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Abstract: 
Recently there has been an exceptional resurgence of interest in the nuclear power 
industry and the cogeneration of hydrogen from nuclear process heat and electricity, 
with climate change and energy security the main drivers for the implementation of 
these technologies. Nuclear-assisted hydrogen production technologies include 
electrochemical, thermochemical and hybrid-thermochemical options that 
respectively require electricity, high-temperature process heat and both electricity 
and high-temperature process heat from the nuclear reactor. Although the current 
commercial fleet of nuclear reactors are able to supply in the requirements of the 
electrochemical technologies, high-temperature nuclear reactors (HTR) are required 
for the thermochemical and hybrid-thermochemical options. The unique safety 
characteristics of Gen-IV HTGR technologies, such as the PBMR, favour their use in 
future energy-generation scenarios, especially with regard to process heat 
applications. Hydrogen production as process heat application is uniquely capable of 
alleviating concerns regarding energy security and sustainable development while 
supplying in the energy requirements of a growing population and economy. 
Hydrogen is relatively environmentally benign as fuel constituent or secondary 
energy carrier in the so-called hydrogen economy and is able to complement or even 
substitute fossil fuels in future energy markets, especially in the transport and 
industrial sectors. Regardless of the benefits of nuclear-assisted hydrogen production 
technologies, barriers ranging from technological and economical feasibility to safety 
and regulatory concerns exist that require to be addressed if these technologies are 
to be successful. In this regard, the purpose of the study is to investigate all safety 
and regulatory aspects associated with a combined nuclear/chemical complex such 
that they may be evaluated according to their attendant risk and probability to impede 
implementation of the technology. Of fundamental importance is the connection and 
co-location of the two critical facilities, especially considering the hazardous chemical 
inventories present at the chemical facility, the consequences of a nuclear accident 
and the use of the final product (hydrogen) by consumers. 
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Uittreksel: 
Onlangse hernieude belangstelling in kernenergie en die meegaande produksie van 
waterstof met behulp van die proseshitte en elektrisiteit gelewer deur die kernreaktor, 
is meerendeels weens bekommernisse rakende klimaatsveranderinge en 
energiesekuriteit. Kernbehulpte waterstofproduksietegnologiee sluit elektrochemiese, 
termochemiese en hibried-termochemiese opsies in wat onderskeidelik elektrisiteit, 
hoe-temperatuur proseshitte en beide elektrisiteit en hoe-temperatuur proseshitte 
van die kernreaktor verlang. Alhoewel die huidige kommersiele floot kernreaktore 
aan die vereistes van die elektrochemiese opsies voldoen, word hoe-temperatuur 
kernreaktore benodig vir die termochemiese en hibried-termochemiese opsies. Die 
unieke veiligheidseienskappe van die Generasie IV hoe-temperatuur gasverkoelde 
kernreaktortegnologiee, soos die PBMR, begunstig hul gebruik in toekomstige 
energie-opwekking scenarios veral ten opsigte van proseshittetoepassings. 
Waterstofproduksie as proseshittetoepassing is uniek om bekommernisse rakende 
energiesekuriteit en volhoubare ontwikkelinge te verminder terwyl dit kan voorsien in 
die energie behoeftes van 'n groeiende populasie en ekonomie. Waterstof is relatief 
omgewingsvriendelik as brandstofkomponent of as sekondere energiedraer in die 
sogenaamde waterstofekonomie. Dit kan komplimentertot aardbrandstowwe gebruik 
word of selfs vervanging daarvan bewerkstellig in toekomstige energiemarkte, veral 
in die vervoer- en industriele sektore. Ongeag die voordele van kernbehulpte 
waterstofproduksietegnologiee, is daar verskeie struikelblokke wat uit die weg geruim 
moet word alvorens dfe tegnologiee suksesvol toegepas kan word. Dit sluit aspekte 
rakende tegnologiese- en ekonomiese haalbaarheid tot veiligheids- en regulatoriese 
kwessies in. Vervolgens is die doel van die studie om alle veiligheids- en 
regulatoriese aspekte wat verband hou met die gekombineerde kern/chemiese 
kompleks te bestudeer volgens hul bydraende veiligheidsrisiko en die moontlikheid 
om implimetering van die tegnologie te belemmer. Die koppeling en ko-plasing van 
die twee kritiese fasiliteite is van kardinale belang veral in ag genome die inventaris 
van gevaarlike stowwe by die chemiese aanleg, gevolge van 'n kernogeluk en die 
gebruik van die finale produk (waterstof) deur verbruikers. 
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GDP Gross Domestic Product 
Gen-IV Generation IV Nuclear Reactors 
GG Government Gazette (South Africa) 
GHG Greenhouse Gases 
GT-MHR Gas-Turbine Modular Helium Reactor 
H2-MHR Modular Helium Reactor with Hydrogen cogeneration (US) 
HAZOP Hazard and Operability Study 
HDI Human Development Index 
HT High-Temperature 
HTE High-Temperature Electrolysis 
HTGR High-Temperature Gas-cooled Reactor 
HTR High-Temperature Reactor 
HTR-Modul Modular High Temperature Reactor (Germany) 
HTSE High-Temperature Steam Electrolysis 
HTTR High-Temperature Engineering Test Reactor (Japan) 
HyS (also known as WSP) Hybrid-Sulphur cycle 
IAEA International Atomic Energy Association 
ICE Internal Combustion Engine 
IEA International Energy Association 
IHX Intermediate Heat Exchanger 
INSC International Nuclear Societies Council 
l-S (or l-S) Iodine-Sulphur cycle 
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JAEA Japan Atomic Energy Agency 
JAERI now JAEA Japan Atomic Energy Research Institute 
KLAK Kleine Absorberkugeln 
KVK Komponenten-Versuchskreislauf (Components Test Circuit) 
LFL Lower Flammability Limit 
LOCA Loss of Coolant Accident 
LTWE Low-Temperature Water Electrolysis 
LWR Light-Water Reactor 
MCS Main Cooling System (HTTR-30) 
MEDUL Mehrfach & Durchlauf (Multi pass through put) 
MESG Maximum Experimental Safe Gap 
MHR Modular Helium Reactor 
MMI Methane-Methanol-lodomethane thermochemical cycle 
MP Melting Point 
Mtoe Mega tonne oil equivalent 
NASA National Aeronautic and Space Administration (US) 
Necsa South African Nuclear Energy Corporation 
NFPA National Fire Protection Agency (US) 
NGNP Next-Generation Nuclear Plant (US) 
NHI Nuclear-Hydrogen Initiative 

NHDD 
Nuclear Hydrogen Development and Demonstration project 
(Korea) 

NIOSH National Institute for Occupational Safety and Health (US) 
NNR National Nuclear Regulator (South Africa) 
NPP Nuclear Power Plant 
NRC Nuclear Regulatory Committee (US) 
NTP Normal Temperature and Pressure 
ORNL Oak Ridge National Laboratories (US) 
OSHA Occupational Safety and Health Administration (US) 
OTTO Once-Through-Then-Out 
PBMR Pebble-Bed Modular Reactor (SA) 
PCHE Printed Circuit Heat Exchanger 
PCU Power Conversion Unit 
PEM Proton Exchange Membrane 
PENS Peak Electricity Nuclear System 
PFHE Plate Fin Heat Exchanger (France) 
PHHP Process Heat and Hydrogen Production 
PHHP Process Heat Hydrogen Production 
PHPS Primary Helium Purification System (HTTR) 
PHX Process Heat Exchanger 
P1RT Phenomena Identification and Ranking Table 
PNP Prototype Plant Nuclear Process Heat Project (Germany) 
POX Partial Oxidation of Methane 
ppm Parts per million 
PRD Pressure Relief Device 
PSA Probabilistic Safety Assessment 
PWC Pressurized Water Cooler (HTTR-30) 
PWR Pressurized-Water Reactor 
PyC Pyrolytic Carbon 
QD Quantity-Distance 
R Regulation (South Africa by notice in Gazette) 
R&D Research and Development 
RBMK Reaktor Bolchoi Mochtchnosti Kanalni (Russia) 
RG Regulatory Guide (US regulation) 
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RPV Reactor Pressure Vessel 
SAS Small Absorber Spheres 
SCRAM Safety Control Rod Axe Man 
SG Steam Generator (HTTR) 
SH Super Heater (HTTR) 
SHPS Secondary Helium Purification System (HTTR) 
S-l (or l-S) Sulphur-Iodine cycle 
SiC Silicon Carbide 
SMR Steam Methane Reforming 
SNL Sandia National Laboratories (US) 
SR Steam Reformer (HTTR) 
SRNL Savannah River National Laboratories (US) 
SSC Systems, Structures and Components 
STP Standard Temperature and Pressure 
Tetryl N,2,4,6-Tetranitro-N-methylaniline 
THTR Thorium High Temperature Reactor (Germany) 
TMI Three Mile Island (US) 

TNO 
Organization for Applied Scientific Research and Development 
(Netherlands) 

TNT Trinitrotoluene 
TRISO Triple coated fuel particles 
UFL Upper Flammability Limit 
UN United Nations 
UNDP United Nations Development Programme 
UVCE Unconfined Vapour Cloud Explosion 
VCS Vessel Cooling System (HTTR-30) 
VHTR Very High-Temperature Reactor 
WCED World Commission on Environment and Development 
WGS Water-gas-shift (reactor) 
WSP (also known as HyS) Westinghouse-Sulphur Process 
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TABLE OF NOMENCLATURE 
^^^^m^PPiP U C-W^-l^i^BsiOfis:^'^: ."'■ 

A Cross sectional area m2 

c Sonic velocity of gas m/s 
C Molar concentration mol/cm3 

cP Specific Heat Capacity (at constant pressure) J/g.Korcal/g.K 
cv Fuel caloric value kg/kJ 
D Distance from flame m 
d Discharge diameter mm 

D,j Diffusion coefficient cm2/s 
E Energy W 
F Fraction of combustion heat radiated H 
ft Empirical turbulence factor [-] 
1 Intensity J/cm2.s 
j Flux kg/s.cm2 

K Constant [-] 
Kr Allowable radiation level [-] 
Ka Acidity Constant [-] 
L TNT equivalent of explosive substance kg 
M Molecular weight kg/mol 
m Mass flow rate kg/s 
P Pressure Pa 
P Thermal Power W 

p* Reactivity %, cent, $ 
Rorr Distance m 

T Temperature Kor°C 
t Time s 
u Velocity m/s 
V Volume m3 

W TNT equivalent of explosive substance kg 
Wb Burning rate kg/s 
w Water vapour % by weight % 
X Distance from nozzle m 

~Syni|)or;(GreJek) . , ^Description Dimensions 
aT Coefficient of reactivity (Temperature) K"1 

a a-particle (Radioactive decay) H 
6 (3-particle (Radioactive decay) [-] 
Y y-particle (Radioactive decay) [-] 
£ Emissivity H 
P Density kg/m3 

a Microscopic cross section m2 

r Resonance width m 

X 


