Evaluating the safety and regulatory aspects of the combined nuclear/chemical complex for Hydrogen production

By

G.P. Schalkwyk

B.Eng. (Chem. Eng.) (NWU)

Dissertation submitted in partial fulfilment of the requirements for the degree

Master of Engineering

at the Post-Graduate School of Nuclear Science and Engineering of the North-West University, Potchefstroom Campus

Promoter: Prof. P.W.E. Blom

November 2008 Title:Evaluation of the safety and regulatory aspects of the combinednuclear/chemical complex for hydrogen production

Author:G.P. SchalkwykPromoter:Prof. P.W.E. Blom

Abstract:

Recently there has been an exceptional resurgence of interest in the nuclear power industry and the cogeneration of hydrogen from nuclear process heat and electricity, with climate change and energy security the main drivers for the implementation of these technologies. Nuclear-assisted hydrogen production technologies include electrochemical, thermochemical and hybrid-thermochemical options that respectively require electricity, high-temperature process heat and both electricity and high-temperature process heat from the nuclear reactor. Although the current commercial fleet of nuclear reactors are able to supply in the requirements of the electrochemical technologies, high-temperature nuclear reactors (HTR) are required for the thermochemical and hybrid-thermochemical options. The unique safety characteristics of Gen-IV HTGR technologies, such as the PBMR, favour their use in future energy-generation scenarios, especially with regard to process heat applications. Hydrogen production as process heat application is uniquely capable of alleviating concerns regarding energy security and sustainable development while supplying in the energy requirements of a growing population and economy. Hydrogen is relatively environmentally benign as fuel constituent or secondary energy carrier in the so-called hydrogen economy and is able to complement or even substitute fossil fuels in future energy markets, especially in the transport and industrial sectors. Regardless of the benefits of nuclear-assisted hydrogen production technologies, barriers ranging from technological and economical feasibility to safety and regulatory concerns exist that require to be addressed if these technologies are to be successful. In this regard, the purpose of the study is to investigate all safety and regulatory aspects associated with a combined nuclear/chemical complex such that they may be evaluated according to their attendant risk and probability to impede implementation of the technology. Of fundamental importance is the connection and co-location of the two critical facilities, especially considering the hazardous chemical inventories present at the chemical facility, the consequences of a nuclear accident and the use of the final product (hydrogen) by consumers.

Titel: Evaluering van die veiligheids- and regulatoriese aspekte verbonde aan 'n gekombineerde kern-chemiese kompleks wat verantwoordelik is vir die produksie van waterstof

Outeur:	G.P. Schalkwyk
Promotor:	Prof. P.W.E. Blom

Uittreksel:

Onlangse hernieude belangstelling in kernenergie en die meegaande produksie van waterstof met behulp van die proseshitte en elektrisiteit gelewer deur die kernreaktor, is meerendeels weens bekommernisse rakende klimaatsveranderinge en energiesekuriteit. Kernbehulpte waterstofproduksietegnologieë sluit elektrochemiese, termochemiese en hibried-termochemiese opsies in wat onderskeidelik elektrisiteit, hoë-temperatuur proseshitte en beide elektrisiteit en hoë-temperatuur proseshitte van die kernreaktor verlang. Alhoewel die huidige kommersiële floot kernreaktore aan die vereistes van die elektrochemiese opsies voldoen, word hoë-temperatuur kernreaktore benodig vir die termochemiese en hibried-termochemiese opsies. Die unieke veiligheidseienskappe van die Generasie IV hoë-temperatuur gasverkoelde kernreaktortegnologieë, soos die PBMR, begunstig hul gebruik in toekomstige energie-opwekking scenarios veral ten opsigte van proseshittetoepassings. Waterstofproduksie as proseshittetoepassing is uniek om bekommernisse rakende energiesekuriteit en volhoubare ontwikkelinge te verminder terwyl dit kan voorsien in die energie behoeftes van 'n groeiende populasie en ekonomie. Waterstof is relatief omgewingsvriendelik as brandstofkomponent of as sekondêre energiedraer in die sogenaamde waterstofekonomie. Dit kan komplimentêr tot aardbrandstowwe gebruik word of selfs vervanging daarvan bewerkstellig in toekomstige energiemarkte, veral in die vervoer- en industriële sektore. Ongeag die voordele van kernbehulpte waterstofproduksietegnologieë, is daar verskeie struikelblokke wat uit die weg geruim moet word alvorens die tegnologieë suksesvol toegepas kan word. Dit sluit aspekte rakende tegnologiese- en ekonomiese haalbaarheid tot veiligheids- en regulatoriese kwessies in. Vervolgens is die doel van die studie om alle veiligheids- en regulatoriese aspekte wat verband hou met die gekombineerde kern/chemiese kompleks te bestudeer volgens hul bydraende veiligheidsrisiko en die moontlikheid om implimetering van die tegnologie te belemmer. Die koppeling en ko-plasing van die twee kritiese fasiliteite is van kardinale belang veral in ag genome die inventaris van gevaarlike stowwe by die chemiese aanleg, gevolge van 'n kernogeluk en die gebruik van die finale produk (waterstof) deur verbruikers.

ACKNOWLEDGEMENTS

Foremost I would like to thank my Creator for His Grace and for allowing me the opportunity, the means and perseverance to achieve a lifelong goal.

Nothing worthwhile is ever achieved in a vacuum, and to this extent, the author would like to acknowledge and express appreciation to the following people, without whom this experience would not have been possible and certainly not meaningful:

- Professor Blom for his expert guidance, belief in me and allowing me this opportunity;
- My mother Marthie for her prayers, enduring love, continuous support and all the sacrifices she had to make;
- My sisters Marli and Elizmari for their moral support, belief in me and making me realize what is truly important in life;
- My father Gert for building my character and teaching me the true meaning of having responsibilities, honour and morality, but who was sadly taken away from us before he could see me reach this milestone;
- My dear friend Lieslmari Lamprecht for her love, moral support and belief in me as well as being by my side every step of the way;
- All my friends, especially Dries Grundlingh, Bennie Repsold and MD Coetzee, for helping me keep a healthy balance between work and fun – we had the time of our lives.

Lastly, the author would like to acknowledge science and the attaining of knowledge as driving forces in his life, while keeping in mind that:

> "It would be possible to describe everything scientifically, but it would make no sense; it would be without meaning, as if you described a Beethoven symphony as a variation of wave pressure."

> > -- Albert Einstein --

TABLE OF CONTENTS

1	INTRODUCTION	1
	1.1 ENERGY SECURITY	З
	1.2 SUSTAINABLE DEVELOPMENT	4
	1.3 NUCLEAR ENERGY AS PRIMARY ENERGY SOLIRCE	
	1.4 HYDROGEN AS ENERGY CARRIER	10
	1.5 THE HYDROGEN ECONOMY	12
	1.5.1 CURRENT AND NEAR-TERM MARKETS	12
	1 5 2 MID- AND LONG-TERM MARKETS	11
	16 HYDROGEN PRODUCTION	17
	1 6 1 FIGURE-OF-MERIT ASSESSMENT	10
	1 7 THE SOLITH AFRICAN ENERGY SITUATION	22
	1.7 THE SOUTH AFRICAN ENERGY POLICY	22
	1.7.2 THE SOUTH AFRICAN NUCLEAR ENERGY POLICY	20
	1.7.2 THE SOUTH AFRICANTIOUTLETE S POLICY	24
	1.8 IMPORTANCE OF SAFETY	20
		20
		27
		27
	1.11 1330E3 TO BE ADDRESSED	2/
	1.12 ASSUMPTIONS	20
		29
2	NUCLEAR REACTOR- AND HYDROGEN PRODUCTION TECHNOLOGIES	31
		31
	2.2 HTGRs	31
	2.2.1 GENERAL CHARACTERISTICS OF HTGRS	34
	2.2.2 SAFETY CHARACTERISTICS OF HTGRS	34 24
	2 2 3 PRINCIPIES OF INHERENTLY SAFE NUCLEAR REACTORS	36
	2.2.3 PARKER ELS OF INTERENTED SAFE NOCEEAN REACTORS III.	37
	2.2.3.2 THERMAL STABILITY	.39
	2.2.3.3 CHEMICAL STABILITY	.40
	2.2.3.4 MECHANICAL STABILITY	.41
	2.2.4 LEADING CANDIDATE GEN-IV HTGRs	43
	2.2.4.1 HTTR-30 (JAPAN)	. 44
	2.2.4.2 PBMR (SOUTH AFRICA)	46
	2.2.4.3 HTR-10 (CHINA)	47
	2.2.4.4 GT-MHR (USA/GUS)	49
	2.3 NUCLEAR-HYDROGEN PRODUCTION TECHNOLOGIES	51
		51
	2.3.1.1 LOVV-TEIVIPERATURE VIATER ELECTROLISIS (LIVVE)	51
	2.3.7.2 THERMOCHEMICAL CYCLES	52
	2.3.2 NUCLEAR STEAM METHANE REFORMING	54
	2.3.2.2 IODINE-SUPHUR CYCLE (I-S)	55
	2.3.2.3 PARTIAL OXIDATION (POX) OF METHANE	57
	2.3.3 HYBRID THERMOCHEMICAL CYCLES	58
	2.3.3.1 HYBRID-SULPHUR CYCLE	59
	2,3.3.2 PLASMA-ARC REFORMING OF METHANE WITH CO2	60
	2.4 CONCLUDING REMARKS	61
3	HAZARDOUS SUBSTANCES	62
		C 2
		52 20
	2.2 DIVRUGEN (H2)	62
	3.2.1 PRISICAL PROPERTIES	02 65
	J.Z.Z UNEIVIILAL MUVERIIEJ	05 75
	D.D IVIC I HAINE (UH4)	15

	3.3.1	1 PHYSICAL PROPERTIES	75
	3.3.2	2 CHEMICAL PROPERTIES	
3.4	4	NATURAL GAS	79
3.5	5	CARBON MONOXIDE (CO)	80
3.6	5	CARBON DIOXIDE (CO ₂)	
3.7	7	SULPHURICACID (H ₂ SO ₄)	
3.8	в.	SULPHUR DIOXIDE (SO ₂)	85
3.9	Э.	SULPHUR TRIOXIDE (SO₃)	85
3.1	10	IODINE (I ₂)	
3.2	11	HYDROGEN IODIDE (HI) AND HYDRIODIC ACID	
3.2	12	OXYGEN (O ₂)	
3.2	13	HELIUM (HE)	89
3.2	14	CONCLUDING REMARKS	89
4	ACCI	IDENT PHENOMENA	90
4.1	1		
4.7	2	EVOLUTION OF A FLAMMABLE GAS CLOUD	90
	_ 	1 IFT REI ΕΔSES	91
	422	2 DIFFUSION	94
	122	2 DISPERSION OF GAS CLOUDS	94 95
	л 2 Д	4 REAL GAS CLOUDS	98
4 =	λ	IGNITION	101
4.4	1	COMBUSTION	102
	4 4 1	1 I AMINAR PREMIXED FLAME	103
	4 4.2	2 I AMINAR NON-PREMIXED FLAME	104
	4.4.3	3 TURBULENT PREMIXED FLAME	
	4.4.4	4 TURBUI ENT NON-PREMIXED FLAME	
	4.4.5	5 GENERAL TYPES OF COMBUSTION	
	4.4	4.5.1 FLASH FIRES & FIREBALLS	
	4.4	.4.5.2 UNCONFINED VAPOUR CLOUD EXPLOSION	
	4.4	4.5.3 DEFLAGRATION	108
	4.4	4.5.4 DETONATION	
	4.4	4.5.5 DEFLAGRATION-TO-DETONATION TRANSITION	
4.5	> - '	BLAST WAVES	
4.6	5		
4.7	/ 	HYDROGEN EMBRITTLEMENT	
	4.7.1	1 PHENOMENA	
	4.7.2	2 CATEGORIES	
	4.7.3	3 MECHANISMS	
4.8	3 (CONCLUDING REMARKS	
5	THE (COMBINED NUCLEAR/CHEMICAL COMPLEX	
5.1	LI		
5.2	2	OVERVIEW OF NUCLEAR-HYDROGEN R&D PROJECTS	
	5.2.1	1 SOUTH AFRICA	
	5,2,2	2 FRANCE	
	5.2.3	3 JAPAN	
	5.2.4	4 KOREA	
	5.2.5	5 USA	
	5.2.6	6 DISCUSSION	
5.3	5 1		
-	5.3.1	I POWER, HEAT AND TEMPERATURE	
-	5.3.2		
-	5.3.3	5 ISULATION	
-	5.3.4	4 I KI I IUMI CON I AMINA I IUN	
	5.3.5		
5.4	+ I		

5.4.1	THE INTERMEDIATE HEAT EXCHANGER	136
5.4.1.1	GERMANY	137
5.4.1.2		139
5.4.1.3 5.4.1.4	USA (HZ-WITR)	140
5.4.1.4 E 1 7	FRANCE	141
J.4.2		142
5.4.3		143
5.4.4	HIGH-TEMPERATURE ISOLATION VALVE	144
5.4.5		145
5.5 SAFE	TY ASPECTS OF THE COMBINED COMPLEX	146
5.5.1	HAZARD IDENTIFICATION	146
5.5.2	TRITIUM AND HYDROGEN TRANSPORT	150
5.5.3	THERMAL TURBULENCES	153
5.5.4	RELEASE OF FLAMMABLE SUBSTANCES INTO THE NUCLEAR REACTOR BUILDING	154
5.5.5	PHYSICAL SEPARATION REQUIREMENTS	155
5.5.5.1	PSA REGARDING SEPARATION DISTANCES	160
5.5.6	PSA STUDY ON THE HTTR/SMR COMPLEX	167
5.5.7	PLANT PHENOMENA IDENTIFICATION & RANKING TABLES	168
5.5.7.1		171
5.5.7.2		175
5.5.7.3		1//
5.5.7.4		102
558	MATERIAL CONSIDERATIONS	183 181
5.5.0 PEM	ARKS REGARDING THE LAVOLIT OF THE COMBINED COMPLEY	125
5.7 CON	CLUDING REMARKS	185
6 REGULAT	ORY ASPECTS	189
6.1 INTR	ODUCTION	189
6.2 NAT	ONAL REGULATIONS	191
6.2.1	HAZARDOUS SUBSTANCES ACT	191
6.2.2	NUCLEAR ENERGY ACT	195
6.2.3	NATIONAL NUCIFAR REGULATOR ACT	201
624	NNR REOLIIREMENT- AND LICENSING DOCUMENTS	209
625	SECONDARY ACTS AND REGULATIONS	210
63 INTE	RNATIONAL REGULATORY REOLUREMENTS	211
6.4 CON	CLUDING REMARKS	
7 CONCLUS	IONS AND RECOMMENDATIONS	213
7.1 INTR	ODUCTION	
7.2 SLIM	MARY OF INVESTIGATION	
	CLUSIONS	
7.4 RFC		
KEFERENCES		226
APPENDIX A: 1	NFPA 704	232
APPENDIX B:	NATIONAL RADIOACTIVE WASTE MANAGEMENT AND CLASSIFICATION SCHEME	233

LIST OF FIGURES

Figure 1-1: HDI per capita electricity consumption (UNDP, 2005 as given in IAEA, 2006)	1
Figure 1-2: 1973 and 2005 Fuel Shares of Total Final Consumption (IAE, 2007)	2
Figure 1-3: 1973 and 2005 Fuel Shares of Electricity Generation (IAE, 2007)	2
Figure 1-4: Probabilistic global population projections to 2100 (IAEA, 2006)	5
Figure 1-5: Projected global primary energy use through 2100 (IAEA, 2006)	6
Figure 1-6: Nuclear electricity generation and capacity additions since 1966 (IAEA, 2006)	7
Figure 1-7: Ranges of levelized costs for electricity generating technologies (IAEA, 2006)	8
Figure 1-8: CO ₂ emission rates for electricity generating alternatives (IAEA, 2006)	9
Figure 1-9: Summary of external costs of each energy option (IAEA, 2006)	.10
Figure 1-10: Current energy scenario (Marban & Valdez-Solis, 2007)	.11
Figure 1-11: Peak-electricity nuclear system (Forsberg, 2005)	.16
Figure 1-12: World hydrogen production routes in 2005 (Ewan & Allen, 2005)	.17
Figure 1-13: The primary energy sources considered and their routes to hydrogen	.18
Figure 1-14: Figure-of-merit 1 (Ewan & Allen, 2005)	.19
Figure 1-15: Figure-of-merit 3 (Ewan & Allen, 2005)	.19
Figure 1-16: Figure-of-merit 4 (Ewan & Allen, 2005)	.20
Figure 1-17: Overall figure-of-merit (Ewan & Allen, 2005)	.20
Figure 1-18: South African primary energy supply in 2002 (Digest of South African	.22
Figure 2-1: TRISO-coated fuel particle (PBMR, 2008)	.33
Figure 2-2: Barriers to the release of fission products in HTGR (Kugeler, 2005)	.36
Figure 2-3: Principles of inherently safe nuclear reactors (Kugeler, 2005)	.37
Figure 2-4: Negative temperature coefficient of reactivity (Kugeler, 2005)	.38
Figure 2-5: Nuclear Doppler Effect (Lamarsh & Baratta, 2001)	.39
Figure 2-6: Self-acting decay heat removal in HTGR (Kugeler, 2005)	.40
Figure 2-7: Concept of limiting the ingress of foreign media into the primary circuit of	.41
Figure 2-8: External events considered for licensing of HTGR (Kugeler, 2005)	.42
Figure 2-9: HTTR-30 core (Kugeler, 2005)	. 44
Figure 2-10: HTTR-30 fuel elements (Kugeler, 2005)	.45
Figure 2-11: Arrangement of primary system of the PBMR (PBMR, 2008)	.46
Figure 2-12: Vertical schematic section through PBMR (Van Antwerpen, 2007)	.47
Figure 2-13: Flow sheet of the HTR-10 coupled with a steam generator (Kugeler, 2005)	.48
Figure 2-14: Vertical section of the HTR-10 with steam generator (Kugeler, 2005)	.48
Figure 2-15: GT-MHR reactor building (Hayner et al., 2006)	.49
Figure 2-16: GT-MHR reactor system cutaway (Hayner et al., 2006)	.50
Figure 2-17: Schematic representation of an electrolytic cell (Verfondern, 2007)	.52
Figure 2-18: HTSE coupled with a HTGR (Verfondern, 2007)	.53
Figure 2-19: Flowsheet of nuclear SMR (Kugeler, 2005)	.55
Figure 2-20: Iodine-Sulphur Cycle combined with the HTTR (Verfondern, 2007)	.57
Figure 2-21: Proposed POX system combined with a HTGR and HyS process	.58
Figure 2-22: HyS cycle or Westinghouse Sulphur process	.60
Figure 2-23: Hybrid plasma-arc reforming of methane with CO ₂ (Basson, 2008)	.61
Figure 3-1: Flammability region of hydrogen-air-oxygen mixtures at NTP (NASA, 2005)	.65
Figure 3-2: Effects of N ₂ , He, CO ₂ , and H ₂ O Diluents on flammability limits of hydrogen	.66
Figure 3-3: Effects of halocarbon inhibitors on flammability limits of hydrogen-oxygen	.67
Figure 3-4: Variation in distance from a hydrogen fire for a thermal radiation exposure	. 69
Figure 3-5: Minimum dimensions of gaseous hydrogen-air mixtures for detonation at	.70
Figure 3-6: Detonation cell size of hydrogen, methane, ethylene and acetylene in air at	.71
Figure 3-7: Minimum initiation energies for direct detonation of hydrogen-air mixtures	.72
Figure 3-8: Pressure signals from different hydrogen combustion modes (Lelyakin,	.73
Figure 3-9: Flammability diagram for methane-oxygen-nitrogen mixtures at	.77
Figure 4-1: Distance vs. aperture diameter for various concentrations (Houf & Shefer,	.94
Figure 4-2: Comparison of the mass flow rate following a sonic release of hydrogen	.96
Figure 4-3: Hydrogen concentrations at 3 and 5 seconds after leak according to	.97
Figure 4-4: Hydrogen concentration distribution in 5 seconds after release with a wind	.98

Figure 4-5: Deflagration pressure profile in a hemispherical and in a flat gas cloud	99
Figure 4-6: Detonation pressure profile in a hemispherical and in a flat gas cloud	100
Figure 4-7: Essential features of a laminar flame (Friedman & Burke as illustrated in	103
Figure 4-8: Laminar premixed flames with a flat flame and Bunsen flame illustrated on	103
Figure 4-9: Schematic illustration of counter-flow and co-flow laminar diffusion flames	104
Figure 4-10: Laminar jet diffusion flames (Smooke et al, 1989 as illustrated in Warnatz	104
Figure 4-11: Schematic illustration of a "V-shaped" turbulent premixed flame stabilized	105
Figure 4-12: Borghi diagram (Borghi, 1984 as illustrated in Warnatz et al., 2006)	106
Figure 4-13: Schematic illustration of a turbulent diffusion iet flame	106
Figure 4-14: Turbulent non-premixed methane-air iet flame (Nau et al., 1996 as	107
Figure 4-15: Overpressure and flow velocity distribution for a spherical deflagration	109
Figure 4-16: Rankine-Hugenoit curve (Warnatz <i>et al.</i> , 2006)	110
Figure 4-17: Obstacle experiment with 30% hydrogen mixture (Groethe <i>et al.</i> , 2007)	
Figure 4-18: High-speed video frames from the detonation test (Groethe <i>et al.</i> 2007).	111
Figure 4-19: Critical initiation energy for selected fuel-air mixtures (Verfondern &	
Figure 4-20: Schlieren pictures of a) a laminar deflagration, b) a turbulent deflagration.	114
Figure 4-21: Velocity-distance diagram of F7K tube experiments with various H_{π}/air	115
Figure 4-22: Characteristic shape of pressure-time function for a detonation shock	116
Figure 4-23: TNO for blast overpressure according to the Multi-Energy method	117
Figure 4-24: Ductile and brittle behaviour of metals (Verfondern, 1999 as illustrated in	120
Figure 5-1: Concents of PBMR process heat plants (Grewenstein et al. 2008)	127
Figure 5-2: Concepts of Polynk process near plants (dreyvenstein et di., 2006)	120
Figure 5-2: Principle of the AREVA-IVE combined cycle cogeneration finds (copsey,	120
Figure 5-5. Fotellula an angement of a dedicated ood WW_t which for H_2 production at a	120
Figure 5-4. HTTR/SMR plant (Venondern, 2007)	120
Figure 5-5: GTHTR300C plant (rang, 2005 as illustrated in Verfondern, 2007)	120
Figure 5-6: Korean NHDD plant (Lee, 2005 as illustrated in Verfondern, 2007)	120
Figure 5-7: Korea design (Snin, 2005 as inustrated in Venondern, 2007)	130
Figure 5-8: Concept of the US H2-MHK combined with the I-S cycle (Verrondern, 2007)	121
Figure 5-9: H2-MHR combined with both I-S cycle and HTE (vertondern, 2007)	131
Figure 5-10: Temperature of delivered heat for some reactors (Forsberg et dl., 2004)	133
Figure 5-11: Primary circuit of a modular HIGR with IHX a) Principle flow diagram, b) 1	136
Figure 5-12: Arrangement of (a) a reactor based on the HTR-Modul-type and (b) Helical	138
Figure 5-13: Two IHX components tested in KVK: (left) Helical tube bundle and (right)	138
Figure 5-14: Schematic and photograph of the He-He IHX in	139
Figure 5-15: Printed Circuit Heat Exchanger, PCHE (HEATRIC as illustrated in	140
Figure 5-16: Two variants of plate fin IHX Brayton Energy design (left) and Nordon	141
Figure 5-17: IHX vessel with integrated plate IHX modules (Breuil, 2006 as illustrated in	141
Figure 5-18: Technical concept of a helium-heated steam reformer connected to a	142
Figure 5-19: New concept helium-heated steam reformer for the HTTR/SMR (Verfondern	142
Figure 5-20: Hot gas duct of a 200 MW _t modular HTR (Kugeler, 2005)	143
Figure 5-21: Details of insulation systems for hot gas ducts: a) hot gas duct of EVO	144
Figure 5-22: High Temperature Isolation Valve (Verfondern & Nishihara, 2004a)	144
Figure 5-23: Tritium ("HT") and hydrogen balance in HTGR H ₂ production system	151
Figure 5-24: Ingress of flammable gases into the reactor containment	. 154
Figure 5-25: Quantity Distance relationships according to US and German regulations	156
Figure 5-26: Decision criteria for risk-informed applications at the NRC (from RG 1.174	159
Figure 5-27: Master logic diagram for potential disruption scenarios (Smith et al., 2005)	160
Figure 5-28: Core damage risk as a function of increasing the separation distance	164
Figure 5-29: Material diagram (FZJ as illustrated in Verfondern, 2007)	184
Figure 5-30: Comparison of present and previous work of hydrogen permeation in	185

LIST OF TABLES

Table 1-1: Conversion factors for energy (IEA, 2007)	3
Table 2-1 Experimental gas-cooled reactors (Kugeler, 2005)	32
Table 2-2: Mechanical characteristics of HTGR fuel pebbles (Kugeler, 2005)	
Table 2-3: Leading candidate HTGR technologies (Kugeler, 2005)	43
Table 3-1: Physical and chemical parameters of hydrogen (BRHS, 2007)	74
Table 3-2: Safety related chemical and physical properties of CH ₄ , H ₂ and CO	76
Table 3-3: Composition of natural gas (NaturalGas, 2007)	79
Table 3-4: Characteristic properties of CO ₂ , CO, HI, CH ₄ , SO ₂ , SO ₃ and H ₂ SO ₄	
Table 3-5: Characteristic properties of H_2 , I_2 , O_2 and He	
Table 4-1: Hydrogen cloud extents according to numerical solutions of the Ideal gas	96
Table 4-2: Asphyxiation hazards of hydrogen (NASA, 2005)	101
Table 4-3: Potential Ignition Sources (Ordin, 1983 as given in NASA, 2005)	102
Table 4-4: Physiological hazard of overpressures (NASA, 2005)	117
Table 4-5: Damage classification (Verfondern & Nishihara, 2005)	118
Table 4-6: Control building specifications regarding overpressure (TNO, 1992 as given	118
Table 4-7: Critical heat radiation for humans and goods (Böke, 1995 as given in	119
Table 4-8: Typical characteristics of hydrogen embrittlement types (NASA, 2005)	123
Table 5-1: H_3 production and release for the 170 MW _t HTR-Modul (Verfondern, 2007)	151
Table 5-2: Tritium permeation for steady-state operation of the HTTR (Verfondern &	152
Table 5-3: Separation distances according to various regulations	157
Table 5-4: Sensitivity Analyses related to separation distances (Smith et al., 2005)	162
Table 5-5: Summary of results from the sensitivity cases (Smith et al., 2005)	166
Table 5-6: PSA results conducted on the HTTR/SMR complex (Nelson et al., 2007)	167
Table 5-7: Pre-conceptual design parameters for the NGNP (Forsberg et al., 2007)	169
Table 5-8: Nuclear hydrogen production options (Forsberg et al., 2007)	169
Table 5-9: Ranking criteria of importance of any phenomena (Forsberg et al., 2007)	170
Table 5-10: Rating criteria of knowledge base (Forsberg et al., 2007)	170
Table 5-11: Summary of PHHP PIRT evaluation (Forsberg et al., 2007)	172
Table 5-12: Heat capacities of candidate molten salts (Williams, 2006)	175
Table 5-13: Summary of the properties of candidate molten salts (Williams, 2006)	176
Table 6-1: Definitions pertaining to the Hazardous Substances Act (Act no. 15 of 1973)	192
Table 6-2: Dose Limits (GG, 1993)	
Table 6-3: Definitions pertaining to the Nuclear Energy Act (Act no. 46 of 1999)	196
Table 6-4: Definitions pertaining to the National Nuclear Regulator Act (47/1999)	
Table 6-5: Exempt radioactivity concentrations and exempt total radioactivity content	
Table 6-6: Probabilistic risk limits (R. 388)	

TABLE OF ABBREVIATIONS & ACRONYMS

*Abbreviation or Acronym	Description		
AHTR	Advanced High-Temperature Reactor (US)		
ACGIH	American Conference of Government Industrial Hygienists		
ACS	Auxiliary Cooling System (HTTR-30)		
AVR	Arbeitsgemeinschaft Versuchs-Reaktor (Germany)		
BISO	Double (Binary) coated fuel particles		
BLEVE	Boiling Liquid Evanorating Vanour Explosion		
BMI	Bundesministerium des Innern (German Regulation)		
BP	Boiling Point		
BBHS	Biennal Report on Hydrogen Safety		
BWB	Boiling-Water Reactor		
CCS	Carbon Canture and Storage		
	Core Damage Frequency		
	Chanman-louguet		
	Central Nervous System		
	Deflogration to Detenction Transition		
DME	Denagration-to-Deconation Hansition		
DOE	Department of Energy (US)		
DOH	Department of Health (South Africa)		
	Direct Reducted Iron		
EAF	Electric-Arc Furnace		
EOS	Equation of State		
EU	European Union		
FCV	Fuel-cell Vehicles		
FOM	Figure-of-Merit		
FP	Fission Products		
FZK	Forschungszentrum Karlsruhe – Research Centre Karlsruhe		
GA	General Atomics		
GAO	Government Accountability Office (US)		
GDP	Gross Domestic Product		
Gen-IV	Generation IV Nuclear Reactors		
	Government Gazette (South Africa)		
GHG	Greenhouse Gases		
GT-MHR	Gas-Turbine Modular Helium Reactor		
H2-MHR	Modular Helium Reactor with Hydrogen cogeneration (US)		
HAZOP	Hazard and Operability Study		
HDI	Human Development Index		
HT	High-Temperature		
HTE	High-Temperature Electrolysis		
HTGR	High-Temperature Gas-cooled Reactor		
HTR	High-Temperature Reactor		
HTR-Modul	Modular High Temperature Reactor (Germany)		
HTSE	High-Temperature Steam Electrolysis		
HTTR	High-Temperature Engineering Test Reactor (Japan)		
HyS (also known as WSP)	Hybrid-Sulphur cycle		
IAEA	International Atomic Energy Association		
ICE	Internal Combustion Engine		
IEA	International Energy Association		
IHX	Intermediate Heat Exchanger		
INSC	International Nuclear Societies Council		
I-S (or I-S)	Iodine-Sulphur cycle		

JAEA	Japan Atomic Energy Agency	
JAERI now JAEA	Japan Atomic Energy Research Institute	
KLAK	Kleine Absorberkugeln	
KVK	Komponenten-Versuchskreislauf (Components Test Circuit)	
LFL	Lower Flammability Limit	
LOCA	Loss of Coolant Accident	
	Low-Temperature Water Electrolysis	
	Light-Water Reactor	
MCS	Main Cooling System (HTTR-30)	
MEDUI	Mehrfach & Durchlauf (Multi nass through put)	
MESG	Maximum Experimental Safe Gan	
MHB	Modular Helium Reactor	
	Methane-Methanol-Jodomethane thermochemical cycle	
	Melting Point	
Mtoe	Mera toppa oil aquivalent	
	National Agronautic and Space Administration (US)	
	South African Nuclear Energy Corporation	
	National Fire Protection Agency (US)	
	Next-Generation Nuclear Plant (US)	
	Nuclear-Hydrogen Initiative	
NUED	Nuclear Hydrogen Development and Demonstration project	
NHDD	(Korea)	
NIOSH	National Institute for Occupational Safety and Health (US)	
	National Nuclear Regulator (South Africa)	
NPP	Nuclear Power Plant	
NRC	Nuclear Regulatory Committee (US)	
NTP	Normal Temperature and Pressure	
ORNL	Oak Ridge National Laboratories (US)	
OSHA	Occupational Safety and Health Administration (US)	
	Once-Through-Then-Out	
PBMR	Pebble-Bed Modular Reactor (SA)	
PCHE	Printed Circuit Heat Exchanger	
PCU	Power Conversion Unit	
PEM	Proton Exchange Membrane	
PENS	Peak Electricity Nuclear System	
PFHE	Plate Fin Heat Exchanger (France)	
PHHP	Process Heat and Hydrogen Production	
PHHP	Process Heat Hydrogen Production	
PHPS	Primary Helium Purification System (HTTR)	
PHX	Process Heat Exchanger	
PIRT	Phenomena Identification and Ranking Table	
PNP	Prototype Plant Nuclear Process Heat Project (Germany)	
POX	Partial Oxidation of Methane	
mag	Parts per million	
PRD	Pressure Relief Device	
PSA	Probabilistic Safety Assessment	
PWC	Pressurized Water Cooler (HTTR-30)	
	Pressurized-Water Reactor	
PvC	Pyrolytic Carbon	
OD	Ouantity-Distance	
B	Regulation (South Africa by notice in Gazette)	
R&D	Research and Development	
RBMK	Reaktor Bolchoi Mochtchnosti Kanalni (Russia)	
BG	Regulatory Guide (US regulation)	
1.1.5	I ISBAIATOI I GAIAG (GO I BBAIATOI)	

RPV	Reactor Pressure Vessel	
SAS	Small Absorber Spheres	
SCRAM	Safety Control Rod Axe Man	
SG	Steam Generator (HTTR)	
SH	Super Heater (HTTR)	
SHPS	Secondary Helium Purification System (HTTR)	
S-I (or I-S)	Sulphur-lodine cycle	
SIC	Silicon Carbide	
SMR	Steam Methane Reforming	
SNL	Sandia National Laboratories (US)	
SR	Steam Reformer (HTTR)	
SRNL	Savannah River National Laboratories (US)	
SSC	Systems, Structures and Components	
STP	Standard Temperature and Pressure	
Tetryl	N,2,4,6-Tetranitro-N-methylaniline	
THTR	Thorium High Temperature Reactor (Germany)	
TMI	Three Mile Island (US)	
	Organization for Applied Scientific Research and Development	
TNO	(Netherlands)	
TNT	Trinitrotoluene	
TRISO	Triple coated fuel particles	
UFL	Upper Flammability Limit	
UN	United Nations	
UNDP	United Nations Development Programme	
UVCE	Unconfined Vapour Cloud Explosion	
VCS	Vessel Cooling System (HTTR-30)	
VHTR	Very High-Temperature Reactor	
WCED	World Commission on Environment and Development	
WGS	Water-gas-shift (reactor)	
WSP (also known as HyS)	Westinghouse-Sulphur Process	

TABLE OF NOMENCLATURE

Symbolk	Description	Dimensions
A	Cross sectional area	m ²
С	Sonic velocity of gas	m/s
С	Molar concentration	mol/cm ³
C _p	Specific Heat Capacity (at constant pressure)	J/g.K or cal/g.K
C _v	Fuel caloric value	kg/kJ
D	Distance from flame	m
d	Discharge diameter	mm
Dıj	Diffusion coefficient	cm ² /s
E	Energy	W
F	Fraction of combustion heat radiated	[-]
f_t	Empirical turbulence factor	[-]
1	Intensity	J/cm ² .s
j	Flux	kg/s.cm ²
K	Constant	[-]
· K _r	Allowable radiation level	[-]
Ka	Acidity Constant	[-]
L	TNT equivalent of explosive substance	kg
М	Molecular weight	kg/mol
m	Mass flow rate	kg/s
р	Pressure	Ра
Р	Thermal Power	W
P*	Reactivity	%, cent, \$
R or r	Distance	m
Т	Temperature	K or ^o C
t	Time	S
u	Velocity	m/s
V	Volume	m³
W	TNT equivalent of explosive substance	kg
W _b	Burning rate	kg/s
W	Water vapour % by weight	%
x	Distance from nozzle	m

Symbol (Greek)	Description	Dimensions
α_{T}	Coefficient of reactivity (Temperature)	K ⁻¹
α	α -particle (Radioactive decay)	[-]
в	β-particle (Radioactive decay)	[-]
γ	y-particle (Radioactive decay)	[]
3	Emissivity	[+-]
ρ	Density	kg/m³
σ	Microscopic cross section	m ²
Г	Resonance width	m