REFERENCES

- Air Liquide. Safety data sheet sheets: Hydrogen, methane, carbon dioxide, carbon monoxide, oxygen, helium, iodine, sulphuric acid, sulphur dioxide, sulphur trioxide and hydrogen iodide. Available at <u>http://www.airliquide.com</u>, accessed 14/05/2008.
- Basson, G.W. Techno-economic evaluation of the production of synthesis-gas by the non-catalytic plasma-arc reforming of methane with carbon dioxide (CO2) as the oxidizing agent. Master's Thesis: North-West University, Potchefstroom Campus (2008).
- BRHS, Bierinal Report on Hydrogeri Safety: Chapters 1-7 available at http://www.hysafe.org, accessed 13/11/2007.
- Cadwallader, L.C. & Herring, J.S. Hydrogen and gaseous fuel safety and toxicity: safety and technology of nuclear hydrogen production, control, and management. INL document nr. INL/CON-07-12095 (2007).
- Cheng, Z., Agranat, V.M., Tchouvelev, A.V., Houf, W., Zhubrin, S.V. PRD hydrogen release and dispersion, a comparison of CFD results from using Ideal and Real Gas Law properties. A.V. Tchouvelev and Associates (2005).
- Conradie, F.H. Utilizing the by-product oxygen of the hybrid-sulphur process for synthesis gas production. Master's Thesis: North-West University, Potchefstroom Campus (2008).
- DME. White paper on the energy policy and strategy for the Republic of South Africa. Document no. ISBN: 0-9584235-8-X (1998).
- 8. DME. Integrated energy plan for the Republic of South Africa (2003).
- DME. Digest of South African energy statistics 2005. Document no. ISBN: 0-9584376-4-5 (2005a).
- 10. DME. Energy efficiency strategy for the Republic of South Africa (2005b).
- 11. DME. National nuclear disaster management plan. Revision 0 (2005c).
- DME. Radioactive waste management policy and strategy for the Republic of South Africa: 2005 (2005d).
- 13. DME. Understanding radioactivity & radiation in everyday life (2005e).
- DME. Digest of South African energy statistics 2006. Document no. ISBN: 0-9584376-4-5 (2006a).
- 15. DME. Energy security master plan liquid fuels (2006b).
- 16. DME. Energy security master plan electricity: 2007-2025 (2007a).

- 17. DME. Nuclear energy policy and strategy for the Republic of South Africa: June, 2007 (2007b).
- DOE: Energy Efficiency and Renewable Energy. Regulators' guide to permitting hydrogen technologies: Hydrogen, fuel cells and infrastructure. Version 1, DOE document nr. PNNL-14518 (2004).
- Duigou, A.L. *et al.* HYTHEC: An EC funded search for a long term massive hydrogen production route using solar and nuclear technologies. *International Journal of Hydrogen Energy* Vol. 32 pp. 1516 – 1529 (2007).
- Ewan, B.C.R. & Allen, R.W.K. A figure of merit assessment of the routes to hydrogen. *International Journal of Hydrogen Energy*. Vol. 30 pp. 809 – 819 (2005).
- 21. Forsberg, C.W. Hydrogen, nuclear energy, and the advanced hightemperature reactor. *International Journal of Hydrogen Energy*, 28: 1073-1081 (2003).
- 22. Forsberg, C.W. Futures for hydrogen produced using nuclear energy. *Progress in Nuclear Energy.* Vol. 47, No. 1-4, p 484-495 (2005).
- 23. Forsberg, C.W. Future hydrogen markets for large-scale hydrogen production systems. *International Journal of Hydrogen Energy*, 32: 431-439 (2007).
- Forsberg, C.W., Gorensek, M.B., Herring, S., Pickard, P. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs), Volume
 Process Heat and Hydrogen Co-Generation PIRTs. United States Nuclear Regulatory Commission. Document numbers NUREG/CR-6944, Vol. 6 or ORNL/TM-2007/147, Vol. 6 (2007).
- 25. Forsberg, C.W., Peterson, P.F. Ott. L. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels. 2004 *Americas Nuclear Energy Symposium* (ANES). October (2004).
- 26. GAO: DOE Nuclear Energy. Status of DOE's effort to develop the next generation nuclear plant. GAO document no. GAO-06-1056 (2006).
- 27. GAO: DOE. Key challenges remain for developing and deploying advanced energy technologies to meet future needs. GAO document no. GAO-07-106 (2007).
- 28. GG. Government Gazette no. 14596, 26 FEBRUARY 1993. Regulation no. 247 (1993).
- 29. GG. Government Gazette no. 26121, 5 MARCH 2004. Regulation no. 287 (2004).
- 30. GG. Government Gazette no. 28755, 28 APRIL 2006. Regulation no. 388 (2006).

- 31. GG. Government Gazette no. 31137, 13 JUNE 2008. Regulation no. 653 (2008).
- 32. Golay, M.W. Barriers to using nuclear power for mitigation of global warming. *Progress in Nuclear Energy*, 29: 19-22 (1995).
- 33. Granovskiy, E.A. Lyfar, V.A., Skob, Y.A., Ugryumov, M.L. Numerical modelling of hydrogen release, mixture and dispersion in atmosphere. Scientific Centre of Risk Investigations "Rizikon", 33-b Sovetsky prospect, Ukraine (2004).
- 34. Greyvenstein, R., Correia, M. & Kriel, W. South Africa's opportunity to maximise the role of nuclear power in a global hydrogen economy. *Nuclear Engineering and Design*, Vol. 238, pp. 3031–3040 (2008).
- 35. Groethe, M., Merilo, E. Colton, J. Chiba, S. Sato, Y. Iwabuchi, H. Large-scale hydrogen deflagrations and detonations. *International Journal of Hydrogen Energy*, Vol. 32, pp. 2125 – 2133 (2007).
- 36. Gürpinar, A. The importance of paleoseismology in seismic hazard studies for critical facilities. *Tectonophysics*, 408: 23-28 (2005).
- Hayner, G.O., Bratton, R.L., Mizia, R.E., Windes, W.E. Next Generation Nuclear Plant Materials Research and Development Program Plan. Idaho National Laboratory, document nr. INL/EXT-06-11701, Revision 3 (2006).
- 38. Hazardous Substances Act (Act No. 15 of 1973).
- 39. IAEA. Hydrogen as an energy carrier and its production by nuclear energy. IAEA-TECDOC-1085 (1999).
- IAEA. Safety standards series: External events excluding earthquakes in the design of nuclear power plants – Safety Guide. IAEA document nr. No. NS-G-1.5 (2003).
- 41. IAEA. Nuclear power and sustainable development (2006).
- 42. IAEA. IAEA Safety Glossary: Terminology used in nuclear safety and radiation protection. Document no. ISBN 92–0–100707–8 (2007).
- 43. IEA. Key world energy statistics 2007 (2007).
- 44. INEL. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. INEL document nr. EGG-SSRE-9747 (1994).
- INSC. Nuclear production of hydrogen Technologies and Perspectives for Global Deployment. Document no ISBN: 0-89448-570-9 (2004).
- 46. Jeong, Y.H., Kazimi, M.S., Hohnholt, K.J., Yildiz, B. Optimization of the hybrid-sulphur cycle for hydrogen generation. MIT document no. MIT-NES-TR-004 (2005).

- Kugeler, K. High-temperature reactor technology. Text book for the course: High-temperature reactor technology, Post-graduate School of Nuclear Science and Engineering, North-West University, Potchefstroom Campus (2005).
- Marban, G. & Valdez-Soliz, V. Towards the hydrogen economy? International Journal of Hydrogen Energy. Vol. 32 p. 1625 – 1637, 2007.
- McCarty, R.D., Hord, J. & Roder, H.M. Selected properties of hydrogen (Engineering design data). US Department of Commerce & National Bureau of Standards (1981).
- McDowall, W. & Eames, M. Forecasts, scenarios, visions, back-casts and roadmaps to the hydrogen economy: A review of the hydrogen futures literatures. *Energy Policy*, 34: 1236-1250 (2006).
- Miller, A.I. & Duffey, R.B. Sustainable and economic hydrogen cogeneration from nuclear energy in competitive power markets. *Energy*, Vol. 30, pp 2690-2702 (2005).
- NASA. Safety standards for hydrogen and hydrogen systems. NASA document number: NSS 1740.16 (2005).
- 53. National Nuclear Regulator Act (Act No. 47 of 1999).
- NaturalGas. Discussion of natural gas constituents and properties. Available at <u>http://www.naturalgas.com</u>, accessed 15/205/2007.
- 55. Nelson, P.F.; Flores, A.; Francois, J.L. A design-phase PSA of a nuclearpowered hydrogen plant. *Nuclear Engineering and Design*, 237: 219-229 (2007).
- 56. NNR. 4th national report by South Africa on the International Atomic Energy Agency convention on nuclear safety (2007).
- 57. NNR. NNR annual report 2006/7. Available at <u>http://www.nnr.co.za</u>, accessed 5/07/2008.
- 58. NNR. Radioactive Waste (2001).
- 59. Nuclear Energy Act (Act No. 46 of 1999).
- Ogawa, M. & Nishihara, T. Present status of energy in Japan and HTTR project. *Nuclear Engineering and Design*, Vol. 233, pp. 5–10 (2004).
- Onuki, K., Inagaki, Y., Hino, R. Tachibana, Y. Research and development on nuclear hydrogen production using HTGR at JAERI. *Progress in Nuclear Energy*. Vol. 47, No. 1-4, pp. 496-503 (2005).
- PBMR. Information regarding the PBMR available at http://www.pbmr.com, accessed 15/04/2008.

- Piera M., Martinez-Val, J. M., Montes, M.J. Safety issues of nuclear production of hydrogen. *Energy Conversion and Management*. Vol. 47 p. 2732–2739 (2006).
- Rigas, F. & Sklavounos, S. Evaluation of hazards associated with hydrogen facilities. International Journal of Hydrogen Energy. Vol. 30, pp. 1501-1510 (2005).
- 65. Schultz, K.R., Brown, L.C., Besenbruch, B.E., Hamilton, C.J. Large-scale production of hydrogen by nuclear energy for the hydrogen economy. General Atomics document no. GA–A24265 (2001).
- 66. Sherman, S.R. Nuclear plant/hydrogen plant safety Issues and approaches embedded topical meeting: Safety and technology of nuclear hydrogen production, control, and management. INL document nr. INL/CON-06-12053 (2007).
- Smith, C., Beck, S. & Galyean, W. Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor. Idaho National Laboratories. INL/EXT-05-00137 Rev.1 (2005).
- 68. Treaty on the non-proliferation of nuclear weapons (1968).
- 69. Turns, S.R. An Introduction to Combustion: Concepts and Applications. Volume 2. McGraw Hill. ISBN 0-07-230096-5, International Edition (2000)
- 70. Van Antwerpen, H. NGNP and Hydrogen Production: Preconceptual Design Report. Document nr. NGNP-04-RPT-001 (2007).
- 71. Verfondern, K & Nishihara, T. Valuation of the safety concept of the combined nuclear/chemical complex for hydrogen production with HTTR. Berichte des Forschungszentrums Jülich ; 4135 ISSN 0944-2952. Institut für Sicherheitsforschung und Reaktortechnik, Jül-4135 (2004a).
- 72. Verfondern, K. & Nishihara, T. The particular safety aspects of the combined HTTR/Steam reforming complex for hydrogen production. The 1st COE-INES International Symposium, INES-1 Oct 31 – Nov 4, Tokyo, Japan (2004b).
- Verfondern, K. & Nishihara, T. Safety aspects of the combined HTTR/steam reforming complex for nuclear hydrogen production. *Progress in Nuclear Energy*, 47: 527-534 (2005).
- 74. Verfondern, K. & Von Lensa, W. Past and present research in Europe on the production of nuclear hydrogen with HTGR. *Progress in Nuclear Engineering,* Vol. 47, No. 4 – 7, pp. 472 – 483 (2005).
- 75. Verfondern, K. Nuclear energy for hydrogen production. Forschungszentrum Jülich GmbH. *Energy Technology*, 53: 200p (2007).

- 76. Vitart, X. Carles, P. & Anzieu, P. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat. *Progress in Nuclear Engineering*. Vol. 50, pp. 402-410 (2008).
- 77. Warnatz, J., Maas, U. & Dibbel, R.W. Combustion: Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation.
 3rd Edition. Springer Berlin Heidelberg New York, ISBN-10 3-540-25992-9 (2006).
- 78. Williams, D.F. Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop. ORNL document nr. ORNL/TM-2006/69 (2006).
- Yildiz, B. & Kazimi, M.S. Efficiency of hydrogen production systems using alternative nuclear energy technologies. *International Journal of Hydrogen Energy*, 31: 77-92 (2006).
- Yildiz, B. Conzelman, G., Petri, M.C., Forsberg, C.W. Configuration and technology implications of potential nuclear hydrogen system applications. ANL document nr. ANL-05-03 (2005).

APPENDIX A: NFPA 704

	NFPA 704 - Fire Diamond					
	Blue - Hasith					
4	Very short exposure could cause death or major residual injury.					
3	Short exposure could cause serious temporary or moderate residuinjury.					
2	Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury.					
1	Exposure would cause irritation with only minor residual injury.					
0	Poses no health hazard - no precautions necessary.					
	Rod - Flammability					
4	Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23°C.					
3	Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point below 38°C but above 23°C.					
2	Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38°C and 93°C.					
1	Must be pre-heated before ignition can occur. Flash point over 93°C.					
0	Will not burn.					
	Yellow - Instability or reactivity					
4	Readily capable of detonation or explosive decomposition at normal temperatures and pressures.					
3	Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked.					
2	Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water.					
1	Normally stable, but can become unstable at elevated temperatures and pressures.					
0	Normally stable, even under fire exposure conditions, and is not reactive with water.					
	White - Special					
¥	Reacts with water in an unusual or dangerous manner.					
OX/OXY	Oxidizer					
COR	Corrosive. Strong acid or base (ALK or ACID).					
BIO	Biological hazard					
PIO	Poisonous material					
CRY/CRYO	Cryogenic material					
*	Radioactive material					

Waste Class	Waste Description	Wasta type / Origin	Waste Criteria	Generic waste treatment / conditioning requirements ⁽¹⁾	Disposal / Management Options
1 HLW	Heat generating radioactive waste with high long and short- lived radionucikle concentrations,	 Used fuel declared as waste or used fuel recycling products Sealed sources 	 Thermal power > 2 kW/m³. OR Long-lived alpha, beta and gamma emitting radionuckles at activity concentration levels > levels specified for LILW-LL OR Long-lived alpha, beta and gamma emitting radionuckles at activity concentration levels that could result in inherent inician dose (the intrusion dose assuming the radioactive waste is spread on the surface) above 100 mSv per annum 	Waste package suitable for hardling, transport and storage (storage period in the order of 100 years). The waste form shall be solid with additional characteristics as prescribed for a specific repository.	1 (a) Regulated deep disposal (100's of metres). (b) Reprocessing, Conditioning and Recycling (c) Long Term Above Ground Storage
2 LILW-LL	Radioactive waste with low or Intermediate short-lived radionuclide and intermediate long-lived radionuclide concentrations,	 Irradiated uranium (isotope production). Un-intradiated uranium (nuclear fuel production). Fission and activation products (nuclear power generation and isotope production) Sealed sources. 	 Thermal power (mainly due to short- lived radio nuclicies (T ½ < 31 y) < 2 kV//m³) AND Long-lived radio nuclides (T ½ > 31 y) concentrations. Alpha: < 4000 Bq/g Beta and gamma: < 40000 Bq/g (Maximum per waste package up to 10x the concentration levels specified above). OR Long-lived alpha, beta and gamma. emitting radionuclicies at activity concentration levels that could result in inherent intrusion dose (the intrusion dose assuming the radioactive waste is spread on the surface) between 10 and 100 mSy per annum 	Waste package suitable for handling, transport and slorage (slorage period in the order of 50 years). The waste form shall be solid with additional characteristics as for a specific repository.	1 Regulated medium depth disposal (10's of metres). 2 Managed as NORM-E waste (un- irradiated uranium)

APPENDIX B: NATIONAL RADIOACTIVE WASTE MANAGEMENT AND CLASSIFICATION SCHEME

APPENDIX B

Waste Class	Waste Description	Waste type / Origin	Waste Criteria	Generic waste treatment / conditioning requirements ⁽¹⁾	Disposal / Management Options	
3 LILW-SL	Radioactive waste with low or intermediate short-lived radionuclide and <i>i</i> or low long-lived radionuclide concentrations.	 Un-Irradiated uranium (nuclear fuel production). Fission and activation products (nuclear power generation and isotope production. Sealed sources. 	 Thermal power (mainly due to short- lived radio nuclides (T ½ < 31 y) < 2 kWm³. AND Long-lived radio nuclide (T ½ > 31 y) concentrations. Alpha: < 400 Bq/g Beta and gamma: < 4000 Bq/g (Maximum per waste package up to 10x the concentration levels specified above). OR Long-lived alpha, beta and gamma emitting radionuclides at activity concentration levels that could result in inherent intrusion dose (the intrusion dose assuming the radioactive waste is spread on the surface) below 10 mSv per annum 	Waste package suitable for handling, transport and storage (storage period in the order of 10 years). The waste form shall be solid with additional characteristics as for a specific repository.	1 Regulated near surface disposal (< 10 metres). 2 Managed as NORM-E waste (un- irradiated uranium)	
4 VLLW	Radioactive waste containing very low concentration of radioactivity.	 Contaminated or slightly radioactive material originating from operation and decommissioning activities. 	 Clearance or authorised discharge or reuse criteria and levels approved by the relevant regulator. 	Waste stream specific requirements and conditions.	1 Clearance. 2 Authorized disposal discharge or reuse	
5 NORM-L (low activity)	Potential Radioactive waste containing low concentrations of NORM.	 Mining and minerals processing. Fossil fuel electricity generation. Bulk waste - un- irradiated uranium (Nuclear fuel production). 	 Long-lived radio nuclide concentration: < 100 Bq/g. 	Unpackaged waste in a miscible waste form.	1 Re-use as underground backfil material in an underground area. 2 Extraction of any economically recoverable minerals, followed by disposal in any mine tailings dam or other sufficiently confined surface	

Wante Class	Waste Description	Waste type / Origin	Waste Criteria	Generic waste treatment / conditioning requirements ⁽¹⁾	Disposai / Management Options	
						impoundment
					3	Authorised disposal
					4	Clearance
6 NORM-E (enhanced activity)	Radioactive waste contaming enhanced concentrations of NORM.	1 Scales 2 Soits contaminated with scales	1 Long-lived radio nuclide concentration: > 100 Bq/g.	Packaged or unpackaged waste in a miscible or solid form with additional characteristics for a specific repository.	1 2 3	Dilute and re-use as underground backfil material in an identified underground area. Extraction of any economically recoverable minerals, followed by dilution and disposal in an identified mine tailings dam or other sufficiently confined surface impoundment Regulated deep or medium depth