packet acknowledgement - x x x - - -
Packet forwarding - - - x - - -
Packet group forwarding - - - x - - -
Packet cross-account forwarding - - - x - - -
Forwarded packet expiry - - - x - - -
Rate-limiting x x x x - - -
Server heartbeat - - - - x - -
Account management - - - - - x -
Endpoint management - - - - - x -

continued on next page...

Synthesis and evaluation of a data management system for machine-to-machine communication 67

Chapter 5. Empirical Tests and Results 5.2. Tests

Table 5.1: Test/functional capability matrix (continued)

Function
Test

1 2 3 4 5 6 7

Channel management - - - - - x -
Group management - - - - - x -
Billing generation - - - - - - x

Synthesis and evaluation of a data management system for machine-to-machine communication 68

Chapter 5. Empirical Tests and Results 5.2. Tests

Test 1

Aim

To test the handshake module in both the server and client. The handshake
module is responsible for establishing authentication and exchanging session
information which were both requirements for the system. The following
functions were verified by this test:

• Authentication;

• Back-off;

• Clean session;

• Rate-limiting.

Setup

The test was run four times, each with a pristine database set up differently
to test each possible scenario for the handshake protocol.

a Endpoint set up with only an account wide password.

b Endpoint set up with its own password.

c Endpoint set up with an incorrect password.

d Endpoint set up with a back-off time.

Methodology

This test followed the same methodology for all cases. The client connected
to the server with the database set up for each case and the results were
logged.

Synthesis and evaluation of a data management system for machine-to-machine communication 69

Chapter 5. Empirical Tests and Results 5.2. Tests

Expected Outcomes

a,b The connection should be successfully established and in an idle
state. The client’s detail for the connection should be logged to
the database.

c The server should terminate the client’s connection and log the oc-
currence to the database. The client should automatically try to
reconnect.

d The server should wait for the client to terminate. The client should
terminate immediately and reattempt connection automatically af-
ter the back-off period expires. Upon reconnection before that time
(that can be forced in the client application), the server should ter-
minate the connection.

Synthesis and evaluation of a data management system for machine-to-machine communication 70

Chapter 5. Empirical Tests and Results 5.2. Tests

Test 2

Aim

To test the session negotiation module in both the server and client. This in-
cludes cleaning and restoring sessions which were both needed for the session
support requirement. The following functions were verified by this test:

• Authentication;

• Clean session;

• Continue session;

• Packet acknowledgement;

• Rate-limiting.

Setup

A pre-generated database was used that already defined incoming and out-
going packets for endpoints in all possible scenarios. The scenarios are listed
here:

• No incoming or outgoing packets;

• Only incoming packets;

• Only outgoing packets;

• Incoming and outgoing packets;

• Incoming and outgoing packets with partial progress.

Each scenario was tested during a set of cases, as defined here:

a Client initiated a clean session.

b Server initiated a clean session.

c Client requested to resume a valid session.

d Client requested an invalid session to resume.

Methodology

Each test case was run against the same database, that means after each case
the database was restored. The client’s endpoint was adjusted according to
the cases and scenarios mentioned before. This implies that the test was run
twenty times.

Synthesis and evaluation of a data management system for machine-to-machine communication 71

Chapter 5. Empirical Tests and Results 5.2. Tests

Expected Outcomes

a The queues of both the server and endpoint should be consistent. The
database should reflect that all pending packets (if there were any in
the scenario) have been flagged as cancelled.

b The server should wait for the client to disconnect. The client should,
however, disconnect immediately and reattempt the connection. If the
client does not disconnect within one minute, the server terminates the
connection regardless. The same outcomes of a should then be reached
after reconnection.

c The queues of both the server and endpoint should be consistent. The
database should reflect that complete packets were acknowledged and
pending packets were resumed.

d The server should detect inconsistencies and force a clean session that
should have the same outcomes as b.

Synthesis and evaluation of a data management system for machine-to-machine communication 72

Chapter 5. Empirical Tests and Results 5.2. Tests

Test 3

Aim

To test the packet send and receive modules. This also includes sending
and receiving of acknowledgements. Packet and segmented packets were
requirements for the system. The following functions were verified by this
test:

• Authentication;

• Clean session;

• Packet send;

• Packet receive;

• Segmented packet send;

• Segmented packet receive;

• Packet acknowledgement;

• Rate-limiting

Setup

Four iterations of the test were run. Every test recreated the database into
a pristine condition. The scenarios for each iteration are given below:

a Server sends 1000 packets to a single endpoint.

b Endpoint sends 1000 packets to the server.

c Server sends 1000 segmented packets to a single endpoint.

d Endpoint sends 1000 segmented packets the server.

Methodology

A pristine database was loaded for each scenario, which defined a single
endpoint with an empty packet queue. Each iteration verified the integrity
of the packet by using the appended CRC-8 checksum. Acknowledgements
were sent after successfully persisting the data to the database when the
server was the recipient.

Synthesis and evaluation of a data management system for machine-to-machine communication 73

Chapter 5. Empirical Tests and Results 5.2. Tests

Expected Outcomes

The outcomes should be the same for all scenarios:

• Database must be consistent;

• Message IDs must wrap correctly;

• Invalid IDs must terminate the connection (from either end);

• Acknowledgements must reflect the correct IDs of packets;

• Packet integrity checks that fail (that is forced during test) must ter-
minate the connection (from either end).

Synthesis and evaluation of a data management system for machine-to-machine communication 74

Chapter 5. Empirical Tests and Results 5.2. Tests

Test 4

Aim

To test packet forwarding. Packet forwarding was a requirement for the
system. The following functions were verified by this test:

• Authentication;

• Clean session;

• Packet send;

• Packet receive;

• Segmented packet send;

• Segmented packet receive;

• Packet acknowledgement;

• Packet forwarding;

• Packet group forwarding;

• Packet cross-account forwarding;

• Forwarded packet expiry;

• Rate-limiting.

Setup

This test considered seven specific scenarios in which the test had to succeed:

a Packet to a single destination.

b Packet to a single group destination.

c Segmented packet to a single destination.

d Segmented packet to a single group destination.

e Packet to multiple destinations.

f Segmented packet to multiple destinations.

g Packets with varying expiry times.

A single endpoint always serves as a packet source. Depending on the
scenario, multiple clients concurrently serve as recipients of packets.

Synthesis and evaluation of a data management system for machine-to-machine communication 75

Chapter 5. Empirical Tests and Results 5.2. Tests

Methodology

A database, that contained groups and multiple endpoints, was loaded. Each
scenario was then tested without resetting the database. All clients were
executed concurrently with a single server application. For scenario g the
destination endpoint should not have executed until the predetermined time
interval had expired.

Expected Outcomes

The outcomes should be the same for all scenarios:

• Database must be consistent;

• Messages delivered correctly;

• Destination chains were appended correctly;

• Source endpoint meta-data was correctly forwarded.

Scenario g should not have delivered the packet and the database should
have reflected that the packet had expired.

Synthesis and evaluation of a data management system for machine-to-machine communication 76

Chapter 5. Empirical Tests and Results 5.2. Tests

Test 5

Aim

To test server heartbeat capability. Server heartbeat capability is essential
for scalability as a requirement of the system, and was verified in this test.

Rationale

Heartbeat capability is essential for utilizing the UDP performance enhance-
ments. Furthermore, heartbeat capability is critical for endpoint hand-off.

Setup

This test required multiple server applications and a pristine database. Each
server had a unique identifier and IP-address/port combination.

Methodology

The servers were run concurrently and after all servers had become aware of
every other server, a random group of servers was closed.

Expected Outcomes

All the servers should have become aware of every other server within 2 ·
theartbeat seconds. Upon closing the group of servers, the remaining servers
should have become aware of the closed servers within 2 · theartbeat seconds.

Synthesis and evaluation of a data management system for machine-to-machine communication 77

Chapter 5. Empirical Tests and Results 5.2. Tests

Test 6

Aim

To test the management functions of the system. Although this was not a
requirement for the research, it was needed for the system to be practically
feasible. The following functions were verified by this test:

• Account management;

• Endpoint management;

• Channel management;

• Group management.

Setup

This test ran a single iteration, where the database had to be empty.

Methodology

The following tasks on the front-end were tested by means of unit testing the
CRUD (Create, Remove, Update, Delete) operations:

• Account management;

• Endpoint management;

• Endpoint channel management;

• Group management.

Expected Outcomes

The database had to reflect all the CRUD operations and document contents
in the database had to be consistent with the relevant models.

Synthesis and evaluation of a data management system for machine-to-machine communication 78

Chapter 5. Empirical Tests and Results 5.2. Tests

Test 7

Aim

To test the billing function of the system. Billing was a required function of
the system and was verified in this test. QoS was handled during performance
tests by implementing rate-limiting and was not tested here.

Setup

This test ran a single iteration where the database contained the following:

• Sent and received packet data in the same account;

• Cross-account sent and received data;

• Map-reduce results (bogus) of a previous month’s billed usage.

Methodology

As billing data is aggregated in MongoDB, this test only required a map-
reduce operation. The resulting map-reduce collection contained the newly
accumulated and monthly compounded usage reports.

Expected Outcomes

The result of the map-reduce operation should have contained the accumu-
lated monthly compounded usage reports.

5.2.2 Performance Tests

Performance tests require a controlled environment. Any uncontrolled or
unmonitored variables can lead to invalid and conflicting results. The tests
were therefore run on a single machine installation, where parameters of
the environment could be controlled, manipulated and measured. Network
latency also had no effect on a single machine.

Latency, throughput and concurrency are three metrics that are depen-
dent on each other, therefore a single test was defined that tested all three
metrics simultaneously.

Synthesis and evaluation of a data management system for machine-to-machine communication 79

Chapter 5. Empirical Tests and Results 5.2. Tests

Performance Test: Latency, Throughput and Concur-
rency

Aim

Latency, throughput and concurrency impact the scalability of the system.
Scalability was a requirement for this system.

The latency here refers to the round-trip time (RTT) for a packet from an
endpoint to the server and then for the acknowledgement to propagate back
to the endpoint. This gives an indication of the processing time for a single
packet. The latency also refers to the RTT for server to endpoint packets.
The delay when forwarding a packet was determined empirically. Network
latency was not taken into consideration as it is deployment specific and not
an indication of the system’s intrinsic performance.

The throughput metric of the system defines both the maximum and av-
erage transfer rates in terms of the data rate (KB/s) and packet rate (pack-
ets/s). This metric was derived from the latency metric.

Concurrency defines how many endpoints can be serviced simultaneously
by the system and is dependent on the throughput and latency relative to
the number of endpoints. Concurrency will thus be a function of the desired
throughput.

Latency, throughput and concurrency of the system were verified by this
test.

Setup

Multiple endpoint applications on the same physical machine as the server,
were required. The test ran multiple iterations to acquire a more accurate
sample, with each iteration having varied the number of concurrent endpoints
and packet size.

Methodology

The test was run in multiple iterations, one for each variable combination.
Each iteration was run in two phases, each with a total of 512 packets.
Firstly, only the endpoint-to-server packet tests were run, followed by server-
to-endpoint packets. A separate packet generator application was used to
inject the packets into the database’s outgoing queue for the endpoints during
the server-to-endpoint phase. By testing the metric in two phases, empiric
RTT metric for packets in any direction could be determined.

Timestamps were logged programmatically for each iteration at the fol-
lowing key-points:

Synthesis and evaluation of a data management system for machine-to-machine communication 80

Chapter 5. Empirical Tests and Results 5.2. Tests

• Endpoint 1 sent the packet (ttx);

• Server received the data (trx);

• Server sent the acknowledgement (ttxack);

• Endpoint 1 received the acknowledgement (trxack);

• Server sent the forwarded packet to endpoint 2 (ttx′);

• Endpoint 2 received the data (trx′);

• Endpoint 2 sent the acknowledgement (ttxack′);

• Server received the acknowledgement (trxack′).

Outcomes

With the timestamps defined above, the following latencies could be calcu-
lated:

• Latency for endpoint to server packet:

trxack − ttx

• Packet processing and database storage time:

ttxack − trx

• Network latency for endpoint to server packet:

(trxack − ttxack) + (trx − ttx);

• Latency for server to endpoint packet:

trxack′ − ttx′

• Network latency for server to endpoint packet:

(trxack′ − ttxack′) + (trx′ − ttx′)

• Total round-trip-time for an endpoint-to-server packet:

trxack − ttx

Synthesis and evaluation of a data management system for machine-to-machine communication 81

Chapter 5. Empirical Tests and Results 5.2. Tests

• Total round-trip-time for a server-to-endpoint packet:

trxack′ − ttx′

It should be noted that the network latency mentioned here will give an
indication of the overhead of the socket processing and is not a metric of the
physical network interface. It is assumed that trx′ = ttxack′ . Endpoint 1 and
2 can be the same endpoint.

Forwarded packet routing latency in this test should have been negligible
and would generally be equal to the propagation time of the UDP notification
packet between servers. If UDP notification failed, the latency would have
been equal to the polling fallback time of the server.

5.2.3 Database Tests

Since MongoDB is used as the DBMS, the test suites1 defined by MongoDB
were used to test the database. The test suites are listed here:

• C++ unit tests;

• Core tests;

• Replication tests;

• Sharding tests.

Only the production version (v2.2.0) of MongoDB is used, which implies
all test suites succeeded at the time of release.

5.2.4 Availability

Availability was tested in functional capability test 5. By design, the avail-
ability of the system is dependent on the heartbeat period, the number of
redundant systems and the physical deployment scheme. When a server
becomes unavailable another system should take over within a period of
2 · theartbeat seconds.

5.2.5 Scalability

Scalability is difficult to measure as it is dependent on the deployment. On
Amazon’s EC2, scalability can be configured and fixed. The system is scal-
able by design due to its core components having a shared-nothing architec-
ture.

1http://www.mongodb.org/display/DOCS/Smoke+Tests

Synthesis and evaluation of a data management system for machine-to-machine communication 82

http://www.mongodb.org/display/DOCS/Smoke+Tests

Chapter 5. Empirical Tests and Results 5.3. Results

5.3 Results

5.3.1 Functional Capability

All functional capability tests passed. This verifies that the data manage-
ment system’s functional implementation is correct. Table 5.2 shows the
summarized results.

Table 5.2: Test/functional capability results matrix

Function
Functional Test

1 2 3 4 5 6 7

Authentication X X X X - - -
Back-off X - - - - - -
Clean session X X X X - - -
Continue session - X - - - - -
Packet send - - X X - - -
Packet receive - - X X - - -
Segmented packet send - - X X - - -
Segmented packet receive - - X X - - -
Packet acknowledgement - X X X - - -
Packet forwarding - - - X - - -
Packet group forwarding - - - X - - -
Packet cross-account forwarding - - - X - - -
Forwarded packet expiry - - - X - - -
Rate-limiting X X X X - - -
Server heartbeat - - - - X - -
Account management - - - - - X -
Endpoint management - - - - - X -
Channel management - - - - - X -
Group management - - - - - X -
Billing generation - - - - - - X

5.3.2 Performance Characteristics

The performance characteristics results are discussed in the sections below.
Latency, throughput and concurrency test metrics are illustrated separately.

Synthesis and evaluation of a data management system for machine-to-machine communication 83

Chapter 5. Empirical Tests and Results 5.3. Results

5.3.2.1 Latency

Figure 5.1 shows the effective per packet latency for different packet sizes
and number of concurrent endpoints. A linear relationship between effective
”per packet” latency and packet size exists irrespective of the number of
endpoints. It can be seen from the results that the latency slope decays
exponentially with more endpoints, which implies that packet sizes has less
influence on performance than the number of endpoints. The results also
show that server-to-endpoint packets have a much smaller latency.

5.3.2.2 Throughput

Figure 5.2 shows the total throughput of the system. Examining the results,
reveals that with an increase in packet size, the data throughput follows a
logarithmic-type growth curve. It can also be noted that more endpoints
deliver a greater throughput, which is the expected behaviour. The peak
throughput will, however, reach a maximum value, which is due to the phys-
ical limitations of the system.

Packet throughput results are shown in figure 5.3. The throughput per
packet decays exponentially with an increase in packet size. This behaviour
is expected due to the increased network traffic and hard-drive latencies. It
is, however, still evident that an increased throughput is reached with more
endpoints.

5.3.2.3 Concurrency

In order to illustrate the concurrency of the system, the results of the data
throughput tests are shown in figure 5.4, but with the values scaled relative
to 512 endpoints. The results show the relative decline in throughput as
more endpoints use the system.

From the results at 64kB incoming packets, it can be seen that the relative
efficiency of 16 units to 512 units is only 2.942 even though 512 endpoints
are 32 times more units. This result shows that the system scales well under
increased load, which implies good concurrency and therefore scalability.

5.3.2.4 Availability & Scalability

From the shared-nothing architecture of the system and the cloud-based de-
ployment, the system is inherently available and scalable. All components
are capable of scaling on demand and redundant nodes can be used for higher
availability. Even with a single node system the performance scaled well with
an increase of endpoints.

Synthesis and evaluation of a data management system for machine-to-machine communication 84

Chapter 5. Empirical Tests and Results 5.3. Results

4 8 16 32 64

0

10

20

30

40

50

Packet Size (kB)

L
a
te

n
cy

(m
s)

16 Endpoints

32 Endpoints

64 Endpoints

128 Endpoints

256 Endpoints

512 Endpoints

(a)

4 8 16 32 64

0

10

20

30

40

50

Packet Size (kB)

L
at

en
cy

(m
s)

16 Endpoints

32 Endpoints

64 Endpoints

128 Endpoints

256 Endpoints

512 Endpoints

(b)

Figure 5.1: Subfigures (a) and (b) show the effective per packet latency for
server-to-endpoint packets and endpoint-to-server packets

respectively.

Synthesis and evaluation of a data management system for machine-to-machine communication 85

Chapter 5. Empirical Tests and Results 5.3. Results

4 8 16 32 64

0

9.54

19.07

28.61

38.15

Packet Size (kB)

T
h

ro
u

gh
p

u
t

(M
B

/
s)

16 Endpoints

32 Endpoints

64 Endpoints

128 Endpoints

256 Endpoints

512 Endpoints

(a)

4 8 16 32 64
0

4.77

9.54

14.31

Packet Size (kB)

T
h

ro
u

gh
p

u
t

(M
B

/s
)

16 Endpoints

32 Endpoints

64 Endpoints

128 Endpoints

256 Endpoints

512 Endpoints

(b)

Figure 5.2: The throughput in kB/s is shown above. Subfigures (a) and (b)
show the server-to-endpoint and endpoint-to-server rates

respectively.

Synthesis and evaluation of a data management system for machine-to-machine communication 86

Chapter 5. Empirical Tests and Results 5.3. Results

4 8 16 32 64

0

200

400

600

800

Packet Size (kB)

T
h

ro
u

gh
p

u
t

(p
ac

k
et

s/
s)

16 Endpoints

32 Endpoints

64 Endpoints

128 Endpoints

256 Endpoints

512 Endpoints

(a)

4 8 16 32 64

0

500

1,000

1,500

Packet Size (kB)

T
h

ro
u

gh
p

u
t

(p
ac

k
et

s/
s)

16 Endpoints

32 Endpoints

64 Endpoints

128 Endpoints

256 Endpoints

512 Endpoints

(b)

Figure 5.3: Throughput in packets per second is shown for server-to-endpoint
and endpoint-to-server packets in subfigures (a) and (b)

respectively.

Synthesis and evaluation of a data management system for machine-to-machine communication 87

Chapter 5. Empirical Tests and Results 5.3. Results

4 8 16 32 64
0

9.54

19.07

28.61

38.15

Packet Size (kB)

T
h

ro
u

gh
p

u
t

(M
B

/s
)

16 Endpoints

32 Endpoints

64 Endpoints

128 Endpoints

256 Endpoints

512 Endpoints

(a)

4 8 16 32 64

9.54

19.07

28.61

38.15

Packet Size (kB)

T
h

ro
u

gh
p

u
t

(M
B

/s
)

16 Endpoints

32 Endpoints

64 Endpoints

128 Endpoints

256 Endpoints

512 Endpoints

(b)

Figure 5.4: The throughput in kB/s is shown above with endpoint scaling.
Subfigures (a) and (b) show the server-to-endpoint and

endpoint-to-server scaled rates respectively.

Synthesis and evaluation of a data management system for machine-to-machine communication 88

Chapter 5. Empirical Tests and Results 5.4. Use Case Results

5.3.2.5 Security

The authentication phase during handshaking and the use of TLS/SSL as
an encapsulation for the protocol, make the system secure. Furthermore, if
cloud-based deployment is used, a further level of security is gained.

5.4 Use Case Results

A physical security system use case instance was launched on a single Amazon
EC2 Micro instance on 7 August 2012. The instance hosts a single node
storage system and a single node data management system. Since its launch
and until the time of documentation (a period of 3 months) the system had
never failed or denied service.

A total of 170 security endpoints were serviced full-time with a rate limit
of 5Kb/s per endpoint. These results finally validate the data management
system according to the use case’s requirements. Figure 5.5 shows the average
CPU usage for 5-18 October 2012.

Figure 5.5: EC2 CPU usage.

Synthesis and evaluation of a data management system for machine-to-machine communication 89

Chapter 5. Empirical Tests and Results 5.5. Summary

5.5 Summary

This chapter described the tests performed to verify and validate the data
management system. Two separate sets of tests were run to provide ver-
ification evidence of functional capability and performance characteristics,
as defined in this chapter. The functional capability and performance tests
verify the system’s functional capability and performance individually. Col-
lectively, the performance tests and practical tests validate the system as a
whole.

From the results it is evident that, practically, the synthesized system has
met all the functional requirements as shown in table 5.2. The performance
characteristics tests showed that the system performs well under significant
load. The scalability and availability requirements were shown to have been
met by the tests of the system.

A use case instance of the system was practically tested in the field.
A single node deployment on a low-end micro instance in Amazon’s EC2
demonstrated a capability of servicing 170 endpoints. No errors, performance
bottlenecks or loss of services were evident during the 3 month period and it
was seen that the processor usage on the instance remained well under 50 %
on average.

The empirical tests, together with the use case field test, provide conclusive
evidence that the synthesized system is both verified and validated.

Synthesis and evaluation of a data management system for machine-to-machine communication 90

A conclusion is the place where
you get tired of thinking.

Arthur BlochChapter 6

Conclusion

To conclude this research project, an overview of the functions is provided,
followed by a discussion on the final artefact with respect to the data man-
agement system’s functional and performance requirements. The test results
are then reviewed to complete the conclusion that the hypothesis should be
accepted.

Chapter 1 introduced the research methodology, namely design science re-
search. A definition of the real-world problem and a description of the use
case for the research project were given. A physical security system requires
a centralized data management system to provide and manage communica-
tion between endpoints. For convenience, the functions of such a system are
repeated below:

• Authentication;

• Session support;

• Guaranteed delivery of data packets;

• Segmented packet support;

• Persistent storage of data;

• Packet forwarding;

• Quality-of-service based data billing.

The required constraints of the data management system, as identified by
the use case, are listed here for reference:

• Ease of use;

91

Chapter 6. Conclusion

• Scalability;

• Availability;

• Security.

From these requirements, a high-level system architecture was defined
that addresses the research problem. The following hypothesis was formu-
lated as a basis for the literature study and synthesis:

A cloud-based implementation can provide the functional capability and
performance characteristics for a data management system.

It was shown in Chapter 2 that cloud-based distributed computing is
ideal for a scalable and highly-available system. Furthermore, the litera-
ture study and preliminary synthesis revealed that MongoDB addresses the
requirements for a scalable storage system for this use case.

Nonce authentication was integrated into the system to directly address
the authentication and security requirements. I/F 1, which is the protocol
defined for the system, utilizes nonce authentication in the handshake phase.
The handshaking phase also allows for session re-establishment, which was a
requirement.

As the protocol (I/F 1) is the only interface with which endpoints interact,
ease of use is only applicable to the protocol. The challenge of consistency
lies exclusively with the data management system. The persistence that
the storage system provides, allows endpoints to store all states in volatile
memory and relies solely upon the protocol and the data management system.
Furthermore, no complex key-exchange algorithms are required to implement
the protocol. SHA-256 is a simple publicly available checksum tool with
trusted source code provided in the standard that defines it.

To further improve usability, all that is required for session renegotiation
is to keep track of the last ID and progress of a packet. In the case where an
endpoint loses its state, a clean session can be requested. All unconfirmed
packets will be re-sent from the first byte. The protocol defines segmented
packets and advances the usability further by allowing endpoints to send
irregular segment sizes without defining the total size beforehand.

The storage system, that internally makes use of MongoDB, was struc-
tured in such a fashion that it can scale infinitely horizontally to address
increased load. All states of endpoint sessions are persistently stored in the
storage system to serve as a point of synchronisation and consistency. This

Synthesis and evaluation of a data management system for machine-to-machine communication 92

Chapter 6. Conclusion

point of synchronisation addressed the requirement of guaranteed delivery of
packets. Packet payloads and meta-data are persistently stored for billing
purposes. QoS defines rate-limits that are used to aggregate and calculate
per-volume data billing.

The data management system (F/U 1.0) comprises all the modules needed
to securely and consistently service multiple endpoint connections. Interac-
tion between multiple nodes improve the latency of forwarded packets and
directly influences the scalability and availability. The shared-nothing prin-
ciple followed by the system inherently provides infinite scalability and high-
availability and directly fits into cloud-based computing. A deployment ex-
ample for Amazon’s EC2 was illustrated in Chapter 4.

A number of recommendations can be made to further improve on the sys-
tem’s capabilities in future research. It was seen that with small packets, 256
message ID’s were inefficient. Endpoints were able to queue all 255 messages
before receiving the first acknowledgement. By incrementing the message
ID’s domain to 65535, significant performance gain can be achieved for small
packets.

By implementing multiple checksum methods on the system, endpoints
can choose different payload verification methods to better suite their require-
ments. This will require endpoints to provide a list of checksum methods that
it is capable of handling.

A web-based front-end module can add functional capability to the sys-
tem. For example, endpoint data can be extracted from the storage system
and can be shown on a web-page as real-time user information. By defining
data formats (meta-data) for specific endpoint data packets, customizable
widgets can be used to better represent the extracted data - for example,
geographic data can be displayed on a map, and telemetry data can be rep-
resented by dials, gauges, and charts.

Additional protocol packet definitions can provide more services. Typical
services that can be added are listed below:

• Tag-based queries of data;

• Online file storage and retrieval per endpoint;

• Online key-value storage per endpoint;

• Administrative functions:

– Adding endpoints programmatically;

– Discontinuing endpoints programmatically;

Synthesis and evaluation of a data management system for machine-to-machine communication 93

Chapter 6. Conclusion

– Retrieving billing data programmatically;

• The ability to query the online status of another endpoint(s).

In order to verify and validate that this research project solves the research
problem, an API was developed and used to test the system in the form of
multiple endpoints. The results are now briefly reviewed in order to make a
final conclusion.

All functional requirements were tested in functional tests. The suc-
cessful test results demonstrate that the requirements have been addressed.
Performance characteristics were measured for a variety of packet sizes and
endpoint concurrency combinations. The performance test results showed
that the system scales well with larger packets and also with an increase of
concurrent endpoints.

To fully validate the system, the use case was run on Amazon’s EC2 on
a single Micro instance. 170 actual endpoints had been successfully serviced
for a period of over 3 months. The system did not fail or denied service
during the test period. This result validates that the requirements have been
addressed.

In conclusion, significant evidence is provided that a cloud-based data man-
agement system for machine-to-machine communication provides the func-
tional capabilities and performance characteristics required for machine-to-
machine communication. The hypothesis is thus accepted for the conditions
in which it was verified and validated.

Synthesis and evaluation of a data management system for machine-to-machine communication 94

Bibliography

[1] S. March and V. Storey, “Design science in the information systems dis-
cipline: An introduction to the special issue on design science research,”
MIS Quarterly, vol. 32(4), pp. 725–730, 2008.

[2] S. Yu, S. Yoon, J. Lee, H. Kim, and J. Song, “Service-oriented is-
sues: Mobility, security, charging and billing management in mobile
next generation networks,” in Broadband Convergence Networks, 2006.
BcN 2006. The 1st International Workshop on, 2006, pp. 1 –10.

[3] Y. Tian, B. Song, and E.-N. Huh, “Towards the development of personal
cloud computing for mobile thin-clients,” in Information Science and
Applications (ICISA), 2011 International Conference on, April 2011,
pp. 1 –5.

[4] D. Welch and M. Shwehdi, “An energy reading and bill generation
database for use in nonintrusive load management,” in Transmission and
Distribution Conference, 1991., Proceedings of the 1991 IEEE Power
Engineering Society, Sep. 1991, pp. 342 –347.

[5] W. Amer, Y. Attique, A. Nadeem, and A. Ghafoor, “Comprehensive
e-monitoring, e-management and e-billing (em2b) system with zoom-
in and zoom-out capabilities to reduce electricity distribution losses for
developing countries,” in Systems Conference, 2010 4th Annual IEEE,
2010, pp. 174 –177.

[6] M. Koutsopoulou, A. Kaloxylos, A. Alonistioti, L. Merakos, and
K. Kawamura, “Charging, accounting and billing management schemes
in mobile telecommunication networks and the internet,” Communica-
tions Surveys Tutorials, IEEE, vol. 6, no. 1, pp. 50 –58, 2004.

[7] T. Choi, C. Kim, S. Yoon, J. Park, B. Lee, H. Kim, H. Chung, and
T. Jeong, “Content-aware internet application traffic measurement and
analysis,” in Network Operations and Management Symposium, 2004.
NOMS 2004. IEEE/IFIP, vol. 1, april 2004, pp. 511 –524 Vol.1.

95

BIBLIOGRAPHY BIBLIOGRAPHY

[8] X. Wang, B. Wang, and J. Huang, “Cloud computing and its key tech-
niques,” in Computer Science and Automation Engineering (CSAE),
2011 IEEE International Conference on, vol. 2, june 2011, pp. 404 –
410.

[9] S. Rajan and A. Jairath, “Cloud computing: The fifth generation
of computing,” in Communication Systems and Network Technologies
(CSNT), 2011 International Conference on, june 2011, pp. 665 –667.

[10] S. R. Schach, Object-Oriented & Classical Software Engineering, 7th ed.
McGraw-Hill, 2007.

[11] P. R. C. Coronel, Database Systems: Design, Implementation, and Man-
agement, B. Woodbury, Ed. Thomson Course Technology, 2007.

[12] MySQL, MySQL 5.5 Reference Manual, Oracle, 2011.

[13] B. G. Tudorica and C. Bucur, “A comparison between several nosql
databases with comments and notes,” in Roedunet International Con-
ference (RoEduNet), 2011 10th, june 2011, pp. 1 –5.

[14] N. Leavitt, “Will nosql databases live up to their promise?” Computer,
vol. 43, no. 2, pp. 12 –14, feb. 2010.

[15] Microsoft. (2010, January) Microsoft SQL Server 2008 R2 -
Datasheet. Microsoft. [Online]. Available: http://download.microsoft.
com/download/5/5/F/55FA7305-E2A5-485D-81A1-FE7BA2B572F3/
SQLServer2008 R2 Datasheet.pdf

[16] K. Simmons. (2010, February) Microsoft SQL
Server 2008 R2 Parallel Data Warehouse. Mi-
crosoft. [Online]. Available: http://download.microsoft.com/
download/4/E/0/4E0ED215-56D8-4D25-9CFC-25F008C73B6C/
SQLServer2008 R2 ParallelDW Datasheet%20v3.pdf

[17] ——. (2010, January) Introducing SQL Server 2008 R2 Data-
center. Microsoft. [Online]. Available: http://download.microsoft.
com/download/5/D/5/5D56C9F4-8B57-4215-AB45-E6751DAF1177/
SQL Server 2008 R2 Datacenter Datasheet.pdf

[18] Oracle. (2009, August) Oracle Partitioning - Datasheet. Oracle.
[Online]. Available: http://www.oracle.com/technetwork/database/
enterprise-edition/overview/partitioning-11g-datasheet-128345.pdf

Synthesis and evaluation of a data management system for machine-to-machine communication 96

http://download.microsoft.com/download/5/5/F/55FA7305-E2A5-485D-81A1-FE7BA2B572F3/SQLServer2008_R2_Datasheet.pdf
http://download.microsoft.com/download/5/5/F/55FA7305-E2A5-485D-81A1-FE7BA2B572F3/SQLServer2008_R2_Datasheet.pdf
http://download.microsoft.com/download/5/5/F/55FA7305-E2A5-485D-81A1-FE7BA2B572F3/SQLServer2008_R2_Datasheet.pdf
http://download.microsoft.com/download/4/E/0/4E0ED215-56D8-4D25-9CFC-25F008C73B6C/SQLServer2008_R2_ParallelDW_Datasheet%20v3.pdf
http://download.microsoft.com/download/4/E/0/4E0ED215-56D8-4D25-9CFC-25F008C73B6C/SQLServer2008_R2_ParallelDW_Datasheet%20v3.pdf
http://download.microsoft.com/download/4/E/0/4E0ED215-56D8-4D25-9CFC-25F008C73B6C/SQLServer2008_R2_ParallelDW_Datasheet%20v3.pdf
http://download.microsoft.com/download/5/D/5/5D56C9F4-8B57-4215-AB45-E6751DAF1177/SQL_Server_2008_R2_Datacenter_Datasheet.pdf
http://download.microsoft.com/download/5/D/5/5D56C9F4-8B57-4215-AB45-E6751DAF1177/SQL_Server_2008_R2_Datacenter_Datasheet.pdf
http://download.microsoft.com/download/5/D/5/5D56C9F4-8B57-4215-AB45-E6751DAF1177/SQL_Server_2008_R2_Datacenter_Datasheet.pdf
http://www.oracle.com/technetwork/database/enterprise-edition/overview/partitioning-11g-datasheet-128345.pdf
http://www.oracle.com/technetwork/database/enterprise-edition/overview/partitioning-11g-datasheet-128345.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[19] ——. (2010, November) Oracle RAC One Node. Oracle. [Online].
Available: http://www.oracle.com/technetwork/database/clustering/
overview/ds-oracleraconenode-2009-129387.pdf

[20] D. Gornshtein and B. Tamarkin. (2008, February) Features, strengths
and weaknesses comparison between MS SQL 2005 (Yukon) and
Oracle 10g databases. [Online]. Available: http://www.wisdomforce.
com/resources/docs/MSSQL2005 ORACLE10g compare.pdf

[21] The PostgreSQL Global Development Group. (2011, September)
PostgreSQL 9.1.0 Documentation. The PostgreSQL Global Devel-
opment Group. [Online]. Available: http://www.postgresql.org/files/
documentation/pdf/9.1/postgresql-9.1-A4.pdf

[22] Apache. (2011, August) Cassandra Wiki. Apache. [Online]. Available:
http://wiki.apache.org/cassandra/

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings
of the 1st ACM symposium on Cloud computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152

[24] MongoDB, MongoDB Documentation 2011/09/22, 10gen, September
2011.

[25] Memcached. (2011, September) Memcached Wiki. Memcached. [Online].
Available: http://code.google.com/p/memcached/wiki/NewStart

[26] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid com-
puting 360-degree compared,” in Grid Computing Environments Work-
shop, 2008. GCE ’08, nov. 2008, pp. 1 –10.

[27] S. Zhang, X. Chen, S. Zhang, and X. Huo, “The comparison between
cloud computing and grid computing,” in Computer Application and
System Modeling (ICCASM), 2010 International Conference on, vol. 11,
oct. 2010, pp. V11–72 –V11–75.

[28] Amazon. (2012, July) Amazon elastic compute cloud user guide.
[Online]. Available: http://awsdocs.s3.amazonaws.com/EC2/latest/
ec2-ug.pdf

Synthesis and evaluation of a data management system for machine-to-machine communication 97

http://www.oracle.com/technetwork/database/clustering/overview/ds-oracleraconenode-2009-129387.pdf
http://www.oracle.com/technetwork/database/clustering/overview/ds-oracleraconenode-2009-129387.pdf
http://www.wisdomforce.com/resources/docs/MSSQL2005_ORACLE10g_compare.pdf
http://www.wisdomforce.com/resources/docs/MSSQL2005_ORACLE10g_compare.pdf
http://www.postgresql.org/files/documentation/pdf/9.1/postgresql-9.1-A4.pdf
http://www.postgresql.org/files/documentation/pdf/9.1/postgresql-9.1-A4.pdf
http://wiki.apache.org/cassandra/
http://doi.acm.org/10.1145/1807128.1807152
http://code.google.com/p/memcached/wiki/NewStart
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[29] S. Chuob, M. Pokharel, and J. S. Park, “Modeling and analysis of cloud
computing availability based on eucalyptus platform for e-government
data center,” in Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2011 Fifth International Conference on, 30 2011-
july 2 2011, pp. 289 –296.

[30] M. Kaitsa, I. Stavrakas, T. Kontogiannis, I. Daradimos, M. Panaousis,
and D. Triantis, “Load balancing incoming ip requests across a farm of
clustered mysql servers,” in EUROCON, 2007. The International Con-
ference on #34;Computer as a Tool #34;, September 2007, pp. 546
–550.

[31] R. Aitchison, Pro DNS and BIND. Apress, 2005.

[32] S. Oriyano and P. Cabrera. (2008, September) Introduction to Software
Load Balancing with Amazon EC2. Amazon. [Online]. Available:
http://aws.amazon.com/articles/1639

[33] B. A. Forouzan, Data Communcations and Networking, 4th ed.
McGraw-Hill, 2007.

[34] K. Raeburn, “Advanced Encryption Standard (AES) Encryption for
Kerberos 5,” RFC 3962 (Proposed Standard), Internet Engineering
Task Force, Feb. 2005. [Online]. Available: http://www.ietf.org/rfc/
rfc3962.txt

[35] D. Eastlake 3rd and T. Hansen, “US Secure Hash Algorithms (SHA
and SHA-based HMAC and HKDF),” RFC 6234 (Informational),
Internet Engineering Task Force, May 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6234.txt

[36] V. Cerf, “Pre-emption,” RFC 794, Internet Engineering Task Force,
Sep. 1981. [Online]. Available: http://www.ietf.org/rfc/rfc794.txt

Synthesis and evaluation of a data management system for machine-to-machine communication 98

http://aws.amazon.com/articles/1639
http://www.ietf.org/rfc/rfc3962.txt
http://www.ietf.org/rfc/rfc3962.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc794.txt

	Title Page
	Dedication
	Acknowledgements
	Abstract
	Opsomming
	Contents
	List of Figures
	List of Tables
	Listings
	List of Abbreviations
	Introduction
	Overview
	Background
	Current Systems
	High-level System Architecture

	Research Problem Statement
	Hypothesis
	Primary Objective
	Secondary Objectives
	Research Project Scope

	Research Methodology
	Inputs
	Constraints
	Resources
	Research Process Methodology

	Contribution to Research
	Summary

	Literature Study
	Overview
	Databases
	Database Replication
	Database Sharding
	Database Cluster
	Failover Replication
	Database Variants
	Selection of Database Management System

	Scalable Computing
	Grid Computing
	Cloud Computing
	Load Balancing
	Selection of Scalable Computing Method

	Security
	Authentication
	Cryptography
	Secure Sockets
	Selection of Security Method

	Summary

	Preliminary Synthesis and Evaluation
	Overview
	Preliminary Architecture
	Data Management System Protocol
	Storage System
	Data Management System
	Database Interface

	Evaluation
	Functional Capability
	Performance Characteristics

	Summary

	Detail Synthesis and Evaluation
	Overview
	Detail Synthesis
	Data Management System Protocol
	Storage System
	Data Management System
	Database Interface

	Deployment
	Evaluation
	Functional Capability
	Performance Characteristics

	Summary

	Empirical Tests and Results
	Overview
	Tests
	Functional Capability
	Performance Tests
	Database Tests
	Availability
	Scalability

	Results
	Functional Capability
	Performance Characteristics

	Use Case Results
	Summary

	Conclusion
	Bibliography

