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Abstract 

The management of financial losses is crucial for banks as they are required to set aside 

regulatory capital to absorb unexpected losses. Banks also need to calculate economic capital 

to ensure solvency according to their own risk profile. The main financial risks faced by banks 

are market, credit, and operational risk. Operational risk, the focus of the dissertation, 

includes fraud, improper business practices, regulatory risk, and others. Barings Bank’s loss of 

over USD1 billion due to rogue trading activities is well-known, but an extreme example of 

such risk. 

 

In order to calculate capital to withstand this risk, the aggregate distribution of operational 

losses for the next year is estimated. This distribution needs to be estimated in a forward-

looking manner and for this, assessments by experts are often used. The extreme quantiles 

of this distribution are of specific interest. For instance, a bank should hold capital to survive 

a one-in-a-thousand-year aggregate operational loss (the 99.9% Value at Risk of the 

distribution). A methodology is described to calculate capital for different operational risk 

categories. 

 

Banks often only have limited internal data available to accurately model the distribution and 

therefore use external sources and scenario assessments to supplement their data. Statistical 

methods are explored that could be used to combine limited historical data and scenario 

assessments provided by experts, to estimate the extreme quantiles of the aggregate 

distribution. This provides a way of constructing forward-looking distributions to calculate risk 

capital. 

 

SAS® OpRisk Global Data is used to demonstrate how external data can be used and scaled 

for use in the risk modelling process. Some measures are suggested that could be used to 

challenge experts to adjust their scenario assessments based on available historical data. 
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The main contribution of the research is to provide a holistic view of how internal data, 

external data and scenario assessments can be used to create a consistent framework for 

modelling operational risk capital within a bank or other financial institution. 

 

Keywords: Operational risk management, operational risk quantification, operational risk 

measurement, capital models, loss distribution approach, external data, scenario 

assessments. 
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1. Introduction 

Financial risk is defined as an event or action that may adversely affect an 

organisation’s ability to achieve its objectives and execute its strategies. The main 

financial risks faced by banks are market, credit, and operational risks. To protect 

against risk, or the probability of a shortfall in assets compared to liabilities, financial 

institutions need to set aside excess money, or risk capital. Operational risk capital is 

the focus of this dissertation and a short history and different categories of operational 

risk will be described in more detail in Chapter 2.  

 

This dissertation is concerned with the modelling of operational risk capital. 

Specifically, the focus is on how various data sources available to banks or other 

financial institutions may be utilised to obtain estimates for the appropriate amount 

of operational risk capital to be set aside. 

 

Two types of capital are important, namely regulatory and economic capital. 

Regulatory capital is a requirement by the regulator to guard against the collapse of 

the banking system and to ensure that banks remain solvent. In the face of unexpected 

losses, regulatory capital should absorb these losses so that the bank remains solvent 

and it is therefore important that banks do not underestimate the capital amount. 

Economic capital, on the other hand, is set aside to ensure a particular credit rating by 

the external rating agencies. The higher the rating that is required, the higher the 

capital amount to be held. Both regulatory and economic capital are held in liquid 

assets, and the return on investment is typically lower than what may be obtained in 

riskier investments. For this reason, banks can also not afford to overestimate the 

capital amount.  

 

To ensure solvency, as well as return for shareholders, regulatory and economic 

capital should be determined as accurately as possible.  Under Basel, the regulator has 

proposed various methods for calculating regulatory capital, namely a basic and 

standardised approach, as well as an advanced measurement approach (AMA). 

Although banks will be required to calculate operational risk capital using a new risk-
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sensitive standardised measurement approach (SMA) from 1 January 2023, the AMA 

is still of interest. This approach is also used to estimate economic capital and is based 

on the so-called loss distribution approach (LDA) where the distribution of future 

losses is typically constructed using internal loss data, external data and scenario 

assessments by experts.  

 

Under the LDA, an annual aggregate operational loss distribution is constructed. The 

tail of the distribution is of most importance, as the extreme quantiles of the 

distribution is required to calculate capital.  

 

Basel II prescribes that a bank should hold sufficient capital to protect them against a 

one-in-a-thousand-year aggregate loss when explicitly dealing with operational losses, 

i.e., the 99.9% Value-at-Risk of the aggregate operational loss distribution. Ideally, 

should the bank have a thousand years of historical data, the bank can merely 

determine the maximum loss it had experienced during this time to determine the 

capital requirement. Another way to interpret this requirement is that given 1,000 

banks with identical size and operational risk profiles, the regulatory capital 

requirement is the maximum aggregate operational risk loss amount experienced 

across all 1,000 banks in a given year. Given that banks generally only have 10 years’ 

of operational risk loss data, one could potentially approach the problem using 100 

banks with similar profiles, giving 1,000 annual aggregated operational risk loss 

amounts.    

 

For this reason, the Basel Committee on Banking Supervision (BCBS) (2011b) suggests 

that banks should use loss data from external sources and scenario data in addition to 

their own internal loss data and controls to construct statistical models. However, 

there are significant challenges that banks need to address when combining data 

elements. BCBS (2011b) advises that the combination of data elements should be 

based on sound statistical methodologies. The focus of this dissertation is to 

recommend strategies for the optimal use of the various data sources in economic 

capital estimation and to suggest possible improvements to the loss distribution 

approach. 
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This dissertation is organised as follows: In the following chapter we will provide an 

overview of operational risk management, a short history of operational risk and a 

discussion on different operational risk categories. We also provide some background 

on the regulatory requirements for calculating operational risk capital. In Chapter 3, a 

methodology is described that could be used to calculate operational risk capital based 

on the loss distribution approach. Then, in Chapter 4, a recently proposed statistical 

modelling approach for the construction of forward-looking distributions, important 

in the loss distribution approach, is reviewed. The method combines limited internal 

loss data with the scenario assessment by experts and also incorporates a measure of 

agreement between the two data sources.  This methodology has already successfully 

been implemented by two South African banks for modelling operational risk capital.  

Lastly, in Chapter 5 we use SAS® OpRisk Global Data to demonstrate how external data 

may be used to improve economic capital estimation. Banks often only have limited 

historical data of their own operational losses, and external data sources could be used 

and scaled to improve the banks statistical models. Finally, we make suggestions on 

how external data could be used to challenge experts to adjust their scenario 

assessments. Some concluding remarks and ideas for future research are made in the 

final chapter. 
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2. Background 

2.1 Introduction  

The focus of this dissertation is on quantitative operational risk models. A detailed 

review of the literature related to operational risk models was conducted and some 

of our findings are summarised in this chapter. The reader will be introduced to the 

risk management process and the increased importance of the management of 

operational risk will be highlighted. A short history of operational risk is given before 

the different risk categories are discussed. We also provide some background on the 

regulatory requirements for calculating operational risk capital. The reader that is 

familiar with operational risk may elect to glance through Chapter 2 and move to 

Chapter 3. 

 

2.2 An overview of risk management 

McNeil et al. (2015) define financial risk as “any event or action that may adversely 

affect an organisation’s ability to achieve its objectives and execute its strategies”, or 

as “the quantifiable likelihood of loss”. 

 

The process of managing risk is vital to understand the range of risks that an 

organisation may face at any point in time, and to realise that new risks may develop 

over time. Sweeting (2011) describes the risk management process as cyclical without 

a clear start and end, and Figure 1 gives a graphical presentation of the process before 

each stage of the process is briefly described. 
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Figure 1: Risk management process 

 

The first stage in the risk management process is to identify all the risks faced by an 

organisation. This step also involves grouping risks in a coherent fashion and recording 

them consistently. This stage of the process is of utmost importance when considering 

a bank's internal data and grouping different risks into homogeneous risk categories 

as described later in Section 2.4. It is also critical if the organisation contributes its own 

data to external data sources or forms part of a data consortium. The use of internal 

and external data will be discussed in more detail in Chapter 3.4, and consortium data 

is specifically discussed in more detail in Section 5.2. 

 

The assessment of each identified risk is the next step in the risk management process. 

Risk assessment includes deciding whether a risk can be quantified and how to 

sensibly aggregate risks. It also involves specifying risk measures to be used and 

acceptable values of those measures. The specific risk measure we will use in our risk 

capital models is the 99.9% Value at Risk. 

 

The next step, risk management, involves responding to each risk, either by accepting, 

reducing, or removing the risk. The management stage is not the final step, and the 

treatment of each risk should be reviewed and adjusted where needed. The ongoing 

monitoring or review of the inputs and outputs of the process is important. Monitoring 

Identification

Assessment

Management

Monitoring

Modification
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does not only require that losses from risks should be carefully reported to an 

organisation’s internal stakeholders, but also to external stakeholders such as 

regulators and shareholders. The final stage in the risk management process is 

modification, which involves a frequent review of the process and all its components. 

 

The quantitative risk models referred to in this dissertation primarily forms part of the 

assessment stage of the risk management cycle described above. However, it will 

become clear in the remainder of this dissertation that there are touchpoints to almost 

every other stage of the process. We have already mentioned that the collection of 

internal data to be discussed in more detail later, forms part of the identification stage. 

In Section 2.5, the applicable regulation that forms part of the monitoring stage is 

discussed. Before we expand on these topics, we first give a short history of 

operational risk.  

 

2.3 A short history of operational risk 

Banks and other financial institutions are faced with different risks that could be 

categorised under the main headings of market risk, credit risk, and operational risk. 

Market risk can be described as the risk inherent from exposure to capital markets, 

whereas credit risk refers to the risk associated with the default of a third party on a 

contract. Operational risks include a group of risks that impact on how a firm carry on 

business and include many different risks that often overlap each other to a significant 

extent (Sweeting, 2011). The Basel Committee on Banking Supervision (2006) defines 

operational risk as “the risk of loss resulting from inadequate or failed internal 

processes, people and systems or from external events. This definition includes legal 

risk, but excludes strategic and reputational risk.” 

 

Operational risk management is the youngest of the three major risk branches, 

according to Peters et al. (2016). In the late 1990s, operational risk had a negative 

definition, namely “any risk that is not market or credit risk”, which they state was not 

very helpful to assess or manage operational risk. In the article “The invention of 

operational risk”, Power (2005) points out that although the generic term ‘operations 

risk’ had already been officially coined in 1991, it did not acquire widespread currency 
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until the mid to late 1990s when the Basel II proposals were developed and finally 

published in June 1999. A short history of the Basel Accords and the development of 

regulation around operational risk is discussed in more detail under Section 2.5 of this 

chapter. 

 

Cummins et al. (2006) mention many very costly and highly publicised operational 

events that have heightened managerial and regulatory focus on operational risk. The 

infamous bankruptcy of Barings bank in 1995, which was triggered by a $1.3 billion 

loss due to the actions of a rogue trader, is often cited in the literature as one of the 

best examples of operational risk.  Cummins et al. (2006) also mention a loss of $750 

million at Allied Irish Bank in 2002 due to unauthorised trading and $1.4 billion in fines 

levied in 2002 against several leading brokerage firms in the US for issuing misleading 

research reports to investors. Among insurance companies, the most significant 

operational losses were the Prudential Insurance Company of America which had to 

pay $2 billion to settle claims for sales abuse during the late 1990s. Another example 

is State Farm Insurance which paid $1.2 billion to motor insurance policyholders 

resulting from a breach of contract lawsuit in 1999. Cummins et al. (2006) argue that 

the increased focus on operational risk at the start of the 21st century likely emanated 

from two key developments: First, there was more emphasis on transparency in the 

financial reporting of organisations. Second, financial services organisations started 

using increasingly complex production technologies and concomitantly increased their 

exposure to operational risk.  

 

The financial crisis of 2008 also brought new focus to the area of operational risk. De 

Jongh et al. (2013) conducted a detailed review of the impact of operational risks on 

the financial crisis. They describe the 2008 financial crisis as the worst crisis ever from 

an operational risk viewpoint and state that the amount associated with operational 

risk losses observed in 2008 was almost four times more than those observed in 2007. 

They conclude that the general public was more aware of the complexity of the global 

environment after the crisis. Therefore, it was no surprise that regulatory bodies also 

needed to strengthen the capital requirements for banks. The development of these 

regulatory requirements is discussed in more detail in the following sections.    
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Technology risk is another example of operational risk that has become increasingly 

important. Over the last two decades, banks and other financial organisations have 

benefited from an increased application of technology to financial services, with a 

concomitant rise in technology-related threats. The Covid-19 pandemic has 

exacerbated these operational risks and increased economic and business 

uncertainty. The pandemic has not only affected banks’ information systems, 

personnel, and facilities but there has also been an increase in cyber threats like 

ransomware attacks and phishing. In addition, the potential for operational risk events 

caused by people, failed processes, and systems have increased due to greater 

reliance on working from home arrangements. The different operational risk event 

types are elaborated on in Section 2.4. 

 

2.4 Operational risk categories 

Operational risk is by definition heterogeneous and includes various risks associated 

with people, processes and systems. Kelliher et al. (2016) explain that it covers risks 

as diverse as systematic processing errors, cybercrime, health and safety breaches and 

product literature failings, to name a few. They, therefore, suggest that there is a need 

to break these risks down into more homogenous categories to enable exposures to 

be adequately understood and modelled. This process depends on a robust 

categorisation system with little scope for ambiguity regarding how losses and risks 

should be categorised. 

 

Embrechts and Hofert (2011) explain that an operational risk category (ORC) is the 

level at which an organisation’s model generates a separate distribution for estimating 

potential operational losses (e.g., the organisational unit, operational event type, or 

risk category). These models and statistical distributions will be expanded on in 

Chapter 3.  

 

The ORC is also sometimes referred to as a unit of measure (UoM). Granularity is the 

term used to reflect the degree to which individual operational risk exposures are 

modelled. The lowest level of granularity implies using a single ORC to measure the 

organisation-wide exposure and allows all loss data to be pooled. On the other hand, 
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a high level of granularity introduces the challenge of adequately categorising sources 

of operational risk and may also pose a challenge when aggregating the different risk 

exposure estimates. 

 

The BCBS (2019) does not prescribe the level of granularity required to model 

operational risk but merely states that the risk measurement system should be 

sufficiently ‘granular’ to capture the significant risk drivers affecting the shape of the 

tail distribution. Regulations require a bank to provide adequate analysis to show that 

its selection of ORCs is appropriate and a true reflection of its risk profile (e.g., analysis 

of the influence of variability in the ORC selection and correlation in and between 

ORCs). Embrechts and Hofert (2011) also suggest that the choice of granularity should 

be adequately supported by quantitative and qualitative analysis. The individual losses 

within a given ORC should be independent and identically distributed.  

 

It is further stipulated that a bank must have well documented, objective criteria for 

allocating losses to specified business lines and event types. However, it is left to the 

bank to decide how it applies these categorisations in its internal operational risk 

measurement system. 

 

Under Basel II (BCBS,2006), the proposed business lines are: 

• Corporate finance, 

• Trading and sales,  

• Retail banking,  

• Commercial banking,  

• Payment and settlement,  

• Agency services,  

• Asset management, and  

• Retail brokerage.  
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The following seven operational event types are considered:  

• Internal fraud,  

• External fraud,  

• Employment practices and workplace safety,  

• Clients, products and business practices,  

• Damage to physical assets,  

• Business disruption and system failures, and  

• Execution, delivery and process management.  

 

Using the eight business lines and seven event types specified by Basel, a bank should 

have 56 suggested ORCs. However, the actual number of ORC’s will depend on the 

specific activities of the bank and their historical losses captured.  The operational risk 

models discussed in later chapters are typically constructed per individual ORC, before 

the results are then aggregated. 

 

Before we consider the methodology to construct risk models, we first give a brief 

history of the relevant regulation and how it applies to operational risk management. 

 

2.5 Regulation 

The Basel Accords refer to a set of banking supervision regulations set by the Basel 

Committee on Banking Supervision (BCBS). In the following few sub-sections, the 

history and development of the capital requirements under the three accords are 

briefly discussed before the focus is shifted to the regulation related explicitly to 

operational risk (Basel Committee on Banking Supervision, n.d.). 

 

2.5.1 The Basel Accords 

Basel I 

The first Basel Capital Accord was released to banks in July 1988 and called for a 

minimum ratio of capital to risk-weighted assets (RWA) of 8%. Credit risk was the focus 

of the first Accord, and several amendments were made to the initial document in the 

early 1990s. In 1996, the Market Risk Amendment was issued, introducing a capital 
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requirement for the market risks arising from banks' exposures to foreign exchange, 

traded debt securities, equities, commodities, and options. For the first time, banks 

were allowed to use internal models (Value-at-Risk models) as a basis for measuring 

their market risk capital requirements, subject to strict quantitative and qualitative 

standards.  

 

Basel II 

Basel II, an extension of Basel I, was introduced in 2004. Basel II created a more 

comprehensive risk management framework by creating standardised measures for 

credit and market risk, and for the first time also for operational risk.  Under Basel II, 

the revised capital framework contained three pillars: minimum capital requirements, 

supervisory mechanisms and transparency, and market discipline.   

 

Basel III 

The financial crisis of 2008 exposed the weaknesses of the international financial 

system and ultimately led to the creation of Basel III. The new standards under Basel 

III were first published in December 2010, and most of the reforms are still being 

phased in. The enhanced Basel framework revised and strengthened the three pillars 

established by Basel II and extended it in several areas. The BCBS completed its Basel 

III post-crisis reforms in 2017, with the publication of new standards for calculating 

capital requirements for credit risk, credit valuation adjustment risk and operational 

risk.  The regulatory framework's revisions aimed to restore credibility in the 

calculation of RWA by enhancing the robustness and risk sensitivity of the 

standardised approaches for credit risk and operational risk and constraining 

internally modelled approaches and complementing the risk-based framework with a 

revised leverage ratio and output floor. 

 

2.5.2 Methods for calculating operational risk capital 

Basel II, still in force, provides three methods for calculating operational risk capital 

charges. These methods increase in sophistication and risk sensitivity: The Basic 

Indicator Approach (BIA), the Standardised Approach (TSA) and the Advanced 

Measurement Approach (AMA).   
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The BIA focuses on the bank's gross income to indicate its potential risk profile for 

operational risk losses. With the BIA, the bank must hold a fixed percentage of the 

average of three years' gross income as operational risk capital. For the TSA, a similar 

approach is followed to that of the BIA, except that the gross income element receives 

a more granular treatment in that the bank's respective business lines are isolated and 

specific percentage charges are multiplied by the gross income for those individual 

business lines.  

 

In terms of Basel II, and still an option for banks to calculate their regulatory 

operational risk capital until 1 January 2023, is the use of the advanced measurement 

approach (AMA). Under the AMA, banks are allowed to use their own internal models 

to calculate risk capital. The Basel Committee on Banking Supervision (2006) allows 

greater flexibility for modelling practice when a bank uses the AMA. Subject to 

regulatory approval, the AMA permits the bank to directly analyse and model in detail 

its own operational risk profile.  

 

In December 2017, as part of the post-crisis reforms, the BCBS published the rules for 

calculating operational risk capital effective 1 January 2023. The new risk-sensitive 

standardised measurement approach (SMA) will replace the existing standardised 

approaches (BIA and TSA) as well as the advanced measurement approach (AMA) that 

is based on banks’ own internal models (BCBS, 2017).  The interested reader is referred 

to Appendix A for a description of the methodology under the new SMA that should 

be used by banks to calculate their regulatory operational risk capital, as well as 

critique from industry against this approach. However, the remainder of this 

dissertation will focus on the methodology of developing risk models under the AMA.  

 

Although the more sophisticated internal models developed under the AMA approach 

will no longer be allowed in determining minimum regulatory capital, these models 

will remain relevant for determining economic capital and influence decision making 

within banks and other financial institutions. According to the Bank of England’s 

Prudential Regulation, regulators rely on these more advanced models for the 
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supervisory review process (Prudential Regulation Authority, 2020). It is also 

suggested that models based on the loss distribution approach (LDA) will continue to 

form an integral part of the supervisory review of a bank’s internal operational risk 

management process. For this reason, we believe the LDA remains relevant and will 

continue to be studied and improved.   Additionally, the SMA is calculated at an overall 

bank level which raises the question of how regulatory capital is allocated to lower 

levels of the organisation. The continued use of the LDA can then be used as an 

allocation tool for capital. The LDA is discussed in more detail in Chapter 3. 

 

In addition, the principles applicable to the AMA are sound and remain applicable to 

internal risk models. For this reason, some of these principles from the guidelines to 

consider when developing operational risk models have been included in Appendix B.    

 

2.6 Conclusion 

This chapter provided some background on operational risk capital and some of the 

concepts will be expanded on in the remainder of this dissertation. In Chapter 3, a 

review of the loss distribution approach is provided and a comprehensive 

methodology is discussed to calculate operational risk capital within a financial 

organisation.    
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3. Quantitative risk modelling methodology 

3.1 Introduction 

In this chapter, we describe a methodology that can be used to calculate a bank’s 

operational risk capital. This methodology is based on the loss distribution approach 

(LDA) which makes use of an annual aggregate loss distribution. The components of 

the aggregate loss distribution are discussed in more detail in this chapter and we also 

explain how various data sources can be used in the estimation of the severity 

distribution function. 

 

3.2 Loss distribution approach (LDA) 

The LDA is a popular method used by banks and other financial institutions to 

determine their operational risk capital. This approach is widely described in the 

literature (see, for example, Aue and Kalkbrener (2007), Benito and Lopez-Martin 

(2018), Lambrigger et al. (2007) and De Jongh et al. (2015)). The LDA is also sometimes 

referred to as the actuarial approach and apart from banks, general insurance 

companies often use this method to estimate claims against short-term insurance 

policies and determine the reserves needed to meet their obligations.  

 

Aue and Kalkbrener (2007) argue that the LDA approach offers banks unparalleled 

flexibility in the way they determine their risk capital requirements. Under this 

approach, an organisation can estimate the probability distributions of both the 

severity and the one-year-event frequency using historical data. Having these two 

distributions, the organisation can then compute the probability distribution of the 

aggregate operational losses (Benito & Lopez-Martin, 2018).  

 

Amin (2016) outlines many challenges associated with the LDA. For example, it does 

not differentiate between risks for which a large amount of historical data is available 

and those risks with minimal data. The methodologies discussed in Chapters 4 and 5 

aim to address these challenges. 
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An aggregate loss distribution has to be determined for each of the ORCs within a 

bank. Based on the eight business lines and seven event types suggested by BCBS 

(2006) and discussed in Section 2.4, a bank would have a maximum of 56 ORCs. 

However, a bank may opt to increase granularity, for example, the “retail banking” 

business line can be broken down into different products such as vehicle finance, 

home loans, personal lending and credit card facilities if able to demonstrate that 

these products have different risk profiles, i.e. are heterogenous. The actual number 

of ORC’s will depend on the specific activities of the bank and the historical losses 

captured.  The methodology to construct the aggregate loss distribution for each ORC 

is described in more detail below. 

 

3.2.1 Frequency modelling 

To predict the total loss amount that can be expected over one year in each ORC, we 

first need to estimate the annual frequency or number of operational loss events to 

occur in that specific ORC over the year.  Let 𝑁 be the random variable representing 

the annual number of loss events in an ORC. McNeil et al. (2015) suggest two possible 

probability mass functions to model 𝑁, namely the Poisson and the negative binomial 

distributions. They explain that using the Poisson model is very natural as a frequency 

distribution and is useful because of its aggregation properties discussed further in 

Section 3.2.3.  The probability mass function of 𝑁~𝑃𝑜𝑖(𝜆) is given by: 

𝑃(𝑛) =
𝑒−𝜆𝜆𝑛

𝑛!
, 𝑛 = 0,1,2, … 

Where sufficient historical data is available, the annual frequency in each ORC can be 

estimated by �̂� = 𝐾 𝑎⁄  , where 𝐾 is the total number of loss events spread over 𝑎 years. 

If no data is available for a specific ORC, the value for the frequency estimate could be 

determined as part of a scenario workshop, which will be discussed in more detail in 

Section 4.2. 
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3.2.2 Severity modelling 

The next step is to determine a suitable severity distribution for losses within an ORC. 

Panman et al. (2019) showed that the severity distribution drives the shape of the 

aggregate distribution (see Section 3.2.3) and is therefore an important component in 

operational risk capital modelling. 

 

Suppose the random variables 𝑌1, 𝑌2, … , 𝑌𝑛 denote the severities of the loss events in 

each ORC and assume that these loss events are independently and identically 

distributed. Suppose that the true severity distribution of 𝑌1, 𝑌2, … , 𝑌𝑛 is denoted by 𝑇. 

A suitable model for 𝑇, which can be a class of distributions 𝐹(𝑦, 𝜃), need to be 

determined, and the parameter(s) 𝜃 would need to be estimated.  Popular choices to 

model the severity of losses include the Burr, Gamma, generalised Pareto distributions 

(GPDs), Inverse Gaussian (Wald), Lognormal and Pareto distributions (De Jongh et al., 

2015). The probability density and distribution functions of each are given in Table 1 

(a) and (b). 

 

Table 1 (a): Probability density functions 

Distribution Par 1 Par 2 Par 3 Probability density function 

Burr 𝜇 > 0 𝛼 > 0  𝛾 > 0 𝑓(𝑦) = 𝛼𝛾𝑧𝛾 

Gamma 𝜇 > 0 𝜎 > 0  
𝑓(𝑦) =

1

Γ(𝜎)𝜇𝜎
𝑦𝜎−1𝑒

−
𝑦
𝜇 

Generalised Pareto 𝜇 > 0 𝜉 > 0   
𝑓(𝑦) =

1

𝜇
(1 + ξ𝑧)

−1−
1
ξ 

Inverse Gaussian 

(Wald) 

𝜇 > 0 𝛼 > 0  
𝑓(𝑦) =

1

𝜇
√

𝛼

2𝜋𝑧3
exp(−

𝛼(𝑧 − 1)2

2𝑧
) 

Lognormal −∞ ≤

𝜇 ≤ ∞  

𝜎 > 0  
𝑓(𝑦) =

1

𝑦𝜎√2𝜋
exp(−

(𝑙𝑛(𝑦) − 𝜇)2

2𝜎2
) 

Pareto 𝜇 > 0 𝛼 > 0  
𝑓(𝑦) =

𝛼𝜇𝛼

(𝑦 + 𝜇)𝛼+1 
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Table 1 (b): Probability distribution functions 

Distribution Par 1 Par 2 Par 3 Probability distribution function 

Burr 𝜇 > 0 𝛼 > 0  𝛾 > 0 
𝐹(𝑦) = 1 − (

1

1 + 𝑧𝛾
)
𝛼

 

Gamma 𝜇 > 0 𝜎 > 0  
𝐹(𝑦) =

𝛾(𝜎, 𝑧)

Γ(𝜎)

 

 

Generalised Pareto 𝜇 > 0 𝜉 > 0   
𝐹(𝑥) = 1 − (1 + ξ𝑧)

−
1
ξ  

Inverse Gaussian 

(Wald) 

𝜇 > 0 𝛼 > 0  
𝐹(𝑦) = Φ((𝑧 − 1)√

𝜎

𝑧
)

+ Φ((−(𝑧

+ 1)√
𝜎

𝑧
)exp (2𝜎) 

Lognormal −∞ ≤

𝜇 ≤ ∞  

𝜎 > 0  
𝐹(𝑦) = Φ(

𝑙𝑛(𝑦) − 𝑢

𝜎
) 

Pareto 𝜇 > 0 𝛼 > 0  
𝐹(𝑦) = 1 + (

𝜃

𝑦 + 𝜃
)
𝛼

 

 

Notes to Table 1: 

• 𝑧 =
𝑦

𝜇
 . 

• 𝜇 denotes the scale parameter for all the distributions. 

• 𝛾(𝑎, 𝑏) = ∫ 𝑡𝛼−1 exp(−𝑡) 𝑑𝑡
𝑏

0
, the lower incomplete gamma function. 

• Φ(𝑦) =
1

2
(1 + erf (

𝑦

√2
)), the standard normal cumulative density function. 

• The function 𝑎(𝑦, 𝜙) does not have an analytical expression and is evaluated 

using series expansion methods. 

 

The body and tail of the severity distribution may also be modelled separately, i.e., a 

mixed distribution. The method to do this can be described as follows. Let 𝑞 be a 

quantile of the severity distribution 𝑇.  Here, 𝑞 is the threshold that splice 𝑇 in such a 

way that the interval below 𝑞 is the expected part and the interval above 𝑞 the 

unexpected part of the severity distribution.  
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Define two distribution functions: 

 

 𝑇𝑒(𝑦) = 𝑇(𝑦) 𝑇(𝑞)⁄  for  𝑦 ≤ 𝑞 and 
(1) 

 𝑇𝑢(𝑦) = [𝑇(𝑦) − 𝑇(𝑞)] [1 − 𝑇(𝑞)⁄ ]  for 𝑦 > 𝑞, 

  

i.e., 𝑇𝑒(𝑦) is the conditional distribution function of a random loss 𝑌~𝑇 given that 𝑌 ≤

𝑞 and 𝑇𝑢(𝑦) is the conditional distribution function given that 𝑌 > 𝑞.  

The following identity then exists: 

 𝑇(𝑦) = 𝑇(𝑞)𝑇𝑒(𝑦) + [1 − 𝑇(𝑞)]𝑇𝑢(𝑦), for all 𝑦. (2) 

 

This identity represents 𝑇(𝑦) as a mixture of the two conditional distributions. Instead 

of modelling 𝑇(𝑦) with a class of distributions 𝐹(𝑦, 𝜃), 𝑇𝑒(𝑦) is modelled with 𝐹𝑒(𝑦, 𝜃) 

and 𝑇𝑢(𝑦), with 𝐹𝑢(𝑦, 𝜃). For 𝐹𝑒(𝑦, 𝜃), the empirical distribution can be used, or De 

Jongh et al. (2015) has shown that the Burr distribution may also be a good choice (see  

Table 1). Borrowing from extreme value theory (EVT), a popular choice for 𝐹𝑢(𝑦, 𝜃) 

could be the generalised Pareto distribution (GPD). According to the Pickands-

Balkema-de Haan limit theorem (McNeil et al., 2015), the conditional tail of all 

distributions in the domain of attraction of the Generalised Extreme Value distribution 

(GEV) tends to a GPD distribution. The distributions in the domain of attraction of the 

GEV are a broad class of distributions, which includes most distributions of interest. 

Again, De Jongh et al. (2015) suggested that the GPD distribution is a good choice. 

However, one could also consider alternative distributions for modelling the tail of a 

severity distribution, as is discussed in more detail in Chapter 5. 

 

3.2.3 Aggregate loss distribution 

Given the frequency 𝑁~𝑃𝑜𝑖(𝜆) and loss severity function 𝑌~𝑇, the annual aggregate 

loss is obtained by 𝐴 = ∑ 𝑌𝑛
𝑁
𝑛=1  and the distribution of 𝐴 is known as a compound 

Poisson distribution or the so-called aggregate loss distribution. In order to determine 

the aggregate loss distribution, estimates for 𝜆, the frequency, and 𝑇, the severity 

distribution is needed.  
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The 99.9% Value-at-Risk of this aggregate loss distribution is of interest for operational 

risk capital estimation. However, it is not easy to do this analytically in most cases, and 

for this reason, Monte Carlo (MC) simulation is often used. The following algorithm 

can be used to calculate the Value-at-Risk of the compound Poisson distribution (see 

De Jongh et al., 2015): 

 

Step 1: Generate 𝑁 distributed according to the assumed frequency 

distribution. 

Step 2: Generate 𝑌1, 𝑌2, … , 𝑌𝑁 independent and identically distributed (i.i.d.), 

according to the true severity distribution 𝑇 and calculate 𝐴 = ∑ 𝑌𝑛
𝑁
𝑛=1 .  

Step 3: Repeat Step 1 and Step 2 𝐼 times independently to obtain 𝐴𝑖 , 𝑖 =

1,2, … , 𝐼 and then approximate the 99.9% VaR by 𝐴([0.999∗𝐼]+1)where 

𝐴(𝑖) denotes the 𝑖-th order statistic and [𝑘] the largest integer 

contained in 𝑘. 

 

Where a mixed distribution is used as described in the previous section, Steps 1 and 2 

of the above algorithm would look slightly different, but this is revisited in Chapter 4. 

 

The frequency and severity distributions assumed in Step 1 and Step 2 are not known 

in practice and they need to be estimated as explained in Sections 3.2.1 and 0 above, 

and would be based on actual loss data. 

  

Other numerical methods can also be used, like the single-loss approximation (SLA) 

method suggested by Böcker and Klüppelberg (2005). The SLA method is summarised 

as follows: if 𝑇 is the true underlying severity distribution function of the individual 

losses, and 𝜆 is the true annual frequency, then the 100(1 − 𝛾)% VaR of the 

compound loss distribution may be approximated by 𝑇−1(1 −
𝛾
𝜆⁄ ).  
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3.3 Capital estimation 

The VaR of the aggregate distribution calculated in Section 3.2.3 above is used to 

estimate the standalone capital for each ORC. The sum of the standalone capital for 

all ORCs is known as the undiversified capital. 

  

Correlations or copulas may be used to capture dependencies of operational risk 

losses across business lines or event types. Such dependencies may result from 

business cycles, bank-specific factors, or cross-dependence of significant events. 

Banks employing more granular modelling approaches may incorporate a dependence 

structure for operational risk losses incurred across those business lines and event 

types for which separate operational risk models are used. Note that when using 

correlations to measure dependence, it is generally not true that higher correlations 

imply a higher risk capital outcome (e.g. for extremely heavy-tailed distributions) (see 

Embrechts and Hofert, 2011). 

 

A Student-t copula is often used to model the dependence structure between the 

aggregate loss distributions for the different ORCs, as it includes a degree of tail 

dependence. In order to simulate the dependence structure between ORCs, the 

correlation between the ORCs first need to be estimated from historical data. The 

detail of this process is not expanded on in this dissertation, but the interested reader 

may refer to McNeil et al., 2015. 

 

3.4 Data sources 

As explained under Section 3.2.3, the frequency and severity distributions need to be 

estimated from actual loss data. We therefore move our focus to the various data 

sources available to banks to estimate these distributions and their parameters.  

 

It is standard practice in operational risk management to use different data sources 

for modelling future losses. Banks have typically been collecting their own loss data 

for some time, referred to as internal data.  In addition, various external loss databases 

exist, including publicly available data, insurance data and consortium data. The Basel 

Accord (2011) also suggests the use of scenario assessments to improve severity 
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distribution estimation and business environment and internal control factors. Each of 

these data sources will be discussed in more detail below. 

 

3.4.1 Internal data 

When constructing statistical models, a bank’s own historical losses is probably the 

most appropriate data to use. However, operational risk is a relatively new risk, and 

most banks have only been collecting operational losses for the past ten or fifteen 

years. Once this data is divided into homogeneous groups, to ensure independent and 

identically distributed losses (for the individual ORCs previously mentioned), the 

number of data points per homogeneous group, decreases significantly.  

 

Aue and Kalkbrener (2007) explain that although an organisation’s internal loss data 

is the most objective risk indicator available to them, it suffers from two main 

drawbacks. The first is that it is backwards-looking and therefore does not allow for 

changes in the organisation’s control environment. It is also not available in sufficient 

quantities to build reliable statistical models, specifically for extreme losses used to 

inform the capital estimates.  

 

It is for this reason that external data sources may be considered to enhance the 

banks’ data. In addition, history is not always the best predictor of the future, and 

there is a requirement for capital models to be forward-looking. Scenario assessments 

by business experts are valuable in giving this forward-looking view. The role of 

external data and scenario assessments are expanded on below. 

 

3.4.2 External data 

External data is expected to complement a bank’s internal data when modelling the 

loss severity. It includes information on significant actual losses that the individual 

bank may not have experienced (Basel Committee on Banking Supervision, 2011b). 

Regulatory supervisors expect banks to use external data to estimate the loss severity 

as it may contain valuable information to inform the tail of the loss distribution(s). In 

addition, they argue that it may be a necessary input into scenario analysis and 



30 

 

potentially other uses beyond providing information on large losses for modelling 

purposes. The potential use of external data in informing the scenario assessments of 

experts is central to this research study. 

 

In Chapter 5, it is shown how the estimation of an appropriate severity distribution 

𝐹 (𝑦, 𝜃) can be done using data from an external database. This is useful where a bank 

does not have sufficient internal data. 

 

3.4.3 Scenario analysis 

Scenario analysis is the third source of loss data to be considered. It is a crucial tool in 

the identification and management of operational risk. Scenario analysis is described 

as a process whereby the opinions of risk managers or experts within a specific 

business line can be obtained to identify possible risk events and establish their 

potential outcomes (see Basel Committee on Banking Supervision 2011a). 

 

According to the Risk Management Association (2011), the financial industry has 

reached a consensus view on the importance of scenario analysis and how it can 

support the risk management process. This is mainly due to the numerous tail events 

that have resulted in enormous financial loss and reputational damage since the turn 

of the century. However, scenario analysis is one of the most challenging aspects of 

the AMA despite the emerging recognition of its value. For example, different 

practices exist for the use of scenario analysis when measuring risk. As part of the 2008 

Loss Data Collection Exercise (LDCE) conducted by the Operational Risk Subgroup of 

the Standards Implementation Group and published by the Basel Committee on 

Banking Supervision, banking supervisors collected scenario analysis data on an 

international basis. They reference three types of scenario approaches: the individual 

approach, the interval approach, and the percentile approach (Basel Committee on 

Banking Supervision, 2009). Unfortunately, they do not describe the different scenario 

approaches or how it is used in practice.   

 

The Risk Management Association (2011) observed that no single accepted conceptual 

or technical practice has emerged for incorporating scenario analysis into operational 
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risk measurement. De Jongh et al. (2015) investigated various approaches to 

incorporate scenario assessments into modelling the severity distribution. They 

proposed a new method for integrating limited historical data (whether internal loss 

data or external data) with scenario assessments.  

 

In Chapter 4, we expand on the significance of qualitative scenario assessments as a 

potential data source for quantitative operational risk models and how the method 

described by De Jongh et al. (2015) can incorporate these data points.  

 

3.4.4 Business environment and internal control factors (BEICF’s) 

The BCBS (2006) explains that in addition to using loss data, whether actual or 

scenario-based, a bank’s firm-wide risk assessment methodology must capture the 

critical business environment and internal control factors that can change its 

operational risk profile. These factors will make a bank’s risk assessments more 

forward-looking and directly reflect the quality of the bank’s control and operating 

environments. It will also help align capital assessments with risk management 

objectives and recognise improvements and deterioration in operational risk profiles 

more immediately.  

 

The use of business environment and internal control factors are not expanded on in 

the remainder of this dissertation. 

 

3.4.5 Combining sources of data 

The Basel Committee on Banking Supervision (2011b) suggests that there may be a 

need for different combinations of the different data sources, and the onus is on the 

bank to show that their process of combining the data is sufficient for the purpose it 

is intended, i.e. to estimate capital. 

 

Various methods have been proposed to combine historical or internal data with the 

scenario assessments of experts. For example, Dutta and Babbel (2014) suggested 

using a “Change of Measure” approach to evaluate each scenario's impact on the total 

estimate for operational risk capital. They conclude that each scenario will change the 
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historical probability associated with a given severity range. Their paper claims that 

the successful use of scenario data in capital models has often failed due to the 

incorrect interpretation or implementation of the data. 

 

Lambrigger et al. (2007), on the other hand, combine three sources, namely internal 

data, external data, and expert opinions, to estimate the parameters of the risk 

frequency and severity distributions. Their approach uses Bayesian inference as the 

statistical technique to combine the three sources of data. 

 

De Jongh et al. (2015) introduced a simple method whereby the severity distribution 

of the aggregated losses can be estimated using both historical data and scenario 

assessments. Their method incorporates a measure of agreement between the two 

data sources, assessing the quality of both.  

 

Our research shows how both internal and external data can be combined to estimate 

the severity distribution of losses and how this could be used to inform or challenge 

the scenario assessments of business experts. 

 

3.5 Conclusion 

The proposed methodology for constructing quantitative operational risk models is 

based on the loss distribution approach. Constructing an aggregate loss distribution 

from which the risk capital required for each operational risk category within a bank 

can be estimated, was explained in detail in this chapter.  

 

In the next chapter, this methodology is expanded, and it is shown how scenario 

analysis is combined with limited historical data to estimate the severity distribution.  

In Chapter 5, external data sources are considered where a bank does not have 

sufficient internal data. It is shown how an appropriate severity distribution 𝐹(𝑦, 𝜃) 

can be estimated using an external database and utilising certain explanatory variables 

to scale the severity distribution for an individual bank.   
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4. Constructing forward-looking distributions using limited historical data 

and scenario assessments 

4.1 Introduction 

In this chapter, statistical methods are explored that could be used to combine limited 

historical data and scenario assessments to estimate extreme quantiles of a loss 

distribution. The methodology discussed in this chapter provides a way of constructing 

forward-looking distributions to ultimately determine risk capital. Extracts from this 

chapter were published in the book “Linear and non-linear financial econometrics: 

Theory and Practice” (De Jongh et al., 2021). 

 

4.2 Scenario assessments 

It was previously mentioned that scenario assessments by experts are sometimes used 

to augment the limited internal data available by banks. According to Wei et al. (2018), 

the two subjective data elements of scenario analysis and BEICFs are less used than 

the two objective data elements of internal and external loss data in operational risk 

measurement. However, scenario analysis is valuable to inform the scale of extreme 

losses or the tail of the loss distribution.  

 

Three different types of scenario approaches were mentioned in Chapter 3.4.3. 

However, in this chapter, the focus is on the percentile scenario approach explained 

in detail by De Jongh et al. (2015). They also refer to it as the 1-in-c years' scenario 

approach.  In the 1-in-c years' scenario approach, scenario makers are asked the 

following question: “What loss level 𝑞𝑐 is expected to be exceeded only once every 𝑐 

years?” Popular choices for 𝑐 range between 5 and 100 years, and often three values 

for 𝑐 are used. Typically, the first choice would be motivated by the number of years 

of historical data available to a bank, for example, seven or ten years. In this case, the 

maximum loss experienced by the bank over ten years may serve as a guide for 

choosing 𝑞10, because the loss level has actually been reached once over the ten years. 

Scenario makers may, however, want to provide a lower (or higher) assessment of 𝑞10 

based on whether they believe that the future will be better (or worse) than the past.  

De Jongh et al. (2015) explain that the other choices of 𝑐 are selected to obtain a 
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scenario spread within the range that we can expect a reasonable improvement in 

accuracy from the experts’ inputs, such as 20, 50 or even 100 years. The choice of 𝑐 =

100 is questionable, given that a judgement on a 1-in-100 years loss level likely fall 

outside the scope of any expert’s experience. For this reason, they may also take 

additional guidance from external data of similar banks, which in effect amplifies the 

number of years for which historical data are available. It is argued that this is an 

essential input into scenario analysis according to BCBS (2011b)  and also expanded 

on in Chapter 5.    

 

De Jongh et al. (2015) showed that if the annual loss frequency is 𝑃𝑜𝑖(𝜆) distributed 

and the true underlying severity distribution is 𝑇, and if the experts are of oracle 

quality in the sense of actually knowing 𝜆 and 𝑇, then the assessments provided should 

be 

 

 𝑞𝑐 = 𝑇
−1(1 − 1

𝑐𝜆
). (3) 

 

To see this, let 𝑁𝑐 denote the number of loss events experienced in 𝑐 years and let  

𝑀𝑐 denote the number of these that are greater than 𝑞𝑐. Then 𝑁𝑐~𝑃𝑜𝑖(𝑐𝜆) and the 

conditional distribution of 𝑀𝑐 given 𝑁𝑐 is binomial with parameters 𝑁𝑐 and 1 − 𝑝𝑐 =

𝑃(𝑌 ≥ 𝑞𝑐 ) = 1 − 𝑇(𝑞𝑐) with 𝑌~𝑇 and 𝑝𝑐 = 𝑇(𝑞𝑐) = 1 −
1

𝑐𝜆
. Therefore 𝐸[𝑀𝑐] =

𝐸[𝐸(𝑀𝑐|𝑁𝑐)] = 𝐸[𝑁𝑐(1 − 𝑝𝑐)] = 𝑐𝜆(1 − 𝑇(𝑞𝑐)). Requiring that 𝐸[𝑀𝑐] = 1, yields 

(3). 

 

As an illustration of the complexity of the experts’ task, take 𝜆 = 50 then 𝑞10 =

𝐹−1(0.998) , 𝑞20 = 𝐹−1(0.999)  and 𝑞100 = 𝐹
−1(0.9998) which implies that the 

quantiles that have to be estimated are very extreme. 

 

Considering the equation derived for the scenario assessments in (3), the expert must 

know both the true severity distribution and the annual frequency when assessment 

is provided. In order to simplify the task of the expert, De Jongh et al. (2015) made use 

of the mixed model in (1) first introduced in Chapter 3 to show that 𝑇𝑢(𝑞𝑐) = 1 −
𝑏

𝑐
 . 
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Using the equation for 𝑇𝑢 and taking 𝑞 = 𝑞𝑏 , 𝑏 < 𝑐, the new equation for 𝑇𝑢(𝑞𝑐) does 

not depend on the annual frequency 𝜆. They argue that when 𝑏 = 1, 𝑞1 would be the 

experts’ answer to the question ‘What loss level is expected to be exceeded once 

annually?’ and a reasonably accurate assessment of 𝑞1 should be possible. As a result, 

𝑇𝑢(𝑞𝑐) =  1 − 1 𝑐⁄   or 1 − 𝑇𝑢(𝑞𝑐) =  1 𝑐⁄ . Keeping in mind the conditional probability 

meaning of 𝑇𝑢, 𝑞𝑐 would be the answer to the question: ‘Among those losses that are 

larger than 𝑞1, what level is expected to be exceeded only once in 𝑐 years?’. 

Conditioning on losses larger than 𝑞1 has the effect that the annual frequency of all 

losses drops out of consideration when an answer is sought. The remainder of the 

chapter assumes that this question is posed to the experts when making their 

assessments. 

 

4.3 Estimating VaR 

Suppose historical loss data 𝑌1, 𝑌2, … , 𝑌𝑛 for 𝑎 years are available, as well as three 

scenario assessments �̃�10, �̃�20 and �̃�100 are provided by experts. Because real scenario 

makers are not oracles, we denote their assessments by �̃�𝑐.The estimation of the 

99.9% VaR of the aggregate loss distribution is of interest. In Section 3.2.3 it was 

explained how the VaR can be approximated using Monte Carlo simulation.  Below 

three approaches are considered to estimate the VaR, namely the naïve approach, the 

GPD approach and Venter’s approach. The naïve approach uses only historical data. 

The GPD approach (based on the mixed model formulation introduced in Section 0) 

and Venter’s approach use historical data and scenario assessments. As far as 

estimating VaR is concerned, it is shown that Venter’s approach is preferred to the 

GPD and naïve approaches. 

 

4.3.1 Naïve approach 

Assume only historical data are available with a total of 𝐾 loss events spread over 𝑎 

years and denote these observed or historical losses by 𝑦1, … , 𝑦𝐾 . Then the annual 

frequency is estimated by �̂� = 𝐾/𝑎 . Let 𝐹(𝑦; θ) denote a suitable family of 

distributions to model the true loss severity distribution 𝑇. The fitted distribution is 

denoted by 𝐹(𝑦; 𝜃), with 𝜃 denoting the (maximum likelihood) estimate of the 
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parameter(s) 𝜃. The source of the historical data in this process would be a bank’s own 

operational losses, although in Chapter 5 it is shown how data from external sources 

can be used and scaled to estimate 𝐹(𝑦; 𝜃) where sufficient internal data is not 

available. In order to estimate VaR, a slight adjustment of the Monte Carlo 

approximation approach discussed earlier is necessary. 

 

Naïve VaR estimation algorithm:  

Step 1: Generate 𝑁 from the Poisson distribution with parameter �̂�; 

Step 2: Generate 𝑌1, … , 𝑌𝑁~𝑖𝑖𝑑 𝐹(𝑦; 𝜃) and calculate 𝐴 = ∑ 𝑌𝑛
𝑁
𝑛=1 ; 

Step 3: Repeat steps 1 and 2 𝐼 times independently to obtain 𝐴𝑖 , 𝑖 = 1,2, … , 𝐼. 

Then the 99.9% VaR is estimated by 𝐴([0.999∗𝐼]+1) where 𝐴(𝑖) denotes 

the  𝑖-th order statistic and [𝑘] the largest integer contained in 𝑘.  

 

Other percentiles can also be used in this algorithm, but as previously mentioned this 

dissertation focusses on the 99.9th percentile that is required for regulatory capital. 

  

The naïve approach should be used cautiously as a single extreme loss can cause 

drastic changes in estimating the means and variances of severity distributions. This 

could be true even if a large amount of loss data is available. Annual aggregate losses 

will typically be driven by the value of the most extreme losses and the high quantiles 

of the aggregate annual loss distribution are primarily determined by the high 

quantiles of the severity distributions containing the extreme losses. Two different 

severity distributions for modelling the individual losses may both fit the data well in 

terms of goodness-of-fit statistics, yet may provide capital estimates which may differ 

by billions. Certain deficiencies of the naïve estimation approach, in particular, the 

estimation of the severity distribution and the subsequent estimation of an extreme 

VaR of the aggregate loss distribution, are highlighted in Embrechts and Hofert (2011). 

 

In Figure 2 we used the naïve approach to illustrate the effect of some of the above-

mentioned claims. In Figure 2(a) we assumed a Burr distribution, i.e., 

𝑇_𝐵𝑢𝑟𝑟 (1, 0.6,  2), as our true underlying severity distribution. In the top panel we 

show the distribution function and in the middle the log of 1 minus the distribution 
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function. This gives us more accentuated view of the tail of the distribution. Then in 

the bottom panel the Monte Carlo results of the VaR approximations are given by 

means of a box plot using the 5th and 95th percentiles for the box. One million 

simulations were used to approximate VaR and the VaR calculations were repeated 

1000 times. In   Figure 2(b) we assume 𝜆 = 10, 𝑎 = 10 and generated 𝜆𝑎 = 100 

observations from the 𝑇_𝐵𝑢𝑟𝑟(1,  0.6,  2) distribution. The observations generated 

are plotted in the top panel and in the middle panel the fitted distribution and the 

maximum likelihood estimates of the parameters are depicted as 

𝐹_𝐵𝑢𝑟𝑟 (1.07, 0.56, 2.2). In the bottom panel the results of the VaR estimates using 

the naïve approach are provided. Note how the distribution of the VaR estimates differ 

from those obtained using the true underlying severity distribution. Of course, 

sampling error is present, and the generation of another sample will result in a 

different box plot. To illustrate this, we study the effect of extreme observations by 

moving the maximum value further into the tail of the distribution, and fitting another 

distribution. The data set is depicted in the top panel of   Figure 2(c) and the fitted 

distribution in the middle as 𝐹_𝐵𝑢𝑟𝑟 (1.01, 0.52, 2.26). Again, the resulting VaR 

estimates are shown in the bottom panel. In this case the introduction of the extreme 

loss has a profound boosting effect on the resulting VaR estimates.  
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  Figure 2: Illustration of the effects of VaR estimation using the naïve approach 

 

In practice, and due to imprecise loss definitions, risk managers may incorrectly group 

two losses into one extreme loss that has a profound boosting effect on VaR estimates. 

In light of this, the manager must be aware of the process of generating the data and 

the importance of clear definitions of loss events. 
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4.3.2 The GPD approach 

This modelling approach is based on the mixed model formulation in Equation (2) as 

explained in Section 0. As before, 𝑎 years of historical loss data is available, 

𝑦1, 𝑦2, … , 𝑦𝐾 and scenario assessments �̃�10, �̃�20 and �̃�100. The annual frequency 𝜆 can 

again be estimated as �̂� = 𝐾 𝑎⁄ . Next, 𝑏 and the threshold 𝑞 = 𝑞𝑏 must be specified. 

One possibility is to take 𝑏 as the smallest of the scenario 𝑐-year multiples and to 

estimate 𝑞𝑏 as the corresponding smallest of the scenario assessments �̃�𝑏 provided by 

the experts, in this case �̃�10. 𝑇𝑒(𝑦) can be estimated by fitting a parametric family 

𝐹𝑒(𝑦, 𝜃) (such as the Burr distribution) to the data 𝑦1, 𝑦2, … , 𝑦𝐾 or by calculating the 

empirical distribution and then conditioning it to the interval (0, �̃�𝑏]. Either of these 

estimates is a reasonable choice, especially if 𝐾 is large and the parametric family is 

well chosen. Whichever estimate is used, denote it by �̃�𝑒(𝑦). For future notational 

consistency, tildes are used on all estimates of distribution functions which involve the 

use of the scenario assessments. 

  

Next, 𝐹𝑢(𝑦) is modelled by the 𝐺𝑃𝐷(𝑦; 𝜎, 𝜉, 𝑞𝑏) distribution. See Table 1 in Chapter 3 

for the density function of the GPD distribution. Suppose there are actual scenario 

assessments �̃�10,  �̃�20 and �̃�100  and thus take 𝑏 = 10 and estimate 𝑞𝑏 by �̃�10. 

Substituting these scenario assessments into 𝐹𝑢(𝑞𝑐) = 1 −
𝑏

𝑐
  ; with 𝑏 = 10, 𝑐 = 20, 

100 yields two equations 

  

 𝐹𝑢(�̃�20) = 𝐺𝑃𝐷(�̃�20; 𝜎, 𝜉, �̃�10) = 0.5, and 

         𝐹𝑢(�̃�100) = 𝐺𝑃𝐷(�̃�100; 𝜎, 𝜉, �̃�10) = 0.9, 
(4) 

 

that can be solved to obtain estimates �̃� and 𝜉 of the parameters 𝜎 and 𝜉 in the GPD 

that is based on the scenario assessments. De Jongh et al. (2015) showed that a 

solution exists only if 
�̃�100− �̃�10

�̃�20−�̃�10
>

ln(100)−ln(10)

ln(20)−ln(10)
= 3.32. This fact should be borne in 

mind when the experts do their assessments. 

 

With more than three scenario assessments, fitting techniques can be based on (4), 

which links the quantiles of the GPD to the scenario assessments. An example would 
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be to minimise  ∑ |𝐺𝑃𝐷(�̃�𝑐; 𝜎, 𝜉, �̃�𝑏) − (1 − 𝑏 𝑐⁄ )|𝑐 , although this is not expanded on 

here. The final estimate of 𝐹𝑢(𝑦) is denoted by �̃�𝑢(𝑦) and all these components are 

now substituted into Equation 2 to yield the estimate �̃�(𝑦) of 𝐹(𝑦), namely 

 

 �̂��̃�(𝑦) =  (�̂� −
1

10
) �̃�𝑒(𝑦)  +

1

10
�̃�𝑢(𝑦). (5) 

 

Showing the practical use of equation (5), the algorithm below summarises the 

integration of the historical data with the 1-in-𝑐 years scenarios following the MC 

approach.  

 

GPD VaR estimation algorithm: 

Step 1: Generate  𝑁𝑒~𝑃𝑜𝑖 (�̂� −
1

10
) and 𝑁𝑢~𝑃𝑜𝑖 (

1

10
);  

Step 2: Generate 𝑌1, … , 𝑌𝑁𝑒~iid �̃�𝑒  and 𝑌𝑁𝑒+1, … , 𝑌𝑁𝑒+𝑁𝑢~iid �̃�𝑢  and calculate 

𝐴 = ∑ 𝑌𝑛
𝑁
𝑛=1  where 𝑁 = 𝑁𝑢+𝑁𝑒. It follows that 𝐴 is distributed as a 

random sum of 𝑁 i.i.d. losses from �̃�. 

Step 3:  Repeat steps 1 and 2 𝐼 times independently to obtain 𝐴𝑖 , 𝑖 = 1,2, … , 𝐼 

and estimate the 99.9% VaR by the corresponding empirical quantile of 

these 𝐴𝑖’s as before. 

 

Using the GPD 1-in-𝑐 years integration approach to model the severity distribution, 

the 99.9% VaR of the aggregate distribution is almost exclusively determined by the 

scenario assessments and their reliability fundamentally affects the reliability of the 

VaR estimate. The SLA supports this conclusion. As noted before, the SLA implies that 

we need to estimate 𝑞1000 = 𝑇
−1 (1 −

1

1000𝜆
) and its estimate would be �̂�1000 =

𝐺𝑃𝐷−1 (
(1−

1

1000�̂�
)

1−(1−
1

10�̂�
)
, �̃�, 𝜉, �̃�𝑏).  

 

Therefore, the 99.9% VaR largely depends on the GPD fitted with the scenario 

assessments. In Figure 3 we depict the VaR estimation results by fitting �̃�𝑒 assuming a 

Burr distribution and  �̃�𝑢 assuming a GPD. The top panel in Figure 3 (a) depicts the tail 

behaviour of the true severity distribution which is assumed as a Burr distribution and 
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denoted as 𝑇_𝐵𝑢𝑟𝑟(1, 0.6, 2).  Using the VaR approximation technique discussed in 

Section 3.2.3 and assuming  𝜆 = 10, 𝐼 = 1 000 000 and 1 000 repetitions, the VaR 

approximations are depicted in the bottom panel in the form of a box plot as before. 

Assuming that we were supplied with quantile assessments by the oracle we use the 

two samples discussed in Figure 2 and apply the GDP approach. The results are 

displayed in Figure 3 (b) and (c) below. 

 

 

Figure 3: Illustration of VaR estimates obtained from a GPD fit on the oracle 

quantiles 

 

The GPD fitted to the oracle quantiles produce similar box plots, which in turn is very 

similar to the box plot of the VaR approximations. Clearly the fitted Burr has little 

effect on the VaR estimates. The VaR estimates obtained through the GPD approach 

is clearly dominated by the oracle quantiles. Of course, if the assessments are supplied 

by experts and not oracles the results would differ significantly. This is illustrated when 

we compare the GPD with Venter’s approach. 
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The challenge is therefore to find a way of integrating the historical data and scenario 

assessments such that both sets of information are adequately utilised in the process. 

It would be beneficial to have measures indicating whether the experts’ scenario 

assessments are in line with the observed historical data and, if not, to require them 

to produce reasons why their assessments are so different. In Chapter 5 we suggest a 

way of using external data to challenge experts’ scenario assessments. 

 

4.3.3 Venter’s approach 

De Jongh et al. (2015) explain that their proposed approach was first suggested by 

their colleague, Hennie Venter. Given the quantiles 𝑞10, 𝑞20 and 𝑞100, the distribution 

function 𝑇 can be written as follows: 

 

 

𝑇(𝑦) =  

{
 
 
 
 

 
 
 
 

    

 𝑝10
𝑇(𝑞10)

𝑇(𝑦)                                                                                    𝑓𝑜𝑟   𝑦 ≤  𝑞10 

 𝑝10 +
𝑝20 − 𝑝10

𝑇(𝑞20) − 𝑇(𝑞10)
[𝑇(𝑦) − 𝑇(𝑞10)]                       𝑓𝑜𝑟  𝑞10 < 𝑦 ≤  𝑞20

𝑝20 +
𝑝100 − 𝑝20

𝑇(𝑞100) − 𝑇(𝑞20)
[𝑇(𝑦) − 𝑇(𝑞20)]                  𝑓𝑜𝑟   𝑞20 < 𝑦 ≤  𝑞100

𝑝100 +
1 − 𝑝20

1 − 𝑇(𝑞100)
[𝑇(𝑦) − 𝑇(𝑞100)]                            𝑓𝑜𝑟   𝑞100 < 𝑦 <  ∞.

 (6) 

 

Again 𝑇(𝑞𝑐) = 𝑝𝑐 = 1 −
1

𝑐𝜆
  and therefore, the expressions on the right reduces to 

𝑇(𝑦). The definition of 𝑇(𝑦) could also be extended for more quantiles. They model 

𝑇(𝑦) by 𝐹(𝑦, 𝜃) and estimate it by 𝐹(𝑦, 𝜃) using historical data and maximum 

likelihood estimates and also estimate the annual frequency by �̂� = 𝐾/𝑎. Given 

scenario assessments  �̃�10, �̃�20 and �̃�100, 𝑇(𝑞𝑐) can be estimated by 𝐹(�̃�𝑐, 𝜃) and 𝑝𝑐 

by �̂�𝑐 = 1 −
1

𝑐�̂�
. The estimated ratios are then defined by 

 

 
𝑅(10) =

�̂�10

𝐹(�̃�10; 𝜃)
 ,    

𝑅(10,20) =
�̂�20 − �̂�10

𝐹(�̃�20; 𝜃) − 𝐹(�̃�10; 𝜃)
 , 

𝑅(20,100) =
𝑝100−𝑝20

𝐹(�̃�100;�̂�)−𝐹(�̃�20;�̂�)
 , and   

𝑅(100) =
1−𝑝100

1−𝐹(�̃�100;�̂�)
. 

(7) 
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Their new method is to estimate the true severity distribution function 𝑇 by an 

adjusted form of 𝐹(𝑥, 𝜃), then Hennie’s distribution �̃� is defined as follows (see De 

Jongh et al. 2015): 

 

 �̃�(𝑦)

=  

{
 
 

 
 

    

𝑅(10)𝐹(𝑦; 𝜃) 𝑓𝑜𝑟   𝑦 ≤  �̃�10

�̂�10 + 𝑅(10,20)[𝐹(𝑦; 𝜃) − 𝐹(�̃�10; 𝜃)] 𝑓𝑜𝑟  �̃�10 < 𝑦 ≤  �̃�20

�̂�20 + 𝑅(20,100)[𝐹(𝑦; 𝜃) − 𝐹(�̃�20; 𝜃)] 𝑓𝑜𝑟   �̃�20 < 𝑦 ≤  �̃�100     

�̂�100 + 𝑅(100)[𝐹(𝑦; 𝜃) − 𝐹(�̃�100; 𝜃)] 𝑓𝑜𝑟   �̃�100 < 𝑦 <  ∞.

 
(8) 

 

If all estimators are precisely equal to what they are estimating, this estimate is 

consistent because it reduces to 𝑇. Their new severity distribution estimate �̃� 

‘believes’ the scenario quantile information but follows the distribution fitted on the 

historical data to the left of, within, and right of the scenario intervals. The ratios 

𝑅(10), 𝑅(10,20), 𝑅(20,100) and 𝑅(100) in (7) can be viewed as measures of 

agreement between the historical data and the scenario assessments and could help 

assess their validities. The steps required to estimate VaR using the Venter method 

are set out below. 

 

Venter method VaR estimation algorithm: 

Step 1: Generate  𝑁~𝑃𝑜𝑖(�̂�) ; 

Step 2: Generate   𝑌1, … , 𝑌𝑁~iid �̃� and calculate 𝐴 = ∑ 𝑌𝑛
𝑁
𝑛=1 ; 

Step 3: Repeat steps 1 and 2 𝐼 times independently to obtain 𝐴𝑖 , 𝑖 = 1,2, … , 𝐼 

and estimate the 99.9% VaR by the corresponding empirical quantile of 

these 𝐴𝑖’s as before.  

 

The single loss approximation introduced earlier is considered and how it applies to 

this method. The SLA implies that they need to estimate 𝑞1000 = 𝑇
−1 (1 −

1

1000𝜆
) and 

its estimate would be �̂�1000 = �̃�
−1 (1 −

1

1000�̂�
) = �̃�−1(�̂�1000). The equation 

𝐹(�̂�1000; 𝜃) = 𝐹(�̃�100; 𝜃) + (�̂�1000 − �̂�100) 𝑅(100)⁄   needs to be solved for �̂�1000. It 

is relatively easy when using the Burr family as there is an explicit expression for its 
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quantile function. It shows that a combination of the historical data and scenario 

assessments are involved, and not exclusively the latter. In as much as the SLA 

provides an approximation to the actual VaR of the aggregate loss distribution, it is 

expected that the same will hold for Venter’s approach. 

 

In order to illustrate the properties of this approach we assume that the true 

underlying severity distribution is the 𝐵𝑢𝑟𝑟(1, 0.6, 2) as before.  We then construct a 

‘false’ severity distribution as the fitted distribution to the distorted sample depicted 

in   Figure 2 (c), i.e. the 𝐵𝑢𝑟𝑟(1.01, 0.52, 2.26).   We refer to the true severity 

distribution as 𝐵𝑢𝑟𝑟_1 and the false one as 𝐵𝑢𝑟𝑟_2. In Figure 4 (a) the box plots of the 

VaR approximations of the two distributions are given (using the same input for the 

MC simulations in Figure 2 (a) and Figure 2 (c) respectively). We then illustrate the 

performance of the GPD and Venter approach in two cases. The first case assumes 

that the correct (oracle) quantiles of 𝐵𝑢𝑟𝑟_1 are supplied, but that the loss data are 

distributed according to the false distribution 𝐵𝑢𝑟𝑟_2. In the second case, the 

quantiles of the false severity distribution are supplied, but the loss data follows the 

true severity distribution. The box plots of the VaR estimates are given in Figure 4 (b) 

for case 1 and Figure 4 (c) for case 2. 

 

 

Figure 4: Comparison of VaR results for the GPD and Venter approaches 
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The Venter approach is affected by both the loss data and quantiles supplied. In the 

example studied here it seems as if the method is more affected by the quantiles than 

by the data. The role of the data relative to the quantiles changes positively with the 

volume of loss data being supplied.  

   

4.4 Conclusion 

Historical data was used to estimate frequency and severity distributions and it was 

shown how these can be integrated with scenario assessments. Where a bank has 

sufficient data of its own historical losses, this would be the most important source to 

estimate these frequency and severity distributions. However, it was previously 

mentioned that banks often have limited data in a specific ORC, and it may thus be 

difficult to estimate the severity distribution.  For this reason, banks may also make 

use of external data sources for one or more ORC where their own data is scarce.  

 

This chapter considered three approaches to estimate the VaR, namely the naïve 

approach, the GPD approach, and Venter’s approach. The Venter approach estimates 

the severity distribution using historical data and experts’ scenario assessments 

jointly. The way in which historical data and scenario assessments are integrated 

incorporates measures of agreement between these data sources, which can be used 

to evaluate the quality of both. Major international banks have already implemented 

this method with great success. 

 

In the next chapter, SAS® OpRisk Global Data is used to demonstrate how external 

data can be scaled for use in the modelling process. 
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5. Using external data sources to inform scenario assessments 

5.1 Introduction  

In the previous chapter we explored statistical methods to combine historical data and 

scenario assessments to estimate the extreme quantiles of the aggregate loss 

distribution. Although it was not specified whether this historical data had to be 

internal or external data, it was noted in Section 3.4.1  that a bank’s own historical 

losses would be most appropriate for this modelling exercise. However, most banks 

have only been collecting operational loss data for a relatively short period of time, 

and once the data is divided into homogeneous groups, the number of data points in 

each ORC decreases significantly. This could make the process of fitting a parametric 

distribution difficult.  

 

To address this shortfall, banks often subscribe to external data consortiums or use 

other external data sources to supplement their own data.  External databases are 

extremely valuable because they pool together the industry’s experiences and provide 

an estimate of exposure for an average bank in the industry. 

 

First, external data can be used for ORC’s where no or limited data is available, to 

estimate both frequency and severity distributions. Note that the objective is not to 

combine internal and external data where sufficient internal data is available, but 

rather to obtain estimates for frequency and severity distributions where no or too 

few internal data points are available. The proposed process of scaling external data 

to be appropriate for use to an individual bank will be discussed in this chapter. 

 

Second, for ORC’s where sufficient internal data is available, the use of external data 

may still be beneficial. For example, the quantiles of the aggregate distribution fitted 

to external data can potentially be used to inform or challenge scenario assessments.  

 

In this chapter, we consider the use of external data in operational risk models and 

how it could be utilised in the ultimate decision making of a bank. Specifically, we 

suggest a scaling methodology to estimate the severity distribution where no or 
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limited data is available, but also how external data can inform or challenge subjective 

scenario assessments.  

 

First, we explain the difference between the two types of external databases, namely 

a public database and a consortium.  

 

5.2 External databases 

Two types of external databases exist in practice (Baud et al., 2002): 

• The first type of database records publicly reported losses. Wei et al. (2018) explain 

that commercial vendors and researchers construct these public databases by 

collecting information on operational loss events from public data sources such as 

newspapers, websites, and others.   SAS® OpRisk Global Data, OpBase, and the 

Willis Towers Watson’s (WTW) database are examples of these public databases 

constructed by commercial vendors. The losses included in these databases are 

typically considered far too important to be concealed from the public eye and are 

therefore openly reported. In Section 5.3 the public database used in this study, 

namely SAS® OpRisk Global Data, is discussed in more detail. 

 

• The second type of external database is based on a consortium of organisations. It 

works on an agreement among a group of member organisations who commit to 

supply the database with their own internal losses, provided that some 

confidentiality principles are respected. In return, the member organisations are 

allowed to use the data to supplement their internal data. An example of a 

consortium database is Operational Riskdata eXchange Association (ORX). A group 

of banks initially set up ORX to provide a global platform for the secure and 

anonymous exchange of data. They now consist of more than 80 member banks, 

including some of the largest financial institutions around the globe. 

 

Baud et al. (2002) explain that the two types of databases will differ by how losses are 

truncated, i.e., only losses above a certain threshold will be captured, and that 

threshold amount is not necessarily the same. With publicly reported losses, the 
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truncation point is expected to be higher than a consortium’s database, given that it 

is only losses in the public’s interest that are openly reported and subsequently 

recorded. The consortium can specify to their member organisations the threshold at 

which a loss should be included, and for example, ORX includes all losses above EUR 

20 million in their global database (Wei et al., 2018). Making specific allowance for 

these thresholds as part of the modelling process is discussed in more detail later in 

this chapter.  

 

5.3 SAS® OpRisk Global Data  

SAS® OpRisk Global Data was used for this research study. The SAS® OpRisk Global 

Data is a comprehensive and accurate repository of publicly reported operational 

losses above USD 100 000, containing more than 32 000 events across all industries 

worldwide (SAS, 2021). For each publicly available operational loss, the SAS dataset 

provides the loss amount and additional information about the company and industry 

where the loss occurred. This includes, among others, a description of the loss event, 

the region, the size of assets of the organisation and other information associated with 

the loss. 

  

The SAS® OpRisk Global Data is updated monthly, and the database published in 

August 2020 was used for this research study. Although there were almost 37 000 

losses captured at that date, only losses in the Financial Services industry and 

exceeding USD 1 million were included. Because the focus is on risk modelling within 

a bank or financial institution, losses in non-financial lines of business would not be 

considered representative. Losses below USD 1 million were omitted, as for capital 

estimation, the focus is on modelling the tail of the distribution. 

   

 

Table 2 shows a breakdown of the number of losses for each of the nine business lines.  

Almost a third of the losses (3 630 of 11 190) occurred in Retail Banking, although the 

median log-loss of USD1.6 million in this business line is relatively low compared to 

the other business lines.  
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It should be noted that the data includes a business line for “Insurance”, which was 

not part of the business lines specified by the BCBS and set out in Section 2.4. Given 

that banking groups often also provide insurance business, these datapoints were not 

removed.   A more detailed discussion of the distribution of the data is provided in 

Section 5.4. 

 

Table 2: Breakdown of losses per business line 

 Log-losses (USD Million) 

Business line No of 
losses 

% of 
losses 

50th 
percentile 

90th 
percentile 

99th 
percentile 

Agency Services  174  1.6% 3.18 5.62 7.78 

Asset Management  513  4.6% 2.61 4.99 7.52 

Commercial Banking  2 093  18.7% 2.26 4.93 7.25 

Corporate Finance  581  5.2% 2.92 5.70 8.26 

Insurance  1 899  17.0% 2.20 4.81 7.02 

Payment & Settlement  227  2.0% 2.40 5.84 7.68 

Retail Banking  3 630  32.4% 1.60 4.61 7.68 

Retail Brokerage  808  7.2% 1.49 3.77 6.22 

Trading & Sales  1 265  11.3% 3.17 6.09 8.41 

  11 190 100.0%    

 

 

5.4 Preliminary data analysis and determination of explanatory variables 

Some authors have previously suggested that the severity of operational losses 

experienced by organisations may be related to specific exposure indicators, for 

example, the size of the organisation or the region in which the organisation operates. 

This suggests that if the same loss event had to occur at two differently sized 

organisations, the larger organisation is expected to experience a larger loss, all else 

being equal. Further, one may expect that the business, legal and regulatory 

environments in which organisations operate will differ from one region to another 

and impact the severity of operational losses. We include a summary from the 
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literature on those variables that could potentially impact operational losses, for ease 

of reference.   

 

Shih et al. (2000) showed that three variables associated with the size of an 

organisation, namely revenue, assets, and number of employees, were correlated with 

the size of operational losses. They found that revenue had the most substantial 

relationship with loss size and that the logarithm of the scale variables showed a 

stronger relationship than the raw variables. Cope and Labbi (2008) investigated 

whether an organisation or a business line’s size is correlated with operational risk loss 

and if the organisation's geographical region impacts the loss size. They used quantile 

regression techniques to characterise differences in loss distributions for banks of 

different sizes and conducting business in different geographies. Their study was 

based on ORX data, and an interesting finding of their study was that there are certain 

business lines and event types where the loss severity decreases when the size of the 

bank increases.  A possible explanation is that bigger banks may have invested 

relatively more in their internal controls. Dahen and Dionne (2010) constructed 

models to scale both the severity and frequency of external losses for integration with 

internal data. Their ordinary least squares estimation results show that size, business 

line, and risk type variables can be used to explain external loss amounts. In their 

paper, they state that total revenue, total assets, or the number of employees can be 

used as a proxy to estimate the size of the bank where the loss occurred. However, 

they chose total assets for their study, as it was the variable most correlated with 

losses in the Algo OpData they used.  

 

For our investigation, the relevant literature discussed above and the available data 

were considered. For each reported loss, SAS® OpRisk Global Data provides five 

possible data fields that could indicate the organisation's size where the loss occurred. 

These include revenue, assets, net income, number of employees and shareholder 

equity. It is reasonable to assume that there is a positive correlation between these 

variables. Therefore, only a single variable was selected to represent the 

organisation's size, namely the logarithm of the organisation's assets.  
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Ganegoda and Evans (2012) also suggest that the equity ratio, being the proportion of 

equity used to finance the company’s assets, can indicate the risk-taking tendency of 

management. It provides a measure of leverage used and given that both the assets 

and shareholder equity are provided in the SAS data, this ratio could easily be 

computed. It was used as the second explanatory variable in the scaling model. 

The third explanatory variable included in our model was the geographic region in 

which the organisation operates: Africa, Asia, Europe, North America, Other Americas, 

or Other. Wilson (2007) explains that all operational losses arise due to a specific set 

of circumstances and a lack of, or failure in, controls. The reason for including region 

as an explanatory variable is based on the assumption that circumstances should be 

similar in a specific geographic region and therefore impact on operational losses in 

different regions. 

 

Table 3 provides summary statistics about the losses in the different regions.  

 

Table 3: Summary statistics per geographical region 

 Log-losses (USD Million) 

Region No of 

losses 

% of 

losses 

50th 

percentile 

90th 

percentile 

99th 

percentile 

Africa  124  1.1% 1.47 5.05 6.14 

Asia  1 514  13.5% 2.12 5.02 7.16 

Europe  2 820  25.2% 2.44 5.72 7.91 

North America  6 292  56.2% 1.99 4.77 7.32 

Other  317  2.9% 1.84 4.61 6.86 

Other Americas  123  1.1% 2.86 5.60 7.46 

  11 190 100.0%    

 

Note: Given the relatively small number of losses reported in Africa, Other and Other 

Americas, we have grouped these losses. 
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The Basel Committee on Banking Supervision (2005) specifies that a bank’s activities 

should be categorised into business lines. Some business lines are considered riskier 

than others and may potentially suffer higher losses. Hence, the severity distribution 

will be impacted by the business line, being the fourth explanatory variable. The 

observed log-losses per business line were already provided in Table 2. Given the 

relatively small number of losses reported under Agency Services, Asset Management 

and Payment and Settlement, the losses in these categories were grouped. This 

category is referred to as AS, AM and PS later in the chapter. 

 

A comprehensive set of non-overlapping operational event types should be defined 

and applied across the various business lines. The final explanatory variable was event 

type, as it is found that different types of loss events are associated with different 

sized losses. A list of the event types used as part of the analysis is provided in Table 

4. 

  



53 

 

Table 4: Summary statistics per event type 

 Log-losses (USD Million) 

Event type No of 

losses 

% of 

losses 

50th 

percentile 

90th 

percentile 

99th 

percentile 

Business Disruption 

and System Failures 

 62  0.6% 3.01 5.20 6.25 

Clients, Products & 

Business Practices 

 5 747  51.4% 2.63 5.55 7.92 

Damage to Physical 

Assets 

 102  0.9% 3.14 6.91 9.04 

Employment 

Practices and 

Workplace Safety 

 359  3.2% 1.86 4.24 6.56 

Execution, Delivery 

& Process 

Management 

 508  4.5% 1.47 4.10 6.74 

External Fraud  2 297  20.5% 1.49 3.96 6.39 

Internal Fraud  2 115  18.9% 1.62 4.59 7.09 

  11 190 100.0%    

 

Note: Given the relatively small number of losses reported under Business Disruption 

and System Failures, Damage to Physical Assets and Employment Practices and 

Workplace Safety, the losses in these categories were grouped. This category is 

referred to as SF, D and EP later in the chapter. 
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To summarise, the explanatory variables that would be investigated as part of the 

model application elaborated on in Section 5.7 are the company's assets (using the 

logarithm of this value), the equity ratio, geographical region, business line, and event 

type. Wilson (2007) outlines three types of biases inherent in external data: reporting 

bias, control bias, and scale bias. Allowing for reporting and scale bias are discussed in 

Sections 5.5 and 5.6 respectively. 

 

5.5 Allowing for reporting bias 

Before explaining the model to be used, it is essential first to consider potential biases 

in the data. As previously explained, the SAS® OpRisk Global Data contains information 

obtained from several online information providers and other publications. A team of 

seasoned SAS operational risk research analysts maintain the database according to 

strict data quality standards and review it periodically to update it and ensure accuracy 

and completeness. Ganegoda and Evans (2012) argue that most external databases, 

especially those maintained by vendors collecting publicly reported losses, suffer from 

reporting bias. Wilson (2007) explains that larger losses (and those associated with 

larger firms) are more likely reported in the media due to factors such as size and 

nature of loss. This is because not all operational losses are reported on public 

platforms, especially smaller losses. As a result, public databases may contain a 

disproportionately high number of large or significant losses. One should make 

allowance for this bias when fitting a statistical model, or else the tail of the 

distribution will be overestimated. 

Ganegoda and Evans (2012) draws on a method first introduced by De Fontnouvelle 

et al. (2006) to assign a weight to each loss in the external database. This means that 

smaller losses will carry greater weight, and greater losses will carry a smaller weight. 

We briefly explain their methodology below. 

 

They firstly assume that a (log) loss 𝑦𝑖 is only reported in the public domain if it exceeds 

a certain truncation or observation point, 𝑡𝑖. This truncation point 𝑡𝑖 is a stochastic 

variable and should not be confused with the threshold at which losses are captured 

in the database, being USD100 000 in the case of the SAS database. To explain this, if 
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a loss is greater than the unobserved truncation point but lower than the USD100 000 

threshold, the research analyst responsible for compiling the database will observe 

the loss but not include it in the database. On the other hand, if the unobserved 

truncation point is higher than the USD100 000 threshold and the observed loss, the 

analyst will not take note of the loss, and it will, for this reason, also not be included 

in the database. Therefore, only losses greater than both 𝑡𝑖 and USD100 000 will be 

included in the database. 

 

Because they assume that the loss amount, 𝑦𝑖 and truncation point, 𝑡𝑖 are 

independent, the distribution of losses in the database is given by: 

 

𝑓(𝑦𝑖|𝑦𝑖 > 𝑡𝑖) =
𝑓(𝑦𝑖)𝐺(𝑦𝑖)

∫ 𝑓(𝑦)𝐺(𝑦)
 

ℝ
𝑑𝑦
 , 

 

where 𝑓(𝑦𝑖) is the marginal densities of 𝑦𝑖 and 𝐺(. ) is the cumulative distribution 

function of the random truncation point 𝑡𝑖. 

 

They recommend using a logistic distribution for 𝐺(. ), which is given by 

 

𝐺(𝑡𝑖; 𝜏, 𝑎) =
1

1+exp [
−(𝑡𝑖−𝜏)

𝑎
]
 , 

 

where 𝜏 is the location parameter which indicates the log loss, with a 50% probability 

of being reported in the database, and 𝑎 is the scale parameter which dictates the rate 

at which the probability of being reported increases with the size of the loss. 

 

If 𝑧𝑖 = 𝑦𝑖 − 𝑢 is defined as the excess log loss over a high enough threshold 𝑢, it is 

shown that 𝑧𝑖 can be approximated using an exponential distribution. They obtain the 

following likelihood equation 

 

𝐿(𝑏, 𝜏, 𝑎) = ∏
ℎ(𝑧𝑖;𝑏)𝐺(𝑧𝑖;𝜏

∗,𝑎)

∫ ℎ(𝑧;𝑏)𝐺(𝑧;𝜏∗,𝑎)𝑑𝑧
 
ℝ

𝑛
𝑖=1 , 
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where ℎ(𝑧𝑖; 𝑏) =
1

𝑏
exp (−

𝑧𝑖

𝑏
) and 𝜏∗ = (𝜏 − 𝑢). The parameters 𝑏,  𝜏∗ and 𝑎 are 

estimated by maximising the likelihood function, and finally, the normalised weights 

to be assigned to each loss is calculated as  

𝑤𝑖
′ =

𝑛𝑤𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

, 

where: 

𝑤𝑖 =
1

𝐺(𝑦𝑖|𝜏,𝑎)
. 

 

In order to confirm the existence of reporting bias in the SAS dataset, likelihood ratio 

tests were carried out for the restriction that the reporting probabilities are constant 

across all losses for each threshold level (i.e., there is no reporting bias in the data). 

The 𝑝-values of the likelihood ratio tests for all the threshold values were less than 

0.01, confirming the existence of reporting bias. 

 

The parameters 𝑏,  𝜏∗ and 𝑎 for different choices of the threshold 𝑢 were estimated, 

and it was found that the parameter values for 𝑏  and 𝑎 stabilised after the USD9 

million threshold. Therefore, the associated estimates �̂� = 1.11809 and �̂� =

(3.50179 + log(9)) was used to calculate corresponding weights for all the losses 

reported in the SAS database. 

 

Providing a practical example of the weights applied to the SAS data, a current log loss 

of USD0.78 million would be allocated a weight of 1.9654, whereas a log loss of 

USD7.78 million would only carry a weight of 0.0276. This illustrates the earlier 

explanation that larger losses are more likely to be included in databases with publicly 

reported losses and should therefore carry a smaller weight not to skew the modelling 

results.  
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5.6 Allowing for scaling bias 

Scale bias occurs when data is collected from institutions of a different size. The scaling 

methodology applied below to the external SAS data to model the severity distribution 

of operational losses will correct the scale bias. 

  

The method used in this chapter was first introduced by Ganegoda and Evans (2012) 

and uses regression analysis based on the generalised additive models for location 

scale and shape (GAMLSS) framework to model the scaling properties of operational 

losses. They explain that the GAMLSS framework can model all the distributional 

parameters and therefore offers flexibility in estimating the scaling properties of a 

model. 

 

In their paper, Ganegoda and Evans (2012) argue that a good scaling model should 

allow for variations in model parameters for different business lines and event types. 

The discussion below provides the technical background to their approach.  

 

Consider log losses denoted by 𝒚 = (𝑦1, … , 𝑦𝑛)
𝑇, a random sample of independent 

observations. Assume that these log losses follow some parametric distribution 

𝑓(𝑦; 𝜃) with parameter vector 𝜃. For the sake of simplicity and in line with Ganegoda 

and Evans’ (2012) notation, assume that 𝜃 = (𝜇,  𝜎)𝑇 is a vector of only two 

distributional parameters.  

 

A set of link functions are defined that specifies the relationship between the linear 

predictor and the distributional parameters of each distribution component 

distribution as: 

 

 log 𝜇 = 𝛽11 + 𝛽12𝑋𝑖12 +⋯+ 𝛽1𝑝𝑋𝑖1𝑝, 

log 𝜎 = 𝛽21 + 𝛽22𝑋𝑖22 +⋯+ 𝛽2𝑝𝑋𝑖2𝑝, 
(9) 

 

for 𝑖 = 1,… , 𝑛, where 𝑋𝑖𝑗𝑝 is the value of the 𝑝th explanatory variable relating to the 

observation 𝑦𝑖 in the 𝑗th distributional parameter, and 𝛽𝑗𝑝 is the parameter 

corresponding to 𝑋𝑖𝑗𝑝.   
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The set of equations can also be written in matrix notation as follows: 

 

log 𝜇 = 𝑿𝟏𝜷𝟏, 

log 𝜎 = 𝑿𝟐𝜷𝟐, 

 

where, 𝑿𝒋 are the matrix of the 𝑗th distributional parameter, and 𝜷𝒋 are the 

corresponding parameter vectors.  

 

Ganegoda and Evans (2012) suggested using the log link function, which is also found 

to be appropriate given the choice of distribution as discussed as part of the model 

application in Section 5.7. 

 

The maximum likelihood estimates of 𝜷𝟏 and 𝜷𝟐 are then obtained by solving: 

𝑚𝑎𝑥
𝛽1,𝛽2

∑𝑤𝑖
′ 𝑙𝑜𝑔 𝑓(𝑦𝑖; 𝜷𝟏, 𝜷𝟐)

𝑛

𝑖=1

. 

 

To solve the above equation, the PROC NLP function in SAS Enterprise Guide was used.  

 

5.7 Model application 

The first step in the model selection process was to find a base model that closely 

follows the data without considering any of the explanatory variables set out above. 

In other words, an appropriate probability distribution assumption was selected to be 

used in the subsequent model fitting. For this purpose, the SEVERITY procedure in SAS 

was used. Six different parametric models were considered to model the severity of 

log losses, namely the Burr, Gamma, Generalised Pareto, Inverse Gaussian (Wald), 

Lognormal and Pareto. The density and cumulative distribution functions for all these 

distributions were provided in Section 0.  

 

In order to select the best base model, three goodness of fit tests are considered. 

These are twice the negative log-likelihood (-2LogLikelihood), the Akaike's Information 
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Criterion (AIC) and the Bayesian Information Criterion (BIC). The AIC and BIC are based 

on the -2LogLikelihood and smaller values of all these criteria indicate a better model. 

Both the AIC and BIC penalise models with more parameters, but the BIC even more 

so, and for this reason, the BIC was selected as the main determining factor in selecting 

the best-fit model. 

  

The BIC is defined as: 

 

𝐵𝐼𝐶 = −2𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 𝑘 ∙ ln(𝑛), 

 

where 𝑘 is the number of estimated parameters in the model and 𝑛 is the number of 

observations used in the model. 

 

The results of the model fitting process showed that the Burr distribution had the 

lowest BIC value, but the fact that it has three parameters introduced potential 

complications for the scaling model. For this reason, a decision was taken to use the 

Gamma distribution that ranked second among the potential models and this was also 

the severity distribution used by Ganegoda and Evans (2012).  

 

The probability density function of the Gamma distribution is given by:  

 

𝑓(𝑦) =
1

Γ(𝜎)𝜇𝜎
𝑦𝜎−1𝑒

−
𝑦
𝜇, 

 

where 𝜎 > 0 is the shape parameter and 𝜇 > 0 is the scale parameter.  

 

Since the Gamma distribution was selected as the appropriate distribution function 

fitted to all the data, it was assumed that the Gamma distribution would also be 

appropriate as the base to continue the modelling process.  The parameters were 

estimated to be �̂� = 1.0993 and �̂� = 0.8857 without accounting for the explanatory 

variables. 
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The Gamma distribution was fitted to the data again, this time allowing for the 

explanatory variables introduced in the previous section. The log-assets and equity 

ratio for each loss was calculated using the SAS data provided. For the categorical 

explanatory variables, namely region, business line and event type, the dummy 

variables summarised in Table 5, 6 and 7 were used as part of the coding. 

 

Table 5: Region dummy coding 

Region_domicile d_RE1 d_RE2 d_RE3 

North America 0 0 0 

Africa, Other Americas, Other 1 0 0 

Asia 0 1 0 

Europe 0 0 1 

 

Table 6: Business line dummy coding 

Business line 1 d_BL1 d_BL2 d_BL3 d_BL4 d_BL5 d_BL6 

Trading and sales 0 0 0 0 0 0 

Agency Services,  

Asset Management, and 

Payment and Settlement 

1 0 0 0 0 0 

Commercial Banking 0 1 0 0 0 0 

Corporate Finance 0 0 1 0 0 0 

Insurance 0 0 0 1 0 0 

Retail Banking 0 0 0 0 1 0 

Retail Brokerage 0 0 0 0 0 1 
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Table 7: Event type dummy coding 

Event type d_ET1 d_ET2 d_ET3 d_ET4 

Business Disruption and System Failures, 

Damage to Physical Assets, and  

Employment Practices and Workplace Safety 

0 0 0 0 

Clients, Products & Business Practices 1 0 0 0 

Execution, Delivery & Process Management 0 1 0 0 

External Fraud 0 0 1 0 

Internal Fraud 0 0 0 1 

 

We carried out a stepwise selection of these variables to determine the parameters 

𝜇 and 𝜎 of the Gamma distribution using the link functions introduced in Equation 9. 

The first step involved only determining an intercept for both 𝜇 and 𝜎. The next step 

involved a forward selection of variables only for 𝜇, testing the addition of each 

variable using the model fit criterion that the 𝑝-value should be lower than 0.05. This 

process was followed by the forward selection of variables for 𝜎 given the model 

already obtained for 𝜇. Afterwards, a backward elimination of variables for 𝜇, given 

the selected models for both 𝜇 and 𝜎 was performed and finally a backward 

elimination of variables for 𝜎. 

 

Based on the stepwise selection method described above, it was found that log-assets 

and seven other business line and event type explanatory variables were significant to 

the scale parameter 𝜇. None of the region variables was found to be significant for 

either 𝜇 or 𝜎. For the shape parameter 𝜎, log-assets, the business line variables, 

Commercial Banking and Retail Brokerage were significant explanatory variables, as 

well as the event type variable Execution, Delivery & Process Management. The 

parameter estimates of the final model given by the stepwise selection method are 

shown in Table 8. 
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Table 8: Estimated parameter values for the final model 

Explanatory variable 𝝁 𝝈 

Estimate Std. Error Estimate Std. Error 

Intercept -0.376027 0.082815 0.335437 0.080145 

Log-assets 0.024578 0.006180 -0.016364 0.006857 

Equity ratio - - - - 

Africa, Other Americas, 

Other - - - - 

Asia - - - - 

Europe - - - - 

Corporate finance 0.197507 0.048580 - - 

AS, AM & PS 0.126969 0.039538 - - 

Commercial Banking 0.134076 0.051698 0.111317 0.055369 

Insurance - - - - 

Retail Banking -0.097547 0.023836 - - 

Retail Brokerage - - -0.214888 0.044202 

Clients, Products & 

Business Practices 

0.109277 0.038579 

- - 

Execution, Delivery & 

Process Management - - 

-0.217156 0.057255 

External Fraud -0.298827 0.041982 - - 

Internal Fraud -0.189108 0.041876 - - 
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5.8 Model diagnostics and results 

Ganegoda and Evans (2012) use normalised quantile residuals, �̂�𝑖, to verify the 

adequacy of the fitted GAMLSS models. For a response variable 𝑌 with a continuous 

cumulative distribution function 𝐹(𝑦; 𝜃), the normalised quantile residuals are 

defined as �̂�𝑖 = Φ
−1[𝐹(𝑦; 𝜃)], where Φ−1 is the inverse cumulative distribution 

function of the standard Normal distribution. According to Rigby and Stasinopoulos 

(2005), the error �̂�𝑖 should be standard Normally distributed if the model is adequate. 

We show the QQ plot of the estimated residuals against the theoretical quantiles of 

the standard Normal distribution in Figure 5, graphically indicating the normality of 

the estimated residuals. 

 

Figure 5: Normalised quantile residual plot  

 

As further validation of the proposed model, 1 000 000 losses were simulated from 

the model with parameters presented in Table 8. The goodness-of-fit was tested by 

comparing the quantiles of the simulated losses with the observed losses using a QQ 

plot. The QQ plot is shown in Figure 6. The QQ plot follows a fairly straight line 

confirming the model. 
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Figure 6: QQ plot of simulated losses vs observed losses  

 

5.9 Modelling above a threshold  

It was previously suggested that the purpose of this model could be to assist banks 

with their scenario analysis process, which may be specifically helpful for banks with 

limited internal data. Equation 3 derived in Chapter 4 is used to determine the 

quantiles of the aggregate loss distribution and compare it with the assessments 

provided by experts as part of the scenario analysis process. However, to show how 

this proposed model can be used to determine these quantiles, consideration should 

be given to the fact that the model is based on amounts above a certain threshold. 

 

For the discussion below, recall the percentile or 1-in-𝑐 years approach referred to in 

Section 4.2. It was explained that scenario makers are asked the following question: 

“What loss level 𝑞𝑐 is expected to be exceeded only once every 𝑐 years”, with popular 

choices for 𝑐 being 10, 20 and 100 years. 

 

Previously, a spliced distribution function was constructed, using backwards-looking 

historical information for the “expected” (or “body”) part of the distribution and 

L
o

g
 o

f 
S

im
u

la
te

d
 L

o
s

s
e
s

 



65 

 

forward-looking scenario information for the “unexpected” (or “tail”) part. A number 

𝑏 was selected with the corresponding quantile 𝑞𝑏, and 𝑇𝑒(𝑦) was the conditional 

distribution function of a random loss where 𝑌 ≤ 𝑞𝑏. 𝑇𝑢(𝑦) was the conditional 

distribution function given that 𝑌 > 𝑞𝑏. From Equation 1, the distribution function for 

𝐹𝑢(𝑞𝑐) was given by:   

 

 𝐹𝑢(𝑞𝑐) =
[𝐹(𝑞𝑐)−𝐹(𝑞𝑏)]

[1−𝐹(𝑞𝑏)]
 𝑓𝑜𝑟 𝑞𝑐 > 𝑞𝑏. (10) 

 

Because the model described under Section 5.7 only model losses greater than USD1 

million, only the unexpected part of the severity distribution explained above is 

effectively modelled. An appropriate allowance needs to be made for the expected 

part of the distribution if the model is to be used to determine capital estimates in the 

tail of the distribution. If the necessary allowance for losses below USD1 million is not 

made, the model will under-estimate the required risk capital. To explain this further 

using the notation set out in Equation 7, 𝑞𝑏 is equal to USD1 million, although this is a 

pre-determined amount and not explicitly related to the loss amount only exceeded 

every 𝑏 years. The probability that losses would exceed USD1 million is not known, 

i.e., 𝑃(𝑋 > 1) = 1 −  𝐹(1), and for comparative purposes it is assumed that 𝐹(1) is 

between 0.95 and 0.98. Although not exact, this assumption is based on data from the 

Loss Data Collection Exercise done by Basel in 2008.  

 

This means that the quantiles need to be adjusted because we are conditionally 

modelling above USD1 million. Table 9 shows the adjusted probabilities for different 

values of 𝐹(1), i.e., the cumulative probability that losses would be less than USD1 

million. The probabilities are calculated using Equations 3 and 10 and assuming an 

annual frequency of 6.58627. The reason for selecting this value for the annual 

frequency is explained in the following section. 
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Table 9: Adjusted probabilities for different values of 𝑭(𝟏) 

Scenario 

point 

Cumulative 

prob. on 𝑭(. )   

Cumulative prob. on 𝑭𝒖(. ) for values of 𝑭(𝟏) 

0.95 0.96 0.97 0.98 

1-in-10 year 0.984817 0.696338 0.620423 0.493897 0.240845 

1-in-20 year 0.992408 0.848169 0.810211 0.746948 0.620423 

1-in-100 year 0.998482 0.969634 0.962042 0.949390 0.924085 

99.9% VaR 0.999848 0.996963 0.996204 0.994939 0.992408 

      

 

5.10 Results for an individual bank 

In this section, it is shown how an individual bank can utilise the model that was built 

on SAS data. It is assumed that the internal loss data for an individual bank is available. 

For this purpose, the loss data for the Bank of America Corporation were extracted 

from the SAS database. In the remainder of this chapter, Bank of America Corporation 

is referred to as the individual bank under question. Table 10 summarises the number 

of operational losses above USD1 million for the individual bank and reported in the 

SAS database. The bank itself is expected to have a significantly higher number of data 

points, given that the internal data would not suffer from reporting bias. In addition, 

it is expected that the internal data would include information on losses below USD1 

million. This information could be used to model the body of the severity distribution, 

although in using the proposed model, the quantiles are adjusted to allow for this fact. 
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Table 10: Bank of America Corporation loss data points per business line and event type 

 Business line  

Event type 

Clients, 
Products & 
Business 
Practices 

Employment 
Practices & 
Workplace 
Safety 

Execution, 
Delivery & 
Process 
Management 

External 
Fraud 
 

Internal 
Fraud 

Total  

Agency Services 2 - - - - 2 

Asset 

Management 10 - 1 - - 11 

Commercial 

Banking 1 - - 3 1 5 

Corporate 

Finance 10 1 - - - 11 

Insurance 1 - - - - 1 

Payment and 

Settlement - - 1 - - 1 

Retail Banking 26 2 1 21 7 57 

Retail Brokerage 29 9 6 - 7 51 

Trading & Sales 34 1 5 1 3 44 

 

The model was rerun, but this time excluding the loss data of the individual bank. The results 

of the new model are shown in Table 11. 
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Table 11: Re-estimated parameter values for the model, excluding the Individual bank’s 

data 

Explanatory 
variable 

𝝁 𝝈 
Estimate Std. Error Estimate Std. Error 

Intercept -0.412680 0.085442 0.402985 0.081920 

Log-assets 0.027787 0.006581 -0.02033 0.007212 

Equity ratio - - - - 

Africa. Other 

Americas. Other - - - - 

Asia   -0.089890 0.037436 

Europe - - - - 

AS. AM & PS 0.137837 0.040684 - - 

Commercial 

Banking 0.250548 0.031946 - - 

Corporate Finance 0.193883 0.049640   

Insurance - - - - 

Retail Banking -0.093410 0.024465 - - 

Retail Brokerage - - -0.212340 0.046812 

Clients. Products & 

Business Practices 0.082871 0.043878 - - 

Execution. Delivery 

& Process 

Management - - -0.283320 0.072153 

External Fraud -0.333850 0.047060 - - 

Internal Fraud -0.203750 0.047088 - - 
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1 000 000 losses were simulated for two business lines, namely retail banking and 

retail brokerage, using the new model results. It would have been ideal to simulate 

losses only for one event type within a business line (for example, external fraud in 

retail banking). However, given the limited number of data points per individual bank, 

all losses were grouped over event type within a single business line, i.e., assuming 

that event types are independent. 

 

In order to obtain estimates for a 1-in-10 year, 1-in-20 year and 1-in-100 year loss per 

business line, an assumption had to be made for 𝜆, the annual loss frequency of losses. 

For this, refer to Ganegoda and Evans (2012), where they approximated that a bank 

with USD1 billion assets would experience 0.00823 losses per year, based on data from 

a Loss Data Collection Exercise done by Basel in 2008. They further show that the total 

number of losses per year can be weighted to obtain a frequency for each business 

line and event type within the bank. Using a similar approach and assuming that the 

individual bank has assets of USD2 trillion (based on the SAS data), the estimated 

annual frequencies for retail banking was 6.586 and 1.485 for retail brokerage.  

 

In Table 12, the model estimates for scenario points for a 1-in-10 year, 1-in-20 year 

and 1-in-100 year loss are shown for the two business lines. These correspond to the 

quantiles for the adjusted probabilities of the fitted distribution, as shown in Table 9. 

Note that only the scenario point estimates for the assumption that 𝐹(1) = 0.98 is 

shown, i.e. there is a 0.02 probability that losses are above USD1 million.  The 1-in-

1000 year estimate is also provided. This would be the amount corresponding to the 

99.9% Value-at-Risk and the regulatory capital required for the business line. In 

addition to the point estimates, we show the distribution free 90% confidence 

intervals for these quantiles. 

 

Given that loss data specific to the individual bank or “internal loss data” is also 

available, this data could be used in isolation to fit a model specific to the individual 

bank. The concern with this approach is that the data, especially when working within 

a specific business line and event type, is limited, as shown in Table 10. 
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Only publicly available data for the individual bank is considered. However, even if one 

had access to all the bank’s collected data, it tends to be limited and even more so for 

higher losses. This point also illustrates the need for banks to augment their own 

internal data with data from external sources. For the same two business lines under 

consideration, a Gamma distribution is fitted only to the internal data points. The 

same quantiles estimated from these models are compared to the estimates from the 

GAMLSS model described above.  

 

Table 12 provides a summary of the results obtained from the two models for the two 

business lines. 

 

Table 12: Estimated scenario points per business line for different models 

     Retail banking Retail brokerage 

 Individual 
bank’s data 

Model Individual 
bank’s data 

Model 

1-in-10 year 0.139162 
0.265663 

(0.265; 0.266) 
- 

- 

(-) 

1-in-20 year 0.684096 
0.877871 

(0.876; 0.879) 
- 

- 

(-) 

1-in-100 year 2.179431 
2.296219 

(2.292; 2.300) 
0.901160 

0.845764 

 (0.844; 0.847) 

1-in-1000 year 4.469461 
4.404938 

(4.392; 4.419) 
2.518588 

2.917611 

(2.911; 2.924) 

 

Table 12 shows that the estimated scenario points for the retail banking business line 

are similar for both models. The first model is based on internal data, and the second 

model is on external data but tailored for the unique explanatory variables specific to 

the individual bank (and include 90% confidence intervals). For the retail brokerage 

business line, where the internal data is even more scarce, the difference between the 

estimates of the two models is more significant.  
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The estimated scenario points for 1-in-10 years and 1-in-20 years are zero for the retail 

brokerage business line. This is because the estimated annual frequency of losses in 

this business line is only 1.485. As a result, the individual bank is not expected to 

observe losses higher than USD1 million in this business line in 10 or even 20 years. 

 

5.11 Model application within a bank  

This chapter showed how the SAS® OpRisk Global Data could be used to estimate the 

severity distribution of losses. It is assumed that experts or scenario makers are asked 

to answer the following question: ‘What loss level is expected to be exceeded once in 

𝑐 years?’. Given the explanatory variables for a specific bank, the distribution 𝐹(𝑦; 𝜃) 

may be used to determine quantiles of the aggregate loss distribution, which can be 

compared to the scenario assessments of the experts.  Once an appropriate 

distribution function has been selected, the quantiles can be determined that relate 

to the scenario assessments provided by the experts. For example, the 1-in-100-year 

loss predicted by the expert should be in line with the 99% quantile of the aggregate 

loss distribution. Therefore, if the loss scenario points provided by the experts deviate 

too far from the quantiles of the loss distribution that was estimated by the data, one 

can revert to the expert and request them to justify the difference. Using internal and 

external data, specifically for units of measure where adequate historical data is 

available, one should model future expected losses reasonably well. However, the 

more significant benefit of the scaling model is for banks where very limited or no 

internal within a business line is available. In such a case, the bank may use the model 

based on external data and use its own characteristics to infer values for expected 

future losses.  
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5.12 Conclusion 

It was shown how SAS® OpRisk Global Data could be used by a bank when they do not 

have their own internal loss data, to build statistical capital models. Suggestions were 

made on how a bank can use a model only based on external data to inform or 

challenge the scenario assessments provided by experts. Scenario assessments are 

often used as a significant component of operational risk management. However, 

given the subjective nature of these assessments, it is vital to have an objective 

measure to check whether the expert’s opinion is not biased or completely unrealistic. 

Although experts may not change their views based on the results of statistical 

models, they may be required to justify why their assessments deviate from the data. 

The suggested model considers the reporting bias included in any external database 

and shows that operational losses depend on certain factors specific to a bank, such 

as size, region, business line and event type associated with operational losses. 

 

  



73 

 

6. Concluding remarks and recommendations for future research 

The focus of this dissertation was on quantitative operational risk models. We showed 

how the various data sources available to financial institutions can be utilised to obtain 

accurate estimates of operational risk capital. 

 

A review of the literature was done to gain a better understanding of the risk 

management process and the importance of operational risk management within 

financial organisations. Despite the standardisation of regulation relating to 

operational risk capital calculations, we motivated the continued need for advanced 

statistical models in determining economic capital. 

 

The underlying methodology used in our operational risk capital model is the loss 

distribution approach (LDA) which makes use of an annual aggregate loss distribution. 

The components of the aggregate loss distribution, namely the frequency and severity 

distributions, were discussed in some detail and the subsequent chapters focused on 

the improvement of the estimation of the severity distribution by using various data 

sources. 

 

It was noted that there are four main sources of data available to financial institutions 

for use in their capital risk models, namely internal data, external loss data, scenario 

assessment and business environment and internal control factors. The latter were 

not considered in any detail in this dissertation. We have however investigated the 

other three data sources in some detail and also specifically how these data sources 

can be combined or used to complement each other.  

 

Statistical methods were explored that could be used to combine limited historical 

data and scenario assessments to estimate extreme quantiles.  We also showed how 

external data, namely SAS® OpRisk Global Data, could be used by a bank when they 

do not have their own internal loss data, to build statistical capital models. Suggestions 

were made on how a bank can use a model only based on external data to inform or 

challenge the scenario assessments provided by experts. 
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As far as future research is concerned, we aim to investigate the effectiveness of using 

the ratios suggested in Chapter 4 in assisting scenario experts with their assessments. 

We further aim to investigate the use of other external data sources that could be 

more appropriate for banks operating in South Africa specifically. 
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Appendix A: The standardised measurement approach 

A brief overview of the standardised measurement approach (SMA) that will apply from 

1 January 2023 is provided in this section. We also summarise some of the critique against 

this approach. 

 

Standardised measurement approach 

The new standardised measurement approach calculates operational risk capital 

requirements based on measures for both the bank’s income and using the bank’s historical 

losses. The operational risk capital requirement can be summarised as follows: 

 

Operational risk capital = Business Indicator Component (BIC) * Internal loss multiplier (ILM) 

 

The BIC is calculated by multiplying the Business Indicator (BI) by marginal coefficients. The 

BI consists of the following three elements, all calculated as an average over three years: 

• The interest, leases and dividend component; 

• The services component; and 

• The financial component. 

 

In order to calculate the BIC, the BI is multiplied with the marginal coefficients according to a 

progressive sliding scale (similar to standard tax formulas) as set out in Table A1. 

 

Table A1: Marginal coefficients to calculate BIC 

Bucket BI range (in EUR billions) BI marginal coefficient 

1 ≤ 1 12% 

2 1 < 𝐵𝐼 ≤ 30 15% 

3 > 30 18% 

 

The Internal Loss Multiplier (ILM) is calculated from the Loss Component (LC), being 15 times 

a bank’s average historical losses over the previous ten years, and the BIC, using the following 

formula: 
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𝐼𝐿𝑀 = ln (exp(1) − 1 + (
𝐿𝐶

𝐵𝐼𝐶
)
0.8

)  . 

 

The ILM increases as the (𝐿𝐶/𝐵𝐼𝐶) ratio increases, although at a decreasing rate. National 

supervisors are awarded some discretion in setting the ILM for all banks in their jurisdiction 

to 1, i.e., the capital requirement would only depend on the value of the BIC. However, all 

banks would still be required to disclose their historical losses. 

 

Below, we summarise some of the critique against the new standardised approach and 

provide a motivation for continued research into quantitative operational risk models.  

 

Critique against the new standardised approach 

A group of academics (Peters et al., 2016) compiled an initial response to the proposed 

standardised measurement approach (SMA), independently from corporate or individual 

interests. In their view, the SMA: introduces capital instability and extreme sensitivity to the 

dominant loss process; reduces risk responsivity and interpretability; incentivises enhanced 

risk-taking; fails to utilise a range of data sources and fails to provide risk management insight, 

and introduce the possibility of superadditive capital calculation. 

 

Some of the other critique against the standardised approach include that it allows national 

supervisors to decide whether historical loss data will be included in calculating operational 

risk capital. Capital levels will entirely be based on the Business Indicator when historical loss 

data is excluded, i.e., it would be purely based on a bank’s income level, rather than factoring 

in any historical operational risk-related losses. Even where historical loss data is included, 

the fact that the natural log is used in calculating the loss component means variations in 

losses produce only a small effect on capital.  

 

It is widely opined that the new approach is not as valuable for managing operational risk as 

the internal models developed under the Advanced Measurement Approach. Banks have 

already spent considerable resources developing these models. For this reason, these models 

will continue to be used for regulatory capital purposes until the introduction of the 

standardised approach in 2023 at the earliest. It is therefore prudent for banks to continue 
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refining their own internal operational risk models. There is also strong evidence to suggest 

that internal models will continue to be used for Pillar II capital and as part of the supervisory 

review process. The investment in these models is, therefore, not only for short-term use. 
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Appendix B: Guidelines for using the advanced measurement approach  

The BCBS published OPE30 in December 2019 (Basel Committee on Banking Supervision, 

2019), setting out the criteria that banks have to meet to calculate operational risk capital 

requirements based on their internal risk measurement systems. It specifies that the 

regulatory capital requirement should equal the risk measure generated by the bank’s 

internal operational risk measurement system and be based on quantitative and qualitative 

criteria for the advanced measurement approach (AMA) as set out in that document. The 

regulatory guidelines provided under Basel II’s advanced measurement approach remain 

relevant and provide valuable guidelines for developing operational risk models appropriate 

for the future.  

 

There are several qualitative standards worth noting when a bank intends to use the AMA, 

and only the most relevant are highlighted below: 

 

• The bank must have an independent operational risk management function responsible 

for designing and implementing the operational risk management framework. 

• The internal operational risk measurement system must be integrated into the day-to-

day risk management processes. The bank’s measurement system must support an 

allocation of economic capital for operational risk across business lines in a manner that 

creates incentives to improve business line operational risk management. 

• Operational risk exposures must be regularly reported to business unit management, 

senior management, and directors.  

• The internal operational risk measurement system must be well documented. 

• The operational risk management processes must be subject to validation and regular 

independent review. 

• External auditors or supervisors must review the operational risk assessment system 

regularly. 
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The quantitative standards that should apply when using the AMA, include: 

 

• The bank must be able to demonstrate that its approach captures potentially severe 

tail-loss events. Further, it must demonstrate that its chosen operational risk measure 

meets a soundness standard comparable to the internal ratings-based approach for 

credit risk (one year holding period, 0.999-quantile). 

• Banks must have and maintain rigorous procedures for operational risk model 

development and validation. 

• Any internal measurement system must be consistent with the scope of operational risk 

and the following seven events: Internal fraud; external fraud; employment practices 

and workplace safety; clients, products, and business practices; damage to physical 

assets; business disruption and system failures; execution, delivery, and process 

management. 

• The bank is required to calculate its regulatory capital charge as the sum of expected 

loss (i.e., the mean of the loss distribution) and unexpected loss (i.e., the difference 

between the Value-at-Risk (VaR) and expected loss). 

• The risk measurement system must be sufficiently granular to capture the significant 

drivers of operational risk. 

• Risk measures for different operational risk estimates must be added for calculating the 

minimum capital requirement. However, the bank may use internally determined 

correlations of losses, provided that they are determined with sound methods, 

implemented with integrity, consider the uncertainty of the correlation estimates, and 

those correlation assumptions are validated using quantitative and qualitative 

techniques. 

• Any operational risk measurement system must use the four data elements, namely 

internal data, relevant external data, scenario analysis, and business environment and 

internal control factors. 

• The bank needs to have a credible, transparent, well-documented, and verifiable 

approach for weighting these elements. 

• The bank’s internal measurement system must reasonably estimate unexpected losses 

based on the combined use of internal and relevant external loss data, scenario analysis 

and bank-specific business environment and internal control factors. The guidelines 
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that should be followed in using the four data sources, are summarised under the 

headings below.  

 

OPE30 (Basel Committee on Banking Supervision, 2019) also provides the following guidelines 

with respect to the four main data sources referred to in this dissertation, namely internal 

data, external loss data, scenario assessments and business environment and internal control 

factors. 

 

Internal data 

• The tracking of internal loss event data is an essential prerequisite to the development 

and functioning of a credible operational risk measurement system.  

• Risk measure estimates based on internal-loss data must be calculated with a minimum 

of five years of historical observations. 

• Aside from gross loss amounts, the bank should collect information about the date of the 

event, recoveries of the gross loss amount, and descriptive information about the drivers 

of the event. 

• The internal loss data must be comprehensive in that it captures all material activities 

and exposures. There must be an appropriate minimum gross loss threshold for internal 

loss data collection, e.g., 10 000 Euros. 

• A bank must have documented procedures for assessing the ongoing relevance of 

historical loss data, e.g., for scaling historical data, and who is authorised to make the 

corresponding decisions. 

• A bank must map its historical internal loss data into the eight business lines, and seven 

event types specified in the Basel accords and provide these data to supervisors. They 

must develop criteria for assigning loss data from an event in a centralised function (e.g., 

information technology department) or events in time to this eight-by-seven matrix of 

business lines and event types. The allocation criteria must be documented and objective. 

• Operational risk losses that were historically included in the bank’s credit risk database 

should be treated as credit risk to calculate the minimum capital requirement. However, 

banks must identify these losses for internal operational risk management.  

• Operational risk losses related to market risk are treated as operational risk losses to 

calculate the minimum capital requirement. 
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External loss data: 

• External loss data, comprising the operational risk losses experienced by third parties, 

can offset the scarcity of internal operational risk loss data in areas where a bank has a 

potential risk but has not experienced significant losses (i.e., from a forward-looking 

perspective). 

• The bank’s operational risk management system must use relevant external data in the 

form of loss amounts, information on the scale of business operations, and information 

on the causes and circumstances of the loss events. Further, a bank must have a 

systematic process for determining the situations which require external data and the 

methodologies used to incorporate the data. 

 

Scenario assessments: 

• The bank must use scenario analysis of expert opinion in conjunction with external data 

to evaluate its exposure to high-severity events (e.g., the expert assessments could be 

expressed as parameters of a loss distribution). 

• Scenario analysis should also be used to assess the impact of deviations from the 

correlation assumptions embedded in the bank’s operational risk measurement 

framework, in particular, to evaluate potential losses arising from simultaneous 

operational risk loss events.  

• Scenario assessments need to be validated and re-assessed through comparison to actual 

loss experience over time to ensure their reasonableness. 

 

Business environment and internal control factors: 

• Each factor should be a meaningful driver of risk, based on experience and expert 

judgment. The factors should be translatable to quantitative measures. 

• The sensitivity of the estimated risk to changes in the factors and the relative weighting 

of the factors must be well reasoned. 

• The use of the factors in a bank’s risk measurement framework must be documented and 

be subject to independent review. 

• Over time, the processes and outcomes need to be compared to actual internal loss 

experience and relevant external data, and appropriate adjustments must be made. 




