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Abstract

As industrial processes, which form the backbone of the industrialized world, continue to

become larger and more complex, control systems require fault diagnostic schemes that can

maintain plant safety and product quality, even during fault conditions. As a result, graph-

based exergy fault diagnostic schemes have become increasingly popular tools, especially in

the petrochemical industry. However, when these graph-based schemes are applied to com-

plex processes, the implementation becomes more complex and requires the deployment of

more sensors as well as additional computational resources for the control system. Therefore,

this study focuses on evaluating the concept of graph reduction by proposing several graph

reduction techniques and assessing their efficacy at reducing complexity while preserving the

performance of the fault diagnostic schemes. To determine the effect that the reduction tech-

niques would have on the fault detection and isolation (FDI) methods, it is first necessary to

determine the performance of these FDI methods prior to any graph reduction and use it as

control data. The distance parameter, eigendecomposition, and residual-based FDI methods

are used in this study. The attributed graph data used in this study is generated from the Ten-

nessee Eastman process (TEP). Five graph reduction techniques are proposed based on three

theoretical concepts, which rely on understanding the process used by FDI methods. These

three concepts are concerned with finding redundant attributes and removing them from the

graph. These reduction techniques are evaluated with an experimental process whereby the

extent to which the technique reduces graph attributes (reduction interval) is increased, and

the performance of the FDI methods using this reduced version of the graph data is recorded.

Graph reduction is a viable concept when at least one reduction technique can reduce graph

attributes while maintaining the level of FDI performance achieved prior to reducing any

attributes. To validate this study, it is shown that graph reduction is a general solution by

applying these five reduction techniques to the attributed graph data of the gas-to-liquids

process (GTLP) and evaluating their effect on FDI performance. The three FDI methods

are applied to the graph data of the GTLP to generate a set of control data. The reduction

techniques are assessed with the same experimental process, which reduces more attributes

from the GTLP graph data and measures FDI performance after each reduction increment.

Since at least one reduction technique could reduce the attributed graph data of both the

TEP and GTLP, while maintaining a similar level of FDI performance for at least one FDI

method, graph reduction is considered a general solution, and the reduction techniques have

been validated. This study clearly shows that it is possible to reduce the attributed graph

data of a process and maintain or even improve upon, in some instances, the level of FDI

performance achieved before reducing attributes. It will, therefore, contribute to mitigating

the adverse effects resulting from applying graph-based FDI methods to large and complex



processes.

Keywords: Graph reduction, attributed graph, exergy-based FDI, Tennessee East-

man process.
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Chapter 1

Introduction

1.1 Background

A fault can be defined as the deviation from the acceptable range of a calculated parameter

or an observed variable of an industrial process [1]. When a fault occurs in such an industrial

process, an activity known as Active Event Management (AEM) must take place. AEM,

which forms part of the control system, involves taking the necessary steps to ensure that the

process returns to the normal state of operation and that the entire operation is safe [2].

A robust fault diagnostic system is required for the control system to implement AEM and

remove the effects of a fault condition from the process or reduce these effects to an acceptable

level. This critical system should first detect that a fault has occurred (Detection) and then

determine which fault condition has occurred (Isolation). This type of diagnostic system

employs a method known as a fault detection and isolation (FDI) scheme. Once the FDI

scheme has diagnosed the fault condition, the control strategy can be adjusted accordingly to

ensure that the process still satisfies the design specifications, or an alarm could be activated

to alert the operators that a fault is present.

There exists a great variety of FDI methods that can be used to implement a fault diagnostic

system. The type of method used will depend on the type of process as well as the availability

of process knowledge, and historic process data [2]. Figure 1.1 gives a breakdown of the main

categories of fault diagnostic methods.
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Figure 1.1: Categories of fault diagnostic methods [3].

Model-based methods rely on a fundamental understanding of how a process works to diagnose

fault conditions [3]. On the other hand, data-driven methods use a large amount of historical

process data and apply feature extraction during which the data are transformed and presented

to the diagnostic system as theoretical knowledge [4].

The fact that so many methods exist is a clear indication that no single method satisfies all

the requirements of a fault diagnostic system. This has led to the development of hybrid

methods which employ a combination of methods to complement one another and overcome

the limitations of individual methods [4]. These hybrid methods are generally more attractive

solutions since they are better equipped to satisfy the requirements of the diagnostic system.

The hybrid approach, as outlined by Marais et al. in [5], has shown significant merit, es-

pecially in petrochemical settings. This approach abstracts physical measurements such as

temperature and pressure to energy variables such as exergy. The FDI scheme uses the system

exergy as a metric for diagnosing faults in the system.

In [6], Van Schoor et al. show how the approach proposed in [5] can be used to create an energy

representation of a system. Van Schoor et al. further illustrate how this energy representation

in the form of an attributed graph can be used in an exergy-based FDI scheme to monitor

the condition of a system. An attributed graph is a graph that has information assigned to

its nodes and/or links [7]. In this case, information pertinent to the FDI scheme is assigned

to the nodes and/or links.

As an example, Figure 1.2 [6] illustrates the composition of the attributed graph of a coal-

fired power station. Each node in the graph represents a component of the power station, and

each link represents the connection between two components of the station. The attributes

assigned to nodes are the exergy flow rates across components, and the attributes assigned
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to links are the energy flow rates between components. By mathematically analysing these

attributes, the exergy-based FDI scheme proposed in [6] can then detect and isolate process

faults.

Figure 1.2: (a) Representation of the power station. (b) Cor-

responding attributed graph [6].

From Figure 1.2 it can be deduced that the larger a process, the larger its corresponding

attributed graph will be, as these processes have more components and a more significant

number of connections between the components. The more components a process has, the

more attributes will be present in the attributed graph of the process, ultimately increasing

the graph’s complexity. It then becomes more complicated to use complex attributed graphs

in the exergy-based FDI scheme since more process sensor data are required to calculate the

attributes, the mathematical matrix operations become more complex and take longer to

execute, resulting in faults not being detected promptly.

The FDI scheme is ultimately implemented to ensure that the plant operation remains safe,

the product quality remains satisfactory, and financial losses are minimised. However, it is

difficult for FDI schemes with complex attributed graphs to achieve these objectives since they

take longer to operate and require more computational resources. It is, therefore, warranted

to investigate techniques that can reduce the size of these attributed graphs used in the

exergy-based scheme, to reduce the ultimate complexity of implementing the FDI scheme.

In practice, control systems use FDI schemes in real-time. By simplifying the attributed graph

of an industrial process, it is possible for the FDI scheme to diagnose the process condition

faster and to use fewer resources since fewer process variables need to be monitored and less

data processing is needed.
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1.2 Problem statement

Large industrial processes result in large and complex attributed graphs. These large graphs

adversely affect FDI schemes’ computational abilities and speed and often require extra pro-

cessing resources and sensors. This study aims to formulate techniques that can reduce the

graph used in exergy-based fault detection methods and then evaluate the performance of

these methods, which use the reduced graph data by using the Tennessee Eastman process

(TEP) as a benchmark process. The goal of the reduction techniques is to reduce the com-

plexity of the graph data by removing nodes and/or attributes. This will ensure that only

attributes which contribute to the FDI schemes are retained. The study will then determine

if the FDI schemes that use reduced graph data can retain a similar level of performance

achieved prior to any graph reduction. In doing so, it will ultimately be possible to determine

if the concept of graph reduction is viable.

When evaluating the diagnostic performance of each of the schemes to determine their effec-

tiveness, it is necessary to be holistic and evaluate the schemes based on their ability to detect

and isolate process faults. The focus of this study is to develop graph reduction techniques

for the TEP model, which are also effective in general and can be applied to the graph data

of other systems. This study focuses only on graph-based FDI schemes, and the scope of this

study does not include determining which FDI scheme is the optimal option for the benchmark

system. All process models and the standard versions of their attributed graphs have been

developed as part of separate studies.

1.3 Research objectives

1.3.1 Formulate graph reduction techniques

In order to propose viable graph reduction techniques, it is necessary to investigate how the

attributed graph of a process is constructed and how this graph is used by the relevant FDI

methods to diagnose fault conditions. It is further necessary to review literature pertaining

to existing graph reduction techniques. Graph reduction techniques can then be developed

based on the findings of this investigation. Finally, verification of each technique is required

to ensure that they are correctly implemented.
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1.3.2 Generate the FDI control data set

In order to evaluate the efficacy of the proposed graph reduction techniques, the performance

of the FDI methods using the standard, unreduced attributed graph data of the benchmark

process is first determined. Three different FDI methods are used for the evaluation. The

performance of each FDI method then acts as a set of control data. The performance is

considered with respect to the method’s ability to detect and isolate process faults. The

benchmark system in this study is the Tennessee Eastman process (TEP).

1.3.3 Develop an experimental design

An experimental process is designed to determine if it is conceptually possible to reduce the

attributed graph data used by exergy-based FDI methods while still maintaining a similar level

of FDI performance as achieved before reducing the graph data. In addition, this experimental

process identifies how each technique should be applied to result in the maximum reduction of

graph attributes while minimally deteriorating FDI performance. It can also be determined

which reduction techniques complement each FDI method.

1.3.4 Evaluate the graph reduction techniques on an additional

process

To validate this study, it is necessary to show that graph reduction is a general solution that is

not only valid when applied to the attributed graph data of a specific process. To this end, it

is required to show that the proposed graph reduction techniques can reduce graph attributes

while maintaining a similar FDI performance level when applied to a different process than

the TEP.

1.4 Methodology

1.4.1 Formulate graph reduction techniques

A literature study is conducted on how process data are encoded in an attributed graph, how

exergy-based FDI methods use these attributed graphs, and existing graph reduction tech-

niques. Based on how FDI methods use graph data, several graph reduction techniques are
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developed to increase the chances of formulating a viable solution. Each technique’s corre-

sponding algorithm is then implemented in MATLAB® where these techniques are applied to

reduce the attributed graph data relevant to this study. Finally, each technique is verified by

implementing its algorithm in MATLAB® and Excel® to ensure that both implementations

produce the same result.

1.4.2 Generate the FDI control data set

The distance parameter, eigendecomposition, and residual-based FDI methods are the three

FDI methods used to evaluate the efficacy of the graph reduction techniques. These graph-

based methods utilise the data encoded in the graph for the purpose of fault diagnosis. Each

FDI method is implemented in MATLAB®. Data from a validated Simulink® model are used

to generate the original attributed graph data of the TEP. The attributed graph data includes

all the fault conditions as well as the normal operating condition (NOC).

Once the attributed graph data has been processed to a format compatible with the FDI

methods in MATLAB®, each FDI method is applied to the graph data. The MATLAB®

code then determines the FDI method’s overall detection rate, overall isolation rate, and the

specific isolation rates of critical fault conditions. These metrics form the control data of each

FDI method. For this study, it is assumed that only one fault is introduced to the process

at a time since most existing graph-based FDI schemes have not yet developed the necessary

functionality to deal with multiple faults [8]. The presence of unknown faults is also not

considered in this study since further research is required into how these graph-based FDI

schemes, which use the standard attributed graph data, deal with unknown faults.

1.4.3 Develop an experimental design

The experimental process involves conducting an experiment on each reduction technique.

First, reduction intervals are identified for each reduction technique. These reduction intervals

determine to which extent the technique removes attributes from the graph data. Then, each

technique is applied to the graph data iteratively, and the reduction interval is increased with

every iteration.

With every reduction iteration, all three FDI methods are applied to the reduced graph data

resulting from that reduction iteration. The overall detection rate, overall isolation rate,

and the specific isolation rates are determined for each FDI method. By comparing FDI

performance resulting from each reduction iteration with FDI performance from the control
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data, it is possible to determine which reduction intervals are more effective at reducing

attributes while maintaining a similar level of FDI performance as achieved before applying

graph reduction. It is also possible to determine which reduction technique and FDI method

combination has superior performance. A logic flow diagram of the experimental process

followed for each reduction technique can be seen in Figure 1.3.

Figure 1.3: Logic flow diagram of the experimental process

applied to the graph reduction techniques in this study.

For this study, no explicit specifications are provided to define when FDI performance using

the reduced graph data maintains a similar level of performance as achieved before applying

graph reduction. It is, therefore, not stated at what point the deterioration in FDI performance

becomes unacceptable. This is simply because different processes will have different minimum

requirements for the performance of the FDI method used by the control system.
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1.4.4 Evaluate the graph reduction techniques on an additional

process

The other system used to validate the graph reduction techniques is the gas-to-liquids process

(GTLP), and the process data is generated with a static model in HYSYS®, which generates

steady-state data. There are many contrasts between the TEP and GTLP, such as the fact

that the TEP model is a dynamic model which generates time-based data, while the GTLP

generates an instantaneous snapshot of the process data while the process is in steady-state

mode. The two processes also have different levels of complexity and different types of fault

conditions. These contrasts assist in proving the generality of a solution. In the context of

this study, a solution is considered general when it can successfully be applied to more than

one process. This shows that the solution is not limited to a specific process.

To evaluate the effect of the graph reduction techniques on the attributed graph data of the

GTLP, a similar procedure to the one used on the TEP graph data is followed. All three

FDI methods are first applied to the unreduced attributed graph data of the GTLP, and the

performance of each FDI method is used as a set of control data. Then, the experimental

process used to evaluate the reduction techniques’ efficacy when applied to the TEP graph

data is repeated on the GTLP graph data.

For each reduction technique, the performance of each of the three FDI methods is determined

after each reduction iteration has been applied. By comparing the FDI performance at all

reduction iterations with the control data, it is possible to determine if the attributed graph

data of the GTLP can be reduced while maintaining the same level of FDI performance

achieved before any graph reduction. If graph reduction can successfully be applied to the

GTLP graph data, it can be considered a general solution, which would validate the reduction

techniques.

1.5 Dissertation outline

Chapter 2 provides a discussion of the literature that forms the foundation of this study. The

concept of energy visualisation is introduced, and an explanation of how energy is used to

characterise a process is provided. The type of graph resulting from energy visualisation is

described, and an overview of how FDI methods use this type of graph to analyse the process

condition is then given. Relevant graph reduction solutions are listed, and their effectiveness is

evaluated. The Tennessee Eastman process is introduced and briefly discussed. This chapter
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concludes with a critical review.

Chapter 3 is reserved for the specific literature and expands on the essential elements discussed

in Chapter 2. This chapter gives an overview of the TEP Simulink® model and the modelling

process followed to develop it. All the fault conditions of the TEP are listed in this chapter.

The methodology used to develop the attributed graph of a process is explained. The chapter

concludes by introducing the attributed graph of the TEP as used in this study.

The primary focus of Chapter 4 is to determine the FDI performance when the FDI methods

are applied to the unreduced attributed graph data of the TEP to use as control data. First,

the detailed methodology of each of the three FDI methods is provided. Each FDI method

is then applied to the TEP graph data, after which the performance of that FDI method is

recorded to be used as control data when evaluating graph reduction techniques.

Chapter 5 introduces the five graph reduction techniques and gives a brief description of the

premise each technique is based on. Then, the experimental process used to evaluate the

reduction techniques is designed. This is followed by a discussion as to how the results should

be analysed.

In Chapter 6, the methodology of each reduction technique and the experimental process

used to evaluate that technique is outlined. After each methodology, the results from the

experimental process are provided. Observations and interpretations about the results of the

experimental process are then discussed. The effect of combining reduction techniques is also

evaluated. Finally, the verification of the reduction techniques concludes this chapter.

Chapter 7 shows that graph reduction is a general solution by evaluating the effect of the

graph reduction techniques on a gas-to-liquids process (GTLP) modelled in HYSYS®. The

FDI control data is first generated by applying the three FDI methods to the GTLP. Then,

the experimental process used in the previous chapter is repeated on the GTLP to determine

the efficacy of the reduction techniques on the GTLP. Combined reduction techniques are also

evaluated. The validation of this study concludes this chapter.

The final chapter in this dissertation concludes the study by summarizing the results and

highlighting the most critical findings. Specific suggestions regarding the future work pertain-

ing to the findings of this study are also included, and potential shortcomings in the research

relating to the topic are identified.
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Chapter 2

Literature study

2.1 Introduction

This chapter aims to provide an overview of the literature that is relevant to this study.

First, the concept of energy visualisation and its role in FDI schemes is discussed. Next, an

introduction to the graph theory applicable to graph-based FDI schemes is provided, followed

by a brief explanation of how graphs are used in these FDI schemes. This is followed by a

discussion of several identified graph reduction techniques. These techniques are also evaluated

as related to the objectives of the study. The final section of this chapter introduces the

benchmark model used in this study and briefly describes how this system works.

Figure 2.1 gives a clear description of the four main research topics and the subsections of

each topic. All the subsections are accompanied by the relevant citations used. The ”Graph

comparison” and ”Graph summarization” subsections branch out into subsections of their

own. The coloured lines indicate the citations the two research topics have in common. This

illustrates how all the research topics relate to each other.
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Figure 2.1: Overview of the literature study with all the references used in this chapter.
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2.2 Energy visualisation

Energy visualisation can be described as the process of using a system’s enthalpy and entropy

attributes to characterise and assess the overall health of the system [6]. This section examines

the concepts of energy and exergy and their role in the energy visualisation process used by

certain hybrid fault detection schemes.

2.2.1 Energy

Energy is a unifying concept across physical domains (electrical, mechanical, chemical, and

thermal) and can, therefore, be used to reduce the dimensionality of the input space in a

hybrid fault detection scheme [5]. Furthermore, energy is a scalar quantity, and while it is

impossible to observe it directly, indirect measurements make it possible for energy to be

recorded and evaluated [9].

According to Dincer & Cengel [9], all the forms of energy in thermodynamic analysis can be

classified as either macroscopic or microscopic. A macroscopic form of energy is a form of

energy the system possesses relative to some external frame of reference, such as kinetic and

potential energy. Kinetic energy is defined as the energy a system possesses because of its

motion relative to a frame of reference [9]. Potential energy is the energy a system possesses

because of its elevation in a gravitational field [9].

A microscopic form of energy is a form of energy that relates to molecular structure and the

degree of molecular activity. Microscopic forms of energy are independent of external reference

frames. The Internal energy of a system is the sum of all the microscopic forms of energy of

that system [9].

According to the First Law of Thermodynamics, energy cannot be created or destroyed; it can

only be converted from one form to another. The change in a system’s energy is the difference

in the system’s energy values at the final state and initial state of the process [10]. This change

in a system’s energy, when electric, magnetic, and surface tension effects are absent, can be

expressed as

∆E = E2 − E1, (2.1)

which can also be expressed as

∆E = ∆U + ∆KE + ∆PE, (2.2)

with ∆U as the change in the system’s internal energy, ∆KE as the change in the system’s

kinetic energy, and ∆PE as the change in the system’s potential energy.
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2.2.2 Exergy

Exergy can be defined as the ability to do useful work [11]. The total exergy of a system can

be defined as

btot = bk + bp + bch + bph, (2.3)

where bk and bp are the kinetic and potential exergy, respectively [12]. bch and bph are the

chemical and physical exergy, respectively. In most cases which involve process plants, the

kinetic and potential exergy can be ignored since the plant itself is unlikely to move during

normal operation [13]. The total exergy expression can then be simplified to

btot = bch + bph. (2.4)

Chemical exergy can be defined as the available energy to do work when a substance undergoes

a reversible process from the restricted reference state of 25 ◦C and 1 atm to complete thermo-

dynamic equilibrium (thermal, chemical, pressure) [14]. The chemical exergy of a substance

can be expressed in its most generic form as

bch =
∑

x(i)b
0
ch(i), (2.5)

where x(i) is the mole fraction of substance i and b0
ch(i) is the standard chemical exergy of that

substance [15].

The Entropy of a system is defined as the amount of molecular disorder in that system, and

the Enthalpy of a system is defined as the sum of the system’s internal energy and the product

of its volume and pressure [16].

The Physical exergy of a system accounts for the mechanical exergy and thermal exergy of

a system, which are associated with deviations in pressure and deviations in temperature,

respectively [17]. The physical exergy of a material stream can be determined as

bph = (h− h0)− T0(s− s0), (2.6)

where h and s represent the enthalpy and entropy of the stream, h0 and s0 are the reference

environment entropy and enthalpy values of the stream, and T0 is the reference environment

temperature [12]. The entropy and enthalpy of a stream can be expressed as indicated in (2.7)

and (2.8).

(h− h0) =

∫ T

T0

CpdT, (2.7)

(s− s0) =

∫ T

T0

Cp

T
dT −Rln(

P

P0

). (2.8)

Cp is the heat capacity of the particular stream, R the universal gas constant, and P0 the

reference environment pressure. T0 is defined as 25 ◦C and P0 is defined as 101.325 kPa [15].
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2.2.3 Comparison of energy-based and exergy-based methods

Energy-based fault diagnostic schemes rely on an energy representation, which closely resem-

bles the actual process plant, to detect if a fault has occurred in the process. What makes

this energy representation so valuable is the fact that energy is a universal concept and the

inputs and outputs of a process can, therefore, be treated additively [5]. The energy-based

scheme uses the entropy and enthalpy of a process to conduct condition monitoring.

By using an energy representation of a process plant, the number of monitored process vari-

ables can be reduced [5]. Energy-based schemes are not new and have been applied in several

instances, such as the condition monitoring of a simple chemical reactor [18] and the fault

diagnosis of an autothermal reformer [19].

According to Marais et al. [5] natural processes display a degree of irreversibility, which is

followed by a loss of exergy. This destruction of exergy ultimately causes a process to become

less useful. Therefore, the exergy-based schemes rest on the premise that the irreversibility of

the process, which is linked to the destruction of exergy, indicates the condition of the process.

There are fewer examples of exergy-based schemes than energy-based schemes simply because

more research has been devoted to energy-based schemes. However, some of the recent exam-

ples of exergy analysis being used as a form of condition monitoring include the exergy-based

fault detection of the Tennessee Eastman process [12] and of a transcritical heat pump system

[7].

There is a large degree of similarity between the exergy-based and energy-based schemes,

and it is thus expected that their performance will be similar in several areas. Marais et al.

[5] experimentally compared the exergy-based and energy-based methods against applicable

metrics, and a summary of the results can be seen in Table 2.1. A checkmark indicates the

superior scheme, while the absence of one indicates that the schemes perform equally well.

It is evident from the findings in Table 2.1 [5] that an exergy-based fault detection scheme will

outperform an energy-based scheme, especially in petrochemical applications, since it has a

superior ability to isolate the detected fault. The metrics listed in the table are considered by

[5] to be the most important metrics to evaluate when comparing different schemes. Because

chemical compositional variations also affect physical exergy, the exergy-based scheme is better

than the energy-based scheme. The two schemes have similar modelling requirements as well

as similar storage and computational requirements.
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Table 2.1: Comparison of exergy-based and energy-based

schemes

Chosen Metrics
Exergy-based

schemes

Energy-based

schemes

Isolability X
Explanation Facility X

Modelling Requirements - -

Storage & Computational Requirements - -

2.3 Graphs

A graph can simply be defined as a set of vertices and a set of edges, where each edge

connects two vertices [20]. Any system where information can be modelled as objects and

the relationship between these objects can be represented by a graph. This is achieved by

representing objects as vertices and the relationship between these objects as the edges [20].

According to Balakrishnan and Ranganathan [21], a graph has the following mathematical

definition: “A graph is an ordered triple G(V (G), E(G), IG), where V (G) is a nonempty set,

E(G) is set disjoint from V (G), and IG is an ‘incidence’ relation that associates with each

element of E(G) an unordered pair of elements (same or distinct) of V (G).” The vertex

elements set V (G) represent all the vertices of the graph G, and the elements of the edge set

E(G) represent the edges of G. All the elements in IG represent how the vertices and edges

of graph G connect.

Figure 2.2 [21] is an illustration of such a graph. All the vertices and edges have been labelled

in the figure. In Graph Theory literature, it is common to see the term vertex be used

interchangeably with the term node and the term edge be used interchangeably with the term

link. For the sake of consistency and to avoid confusion, this dissertation shall henceforth use

the terms node and link.
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Figure 2.2: Example of a graph G [21].

For this study, graphs will be used for FDI. The types of graphs that will be used for FDI are

numerical attributed graphs. In a paper by Van Schoor and Uren [6], a process is outlined

which employs FDI by mathematically analysing attributed graphs. The process works by

applying graph comparison operations to the attributed graph of the system in question. This

section explores the graph comparison procedure and how it can be implemented in an FDI

scheme.

2.3.1 Attributed graphs

Energy-visualisation, as used in exergy-based FDI schemes, requires the system to be modelled

as an attributed graph representing the system’s various energy and exergy flow rates. An

attributed graph is useful since it can compile a node signature matrix (NSM) which is in turn

used to perform graph comparison operations [7]. A node signature matrix is simply a matrix

that represents the attributed information of a specific attributed graph [6]. An example of an

attributed graph and its corresponding node signature matrix can be found in Figure 2.3 [6].

In the context of FDI methods, the phrases “attributed graph” and “node signature matrix”

are often used interchangeably since they contain the same information in different formats.

An attributed graph is converted into a node NSM, and an FDI scheme then uses the NSM

to diagnose faults.
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Figure 2.3: (a) An example of an attributed graph. (b) The

corresponding node signature matrix [6].

2.3.2 Graph comparison for FDI

Graph comparison as used in this study, can be described as the process of mathematically

comparing two or more graphs to determine how similar the attribute parameters of the

different graphs are [22]. In the context of FDI, graph comparison is used to compare the

NSM of the system while it is in a normal operating condition, with an operational NSM to

determine if a fault condition is present or not. Whenever attributed graphs are compared in

this study, the comparison refers to a mathematical graph comparison procedure.

De la Fuente [23] defines a normal operating condition (NOC) as: “A system operating under

a condition where none of its defining characteristic properties or associated parameters de-

viates from the standard system condition.” In addition, De la Fuente [23] also defines a fault

condition as: “A system operating under a condition where an unpermitted deviation of at

least one characteristic property or parameter of the system from the standard condition is

present.”

From the literature, there are two main strategies of employing graph comparison procedures

in FDI schemes. The first strategy involves generating a cost matrix and mathematically

analysing this matrix to diagnose faults as was done by [7] & [8]. The second strategy involves

generating a residual matrix which can also be mathematically analysed to diagnose faults.

2.3.3 Graph comparison by generating a cost matrix

A cost matrix describes the matching cost (the cost of the mathematical comparison) between

two node signature matrices and is denoted by C [24]. A cost matrix, therefore, represents
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the degree of similarity between these two node signature matrices. Jouili & Tabbone [24]

proposed a method that can be used to generate a cost matrix by comparing a node signature

matrix with itself or with a node signature matrix that contains different elements.

In [8], a database is created by storing an NSM of the system in NOC and an NSM of the

system for each fault condition. Next, graph comparison is applied by developing a cost

matrix between the operational NSM and each one of the matrices in the database. All the

cost matrices are then quantified to a distance parameter. The cost matrix with the smallest

distance value thus represents the cost matrix developed between the operational NSM and

the database NSM most similar to this operational NSM. Therefore, the smallest distance

value identifies which condition in the database the system is currently operating in.

It has also been shown that FDI schemes can apply eigenvector and eigenvalue decomposition

to cost matrices in order to diagnose faults [7], [8]. Eigenvectors and eigenvalues are mathe-

matically defined by Lay et al. [25] as the following: “An eigenvector of an n×n matrix A is a

nonzero vector x such that Ax = λx for some scalar λ. A scalar λ is called an eigenvalue of A

if there is a nontrivial solution x of Ax = λx; such an x is called an eigenvector corresponding

to λ.”

Eigenvectors of a linear transformation are vectors that remain on their original spanning line

through the origin of the n-dimensional space after the transformation has taken place [25].

Thus, eigenvectors make it possible for a linear transformation in the n-dimensional space to

be characterised by mathematically describing the transformation.

An eigenvalue is associated with each eigenvector, and it represents the change in magnitude,

or in some instances, the change in the direction of that eigenvector. While the magnitude

and direction of an eigenvector can change when a linear transformation takes place, it will

always pass through the origin of the n-dimensional space and remain on its span.

Since the cost matrix is a linear transformation, calculating its eigenvectors and eigenvalues

will assist in characterising the information in the cost matrix and, thus, aid with the detection

and diagnosis of faults [6].

In [7], cost matrices are also developed by comparing the NSM of the system in NOC with the

NSM of each fault condition. These cost matrices are known as reference cost matrices. Each

reference cost matrix undergoes an eigenvalue and eigenvector decomposition and produces

eigenvector and eigenvalue patterns unique to a specific fault. An operational cost matrix can

then be developed by comparing the operational NSM with the NSM of the system in NOC.

The fault can then be diagnosed by computing the eigenvector and eigenvalue patterns of this

operational cost matrix and comparing it with all the patterns produced by the reference cost
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matrices.

The study conducted in [8] also uses eigenvalue decomposition to diagnose faults. A database

is once again constructed with the NOC graph and the graph of each process fault. The first

step is to develop a cost matrix by comparing the operational graph with itself, known as

the operational cost matrix. Then each graph in the database should be compared with the

operational graph to produce several reference cost matrices. The operational cost matrix and

all the reference cost matrices should undergo eigenvalue decomposition to produce an eigen-

value pattern for each cost matrix. By comparing the eigenvalue pattern of the operational

cost matrix with the eigenvalue pattern of each one of the reference cost matrices, the process

condition can be inferred from the database.

2.3.4 Graph comparison by generating a residual matrix

As an alternative to generating cost matrices and using them to diagnose faults, Neser [26]

proposes using graph comparison operations to implement a residual-based FDI method. To

generate a residual matrix, the reference graph of the system, which is just the graph of the

system in NOC, is compared with the actual operational graph of the system. By extracting

certain features from the residual matrix, a residual signature is generated. A database of

residual fault signatures is then constructed by comparing the NSM of each fault condition

with the NSM of the system in NOC. Each of these residual fault signatures is unique to a

specific fault condition and can be used to diagnose fault conditions in the system.

2.4 Graph reduction

Representing a set of data or a system as a graph has many applications in many different

domains [27]. A graph can either be augmented by increasing the number of nodes or edges,

which increases the graph’s complexity, or it can be reduced by removing nodes or edges,

which reduces the graph’s complexity. This section investigates methods that can reduce the

size and, thus, the complexity of an attributed graph.

2.4.1 Graph reduction through graph summarization

One possible way to reduce a graph is to summarize it. The process of graph summarization

removes unnecessary detail while retaining the general properties of the original graph [27].
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The summarization process is performed by creating supernodes by grouping together similar

nodes from the original graph [28]. The graph summarization process can be seen in Figure

2.4 [27]. The graph on the left-hand side is the original, and the graph on the right-hand side

is the summarized version. Similar nodes are represented by the same colour and are grouped

into a supernode.

Figure 2.4: Graph summarization process [27].

All graphs can either be classified as stationary or as stream graphs [27]. A stationary graph’s

structure remains the same as time progresses, while a stream graph’s structure changes over

time due to nodes being added or removed from the graph. An example of a stationary graph

would be a graph representing several cities and how they are connected, while a social media

network can be seen as a stream graph since nodes are added as new members join the network

over time.

Since this study is centred around the attributed graph of a plant process, summarization

methods of stationary graphs will be the main focus as the structure of a process plant

typically remains the same.

All the summarization methods are based on similarity, and this similarity can be structural,

attribute-based, or a combination of the two. Therefore, the summarization methods can be

classified as structural, attribute-based, or hybrid approaches.

2.4.1.1 Structural graph summarization

Navlakha et al. [29] discuss a graph summarization method that is based on the structural

composition of the graph. The process works by merging two or more nodes with edges going

to the same set (or a very similar set) of other nodes into supernodes. The edges going to

each common neighbour are then replaced with a super edge. This process is illustrated in
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Figure 2.5 [29], where the graph G = (V (G), E(G)) on the left is summarized to create the

graph on the right S = (V (S), E(S)).

Figure 2.5: An example of structural graph summarization

[29].

The graph representation G has a summary set S and a correlation set C, used to reconstruct

the original graph. Navlakha et al. [29] define the cost of the representation R = (S,C), which

determines the sum of the storage costs of its two inputs. The Minimum Description Length

(MDL) principle is applied to determine the best possible summary. If ∧R = (∧S,∧C) is the

minimum cost representation, then according to the MDL principle, the summary ∧S is the

best possible summary graph.

2.4.1.2 Attribute-based summarization

In the paper by Tian et al. [30], two summarization operations are proposed. The first

operation is called SNAP (Summarization by Grouping Nodes on Attributes and Pairwise

Relationships). The SNAP operation works by grouping nodes that are homogeneous in terms

of relationships and attributes together. Edges are then used to show the relationship between

the different groups.

An example of the SNAP operation can be seen in Figure 2.6 [30]. The original graph on

the left represents students (nodes) with different attributes (gender, department) and the

relationship between the students (edges). Not all the relationships are shown in the figure.

The summary is created by grouping students of the same gender and department together,

which results in four different groups (G1, G2, G3, G4). The edges are assigned to represent
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the relationships between the different groups in the summary. The summarized graph can

be seen on the right-hand side of the figure.

Figure 2.6: Illustration of the SNAP operation [30].

The second operation proposed by Tian et al. in [30] is called the k-SNAP operation. The

k-SNAP operation relaxes the homogeneity requirements present in the SNAP operation by

not requiring that every node in a group participates in a group relationship. The k-SNAP

operation also allows the user to determine the size of the resulting summary. The user

specifies the required number of groups in the summary, which is denoted by k.

An improvement on the k-SNAP operation is presented in a paper by Zhang et al. [31].

They propose using the CANAL (Categorization of Attributes with Numerical Values based

on Attribute Values and Link Structures of Nodes) technique to summarize a graph. The

CANAL technique automatically categorises the numerical values by assessing the similarities

of the attribute values and the link structure of all the nodes in the graph.

The inputs to this algorithm are the graph G = (V,E), the attributes of all the nodes denoted

by a, and the number of categories required by the user denoted by C. It works by grouping

nodes based on the attribute values of all the nodes in the graph. All the nodes in one

group have the same numerical value. The groups are ordered numerically. The algorithm

then iteratively merges groups based on the similarity of their link structures until one group

remains.

During the merging process, the algorithm constantly determines the quality of the summary.

If merging two groups significantly causes the summary quality to decrease, the boundary

between the groups is an excellent cut-off position. A cut-off position splits two categories.
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In the final step, the algorithm uses the boundaries of the C – 1 merging operations which

produce the worst quality summaries, to categorise the numerical attributes.

The k-means clustering algorithm is another possible method that can be used to create

a summarized graph based on node attributes. The algorithm sorts the data into k non-

overlapping clusters. The user specifies the k value, and a cluster is represented by its centroid,

which is the mean of all the points in the cluster [32]. This method is more suited for graphs

that have numerical attributes.

The algorithm starts by selecting k centroids. Then, each point in the dataset is assigned to

the closest centroid, and the collection of points around each centroid forms a cluster. Next,

an updated centroid is assigned to the cluster according to the data points in that cluster.

This process repeats until the data points stop changing clusters [32].

Although graph summarization and graph clustering are two distinct operations, in the paper

by Riondato et al. [33] they exploit the connection between graph summarization and geo-

metric clustering (k-means clustering) to develop an algorithm that is capable of producing a

summarized graph. The clusters produced by the k-means clustering form the supernodes in

the summarized graph.

2.4.1.3 Hybrid graph summarization

In [34], a method is proposed that creates a summary of a graph-based on both virtual and real

edges. The technique is called SGVR (Summarizing Graph based on Virtual and Real links),

and it works by aggregating similar nodes into non-overlapping groups using user-selected

attributes. It considers both virtual edges, which represent node attributes, and actual edges,

representing the graph structure.

Ashrafi & Kangavari [35] propose a new approach that generates a hybrid summary of an

attributed graph by allowing the user to specify - in percentage - the contribution of the

structural information to the summarized graph. This method further allows the user to

specify the resulting summary’s size and the importance of attributes if nodes have multi-

valued similarities.

They also introduce the concepts of density and entropy, which are measures used to determine

the quality of summarized graphs, depending on the type of summary. They compared their

method with the method in [34] by using these two measures and found that their method

results in a higher quality summary. Figure 2.7 [35] illustrates this summarization method.

The summarized graph now contains a supernode and two regular nodes.
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(a) (b)

Figure 2.7: Example of hybrid graph summarization:(a) Orig-

inal graph. (b) Summarized graph [35].

2.4.1.4 Using a summarized graph for FDI

For graph comparison to be applied to a summarized graph, an attribute will have to be

assigned to each supernode, and its value should represent all the individual nodes from the

original graph that make up the supernode. Furthermore, this newly assigned attribute will

have to be selected in such a way that the graph comparison process should be able to detect

a fault at any of the individual nodes forming the supernode while not detecting a fault if any

of the individual node attributes exhibit normal levels of variation.

While Jouili & Tabbone [24] show that it is possible to compare graphs of different sizes,

comparing a reference graph with an operational graph after both have been summarized,

will result in a more accurate FDI process than a comparison between one standard and

one summarized graph, since this will lead to valuable data not being considered. This FDI

process involves the summarized graph being compared with itself under normal operating

conditions (NOC). When considering an eigendecomposition FDI method as an example, this

is done by generating a cost matrix and calculating the eigenvectors and eigenvalues for the

normal operation.

The attributes of the summarized graph of the system are then continually updated and

monitored during operation as the plant measurements are updated. Condition monitoring

then takes place, and it involves applying graph comparison operations and generating a cost

matrix that determines the difference between the normal operation summarized graph and

the monitored summarized graph. Finally, the eigenvectors and eigenvalues of this cost matrix

are calculated and compared to those of the normal plant operation. A fault has occurred if

the deviation between the two sets of eigenvectors and eigenvalues is significant enough.
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2.4.2 Graph reduction through attribute filtering

Since the reduced graph will undergo the graph comparison procedure to conduct FDI, only

attributes that contribute to the FDI process are of interest in this reduced graph. Another

way to reduce the attributed graph’s size is to identify all the nodes and edges whose attributes

can be used for fault diagnosis and filter out the remaining nodes and edges.

This filtering can be done by examining the attributed graph under fault conditions and

observing how each node’s attributes and edge change relative to the corresponding attributes

of nodes and edges during NOC. By then contrasting each attribute’s contribution to the

detection of faults with the contribution of all the other attributes, it can be deduced which

attributes contribute very little to the process, and their corresponding nodes or edges can

then be filtered out.

This form of graph reduction is an adaptation of the graph reduction method used for struc-

tural analysis by Blanke et al. [36]. In the approach used by Blanke et al. [36], the constraints

(or equations) which define a system are partitioned into a subset of constraints that contain

only known variables and a subset of constraints that contain at least one unknown vari-

able. A structure graph links together all the variables and constraints of a system. The

reduced structure graph is created by removing all fixed inputs to the system and the subset

of constraints that merely correspond to known variables.

An illustration of this reduction process can be seen in Figure 2.8 [36]. The particular variables

and constraints involved in the figure are of lesser concern since the figure is only meant to

convey the main idea behind this approach. The result of this reduction process is a graph

that contains only the most important structural information while superfluous details are

omitted.
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(a) (b)

Figure 2.8: (a) Diagram of a structure graph. (b) Diagram of

a reduced structure graph [36].

2.4.2.1 Using a graph reduced with attribute filtering for FDI

When reducing a graph by filtering the attributes of nodes and edges, none of the attributes

is altered or represented by other values. The reduced graph with unaltered attributes is

compared with itself under NOC, and a cost matrix is generated. Again using the eigende-

composition FDI method as an example, the eigenvectors and eigenvalues of this cost matrix

under NOC are then calculated.

During plant operation, the attributes of the reduced graph are constantly monitored and

updated by taking plant measurements. The monitoring process involves applying graph

comparison operations and generating a cost matrix that determines the difference between

the reduced graph under NOC and the monitored reduced graph. The eigenvectors and

eigenvalues of this cost matrix are calculated and compared to those of the normal plant

operation to determine if a fault has occurred.

2.4.3 Summary of graph reduction methods found in literature

Table 2.2 contains a detailed summary of all the methods discussed in this section as well as a

comparison of the main strengths and weaknesses of all these methods. The type of reduction

employed by each method is also provided in the table.
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Table 2.2: Comparison of graph reduction techniques found in

the literature.

Method
Type of

reduction
Strengths Weaknesses

Structural

graph summarization

Navlakha et al.

method [29]

Uses the MDL

principle to create

best-quality summary.

Does not consider

graph attributes during

the summarization

process.

Attribute-based

graph summarization

SNAP Algorithm [30]

Some structural

information (links) of

the original graph are

retained in the

summarized graph.

Difficult to determine

homogeneity of

different numerical

values.

k-SNAP Algorithm

[30]

Homogeneity

requirements are

more relaxed than

SNAP requirements.

Does not preserve

structural information

of original graph.

CANAL Algorithm

[31]

Clusters according to

numerical values and

summary quality is

automatically verified.

Does not preserve

structural information

of original graph.

Summarizing with

k-means clustering

[32],[33]

Ideal for graphs with

numerical attributes

and it is possible to

verify the size of the

summarized graph.

Does not preserve

structural information

of original graph.

Hybrid

graph summarization

SGVR Method [34]

Allows user to select

attributes used for

summarization.

Not ideal for numerical

attributes.

Ashrafi &

Kangavari Method

[35]

Metrics are available

to verify the quality of

summarized graphs.

Technique used to

determine degree of

similarity of attributes

is not ideal for

numerical attributes.

Attribute reduction

Graph reduction

through attribute

filtering

Preserves structural

information of original

graph and ideal for

numerical attributes.

No metrics available to

verify quality of

reduced graph.

2.5 Benchmark model - Tennessee Eastman process

Any fault detection scheme has to be evaluated to verify that it functions correctly according

to the specific application and to ensure that it is efficient enough. One way of testing such

a scheme is by using a benchmark process. The benchmark process will verify if the scheme
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meets all the standard requirements of being a fault detection scheme, and it will allow the user

to compare the scheme with other available fault detection schemes. This section investigates

such a benchmark model which is specific to the petrochemical industry (PCI).

2.5.1 Tennessee Eastman process

In the paper by Downs & Vogel [37], the model of an industrial chemical plant process is

described, which can be used to develop, investigate, and evaluate process control technologies.

This process is called the Tennessee Eastman process. The process entails two simultaneous

gas-liquid reactions as well as two additional by-product reactions. All the reactions are

exothermic and irreversible.

The two gas-liquid reactions have the following form:

A(g) + C(g) +D(g)→ G(liq), P roduct 1,

A(g) + C(g) + E(g)→ H(liq), P roduct 2.

The process uses four reactants to produce two products. An inert and a by-product are

also present in the process, which means that a total of eight components are present. The

process also contains 12 valves that can be manipulated, and 41 measurements can be taken

for the purposes of monitoring and/or control. The Downs & Vogel model has 20 disturbances

making this process the ideal benchmark model for evaluating fault detection schemes.

The five main units of the Tennessee Eastman process are:

� The two-phase reactor

� The product condenser

� The vapour-liquid separator

� The recycle compressor

� The product stripper

The four reactants, all in gas form, are fed to the reactor, where they react to form liquid

products. The heat from the reaction is removed by the internal cooling bundle of the reactor.

The products leaving the reactor are in a vapour form and are condensed by the product

condenser before passing to the vapour-liquid separator. The uncondensed components are

then recycled back to the reactor feed with a compressor. The condensed components proceed

to the product stripper, which removes the remaining reactants from the stream. The products

G and H then exit the stripper in liquid form, but the section which separates these two
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products is not included in the model. The process model as adapted for Simulink by Vosloo

et al. in [12] can be seen in Figure 2.9.

Figure 2.9: Tennessee Eastman process model [12].

The TEP’s main advantage is that it has been used several times as a benchmark model to

evaluate FDI schemes. It has become increasingly popular to apply data-driven schemes to

the TEP with advancements in computer systems. These data-driven schemes have shown

improved detection rates compared to other schemes published in literature [38], [39]. There

has also been an increase in studies that implement hybrid schemes on the TEP. These studies

indicate that the hybrid schemes have better diagnostic capabilities than their single method

counterparts [40], [41]. These studies verify that the TEP is an excellent benchmark for

evaluating hybrid and data-driven FDI schemes.

2.6 Critical literature review

It is clear from the research problem that energy visualisation, graphs, graph reduction, and

the benchmark system are the four main topics of interest in this study. Based on the anal-

ysis conducted in this chapter, exergy-based FDI schemes hold significant potential and are,

therefore, the FDI schemes of choice for this study.
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Using graph comparison as a means of FDI as proposed by Van Schoor & Uren [6] has proven to

be an effective strategy for implementing condition monitoring [7], [8] & [26]. Since using graph

reduction techniques to reduce the complexity of these graph-based FDI schemes is relatively

new, it is unclear which graph comparison approach will work best after the reduction process

is complete. It is, therefore, prudent to not only evaluate the reduction techniques on one

specific FDI scheme but to rather test a variety of schemes and determine which reduction

techniques complement which schemes.

When reviewing the different techniques available to reduce the attributed graph data, it

is vital to consider the effect each technique has on the structural information contained

in the attributed graph. Structural information entails the information each graph element

represents. Structural information can be seen as knowing that Node A represents component

A in the process and knowing Link AB represents the connection between components A &

B.

While structural information will inevitably be lost when the graph is reduced, albeit through

summarization or attribute filtering, distorting the original structural information too severely

results in more processing resources being needed to generate the reduced attributed graph,

thus increasing graph complexity. If structural information is removed in a random and

unrestricted fashion, it would, for instance, make it difficult to determine which process sensors

can be removed to reduce complexity.

When comparing graph reduction through attribute filtering and graph reduction through

summarization as explained in this section (see Table 2.2), it is evident that graph reduction

through attribute filtering is superior at preserving and not distorting structural information

since nodes of the original graph are not grouped into supernodes.

By altering the techniques and implementing certain restrictions, it is possible to reduce

graphs through summarization and attribute filtering. By removing structural information

in a methodical manner that is retraceable, and by restricting the extent to which structural

information may be distorted (summarized), graph reduction techniques can alter and/or

reduce structural information in such a way that graph complexity as well as the complexity

of implementing the graph in an FDI scheme, are both reduced.

It is also worth exploring the effects of combining the graph summarization approach with the

attribute filtering approach. This combined approach holds the potential of combining some

of the strengths of each individual approach while also overcoming some of their weaknesses.

Selecting the Tennessee Eastman process as the primary benchmark system for this study is

a logical choice, given that it is often used to assess fault diagnostic schemes. It is also a
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complex process with many fault conditions, which will ensure that any evaluation performed

on it is robust. The more detailed literature relevant to this study will be discussed in relevant

chapters that follow.
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Chapter 3

Tennessee Eastman process model and

attributed graph

3.1 Introduction

This chapter reviews specific literature which relates to the exergy characterisation of the

TEP model and the development of its attributed graph. First, an overview of the Simulink®

model of the TEP is given, describing certain features, such as the model validation. All the

fault conditions of the TEP are then introduced and briefly discussed. The chapter concludes

by providing a detailed explanation of how an exergy characterisation is conducted, and the

attributed graph is developed from the process model.

3.2 TEP model overview

The Simulink® model of the TEP used in this study was initially developed as part of a study

conducted by Vosloo [42]. This Simulink® model was developed from the FORTRAN source

code provided in the article by Downs and Vogel [37]. The control strategy used to control

the TEP is the strategy proposed by Lyman and Georgakis [43] and can be seen in Figure

2.9. This control strategy also uses the controller parameters as suggested by Chiang et al.

[44]. A sampling interval of 180 seconds is used to take sensor measurement imperfections

into account.

The validation of the TEP model constitutes two steps. The first step involves comparing

process measurements and manipulated variables obtained from the FORTRAN source code
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with the data obtained from running the open-loop TEP simulation with steady-state values

as the initial condition. The second step entails comparing the closed-loop TEP Simulink®

simulation results with the results produced by simulating the TEP with the results from the

FORTRAN code used by [44]. The comparison conducted during each step indicates that

the results obtained from the Simulink® model and the results obtained from the FORTRAN

code have a reasonable correlation.

3.3 Fault conditions

Table 3.1 contains a description of all 20 fault conditions of the TEP. Fault conditions 1 to 7

are all the result of a step change applied to the respective process variable of each fault. Fault

conditions 8 to 12 are all the result of random variations occurring in the relevant process

variables. Fault condition 13 emulates a slow drift within the kinetics of the process reactions.

Both fault conditions 14 and 15 are caused by sticking valves. Fault conditions 16 to 20 are

all unknown conditions.

Table 3.1: A description of the fault conditions of the TEP.

Fault ID Disturbed process variable Type of disturbance

Fault 1 A/C feed ratio, B composition constant (stream 4) Step

Fault 2 B composition, A/C feed ration constant (stream 4) Step

Fault 3 D feed temperature (stream 2) Step

Fault 4 Reactor cooling water inlet temperature Step

Fault 5 Condenser cooling water inlet temperature Step

Fault 6 A feed loss (stream 1) Step

Fault 7 C header pressure loss - reduced availability (stream 4) Step

Fault 8 A,B,C feed composition (stream 4) Random variation

Fault 9 D feed temperature (stream 2) Random variation

Fault 10 C feed temperature (stream 4) Random variation

Fault 11 Reactor cooling water inlet temperature Random variation

Fault 12 Condenser cooling water inlet temperature Random variation

Fault 13 Reaction kinetics Slow drift

Fault 14 Reactor cooling water valve Sticking

Fault 15 Condenser cooling water valve Sticking

Fault 16 Unknown Unknown

Fault 17 Unknown Unknown

Fault 18 Unknown Unknown

Fault 19 Unknown Unknown

Fault 20 Unknown Unknown

3.4 Calculating exergy attributes

The TEP Simulink® model calculates the exergy of the process streams by using data such

as the physical properties, chemical composition, enthalpy, and entropy of those streams [12].
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To calculate the physical exergy of the TEP, the formulas given by equations 2.6 - 2.8 are

used. To accurately calculate the chemical exergy of the TEP requires the standard chemical

exergy of all substances involved [12].

Several studies have been dedicated to developing methods which can be used to determine the

standard chemical exergy of a variety of substances [45], [46], [47]. However, these methods

cannot be used on the components of the TEP since these components have an unknown na-

ture. The only information that could be obtained from the TEP source code about these com-

ponents are some of the physical and thermodynamical properties such as molecular weight,

heat capacities, and liquid densities [12].

Based on the work done by Gharagheizi et al. [48], [49], & [50], Vosloo et al. [12] used

linear regression analysis to establish a mathematical correlation between the known physical

and thermodynamical properties and the standard chemical exergy of the TEP. This linear

regression analysis was done separately for substances in vapour and liquid phases, seeing as

the chemical exergy differs for different phases.

For the components in the vapour phase, the molecular weight MW(i) and heat capacity Cpv(i)

of the vapours are available in literature. The linear regression analysis produced an equation

for standard chemical exergy of substances in the vapour phase [12], which is expressed as

b0
ch(i)v = −510261 + 25667Cpv(i) + 13745MW(i). (3.1)

For the components in the liquid phase, the molecular weight, liquid heat capacity Cpl(i), as

well as the liquid density ρ(i) are available in literature. The linear regression analysis again

produced an equation for standard chemical exergy of TEP substances in the liquid phase

[12], which is expressed as

b0
ch(i)l = 1537576 + 112.65Cpl(i) + 49487MW(i) − 2973515ρ(i). (3.2)

A comparison of the standard chemical exergy values of substances in the vapour phase cal-

culated with equation 3.1, and the values obtained from literature resulted in a correlation

coefficient of R2 = 0.92 [12]. Similarly, a comparison of the standard chemical exergy values

of substances in the liquid phase calculated with equation 3.2, and the values obtained from

literature resulted in a correlation coefficient of R2 = 0.97 [12]. These results indicate that

both equations 3.1 & 3.2 are sufficient means of determining standard chemical exergy in both

the vapour and liquid phases.
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3.5 Attributed graph of the TEP

Uren et al. [51] mathematically define an attributed graph as GA = (N ,L,A), where N is the

finite set of nodes that is non-empty, L is the finite set of links, and A the set of attributes.

The set of attributes is defined as A = ani
, alj,k , with ni ε N representing node number i, and

lj,k ε L representing the link between nodes j and k.

By using the procedure as stipulated by Van Schoor et al. in [6], an attributed graph could

be constructed for the TEP model, which is displayed in Figure 3.1. The diagram of this

attributed graph, as developed by Vosloo [42], can be seen in Figure 3.2. The total change in

exergy (chemical plus physical) over node i is represented with ∆Bi and the energy flow rate

from the source node j to the destination node k, is represented with q̇j,k.

The graph is constructed by representing each system component as a node, and in the cases

where the component functions as a heat exchanger, that component is represented with two

nodes. These two nodes, representing the primary and secondary sides of heat exchange,

are connected with a link representing heat exchange from one side to the other. The links,

which represent the connection between system components, are directional and indicate from

which node to which node energy is transferred. Table 3.2 details the process component

corresponding to each node in the attributed graph of the TEP.

Figure 3.1: Tennessee Eastman process model [12].
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Figure 3.2: Diagram of the attributed graph of the TEP.

Table 3.2: Summary of all the nodes of the TEP attributed

graph and the process components they represent.

Process component Node number Process component Node number

Feed stream A Node 1 Feed stream D Node 2

Feed stream E Node 3 Feed stream A/B/C Node 4

Mixing zone Node 5 Reactor Node 6

Reactor cooling bundle Node 7 Condenser Node 8

Condenser cooling side Node 9 Vapour-liquid separator Node 10

Purge stream Node 11 Compressor Node 12

Stripper Node 13 Product stream Node 14

Environment Node 15 -

For the attributed graph to be used by an FDI scheme, it must first be converted into NSM

format. For FDI, Wolmarans [52] provided a mathematical expression of an NSM. The system

used in that study, however, only had physical exergy and the expression had to be modified

to

Ns = [N (G),L(G)], Ns ε Rn×n+2 (3.3)
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with N (G) ε Rn×2 representing the matrix of node attributes, and L(G) ε Rn×n representing

the matrix of link attributes. The NSM of the attributed graph of the TEP as illustrated in

Figure 3.2, can be expressed as

Ns =


∆Bch1 ∆Bph1 | q̇1,1 · · · q̇1,14 q̇1,15

...
... | ...

. . .
...

...

∆Bch14 ∆Bph14 | q̇14,1 · · · q̇14,14 q̇14,15

∆Bch15 ∆Bph15 | q̇15,1 · · · q̇15,14 q̇15,15

 . (3.4)

Certain rules apply when populating the NSM from an attributed graph. These rules include:

� The diagonal entries of the link attribute matrix of Ns are all zero, seeing as no node is

connected to itself. This means q̇j,k = 0, where j = k.

� In the case where no energy is transferred between nodes and no connection exists

between those nodes; the link attribute is set to zero.

� Since links are directional; the link attribute is multiplied with −1 when the link is

reversed. This is expressed as q̇1,5 = −q̇5,1. This is, however, not the case when the

reverse of a link is a separate link. This can be seen in Figure 3.2 with the environmental

node, where the link from node 7 to node 15 is separate and different from the link from

node 15 to node 7. This is expressed as q̇7,15 6= −q̇15,7.

3.6 Conclusion

This chapter provides an overview of the TEP Simulink® model and touches on critical

aspects such as the control strategy and the validation of the model. First, a table of all

20 fault conditions of the TEP is provided, and the type of faults are then discussed briefly.

Next, more detail is provided on how the model calculates the chemical and physical exergy

attributes used to populate the attributed graph. The chapter then concludes by explaining

how the attributed graph and NSM of the TEP are developed.

37



Chapter 4

Exergy-based fault detection and

isolation

4.1 Introduction

In this chapter, a set of control data is obtained by applying three FDI schemes, which

utilize the unreduced attributed graph, to the graph data of the benchmark system. This set

of control data is required to evaluate how effective the graph reduction techniques are by

comparing the performance of the FDI schemes, which use reduced attributed graphs, with

the performance of schemes in the control data.

The distance parameter method, the eigendecomposition method, and the residual-based

method are used in this study. Both the distance parameter method and the eigendecom-

position method require the generation of cost matrices, while the residual-based method only

requires the generation of residual matrices.

This chapter provides an extensive overview of the methodology used to implement each of

these three FDI schemes. The performance of each of these FDI schemes is gauged by the

overall detection and isolation rates achieved by each of these methods. It is also shown

how the time-series data produced by a dynamic system are sampled to implement the FDI

methods.
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4.2 Generating control data for FDI schemes

Using graph reduction techniques in the context of graph-based FDI schemes is a relatively

novel approach, and as such, it is unclear exactly which FDI schemes will function better

than others after the reduction process is applied. To this end, more than one FDI scheme

is required to evaluate the reduction techniques. Furthermore, for the schemes to be used to

evaluate reduction techniques, a control dataset is required where the graphs have not yet

been reduced. A process flow diagram of how these FDI schemes are implemented can be

seen in Figure 4.1. The FDI schemes mentioned in the literature study were all applied to

static systems, while the benchmark system is a dynamic system with time-series data. In

the dissertation done by Smith [53], three of the FDI methods referenced in the literature

study are applied to a system with time-series data. These methods involve generating a cost

matrix and then evaluating the distance parameter and eigenvalues, and generating residual

matrices to diagnose faults. Figure 4.2 illustrates the different graph comparison operations

that are applied to the NSM for each FDI scheme.

Figure 4.1: Process flow diagram of a graph-based FDI scheme.

Figure 4.2: Illustration of how the FDI schemes use different

graph comparison operations to diagnose faults from the NSM.
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4.2.1 Generating a cost matrix

As stated in Chapter 2, a cost matrix is a way of quantifying the similarity between two

matrices that are being compared. Both the distance parameter approach and the eigenvalue

approach require a cost matrix. Several different methods are available to generate a cost

matrix and a few variations of these methods that can be used in different applications. In

[53], the chosen method for determining the cost matrix is the Heterogeneous Euclidean-

Overlap Metric (HEOM) as proposed by Jouili et al. [24]. The HEOM equation proposed in

[24] was adapted specifically for FDI in [51]. This adapted HEOM equation is given by

HEOM(Ns1, Ns2) =

√√√√ k∑
a=1

δ(Ns1(i, a), Ns2(j, a))2, (4.1)

whereNs1(i, a) represents the (i, a) entry of the first matrix, Ns2(j, a) represents the (j, a) entry

of the second matrix, a represents the a − th column of the rows that are being considered,

and k represents the row length. When the matrices contain numeric entries, the δ function

is given by

δ(Ns1(i, a), Ns2(j, a)) =
|Ns1(i, a)−Ns2(j, a)|

rangea
, (4.2)

where the function rangea = maxa − mina normalizes the attributes by using both the

maximum and minimum values in column a.

While the work done by Wilson & Martinez [54] offers several options for determining δ,

such as using rangea or substituting the range parameter with either one or four standard

deviations (σ or 4σ) of the data, an inspection done in [53] showed that substituting the range

yielded a negligible difference in results. Thus, rangea as used in (4.2) will be used in this

study.

As an example of how a cost matrix is generated, consider the illustration provided in Fig-

ure 4.3. The cost matrix C is generated by comparing matrices A and B using HEOM, with

matrix A being the reference matrix and matrix B being some operational matrix. As such,

the range is calculated by using the values in matrix A. In the context of FDI, matrices A

and B would be two node signature matrices.

It is critical to consider which cost matrix to calculate so as to use this matrix to detect and

isolate fault conditions in the system. To explain how it is determined which cost matrix to

use, consider the following scenario: A system is under NOC up until time = Tf when a fault
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condition is introduced into the system. It can be assumed that when the system is under

NOC, there are variations present in the measured process data, but these variations are all

within an acceptable range as set out in the design specifications. Once a fault is introduced

into the system, the energy and exergy attributes in the NSM will deviate to levels outside

the bounds of a system’s normal variation range under NOC.

Figure 4.3: Illustration of the cost matrix generation process.

For any fault condition to be detected, the energy and exergy attributes in the NSM before Tf

should not present any problems, while the attributes in the NSM at Tf and onward should

be indicative of a fault condition present in the system. To differentiate between the different

conditions an NSM can be in, an NSM with measurements taken under NOC is referred to as

a normal NSM, and an NSM with measurements taken during a fault is referred to as a fault

NSM.

When graph comparison is applied as part of an FDI scheme to generate a cost matrix analysed

by the scheme to diagnose faults, measured process data in the form of energy and exergy

attributes are the input to the scheme. Measurements taken while the system is operational are

used to construct an operational attributed graph and, subsequently, an operational NSM. The

FDI scheme diagnoses faults by comparing this operational attributed graph with a reference

normal attributed graph representing the system under NOC. The rationale is that because a
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cost matrix constitutes the similarity between two compared graphs, the cost matrix generated

by comparing the reference normal attributed graph and the operational attributed graph

when the system is under NOC will have small values. In juxtaposition, when comparing

the operational attributed graph with the reference normal attributed graph while a fault

condition is present, it will generate a cost matrix with large values.

For the FDI scheme to detect and isolate faults, a reference attributed graph must be gen-

erated for the system under NOC (the reference normal attributed graph) and a reference

attributed graph for each fault condition. Since the TEP has 20 fault conditions, a database

of 21 reference attributed graphs is constructed. The operational attributed graph is then

compared with each of the reference attributed graphs, generating a cost matrix. The degree

of similarity the cost matrix represents is quantified differently depending on whether the

distance parameter approach or eigenvalue approach is used. By identifying the cost matrix

with the slightest degree of similarity, the operational attributed graph can be linked to a

specific reference attributed graph, and the fault is isolated.

This approach of comparing an operational attributed graph to a reference graph hinges on

considering all possible fault conditions. In a practical setting, however, this may not be the

case. For example, if an unknown and unreferenced fault occurs, the results from the graph

comparison process will be inconclusive.

As mentioned earlier, the TEP model is dynamic and generates time-series data. To construct

each reference attributed graph in the database, the average of each node and link attribute is

calculated from the time-series data for each one of the 21 reference conditions. Each average

reference attributed graph of a system condition includes 20 samples of attributed graphs

while the system has no fault and is under NOC to make the reference attributed graphs more

robust. These 20 samples represent the first hour in the 25-hour simulation period. This also

better equips these reference attributed graphs for practical use of the FDI schemes since most

process plants are dynamic and do not transition from normal operation to faulty operation

instantaneously, but instead start experiencing faults and their effects over time.

In FDI applications, it is typical to split a dataset and use 70% of the data for training the

FDI scheme and use the remaining 30% to test the FDI scheme. Smith [53] notes that since

average values are being used, the characteristics of the average testing sample (70% of the

dataset) and the average of the complete dataset will show no discernible differences. The

entire dataset is therefore used to compile the average values in this study.

Figure 4.4 contains an illustration of how the energy and exergy attributes in the dataset

obtained from the simulation model are processed to create a reference database that is used
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in the graph comparison operation. The operational attributed graph as illustrated with GOP

is the graph generated from the attributes as measured while the TEP model is in operation.

This operational attributed graph can be generated for each one of the 21 system conditions.

To implement graph comparison, a MATLAB® program is used to compose an operational

attributed graph from the process measurement data as supplied by the Simulink® model.

The attributed graph is then converted by the program into an NSM, which the program

then compares the NSM with the HEOM function to each of the average reference attributed

graphs in the database. Each reference attributed graph in the database is stored as an NSM

to ease the process.

A single graph comparison operation performed on one sample of an operational condition

produces 21 cost matrices. To detect a fault, all 21 of these cost matrices should undergo

either the distance parameter approach or the eigenvalue approach to quantify the degree of

similarity each matrix represents. If it is found that the cost matrix generated by comparing

the operational attributed graph with the reference normal attributed graph has the highest

similarity of all the other matrices, the system is under NOC, and no fault is present. If this

is not the case, a fault condition is present in the system.

Figure 4.5 is an illustration of how the cost matrices are produced by comparing an operational

condition with the reference conditions. The operational attributed graph is under NOC, and

each one of the 501 samples is compared with each reference attributed graph in the database

to produce an array of cost matrices with 21 columns representing the reference graphs and

501 rows representing each sample of the operational graph. Each operational condition

produces its own array of cost matrices, so a total of 21 arrays are generated. Figure 4.5 only

displays the array produced by comparing an operational attributed graph under NOC with

the reference attributed graphs for demonstrative purposes.

Table 4.1 provides an example of a cost matrix generated by applying the HEOM function.

One sample of an operational attributed graph under NOC is compared with the normal

reference attributed graph to produce the specific cost matrix. Table 4.2 contains the cost

matrix generated by comparing one sample of the operational attributed graph under NOC

with the reference attributed graph of Fault 1.

It should be noted that when an operational attributed graph is compared with its correspond-

ing reference attributed graph, as is the case in Table 4.1, the diagonal entries are all close

to zero. This is in contrast with when an operational attributed graph is compared with the

incorrect reference attributed graph, as is the case in Table 4.2, which results in much larger

diagonal entries. The red entry in Table 4.2 is much larger than its counterpart in Table 4.1.
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Figure 4.4: Illustration of how time-series data are used to

perform graph comparison.

Figure 4.5: Generating the cost matrices for an operational

condition.
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Table 4.1: Cost matrix generated by comparing an operational attributed graph under NOC with

the normal reference attributed graph.

CN1

0.0005 0.0289 0.0824 0.1088 1.9733 0.7574 1.1461 1.3036 0.4635 1.3407 0.0886 0.5913 1.4971 0.5312 1.4116

0.0283 0.0011 0.0906 0.1188 1.9750 0.7760 1.1467 1.3014 0.4651 1.3416 0.0961 0.5799 1.4882 0.5299 1.4121

0.0828 0.0917 0.0001 0.1258 1.9884 0.7242 1.1434 1.2640 0.4562 1.3431 0.0092 0.6544 1.5047 0.4891 1.4092

0.1085 0.1188 0.1253 0.0007 1.9966 0.7444 1.1491 1.3063 0.4723 1.2976 0.1293 0.6163 1.5092 0.6139 1.4076

1.9790 1.9806 1.9942 2.0017 0.0431 2.1595 2.3792 2.6328 2.0365 2.5971 1.9966 1.9306 2.4825 2.0246 2.4575

0.7543 0.7731 0.7210 0.7413 2.1514 0.0097 1.3595 1.3854 0.9479 1.6805 0.7195 1.2009 1.8179 0.8441 1.5435

1.1590 1.1597 1.1563 1.1620 2.3815 1.3729 0.0143 1.6026 0.8294 1.7773 1.1569 1.2945 1.8930 1.2584 1.8229

1.3058 1.3038 1.2660 1.3086 2.6298 1.3859 1.5967 0.0071 1.3614 1.8539 1.2648 1.7062 2.0428 1.2395 1.8754

0.4631 0.4648 0.4557 0.4719 2.0307 0.9498 0.8189 1.3592 0.0006 1.3620 0.4562 0.7791 1.5704 0.6701 1.4810

1.3519 1.3528 1.3537 1.3118 2.5979 1.6892 1.7773 1.8553 1.3724 0.0516 1.3538 1.5010 2.0269 1.6094 1.9259

0.0893 0.0973 0.0095 0.1300 1.9909 0.7226 1.1439 1.2628 0.4568 1.3433 0.0003 0.6612 1.5047 0.4860 1.4092

0.5937 0.5819 0.6574 0.6188 1.9244 1.2088 1.2847 1.7073 0.7818 1.4883 0.6640 0.0042 1.5071 0.9409 1.5554

1.4984 1.4895 1.5065 1.5104 2.4762 1.8218 1.8864 2.0438 1.5722 2.0205 1.5066 1.5049 0.0189 1.5884 2.0630

0.5341 0.5332 0.4922 0.6176 2.0160 0.8485 1.2477 1.2393 0.6727 1.6142 0.4892 0.9387 1.5857 0.0045 1.5203

1.4200 1.4205 1.4175 1.4160 2.4579 1.5521 1.8211 1.8803 1.4891 1.9230 1.4175 1.5617 2.0673 1.5266 0.0144

45



Table 4.2: Cost matrix generated by comparing an operational attributed graph under NOC with

the reference attributed graph of Fault 1.

CF11

0.0004 0.0292 0.0805 0.1053 3.1858 0.7347 1.1531 1.2795 0.5092 1.1737 0.0877 0.5792 1.4498 0.5192 1.5082

0.0283 0.0016 0.0888 0.1156 3.1869 0.7531 1.1538 1.2772 0.5106 1.1748 0.0952 0.5685 1.4410 0.5179 1.5087

0.0828 0.0922 0.0019 0.1218 3.1952 0.7007 1.1505 1.2393 0.5026 1.1767 0.0077 0.6428 1.4570 0.4769 1.5059

0.1085 0.1190 0.1243 0.0035 3.1998 0.7220 1.1562 1.2822 0.5171 1.1257 0.1286 0.6038 1.4618 0.6017 1.5044

1.9791 1.9806 1.9937 2.0012 1.6864 2.1522 2.3833 2.6180 2.0459 2.5077 1.9962 1.9270 2.4556 2.0225 2.5144

0.7543 0.7735 0.7218 0.7404 3.2994 0.0235 1.3653 1.3630 0.9726 1.5457 0.7197 1.1855 1.7726 0.8377 1.6320

1.1590 1.1597 1.1563 1.1616 3.4506 1.3604 0.0074 1.5893 0.7963 1.6557 1.1568 1.2890 1.8556 1.2535 1.8986

1.3057 1.3040 1.2670 1.3072 3.6285 1.3724 1.6006 0.0330 1.3802 1.7357 1.2648 1.7011 2.0040 1.2377 1.9469

0.4631 0.4649 0.4557 0.4709 3.2217 0.9292 0.8245 1.3363 0.0492 1.2005 0.4561 0.7696 1.5249 0.6611 1.5733

1.3519 1.3528 1.3537 1.3131 3.5999 1.6752 1.7817 1.8383 1.3882 0.2479 1.3538 1.4957 1.9917 1.6016 1.9974

0.0892 0.0978 0.0110 0.1260 3.1968 0.6990 1.1510 1.2379 0.5031 1.1769 0.0019 0.6498 1.4570 0.4737 1.5059

0.5938 0.5815 0.6557 0.6194 3.1549 1.1901 1.2920 1.6886 0.8067 1.3412 0.6631 0.0219 1.4668 0.9317 1.6435

1.4984 1.4894 1.5063 1.5102 3.5194 1.8070 1.8908 2.0272 1.5860 1.9142 1.5067 1.5073 0.0532 1.5845 2.1302

0.5341 0.5334 0.4931 0.6135 3.2147 0.8270 1.2541 1.2145 0.7053 1.4746 0.4896 0.9312 1.5398 0.0159 1.6107

1.4199 1.4205 1.4175 1.4159 3.5063 1.5412 1.8256 1.8636 1.5039 1.8114 1.4175 1.5568 2.0328 1.5220 0.1268
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4.2.2 Distance parameter method

When this approach was applied in [53], it was argued that the diagonal entries of a cost

matrix represent the most critical information stored within that matrix; it is logical to only

mathematically examine the diagonal values to diagnose faults. The distance parameter ap-

proach does this by calculating an average of the diagonal entries to condense the cost matrix

to a single value, indicative of the degree of similarity between the two attributed graphs

encapsulated in the cost matrix. In the article by Greyling et al. [55], the equation used to

determine this distance parameter DC is given by

DC =
n∑

k=1

Ckk

n
, (4.3)

where Ckk is the relevant diagonal entry in the cost matrix and n is the number of diagonal

entries in the cost matrix.

To implement this approach to detect faults, operational attributed graph data is generated

by taking measurement samples every 180 seconds over 25 hours, producing 501 operational

attributed graphs since both the first and last samples are included. For the first hour of the 25

hours, the system is still under NOC, and then one of the 21 system conditions is induced for

24-hours. The first 20 operational attributed graphs of the 501 operational attributed graph set

of a specific system condition, represent NOC and the remaining 481 operational attributed

graphs represent the induced system condition. When operational matrices are compared

with the reference normal attributed graph in the database, the distance parameters from the

resulting cost matrices are expected to be relatively small if the system is under NOC. When

these operational matrices are compared with the reference normal attributed graph in the

database, the distance parameters from the resulting cost matrices are expected to be much

more significant if a fault condition is present in the system.

If all 501 distance parameters were to be plotted on the same axis, the contrast in the size of the

distance parameters produced by NOC and fault conditions is expected to be very apparent.

However, this is the case only if the distance parameters are obtained from comparing the

reference normal attributed graph with the operational graph of all the 21 possible system

conditions.

The procedure for detecting and isolating a particular fault condition is as follows:

1. Generate the operational attributed graphs (GOP ) for each one of the 21 system condi-

tions. Each condition will have 501 operational attributed graphs due to the sampling
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interval, of which the first 20 graphs are still under NOC.

2. Compare an operational attributed graph of a specific system condition (GOP ) with each

one of the 21-reference attributed graphs in the database by using the HEOM function

as described in Figure 4.4. This will produce 21 cost matrices. These cost matrices

are then recorded in one row of an array of cost matrices where each row represents a

specific sample number, and each column represents a reference condition. An example

of this can be seen in Figure 4.5.

3. Calculate all the distance parameters of the 21 cost matrices and insert these 21 param-

eters into a row of the distance array displayed in Figure 4.6. Each row in the distance

array represents the sample number, and each column represents one of the 21 refer-

ence conditions. It should be noted that the array of cost matrices and distance array

displayed in Figure 4.6 represent a single operational condition. This means that these

arrays will have to be generated for each of the 21 conditions.

4. To isolate a fault, determine the column index of the minimum distance parameter of

the specific row (sample number) in the distance array. This method isolates the faulty

operational condition (anyone of the last 481 operational attributed graphs in the set

of 501 operational attributed graphs) to the reference condition with the same column

index as the minimum distance parameter in a specific row (sample number).

5. A fault is detected whenever this method does not isolate an operational fault condition

to the column representing the reference NOC. Thus, a fault is detected when the column

index of the minimum distance parameter is not 1 (See Figure 4.6).

6. Repeat steps 2 - 5 for each of the 501 sampled operational attributed graphs produced

for each of the 21 system conditions.

As an example of how faults are detected and isolated, consider Figure 4.7 and Figure 4.8

below. Figure 4.7 contains the plotted results of the distance parameters that are produced by

comparing all 501 of the sampled operational attributed graphs of Fault 2 (GFT2) with all 21 of

the reference attributed graphs. It is clear from Figure 4.7 that the distance parameters pro-

duced by comparing the operational attributed graphs of Fault 2 with the reference attributed

graph of Fault 2 are, for the most part, smaller than any of the other distance parameters.

The method, therefore, can detect and isolate Fault 2 for most of the 501 samples.

This is, however, not the case when the results plotted in Figure 4.8 are analysed. Most of

the time, the distance parameters produced by comparing the operational attributed graphs

of Fault 8 with the reference attributed graph of Fault 8 are not smaller than any of the other

distance parameters. This FDI method, therefore, cannot uniquely isolate Fault 8. However,

since the distance parameters produced by comparing the operational attributed graphs of

Fault 8 with the reference normal attributed graph are, for the most part, not smaller than
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the other distance parameters, the method can detect the presence of a fault in the system.

Figure 4.6: Illustration of how the distance array is produced

from the array of cost matrices.

Table 4.3 contains the detection and isolation rates obtained from implementing the distance

parameter FDI method. The top row contains the fault detection rates, while the rest contain

the fault isolation rates. Each isolation rate entry represents the percentage of times the

reference condition represented by that entry’s row index was isolated to the operational

condition represented by that entry’s column index. The main column represents the diagonal

entries of the isolation rates, representing the percentage of times an operational condition

was correctly isolated to its reference condition.
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Figure 4.7: Plot of distance parameters produced by compar-

ing the operational attributed graph of Fault 2 with all the

reference graphs.

Figure 4.8: Plot of distance parameters produced by compar-

ing the operational attributed graph of Fault 8 with all the

reference graphs.
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Table 4.3: Detection and isolation rates of the distance parameter FDI method.

Main F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

DR (%) 98 99 86 95 91 100 92 89 86 87 87 90 92 84 84 84 86 96 84 85

IR (%) F1 75 75 0 2 0 0 0 3 8 1 2 0 1 0 1 1 1 1 1 0 1

IR (%) F2 85 0 85 1 0 0 0 1 0 1 0 0 0 0 1 3 2 1 0 1 1

IR (%) F3 15 0 0 15 0 0 0 3 0 11 1 1 0 0 4 12 7 7 2 10 10

IR (%) F4 33 0 0 4 33 0 0 2 0 3 1 11 0 0 9 4 3 19 0 2 4

IR (%) F5 21 0 0 8 0 21 0 2 0 9 1 1 0 1 5 11 8 6 2 8 8

IR (%) F6 59 0 0 0 0 5 59 7 9 0 0 0 11 3 0 0 0 0 6 0 0

IR (%) F7 8 0 0 9 0 1 0 8 1 10 4 1 0 5 10 10 9 5 2 7 9

IR (%) F8 1 0 0 11 0 0 0 5 1 10 5 1 1 2 5 9 9 7 2 10 11

IR (%) F9 10 0 0 14 0 0 0 4 1 10 2 2 0 0 7 11 7 5 1 9 12

IR (%) F10 2 0 0 10 0 0 0 6 0 11 2 2 1 1 7 12 8 3 4 11 9

IR (%) F11 5 0 0 8 0 0 0 3 0 6 1 5 0 0 13 10 6 18 1 6 8

IR (%) F12 8 0 0 9 0 0 0 7 0 10 2 3 8 2 8 10 7 5 2 10 6

IR (%) F13 5 0 0 6 0 0 0 8 0 12 2 1 1 5 8 9 12 5 2 8 10

IR (%) F14 7 0 0 11 0 0 0 4 0 10 1 1 0 0 7 14 7 4 1 10 11

IR (%) F15 14 0 0 9 0 0 0 6 1 14 2 1 0 1 3 14 8 4 3 11 8

IR (%) F16 10 0 0 8 0 0 0 4 0 12 2 2 0 1 5 11 10 5 4 9 10

IR (%) F17 13 0 0 9 0 0 0 4 0 10 1 4 1 0 10 11 6 13 1 6 10

IR (%) F18 8 0 0 4 0 12 0 12 8 5 1 2 10 15 4 4 5 5 8 1 2

IR (%) F19 9 0 0 12 0 0 0 5 1 10 1 2 0 1 7 13 7 4 2 9 11

IR (%) F20 10 0 0 9 0 0 0 6 1 12 2 1 0 1 4 14 8 3 3 12 10
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4.2.2.1 Detection

The confusion matrix of the distance parameter FDI method can be seen in Table 4.4. All

501 sample attributed graphs of all the 21 system conditions (a total of 10521 samples) were

assessed with the FDI method to produce this confusion matrix. The overall detection accu-

racy of the method is expressed as the percentage of times that the operational condition (the

actual system condition) was a fault condition and the method successfully detected that a

fault was present in the system. This is expressed as the true positive (TP) value divided by

the sum of the true positive (TP) and false-negative (FN) values
(

d
d+b

)
. From the matrix, this

method achieved an overall detection rate accuracy (true positive rate) of 89.81 % and a false

negative rate of 10.19 %. This method is, therefore, quite proficient in detecting faults from

the TEP data.

Table 4.4: Confusion matrix of distance parameter FDI

method.

CONFUSION MATRIX DETECTION RATES

True condition

Fault-free Fault Rate %

a TN b FN R FN 10.19
Fault-free

119 980 R TP 89.81

c FP d TP Accuracy 89.91
Detected condition

Fault
782 8640

4.2.2.2 Isolation

To determine the overall isolation rate of this FDI method, the diagonal entries of the isolation

rate rows of Table 4.3 are considered. Since each of these diagonal entries represents the rate at

which a specific operational condition was correctly isolated to the condition’s corresponding

reference condition, the overall isolation rate of the method can be determined by calculating

the average value of the diagonal entries. The overall isolation rate for the distance parameter

FDI method applied to the TEP data is calculated as 19.90 %.

4.2.3 Eigendecomposition method

After examining the eigendecomposition FDI method as proposed in [53], it was found that

the methodologies of the distance and eigendecomposition FDI methods produce very similar

performance results. This is because the average of the diagonal entries of a cost matrix and the
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average eigenvalue of said cost matrix are the same. To overcome this, the eigendecomposition

FDI method was altered so that the cost matrices are generated by comparing the reference

normal attributed graph with all the other reference and operational attributed graphs. Every

cost matrix then acts as a vector of departure from the reference normal attributed graph,

and the eigenvalues of these cost matrices can be used to detect and isolate faults.

It is clear from examining the fundamental principles of eigenvectors and eigenvalues [56], that

the eigenvalues are inextricably linked to the diagonal entries of a matrix. This fact makes

this approach, like the distance parameter approach, a valuable tool since the diagonal entries

of that matrix represent the most pertinent information of a cost matrix.

The methodology behind this approach deviates from the methodology of the distance parame-

ter method in that this approach requires two graph comparison operations to implement FDI,

and it does not condense cost matrices to a single parameter. First, an operational attributed

graph is generated by taking measurements every 180 seconds over 25 hours, producing 501

operational attributed graphs for each operational condition. Next, the system is again under

NOC for the first hour, and then one of the 21 system conditions is induced for the remaining

24 hours. This results in the first 20 operational attributed graphs representing NOC while

the remaining 481 operational attributed graphs all represent the induced system condition.

Each operational attributed graph is then compared with all the reference attributed graphs

in the database, and a cost matrix is generated with the HEOM function for each comparison

operation.

The process for detecting and isolating faults is as follows:

1. Generate the operational attributed graphs (GOP ) for each one of the 21 system condi-

tions. Each condition will have 501 operational attributed graphs due to the sampling

interval, of which the first 20 graphs are still under NOC.

2. Compare all the reference graphs in the database with the reference normal attributed

graph (GN avg) by using the HEOM function as seen in Figure 4.9. This produces 21 cost

matrices. These cost matrices are then recorded in one row of an array of cost matrices

(array A in Figure 4.9) where each column represents a system condition. Finally, the

eigenvalues of each cost matrix in array A are calculated and stored as a vector in an

array of eigenvalues, as can be seen in Figure 4.10.

3. Compare all 501 of the sampled operational attributed graphs of a specific system con-

dition (GOP ) with the reference normal attributed graph (GN avg) in the database by

using the HEOM function as seen in Figure 4.9. This will produce 501 cost matrices.

These cost matrices are then recorded in one of the columns of an array of cost matrices

(array B in Figure 4.9) where each row represents a specific sample number, and each
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column represents a system condition. This implies that when the operational condition

is under NOC, the cost matrix produced by comparing the operational attributed graph

with the reference normal attributed graph will be assigned to the NOC column of array

B as can be seen in Figure 4.11. The eigenvalues of each cost matrix in array B are

calculated and stored as a vector in an array of eigenvalues, as can be seen in Figure

4.11.

4. All the vectors in the array of eigenvalues in Figure 4.10 (vectors in blue) are concate-

nated into a single reference matrix as can be seen in Figure 4.12 (a) and then the

absolute value of each eigenvalue is determined before they are rearranged in descending

order.

5. A single vector from the array of eigenvalues in Figure 4.11 is selected, the absolute

value of each eigenvalue is determined before they are rearranged in descending order

and subtracted from the reference matrix mentioned in the previous step |~λNRef − ~λNO|.
As an example, the eigenvalue set indicated as a red vector in (Figure 4.11), is displayed

in Figure 4.12 (b). An example of the matrix produced by the subtraction is displayed

in Table 4.5.

6. For each row in the matrix represented by Table 4.5, identify the column index which

contains the minimum value of that row. Then, use a frequency counter vector with

one row and the same number of columns as the matrix and increase the entry in the

frequency vector, which corresponds to the column with the minimum value in each row.

7. A fault is isolated by identifying the column index in the frequency vector which has the

highest count, as this index represents the reference condition to which the operational

condition has been matched.

8. A fault is detected when the operational condition represents a fault condition (anyone

of the last 481 operational attributed graphs in the set of 501 operational attributed

graphs), and the method does not isolate that operational condition to the reference

normal condition.

9. Repeat steps 5 – 8 for every one of the 21 × 501 vectors contained in the array of

eigenvalues in Figure 4.11.
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Figure 4.9: Illustration of the graph comparison operation for

the eigendecomposition method.

Figure 4.10: The array eigenvalues calculated from the cost

matrices in array A.
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Figure 4.11: The array of eigenvalues calculated from the cost

matrices in array B.
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Figure 4.12: (a) Matrix produced by concatenating the blue

vectors from the array of eigenvalues produced by array A. (b)

Eigenvalues contained in the red vector.

As an example, Fault 6 is induced as the operational condition. The set of eigenvalues pro-

duced by comparing the attributed graph of Fault 6 with the reference normal attributed

graph, are subtracted from the blue vectors in Figure 4.12 (a). This subtraction results in the

matrix seen in Table 4.5. Note that all the matrix entries are normalized and, thus, expressed

as percentage values. The green entries represent the minimum value in each row, while the

blue row at the bottom of the table represents the frequency vector. By investigating the

frequency vector on the bottom row of the table, the column representing Fault 6 contained

the most minimum value entries of all the rows. This means that this sampled operational

condition has been isolated to Fault 6.

Table 4.6 contains the detection and isolation rates obtained from implementing the eigende-

composition FDI method. The top row contains the fault detection rates, while the rest of the

rows contain the fault isolation rates. Each isolation rate entry represents the percentage of

times the reference condition represented by that entry’s row index was isolated to the oper-

ational condition represented by that entry’s column index. The summary column represents

the diagonal entries of the isolation rates, representing the percentage of times an operational

condition was correctly isolated to its reference condition.
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Table 4.5: Matrix expressing the percentage difference between each blue vector entry and its

corresponding red vector entry.

NOC F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

1.56 11.20 6.03 1.80 2.70 2.65 0.17 1.22 2.45 2.29 1.23 2.55 0.67 1.12 2.18 1.60 1.38 2.24 0.78 2.24 1.59

12.50 22.54 15.48 12.25 13.21 11.95 2.69 8.40 13.46 12.83 10.90 13.36 10.12 9.98 13.05 11.30 11.72 12.60 5.74 13.10 11.22

23.95 6.62 20.15 23.11 23.49 22.04 4.95 16.60 18.55 22.84 21.32 22.21 19.63 18.97 22.20 21.79 22.60 23.46 8.34 21.87 21.84

11.34 8.99 8.54 9.44 10.35 10.50 5.59 10.09 10.60 9.46 10.76 10.65 9.71 9.56 11.15 10.74 9.22 10.85 7.11 10.38 10.69

12.64 11.54 9.96 11.78 11.67 11.82 4.69 11.68 9.93 11.53 11.53 12.17 8.41 8.94 12.23 12.10 11.60 11.86 7.52 11.98 12.21

16.67 15.23 6.89 15.20 13.74 12.27 2.68 15.13 13.03 14.79 14.83 14.62 4.98 9.29 15.89 16.04 15.51 15.08 6.51 16.02 15.96

24.09 23.33 23.19 24.16 23.29 24.31 12.69 23.65 23.01 23.84 23.19 23.39 20.60 22.04 23.30 23.69 22.89 23.59 20.93 23.86 23.91

10.61 10.00 10.23 10.07 10.16 9.67 4.23 9.46 9.00 10.28 10.01 10.01 8.68 7.94 10.37 9.99 9.79 10.41 3.00 10.20 10.24

8.92 7.64 6.73 7.99 8.16 7.10 2.98 6.72 7.69 8.21 8.00 7.93 6.31 6.65 8.54 8.38 8.09 8.11 0.59 8.48 8.33

4.63 4.32 0.01 1.33 3.20 3.82 1.97 3.95 4.31 1.39 4.37 3.75 3.68 3.65 4.48 4.01 1.29 4.25 2.59 3.02 4.27

15.14 12.46 13.82 11.21 12.35 8.53 4.89 13.73 11.45 10.91 12.86 14.19 3.51 10.50 13.95 14.35 13.65 14.22 9.70 13.65 14.30

1.84 0.76 0.19 1.62 1.69 1.85 0.68 1.87 1.69 1.51 1.83 1.68 1.76 1.19 1.82 1.89 1.50 1.74 1.90 1.69 1.78

3.60 0.05 2.63 3.25 3.37 3.19 1.57 3.11 3.01 3.38 3.24 3.04 3.10 1.90 3.11 3.04 3.01 3.44 1.50 3.32 3.12

15.11 10.61 11.37 11.95 13.77 13.04 4.96 12.63 12.97 13.75 13.57 12.64 12.20 12.26 13.77 13.36 12.58 14.43 9.10 13.87 14.11

88.90 82.78 88.35 88.27 88.06 87.08 30.61 81.54 79.73 88.69 85.29 88.54 75.60 68.01 88.56 87.25 87.80 88.30 60.33 88.55 87.15

0 1 2 0 0 0 9 0 0 0 0 0 1 0 0 0 0 0 2 0 0
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Table 4.6: Detection and isolation rates of the eigendecomposition method.

Main F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

DR (%) 100 100 99 100 100 100 100 100 99 100 100 100 100 98 99 99 100 100 99 99

IR (%) F1 84 84 3 0 0 0 6 0 0 0 0 0 0 4 0 0 0 0 1 0 0

IR (%) F2 77 6 77 0 1 1 2 0 1 0 0 0 3 3 0 1 1 0 3 0 0

IR (%) F3 9 7 15 9 7 10 0 4 6 6 11 2 1 3 2 2 10 1 2 1 0

IR (%) F4 16 4 20 4 16 15 0 2 7 2 5 1 3 10 0 1 9 0 0 0 0

IR (%) F5 19 6 30 2 6 19 7 5 4 0 2 1 4 7 0 1 3 0 1 0 0

IR (%) F6 98 0 1 0 0 0 98 0 0 0 0 0 0 1 0 0 0 0 0 0 0

IR (%) F7 3 11 23 4 4 6 8 3 5 2 6 1 4 10 0 1 4 0 6 0 0

IR (%) F8 2 13 19 1 1 2 38 1 2 1 1 0 6 7 0 0 1 0 8 0 0

IR (%) F9 4 5 16 7 10 10 1 3 4 4 10 2 1 8 0 3 11 2 0 0 0

IR (%) F10 4 25 27 4 4 8 0 2 7 1 4 2 2 6 0 0 5 0 1 0 0

IR (%) F11 1 4 22 6 6 9 12 3 5 1 7 1 4 9 0 1 7 1 1 0 0

IR (%) F12 8 9 25 1 2 4 25 1 3 0 1 0 8 12 0 0 1 0 7 0 0

IR (%) F13 14 7 21 1 3 4 19 3 4 1 2 1 6 14 0 0 1 0 12 0 0

IR (%) F14 1 4 21 8 8 11 0 3 6 5 6 2 4 6 1 1 10 1 0 0 0

IR (%) F15 2 4 16 14 8 8 0 4 6 4 9 2 2 5 1 2 10 1 0 1 1

IR (%) F16 10 4 21 9 9 7 0 4 6 2 5 3 4 10 0 2 10 1 0 1 0

IR (%) F17 1 6 20 7 13 8 0 3 6 3 9 1 2 6 1 1 11 1 0 0 0

IR (%) F18 3 9 11 3 1 3 51 2 2 1 3 0 3 4 0 1 3 0 3 0 0

IR (%) F19 0 2 18 10 7 9 0 2 4 4 11 2 3 8 1 2 10 2 0 0 0

IR (%) F20 0 3 17 9 11 7 1 3 7 5 10 3 2 5 1 2 11 2 0 0 0
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4.2.3.1 Detection

The confusion matrix of the eigendecomposition FDI method can be seen in Table 4.7. All

501 sample attributed graphs of all the 21 system conditions (a total of 10521 samples) were

accessed with the FDI method to produce this confusion matrix. The overall detection ac-

curacy of the method is expressed as the percentage of times that the operational condition

(the actual system condition) was a fault condition and the method successfully detected that

a fault was present in the system. This is expressed as the true positive (TP) value divided

by the sum of the true positive (TP) and false-negative (FN) values
(

d
d+b

)
. From the matrix,

this method achieved an overall detection rate accuracy (true positive rate) of 99.60 % and

a false negative rate of 0.40 %. This method is, therefore, extremely proficient in detecting

faults from the TEP data.

Table 4.7: Confusion matrix of the eigendecomposition FDI

method.

CONFUSION MATRIX DETECTION RATES

True condition

Fault-free Fault Rate %

a TN b FN R FN 0.40
Fault-free

15 38 R TP 99.60

c FP d TP Accuracy 99.60
Detected condition

Fault
886 9582

4.2.3.2 Isolation

To determine the overall isolation rate of this FDI method, the diagonal entries of the isolation

rate rows of Table 4.6 are again considered. The overall isolation rate of the method can be

determined by calculating the average value of the diagonal entries since each one of these

diagonal entries represents the rate at which a specific operational condition was correctly

isolated to the condition’s corresponding reference condition. The overall isolation rate for

the eigendecomposition FDI method applied to the TEP data is calculated as 17.80 %.

4.2.4 Modified eigendecomposition FDI method

A concurrent study conducted by Wolmarans [52] found that when cost matrices are generated,

and the eigenvalues of those cost matrices are calculated to detect and isolate faults, the process

noise is encapsulated in the later eigenvalue entries. By removing these later eigenvalue entries,
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the effect process noise has on the performance of FDI methods, is minimized and the FDI

method requires less information to diagnose faults.

This aligns with a process known as principal component analysis (PCA), whereby only com-

ponents (variables) that contain the bulk of process information are used to diagnose faults.

In this case, the principal components are the dominant eigenvalues. Wolmarans used a cu-

mulative percentage variance (CPV) calculation to establish how many eigenvalues account

for the bulk amount of process variance. Process variance refers to the changes in the cost

matrix as more time goes by and more samples are taken [52].

The equation used to calculate the CPV of selected eigenvalues is given by [52]:

CPV (a) =

∑a
i=1 λref (i)∑

λref
× 100, (4.4)

with a representing the number of selected eigenvalues from the reference eigenvalue set.

Wolmarans showed that of the five eigenvalues generated from the cost matrix, the three

dominant eigenvalues have a CPV of 86.9 %, meaning the last two eigenvalues represent 13.1

% of process variance and are, therefore, regarded as process noise.

This result implies that the eigendecomposition FDI method can be modified to consider

less information while maintaining a similar level of performance. A trade-off is required to

determine the least amount of dominant eigenvalues that will maintain FDI performance.

The most common CPV values used for PCA are 75, 80, 85, & 90 % [57] and this study will,

therefore, evaluate FDI performance at these four values.

The trade-off between FDI performance and the number of dominant eigenvalues used can

be seen in Table 4.8. Equation 4.4 is manipulated to determine the number of selected

eigenvalues (dominant eigenvalues) for a given CPV value. When a CPV of 85 % is used, the

overall detection and isolation rates are respectively 3.32 % and 0.25 % lower than the rates

obtained when all eigenvalues were used. Even though the FDI performance experienced a

slight drop from the original rates, when a CPV of 85 % is used, the eigendecomposition FDI

method has to consider nine fewer eigenvalues which greatly reduces the information required

to make a diagnosis and, ultimately, the complexity of implementing the FDI method.

The eigendecomposition FDI method is now modified to no longer consider all 15 eigenvalues

but to only consider the eigenvalues representing 85 % of the CPV, which are the six largest

eigenvalues in this case. The confusion matrix and the specific detection and isolation rates of

the modified eigendecomposition FDI method can be found in Tables 4.9 & 4.10, respectively.

For the remainder of this study, the modified eigendecomposition FDI method will be used to
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replace the original method.

Table 4.8: The performance of the eigendecomposition FDI

method for different CPV values.

CPV (%)
Number of dominant

eigenvalues
Overall detection rate (%) Overall isolation rate (%)

75 4 94.45 18.40

80 5 95.40 17.75

85 6 96.28 17.55

90 7 96.55 17.50

Table 4.9: Confusion matrix of the modified eigendecomposi-

tion FDI method.

CONFUSION MATRIX DETECTION RATES

True condition

Fault-free Fault Rate %

a TN b FN R FN 3.72
Fault-free

60 358 R TP 96.28

c FP d TP Accuracy 96.28
Detected condition

Fault
841 9262

4.2.5 Residual-based method

As mentioned in the literature study, the residual-based method was initially promoted as a

means of implementing an FDI scheme in the study done by Neser [26] and compared to the

distance parameter method and an eigendecomposition method in the study done by Smith

[53]. This method directly compares the indices of the NSM of the reference normal attributed

graph with the NSM of the operational attributed graph to diagnose faults. Unlike the previous

methods, this graph comparison method does not require a cost matrix to diagnose faults.
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Table 4.10: Detection and isolation rates of the modified eigendecomposition method.

Main F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

DR (%) 100 99 95 98 98 100 97 98 93 94 98 99 98 92 93 94 95 99 91 95

IR (%) F1 90 90 3 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IR (%) F2 75 8 75 0 1 0 4 0 1 0 1 0 4 1 0 0 0 0 3 0 0

IR (%) F3 12 5 14 12 11 3 0 4 7 4 12 3 2 4 3 1 5 2 0 2 0

IR (%) F4 26 2 28 6 26 10 0 1 10 1 6 1 0 4 0 0 1 0 0 0 0

IR (%) F5 5 3 37 2 16 5 8 7 5 0 4 0 1 7 0 0 0 0 2 0 0

IR (%) F6 100 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IR (%) F7 7 5 26 5 6 4 10 7 5 3 7 2 2 4 1 0 1 0 5 1 0

IR (%) F8 3 7 25 1 2 1 38 4 3 1 2 0 2 2 0 0 0 0 9 0 0

IR (%) F9 2 4 12 12 11 5 0 6 5 2 15 2 1 5 1 1 6 2 0 1 0

IR (%) F10 8 3 25 6 9 7 2 5 10 2 8 2 3 6 0 0 4 1 0 0 0

IR (%) F11 0 4 30 5 11 3 8 4 5 2 11 0 4 4 1 1 3 1 1 0 0

IR (%) F12 2 3 38 4 2 1 24 4 6 0 2 0 2 5 0 0 1 0 6 0 0

IR (%) F13 7 3 28 3 5 2 12 9 5 1 5 1 4 7 0 1 1 0 12 0 0

IR (%) F14 2 6 18 10 10 6 0 4 6 2 9 3 2 5 2 1 6 2 0 1 0

IR (%) F15 1 5 14 16 8 3 0 7 4 3 14 3 2 4 2 1 4 1 0 1 0

IR (%) F16 5 6 20 10 10 4 0 6 7 3 11 2 2 4 1 2 5 1 0 1 0

IR (%) F17 1 9 20 7 16 5 0 4 7 2 9 3 2 2 2 1 4 1 0 1 0

IR (%) F18 4 5 15 4 4 1 51 4 2 0 5 1 1 1 0 0 1 0 4 0 0

IR (%) F19 1 5 17 14 8 5 0 2 3 3 15 2 2 3 1 1 4 3 0 1 0

IR (%) F20 0 5 16 10 12 4 0 6 5 4 13 4 2 3 2 1 5 3 0 1 0
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The residual matrix generated by comparing the operational attributed graph of the system

in NOC with the reference normal attributed graph should theoretically be zero. This is,

however, not the case when a dynamic system is used since minor variations occur even when

the system is under NOC. This should, theoretically, not adversely affect fault detection or

isolation since a residual generated by comparing an operational attributed graph under NOC

with the reference normal attributed graph will be relatively small compared to a residual

generated by comparing an operational attributed graph of a fault condition with the reference

normal attributed graph. It is expected that the residuals will have distinct patterns allowing

for the isolation of fault conditions. The terms ”residual” and ”residual matrix” are used

interchangeably.

The mathematical expression of the graph comparison operation responsible for generating

the residual matrix with the size n×m is expressed as

Gres(i, j) =
Gref (i, j)−Gop(i, j)

Gref (i, j)
, (4.5)

where Gref (i, j) represents an entry in the NSM of the reference normal attributed graph

and Gop(i, j) represents the corresponding entry in the NSM of the operational attributed

graph which are both n×m matrices. This comparison operation then produces the following

residual matrix Gres :

Gres =


∆bref (1,1)−∆bop(1,1)

∆bref (1,1)
· · · | ∆q̇ref (1,3)−∆q̇op(1,3)

∆q̇ref (1,3)
· · · ∆q̇ref (1,m)−∆q̇op(1,m)

∆q̇ref (1,m)
...

... | ...
. . .

...
∆bref (n,1)−∆bop(n,1)

∆bref (n,1)
· · · | ∆q̇ref (n,3)−∆q̇op(n,3)

∆q̇ref (n,3)
· · · ∆q̇ref (n,m)−∆q̇op(n,m)

∆q̇ref (n,m)

 (4.6)

It is important to note that the first two columns of the NSM are reserved for the exergy

attributes, while the third column up to column m are all reserved for the energy attributes.

The process used to generate reference attributed graph data is similar to the process used to

generate the reference attributed graph data for the eigendecomposition FDI method, which

can be seen in the process flow diagram in Figure 4.9. The process flow of generating the

reference attributed graph data for the residual-based FDI method can be seen in Figure 4.13.

Each operational condition will again produce 501 operational attributed graphs due to the

180-second sampling interval over the 25 hours. The system is again operating under NOC for

the first hour, and then one of the 21 system conditions is induced for the remaining 24 hours.

The first 20 operational attributed graphs represent NOC, while the remaining 481 operational

attributed graphs represent the induced system condition. Note that, for the residual-based
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FDI method, the reference attributed graph of each condition is also the average of the 501

operational attributed graphs of that condition. When an operational attributed graph under

NOC (GOP N) is compared with the reference normal attributed graph (GN avg), which is the

average normal attributed graph from the dataset, a residual matrix for NOC is produced

(Gres N).

Figure 4.13: Process flow diagram of the graph comparison

operation used by the residual-based FDI method.

In [26], a qualitative visual inspection approach is used to detect and isolate faults. A bar

plot is composed for every node which contains the residual energy flow rate in and out of

a node (RQin & RQout), the change in exergy over a node (R∆b), and the energy flow rate

between the node and the environmental node (RQenv). A pattern is encoded within this bar

plot which can be analysed to detect if a fault is present or if the system is under NOC. Faults

can also be isolated in this manner by only comparing the operational attributed graphs with

the reference normal attributed graph to generate residuals which are in turn used to compose

bar plots. Therefore, it is not necessary to compare the operational attributed graphs with

every reference attributed graph in the database with this approach.

The attributed graph used in [26] only had 6 nodes which is a much smaller system than the

one used in [53] which had 20 nodes. To address this, the approach used in [26] was slightly

altered in [53]. A bar plot was generated where each node (column) receives one bar, and this

single bar is a combination of the four variables of the node (RQin, RQout, R∆b & RQenv).
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Because the qualitative interpretation of these bar plots proved to be a tedious and inefficient

process, a quantitative method was instead pursued in [53]. This method counts the number of

residual matrices that match a specific pattern of a specific system condition. This method,

to its detriment, produces several unknown states, which complicate fault diagnosis. The

existence of these unknown states will also render the control data ineffective when using it

to compare and evaluate graph reduction techniques. To overcome this issue, the method

proposed in [53] was altered by using frequency vectors in a similar fashion as with the

eigendecomposition method, instead of simply counting the matching matrices. This ensures

that no unknown states are produced. The procedure of this altered method is outlined below:

1. Generate the operational attributed graphs (GOP ) for each one of the 21 system condi-

tions. Each condition will have 501 operational attributed graphs due to the sampling

interval, of which the first 20 graphs are still under NOC.

2. Compare all the reference graphs in the database with the reference normal attributed

graph (GN avg) by using (4.5). This produces 21 residual matrices. These residual

matrices are then recorded in one of the rows of an array of residual matrices (array A

in Figure 4.13 and Figure 4.14) where each column represents a system condition. For

demonstrative purposes, a residual matrix is represented in the subsequent figures with

the symbol R.

3. Compare all 501 of the sampled operational attributed graphs of all 21 system conditions

(GOP ) with the reference normal attributed graph (GN avg) in the database by using

(4.5). This will produce 21 × 501 residual matrices. These residual matrices are then

recorded in the corresponding columns of an array of residual matrices (array B in

Figure 4.13 and Figure 4.15) where each row represents a specific sample number, and

each column represents a system condition. This implies that when the operational

condition is under NOC, the residual matrix produced by comparing the operational

attributed graph with the reference normal attributed graph will be assigned to the

NOC column of array B as can be seen in Figure 4.15.

4. Calculate the average and standard deviation of the residual values of the change in

exergy over each node in the system for every residual matrix. This is done by calculating

the average and standard deviation of the residual values in columns one and two.

(R∆b avg & R∆b std)

5. Calculate the average and standard deviation of the residual values of the energy flow

rates between nodes for every residual matrix. This is done by calculating the average

and standard deviation of the residual values in column three until the residual matrix’s

final column. (R∆Q avg & R∆Q std)

6. Calculate R∆b avg − 2R∆b std as well as R∆b avg + 2R∆b std. Now, do the same for the
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energy flow rates: R∆Q avg − 2R∆Q std as well as R∆Q avg + 2R∆Q std.

7. From each residual matrix, develop a binary residual signature, which contains only

binary values, by using two cases. Case 1: If any value in the first two columns is less

than R∆b avg − 2R∆b std or more than R∆b avg + 2R∆b std, that value is replaced with

a 1. If any value in the remaining columns is less than R∆Q avg − 2R∆Q std or more

than R∆Q avg + 2R∆Q std that value is replaced with a 1. Case 2: If any value in the

first two columns is more than R∆b avg − 2R∆b std or less than R∆b avg + 2R∆b std,

that value is replaced with a 0. If any value in the remaining columns is more than

R∆Q avg − 2R∆Q std or less than R∆Q avg + 2R∆Q std that value is replaced with a 0.

An example of a binary residual signature can be seen in Table 4.11.

8. Repeat the previous step to transform all residual matrices into binary residual signa-

tures in array B. This will produce 21 × 501 binary residual signatures in total. Next,

do the same for the 21 reference residual matrices recorded in array A.

9. The number of ”1’s” in each column of every binary residual signature from array B

(501 signatures in total) are counted and stored in its own operational frequency vector.

This process is illustrated in Figure 4.15 where the red vector is a frequency vector that

corresponds to a residual matrix in array B. The green row in Table 4.11 is an example

of an operational frequency vector. Each entry of this vector represents the count of one

column in the signature. Thus, a total of 501 vectors are generated for each one of the

21 system conditions.

10. Repeat the previous step for the 21 residual matrices contained in array A. This will

produce 21 reference frequency vectors. This process is illustrated in Figure 4.14 where

each blue vector is a reference frequency vector that corresponds to a residual matrix in

array A.

11. The 21 reference frequency vectors (vectors in blue) are concatenated into a single matrix

where each column represents a single reference frequency vector. This can be seen in

Figure 4.16 (a). An operational frequency vector (vector in red) can be seen in Figure

4.16 (b).

12. The operational frequency vector (vector in red) is then subtracted from each of the

21 columns containing the concatenated reference frequency vectors (vectors in blue)

| ~fcNRef − ~fcNO|. The total of each column is then calculated, and the column index,

which has the minimum total value, is identified. This column index represents the

reference condition that the operational condition has been isolated to.

13. Repeat the previous step for all the operational frequency vectors produced from the

residual matrices in array B.

14. A fault is isolated by identifying which column index has the minimum total value.

15. A fault is detected when an operational fault condition (anyone of the last 481 opera-
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tional attributed graphs in the set of 501 operational attributed graphs) is not isolated

to the normal reference condition.

Figure 4.14: The array of frequency vectors resulting from the

residual matrices in array A.

Figure 4.15: The array of frequency vectors resulting from the

residual matrices in array B.
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Figure 4.16: (a) Matrix produced by concatenating the blue

reference frequency vectors from array A. (b) Operational fre-

quency vector in red.

The binary residual signature is displayed in Table 4.11 is derived from a residual matrix

generated from an operational attributed graph while the operational condition was Fault 6.

Table 4.13 contains the detection and isolation rates obtained from implementing the residual-

based FDI method. The top row contains the fault detection rates, while the rest of the rows

contain the fault isolation rates. Each isolation rate entry represents the percentage of times

the reference condition represented by that entry’s row index was isolated to the operational

condition represented by that entry’s column index. The summary column represents the

diagonal entries of the isolation rates, representing the percentage of times an operational

condition was correctly isolated to its reference condition.
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Table 4.11: Binary residual signature with the operational fre-

quency vector in the green row.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0

1 1 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1

4.2.5.1 Detection

The confusion matrix of the residual-based FDI method can be seen in Table 4.12. All 501

sample attributed graphs of all the 21 system conditions (a total of 10521 samples) were ac-

cessed with the FDI method to produce this confusion matrix. The overall detection accuracy

of the method is expressed as the percentage of times that the operational condition (the

actual system condition) was a fault condition and the method successfully detected that a

fault was present in the system. This is expressed as the true positive (TP) value divided by

the sum of the true positive (TP) and false-negative (FN) values
(

d
d+b

)
. From the matrix, this

method achieved an overall detection rate accuracy (true positive rate) of 98.86 % and a false

negative rate of 1.14 %. This method is, therefore, excellent at detecting faults from the TEP

data.

4.2.5.2 Isolation

To determine the overall isolation rate of this FDI method, the diagonal entries of the isolation

rate rows of Table 4.13 are again considered. Each diagonal entry represents the rate at which a

specific operational condition was correctly isolated to the condition’s corresponding reference

condition, so the overall isolation rate of the method can be determined by calculating the
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average value of the diagonal entries. The overall isolation rate for the residual-based FDI

method applied to the TEP data is calculated as 20.15 %.

Table 4.12: Confusion matrix of the residual-based FDI

method.

CONFUSION MATRIX DETECTION RATES

True condition

Fault-free Fault Rate %

a TN b FN R FN 1.14
Fault-free

3 110 R TP 98.86

c FP d TP Accuracy 98.86
Detected condition

Fault
898 9510

4.3 Summary of results

A summary of the detection and isolation performance of the three methods can be seen

in Table 4.14 below. The table contains the overall detection and isolation rates of each

FDI method and the specific isolation rates of the fault conditions that each method could

successfully isolate for the majority of samples. Specific detection rates of fault conditions

were omitted from this table, seeing as each FDI method achieved very high detection rates

for all the fault conditions.

When considering these factors, it is clear that no one of the three FDI methods can be

seen as the outright best-performer when applied to the TEP data. For example, the distance

parameter FDI method achieved the lowest overall detection rate and the weakest performance

in terms of specific isolation rates. On the other hand, the eigendecomposition FDI method

obtained the lowest overall isolation rate while also being the top performer in specific isolation

rates.

The residual-based FDI method achieved the highest overall isolation and detection rates.

While the specific isolation rates obtained by the residual-based FDI method are better than

those obtained by the distance parameter FDI method, they are considerably weaker than

the rates obtained by the eigendecomposition FDI method. An analysis of the specific fault

isolation rates of each FDI method will allow for a holistic comparison between the performance

of the FDI methods which use unreduced attributed graph data and the performance of the

FDI methods which use reduced attributed graph data. This will, in turn, lead to reduction

techniques being better equipped at reducing graph complexity while maintaining the same

level of performance of the FDI methods.
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If a choice had to be made, the eigendecomposition method would be selected since its overall

detection and isolation rates are slightly lower than that of the residual-based FDI method,

and it is the top performer in terms of specific isolation rates. What’s more, it achieved a

perfect specific isolation rate of Fault 6. Fault 6 involves a plant shutdown and has a very

distinct effect on the process data, which should result in any effective FDI method achieving

high detection and isolation rates. These results (Table 4.14) now serve as a set of control

data with which the results of the FDI schemes, which use the reduced attributed graphs, can

be compared. The algorithm of each FDI method, in the form of pseudocode, can be seen in

Appendix A. These algorithms detail how the graph data is transformed into the final data

structure used for FDI analysis. The links to the attributed graph data and all MATLAB®

code used in this study, including the code of all three the FDI methods used in this chapter,

can be found in Appendix B.

4.4 Conclusion

This chapter provides an elaborate explanation of how each of the three FDI methods selected

for this study is implemented. Each FDI method is then applied to the attributed graph data

of the TEP, and the performance of each method is measured in terms of the method’s ability

to detect and isolate fault conditions. An overview of the performance capabilities of the three

methods can be found in Table 4.14.

It is clear, from analysing these results, that when these particular FDI methods are applied to

the TEP graph data, the isolation capabilities of the FDI methods are very poor. It should,

however, be noted that the isolation capabilities of graph-based methods are much weaker

than the detection capabilities. This discrepancy in capabilities becomes even greater when

the dataset to be considered by the FDI method is much larger. This becomes evident when

comparing the results found in [8] with those found in [53].

There is no clear indication of which FDI method performed the best when applied to the

graph data of the TEP since all the methods performed relatively well in at least one aspect.

However, using all three FDI methods to evaluate graph reduction techniques makes it possible

to make more holistic decisions about those reduction techniques.
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Table 4.13: Detection and isolation rates of the residual-based FDI method.

Main F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

DR (%) 100 100 100 98 93 100 99 99 100 100 97 100 93 100 100 100 100 100 100 100

IR (%) F1 80 80 0 0 0 1 0 1 17 0 0 0 0 0 0 0 0 0 0 0 0

IR (%) F2 61 0 61 0 0 1 18 0 0 0 0 0 1 0 16 0 0 0 0 1 0

IR (%) F3 17 13 1 17 1 5 6 2 2 9 11 0 15 0 0 5 5 0 0 1 8

IR (%) F4 23 1 2 0 23 15 2 2 1 0 1 25 6 0 0 0 0 8 0 0 11

IR (%) F5 29 14 4 0 5 29 2 10 2 0 9 0 13 2 2 0 0 0 0 0 0

IR (%) F6 88 11 0 0 0 0 88 0 0 0 0 0 0 0 1 0 0 0 0 0 0

IR (%) F7 9 12 3 2 2 5 11 9 16 4 5 0 10 0 6 3 2 0 0 2 6

IR (%) F8 19 26 2 0 0 1 14 13 19 0 1 0 2 0 16 1 0 0 0 2 1

IR (%) F9 10 11 2 10 1 9 7 2 4 10 12 0 11 1 2 4 5 0 0 1 8

IR (%) F10 8 4 2 4 4 16 5 9 11 4 8 0 5 1 1 2 3 0 0 0 22

IR (%) F11 22 6 2 1 19 11 2 1 2 1 7 22 6 0 1 1 1 5 0 1 8

IR (%) F12 13 13 3 1 4 11 14 10 10 3 4 0 13 4 8 1 0 0 0 0 0

IR (%) F13 1 1 8 1 1 4 16 11 33 1 1 0 7 1 3 1 1 0 0 0 2

IR (%) F14 1 7 2 6 8 11 3 2 3 6 14 3 13 1 1 3 3 3 0 0 11

IR (%) F15 5 12 1 4 3 8 4 3 1 8 16 0 14 2 2 5 4 0 0 2 10

IR (%) F16 3 6 4 3 2 11 7 4 9 6 13 0 11 1 2 4 3 0 0 0 13

IR (%) F17 4 10 1 3 10 10 3 2 3 4 12 6 11 1 1 4 4 4 0 1 9

IR (%) F18 0 10 1 1 1 7 47 4 5 2 4 0 4 1 6 2 1 0 0 1 3

IR (%) F19 1 11 2 3 3 10 4 3 3 9 19 0 13 1 2 5 3 0 0 1 8

IR (%) F20 9 13 2 3 2 7 5 4 4 8 17 0 13 1 2 4 4 0 0 2 9
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Table 4.14: Summary of the detection and isolation perfor-

mance of the three FDI schemes applied to the TEP.

Distance parameter FDI method

Overall detection rate (%) 89.81

Overall isolation rate (%) 19.90

Isolation of Fault 1 (%) 75.00

Isolation of Fault 2 (%) 85.00

Isolation of Fault 6 (%) 59.00

Eigendecomposition FDI method

Overall detection rate (%) 96.28

Overall isolation rate (%) 17.55

Isolation of Fault 1 (%) 90.00

Isolation of Fault 2 (%) 75.00

Isolation of Fault 6 (%) 100.00

Residual-based FDI method

Overall detection rate (%) 98.86

Overall isolation rate (%) 20.15

Isolation of Fault 1 (%) 80.00

Isolation of Fault 2 (%) 61.00

Isolation of Fault 6 (%) 88.00
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Chapter 5

Graph reduction techniques and

experimental design

5.1 Introduction

This chapter outlines the graph reduction techniques that have been proposed as potentially

viable options for reducing the size of the attributed graph data used in graph-based FDI

methods. Then, the experimental design section provides an overview of the experimental

process used to determine each proposed graph reduction technique’s effectiveness. Guidelines

on how the results of the experimental process should be interpreted are also discussed.

5.2 Proposed graph reduction techniques

The techniques proposed in this chapter were formulated by considering existing techniques in

literature and how the FDI techniques detect and isolate faults. The five suggested techniques

rely on three principal reduction approaches to reduce the attributed graph data. The first

principal approach analyses the degree to which attributes vary from their values under NOC

when fault conditions occur. This approach is based on the premise that attributes that

experience minimal variation when fault conditions are induced will have a negligible effect

on the cost matrices and/or residual matrices used in the FDI methods and can be removed

from the graph data.

This first principal approach considers only the reference attributed graphs constructed by

calculating the average of the time-series graph data to determine the degree of attribute

75



variation from NOC. Since the time-series data is averaged and fault conditions do not affect

the noise experienced by graph attributes, process noise will not significantly influence the

variance. The noise present in the system will, therefore, not result in this approach removing

attributes.

The second principal approach analyses the size of the graph attributes while the process is

under NOC. This approach is based on the premise that more minor attributes will have a

much smaller effect on the cost and residual matrices than more considerable attributes and

can, therefore, be removed.

The final principal approach summarizes nodes that are similar in attribute size. This ap-

proach is based on the premise that all the attributes remain in the graph data, but the

structural layout of the graph changes. This means that all the attributes still contribute

to the cost and residual matrices, causing negligible disruption to the FDI process while the

structural size of these matrices is reduced. This final approach is largely based on the graph

summarization techniques identified in Chapter 2 [27] - [35], but allows for the summarization

to be restricted to prevent vital structural information from being completely distorted.

Both the first and second main approaches consider node and link attributes separately and,

thus, result in two separate techniques for each approach. All three of these premises are

theoretical suggestions, and that is why an experimental process is required to determine

if these reduction techniques are valid, to which extent they work, and which techniques

complement which of the FDI methods.

Link attribute reduction techniques and node attribute reduction techniques reduce the com-

plexity of the attributed graph in different ways. Link attribute reduction techniques reduce

complexity by setting specific attribute values in the NSM to zero, which means that the

mathematical operations of the FDI methods evaluate fewer attributes. On the other hand,

node attribute reduction techniques reduce complexity by removing rows and columns from

the NSM and, thus, reduce the size of the NSM, to which the mathematical operations of

the FDI methods are then applied. It is, therefore, also necessary to observe the effect that

these different styles of complexity reduction have on the execution time of the mathematical

operations of the FDI methods.

All techniques are prohibited from completely removing the environmental node to retain some

of the most vital structural information. It is, however, permitted for the summarization

technique to merge the environmental node with one other node. A summary of all the

proposed reduction techniques, as well as a brief description of each technique, can be seen in

Table 5.1.
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Table 5.1: Summary of the graph reduction techniques proposed in this study.

Technique Number Name Reduction Type Description

Technique 1 Node attribute filtering with variation analysis Node attribute reduction
Removes node attributes based on their average

variation from NOC over all fault conditions.

Technique 2 Link attribute filtering with variation analysis Link attribute reduction
Removes link attributes based on their average

variation from NOC over all fault conditions.

Technique 3 Link attribute filtering with a size threshold Link attribute reduction
Removes link attributes based on the

size of the attributes in NOC.

Technique 4 Node attribute filtering with a size threshold Node attribute reduction
Removes node attributes based on the

size of the attributes in NOC.

Technique 5 Summarization of similar nodes Node attribute reduction
Merges similar nodes into a single node by

summarizing their attributes.
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5.3 Experimental design

5.3.1 Overview

The experimental process first has to determine if any of these techniques can reduce the at-

tributed graph data of the TEP while maintaining a similar level of FDI performance achieved

before graph reduction, for any of the three FDI methods. Then, the experimental process has

to determine the efficacy of each reduction technique with regards to all three FDI methods

by varying the extent to which the techniques reduce graph data in intervals, and measuring

the resulting FDI performance indicators.

For each graph reduction technique, reduction intervals are selected. These reduction intervals

determine to which extent the reduction technique reduces graph data. For example, the

intervals for Technique 1 - 4 are the percentile threshold values these techniques use as input,

and the number of mergers for Technique 5. The percentile threshold values are increased in

increments of ten (10th percentile, 20th percentile, ... , 90th percentile), and the number of

mergers is increased with an increment of one. These intervals only go so far as each specific

technique allows.

The process starts with Technique 1. The lowest reduction interval (10th percentile threshold)

is selected, and the technique accordingly reduces the TEP attributed graph data. The per-

centage of non-zero attributes reduced is calculated. All three FDI methods are then applied

to the reduced attributed graph data. The method’s overall detection rate, overall isolation

rate, and three specific isolation rates are measured for each FDI method. These performance

indicators are chosen to ensure the evaluation is holistic. Three specific isolation rates are

again considered so as to facilitate a realistic comparison with the three specific isolation rates

found in the control data. The reduction interval is now increased to the subsequent reduction

interval (20th percentile threshold). All three FDI methods are again applied to the reduced

graph data, and all the performance indicators are measured. This is repeated until the final

reduction interval (90th percentile threshold) is reached.

Table 5.2 contains every indicator that is measured at one reduction interval for Technique

1. All these indicators have to be measured for all the reduction intervals of a reduction

technique. This process is repeated for Techniques 2 - 5. It should be noted that Technique

5 uses the number of mergers as reduction intervals and not percentile threshold values.
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Table 5.2: Overview of the experimental process applied to

each reduction technique.

Technique # FDI Method Reduction interval Measured performance indicator

Technique 1 Distance 10th percentile Overall detection rate (%)

Technique 1 Distance 10th percentile Overall isolation rate (%)

Technique 1 Distance 10th percentile Non-zero attributes reduced (%)

Technique 1 Distance 10th percentile Specific isolation rate 1 (%)

Technique 1 Distance 10th percentile Specific isolation rate 2 (%)

Technique 1 Distance 10th percentile Specific isolation rate 3 (%)

Technique 1 Eigen 10th percentile Overall detection rate (%)

Technique 1 Eigen 10th percentile Overall isolation rate (%)

Technique 1 Eigen 10th percentile Non-zero attributes reduced (%)

Technique 1 Eigen 10th percentile Specific isolation rate 1 (%)

Technique 1 Eigen 10th percentile Specific isolation rate 2 (%)

Technique 1 Eigen 10th percentile Specific isolation rate 3 (%)

Technique 1 Residual 10th percentile Overall detection rate (%)

Technique 1 Residual 10th percentile Overall isolation rate (%)

Technique 1 Residual 10th percentile Non-zero attributes reduced (%)

Technique 1 Residual 10th percentile Specific isolation rate 1 (%)

Technique 1 Residual 10th percentile Specific isolation rate 2 (%)

Technique 1 Residual 10th percentile Specific isolation rate 3 (%)

5.4 Analysis of the results

Once the experimental process has been applied to all five reduction techniques, the results

obtained from this process must be evaluated to determine the viability and efficacy of the

techniques. For each reduction technique, all the performance indicators discussed in Table

5.2 should be recorded in a table for all the reduction intervals. The performance indicators

from the control data should also be included in this table.

For each reduction technique, two plots must also be generated. The first plot should contain

the overall detection rate of each FDI method at every reduction interval and the overall

detection rates of the three FDI methods contained in the control data. The second plot

should contain the overall isolation rate of each FDI method at every reduction interval and

the overall isolation rates of the three FDI methods contained in the control data. No plot

will be made of specific isolation rates, seeing as they are recorded in the result tables, and

the overall detection and isolation rates indicators carry more weight when evaluating FDI

performance.

By using the tables and plots, it is possible to determine, for each technique, how the FDI

performance obtained when using original graph data (control data) changes as the reduction
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interval increases. It is then possible to determine the trajectory of this change in performance,

the reduction intervals at which the reduction techniques work well, and which reduction

techniques work better than others. This analysis will detail whether or not graph reduction

is a viable solution and how effective the different techniques are.

5.5 Conclusion

This chapter introduces all five of the proposed graph reduction techniques used in this study.

The premise on which each of the reduction techniques is based is also discussed. An outline of

the experimental process used to evaluate the viability and efficacy of graph reduction is then

provided. The final section of this chapter describes how the results from the experimental

process should be analysed.
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Chapter 6

Results

6.1 Introduction

In this chapter, the experimental process as outlined in Chapter 5 is implemented to evaluate

the proposed graph reduction techniques. The results from the experimental process will be

analysed as discussed in the previous chapter.

The detection and isolation capabilities of the FDI methods which use the reduced graph data

will be compared to the capabilities of the methods in the control data recorded in Chapter 4.

By comparing these capabilities, it will be possible to determine whether attributed graph data

can be reduced by removing non-vital structural information while maintaining the level of

performance achieved by the FDI methods when using unreduced graph data. Furthermore, it

will also be possible to determine the extent to which each reduction technique can reduce the

graph data before the performance of the FDI methods starts to deteriorate too extensively.

The individual reduction techniques are also applied to the attributed graph data in different

combinations to determine if it is possible to overcome the shortcomings of the individual

techniques. The implementation of each of the five reduction techniques is also verified by

using Excel® to reduce the graph data and comparing the result with that produced by the

MATLAB® code.

6.2 Evaluating the graph reduction techniques

This section provides, in numerical order, the methodology of each graph reduction technique

as well as the experimental process used to evaluate that technique. The results from this
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evaluation are also discussed.

6.2.1 Node attribute filtering with variation analysis

This technique uses the nodes of the attributed graph of the system under NOC as a reference

and analyses the variation of each node for all the 20 process faults. The methodology used

for evaluating this technique is as follows:

� Generate the attributed graph data for all 20 fault conditions as well as the normal

condition. Then, for each of the 15 nodes, express how much the chemical exergy

attribute value varies relative to the node’s attribute value while the system is under

NOC, as a percentage value. This produces a 20 × 15 matrix where each entry represents

the percentage with which a specific node’s chemical exergy value for a given fault

condition has varied relative to the attribute value of the node in NOC.

� For each of the 15 nodes, express how much the physical exergy attribute value varies

relative to the node’s attribute value while the system is under NOC, as a percentage

value. This also produces a 20 × 15 matrix where each entry represents the percentage

with which a specific node’s physical exergy value for a given fault condition has varied

relative to the attribute value of the node in NOC.

� Calculate the mean of each column of both the chemical exergy variation and physical

exergy variation matrices. Summate the mean column value of the chemical exergy

variation matrix with its corresponding value in the physical exergy variation matrix.

This results in a summated variation vector containing 15 values. Each value represents

the average physical and chemical exergy variation of a node over the 20 process faults

relative to the physical and chemical exergy values in the NOC.

� Use the ‘isoutlier(A,‘percentiles’,threshold)’ function in MATLAB® to identify the out-

liers found to be less than the 10th percentile threshold of the variation vector. These

outliers represent the nodes whose attribute values vary very little for all 20 process

faults relative to the NOC and are highly unlikely to contribute to the detection and

isolation of faults.

� Remove the nodes identified as lower outliers in the vector from the attributed graph

data of the TEP.

� Use the reduced graph data and apply the three FDI methods used in Chapter 4 to

determine the detection and isolation capabilities of all three FDI methods.

� Increase the percentile threshold in increments of 10 until the 90th percentile has been

reached. After each increase, repeat the previous three steps.
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Figures 6.1 & 6.2 show the respective overall detection and isolation rates, relative to the

percentage of attributes removed from the graph data. From the overall detection rates illus-

trated in Figure 6.1, it can be observed that the distance FDI method’s detection capabilities

improved as more attributes were removed. The detection rate of the eigendecomposition FDI

method remained relatively constant for the first few iterations, after which it experienced a

dip in performance. At the 40th and 70th percentile threshold, the eigendecomposition FDI

method experienced anomalies, whereby the detection rate decreased and then reversed course

by increasing again with the following iteration. The detection rate of the residual-based FDI

method remained relatively constant until the 80th percentile threshold was used, at which

point it achieved a perfect detection rate. Once the 90th percentile threshold was used, its

detection capabilities collapsed altogether.

All three FDI methods experienced a deterioration of overall isolation capabilities, with the

residual-based method deteriorating to zero percent. However, the distance FDI method expe-

rienced the most gradual deterioration of all three methods. Several anomalies occurred in the

isolation rate data, with the first occurring when the isolation capability of both the eigen-

decomposition and residual-based FDI methods decreased rapidly once the 30th percentile

threshold was exchanged with the 40th percentile threshold. Another anomaly occurred when

the isolation capability of the eigendecomposition method increased rapidly once the 70th per-

centile threshold was exchanged with the 80th percentile threshold, after which it decreased

again.

The isolation rates of the specific faults which each FDI method could successfully isolate for

the majority of sample measurements are recorded in Table 6.1. From these specific isolation

rates, it can be noted that all three FDI methods are capable of retaining relatively high

specific isolation rates up until the 30th percentile, after which at least one of the specific

isolation rates of all three methods became insufficient. The eigendecomposition FDI method

experienced a poor specific isolation rate for Fault 2 when the 10th percentile threshold was

used, after which that specific isolation rate increased substantially, creating another anomaly.
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Figure 6.1: The overall detection rates after applying Tech-

nique 1.

Figure 6.2: The overall isolation rates after applying Technique

1.
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6.2.2 Link attribute filtering with variation analysis

The methodology of this technique is similar to that of the previous technique, with the main

difference being that link attribute values are filtered out instead of node attribute values. The

attributed graph of the system under NOC remains the reference graph. The methodology

used for evaluating this technique is as follows:

� Generate the attributed graph data for all 20 fault conditions as well as the normal

condition. For all the non-zero link attributes, express how much the attribute value

varies for each fault condition relative to that link’s attribute value while the system is

under NOC, as a percentage value.

� Calculate the average percentage value with which each non-zero link attribute value

varies for all the 20 fault conditions. This produces a 15 × 15 variation matrix where

each non-zero entry represents a specific link attributes average percentage variation for

all the fault conditions.

� Use the ‘isoutlier(A,‘percentiles’,threshold)’ function in MATLAB® to identify the non-

zero outliers found in the 10th percentile of the variation matrix. These outliers represent

the non-zero links whose attribute values vary very little for all 20 process faults relative

to the NOC and are highly unlikely to contribute to the detection and isolation of faults.

� Reduce the attributed graph data of the TEP by setting the link attribute values iden-

tified as lower outliers in the variation matrix to zero.

� Use the reduced graph data and apply the three FDI methods used in Chapter 4 to

determine the detection and isolation capabilities of all three FDI methods.

� Increase the percentile threshold in increments of 10 until the 90th percentile has been

reached. After each increase, repeat the previous three steps.

The overall detection and isolation rates of the FDI methods relative to the percentage of

attributes removed from the graph data can be seen in Figures 6.3 & 6.4, respectively. The

detection rate of the residual-based FDI method remained relatively constant as more at-

tributes were reduced, indicating a robust reaction to the type of reduction performed by

the technique. On the other hand, the detection rate of the distance FDI method showed

an upward trajectory. While the initial and final values of the overall detection rate of the

eigendecomposition FDI method were very close, its detection rate had a turbulent response

to the attribute reduction performed by Technique 2.
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Figure 6.3: The overall detection rates after applying Tech-

nique 2.

Figure 6.4: The overall isolation rates after applying Technique

2.

The overall isolation rates of all three FDI methods experienced a downward trajectory as

more attributes were reduced by this technique, with the residual-based FDI method’s rate

being largely unaffected until the 60th percentile threshold, after which it deteriorated rapidly.

In addition, both the overall detection and isolation rates experienced anomalies, whereby the
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rates changed their trajectories at a specific interval of attribute reduction and then once

again changed trajectory as the reduction interval increased.

Table 6.2 contains the specific isolation rates of fault conditions which each FDI method

was capable of successfully isolating for a majority of sample measurements. The specific

isolation rates achieved by the distance parameter, eigendecomposition, and residual-based

FDI methods all remained relatively high up until the 60th, 70th, & 80th percentile thresholds

were respectively applied to each method. After those respective intervals, the specific isolation

rates became subpar.

6.2.3 Link attribute filtering with a size threshold

The rationale behind this technique is that smaller attribute values are likely to contribute

less to the fault detection and isolation process than larger attribute values. This technique

analyses the size of the link attribute values of the attributed graph while the system is

under NOC to determine which links should be removed from the attributed graph data. The

methodology used for evaluating this technique is as follows:

� Generate the attributed graph data for the normal condition.

� Apply the ‘isoutlier(A,‘percentiles’,threshold)’ function in MATLAB® to the non-zero

link attribute values obtained in the previous step to identify the outliers found in the

10th percentile. These outliers represent the non-zero links whose attribute values are

so small that they are unlikely to contribute to the detection and isolation of faults.

� Reduce all the attributed graph data of the TEP by setting the link attribute values

identified as lower outliers in the previous step to zero.

� Use the reduced graph data and apply the three FDI methods used in Chapter 4 to

determine the detection and isolation capabilities of all three FDI methods.

� Increase the percentile threshold in increments of 10 until the 90th percentile has been

reached. After each increase, repeat the previous three steps.

The overall detection and isolation rates of the FDI methods relative to the percentage of

attributes removed from the graph data are illustrated in Figures 6.5 & 6.6, respectively. The

overall detection rates of all three FDI methods after being reduced by Technique 3 are similar

to those of the three FDI methods after being reduced by Technique 2. There are, however,

a few stark exceptions, such as the final overall detection rate of the eigendecomposition FDI

method being much lower than the initial value and the distance parameter FDI method

experiencing a dip in detection rate during the early reduction iterations before continuing on

a slight upward trajectory.
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Also similar to the results after Technique 2 was applied, the overall isolation rates of all three

FDI methods experienced a downward trajectory as this technique reduced more attributes.

The residual-based FDI method’s rate experienced the steepest downward trajectory, while

the overall isolation rate of the eigendecomposition FDI method had a turbulent response

to the reduction technique. Anomalies could be identified in both the overall detection and

isolation rates since some methods experienced a decrease in rates followed by an increase in

rates as more attributes were reduced. The opposite effect also occurred.

The specific isolation rates of fault conditions which each FDI method was capable of suc-

cessfully isolating for a majority of sample measurements can be found in Table 6.3. From

examining these results, it is evident that all three FDI methods experienced a significant

drop in at least one of their specific isolation rates once the 10th percentile threshold was

applied. Once the percentile threshold was increased, the deterioration in specific isolation

rates became worse in most instances. The isolation rate of Fault 6, which is a very distinct

fault, was high for all three methods once the 80th percentile threshold was applied. This

indicates that the most vital structural information needed to diagnose Fault 6 is encapsulated

in the remaining graph data once Technique 3 is applied to the original graph data with an

80th percentile threshold.

Figure 6.5: The overall detection rates after applying Tech-

nique 3.
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Figure 6.6: The overall isolation rates after applying Technique

3.

6.2.4 Node attribute filtering with a size threshold

The methodology and the rationale behind this technique are both similar to that of the

previous technique. This technique, however, analyses the size of the node attribute values

of the attributed graph while the system is under NOC to determine which nodes should be

removed from the attributed graph data. The methodology used for evaluating this technique

is as follows:

� Generate the attributed graph data for the normal condition.

� For each node, summate the chemical and physical exergy attribute values of that node.

� Apply the ‘isoutlier(A,‘percentiles’,threshold)’ function in MATLAB® to all the sum-

mated node attribute values obtained in the previous step to identify the outliers found

in the 10th percentile. These outliers represent the nodes whose attribute values are so

small that they are unlikely to contribute to the detection and isolation of faults.

� Reduce all the attributed graph data of the TEP by removing the nodes identified as

outliers.

� Use the reduced graph data and apply the three FDI methods used in Chapter 4 to

determine the detection and isolation capabilities of all three FDI methods.

� Increase the percentile threshold in increments of 10 until the 90th percentile has been

reached. After each increase, repeat the previous three steps.
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Figures 6.7 & 6.8 show the respective overall detection and isolation rates, relative to the

percentage of attributes removed from the graph data. From Figure 6.7, it can be seen that

the overall detection rate of the distance FDI method experienced a slight upward trajectory,

while the detection rate of the eigendecomposition FDI method experienced a slight downward

trajectory. Like in the case of Technique 1, the detection rate of the residual-based FDI method

remained relatively constant until the 70th percentile threshold was used, at which point it

achieved a perfect detection rate. Once the 90th percentile threshold was used, its detection

capabilities collapsed altogether.

A possible explanation for this occurrence is that each entry in a residual matrix represents

only one attribute, while an entry in a cost matrix depends on more than one attribute.

Therefore, when node reduction techniques, which remove entire rows and columns from an

NSM such as Techniques 1 & 4, are applied to the graph data at a 90th percentile thresholds,

the reduced graph’s NSM is so small that it becomes easier to diagnose faults from cost

matrices than residual matrices.

The overall isolation rates of all three FDI methods experienced a downward trajectory as

more attributes were reduced with Technique 4. The distance FDI method and the eigende-

composition FDI method both had a very similar trajectory. The final reduction resulted in

the total diminishing of the residual-based FDI method’s overall isolation rate. There were a

few instances where anomalies took place with both the overall detection and isolation rates.

The isolation rates of the specific faults which each FDI method could successfully isolate

for the majority of sample measurements are recorded in Table 6.4. After applying the first

attribute reduction iteration to the graph data, all three FDI methods severely lost the specific

isolation capacity of at least one of their specific fault conditions. The distance FDI method

was the most effective at maintaining a high isolation rate for Fault 6 as the reduction iterations

increased. Several anomalies can be observed in the specific isolation rates of all three methods.
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Figure 6.7: The overall detection rates after applying Tech-

nique 4.

Figure 6.8: The overall isolation rates after applying Technique

4.

6.2.5 Summarization of similar nodes

This technique identifies two or more nodes with similar attribute profiles and summarizes

these nodes into a single node. Thus, this technique preserves all the original attribute infor-

mation while reducing the structural complexity and, thus, the complexity of the mathematical
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operations applied to the graph data. The methodology used for evaluating this technique is

as follows:

� Generate the attributed graph data for the normal condition.

� Summate the physical and chemical exergy attribute values for each node in the at-

tributed graph.

� For each node in the attributed graph, calculate the difference between the summated

attribute value of that node and the summated attribute value of all the other nodes in

the graph.

� Identify two nodes with similar attribute size profiles and, thus, a relatively small differ-

ence between them. One of these nodes is selected as the primary node and will remain

in the graph, while the other node is the secondary node and will be removed from the

graph once the summarization process is complete.

� Add the physical and chemical exergy attribute values of the secondary node to the

primary node’s physical and chemical exergy attribute values, respectively.

� Take all the links between the secondary node and all the other nodes in the graph and

connect those links to the primary node. If there exists a link between the primary and

secondary nodes, simply omit it from the new summarized graph.

� Remove the secondary node and all the links that connect to that node from the at-

tributed graph to form the new summarized attributed graph.

� Repeat this process until there are no more nodes with similar attribute profiles.

The overall detection and isolation rates of the FDI methods relative to the percentage of

attributes removed from the graph data can be seen in Figures 6.9 & 6.10, respectively.

The overall detection rate of all three FDI methods remained relatively constant as more

attributes were reduced with Technique 5. However, the final overall detection rate of the

eigendecomposition FDI method was slightly lower than the initial rate. Conversely, the

final overall detection rate was slightly higher than the initial rate for both the distance and

residual-based FDI methods.
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Figure 6.9: The overall detection rates after applying Tech-

nique 5.

Figure 6.10: The overall isolation rates after applying Tech-

nique 5.

The overall isolation rates of the three FDI methods also remained relatively stable as more

attributes were reduced. The initial and final overall isolation rates were very close for the

eigendecomposition FDI method. The final overall isolation rate of the distance FDI method

was slightly lower than the initial rate, while the final overall isolation rate of the residual-

based FDI method was slightly higher than the initial rate.
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When looking at the specific isolation rates of the FDI methods as recorded in Table 6.5, it

can be seen that the specific isolation rates of both the eigendecomposition and residual-based

FDI methods remained relatively high and even improved, as more node summarizations

were conducted. Only one of the distance FDI method’s specific isolation rates dropped

slightly below 50 %. This drop occurred when the third pair of nodes were summarized.

This is, however, not a significant drop since the specific isolation rate before any nodes were

summarized was 59 %.

The relatively consistent performance of all three FDI methods after being reduced by Tech-

nique 5 can be ascribed to the fact that no attributes are discarded from the graph data.

Instead, Technique 5 simply reorganizes the location of attributes within the structure of the

process graph data.
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Table 6.1: Performance of all three FDI methods using the attributed graph data as reduced by

Technique 1.

Distance FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 90.00 89.85 92.15 92.15 92.74 92.78 92.72 93.43 93.66 94.46

Overall Isolation Rate (%) 19.90 19.65 16.95 16.95 15.40 15.45 15.30 12.10 10.35 10.25

Attribute Reduction (%) 0.00 12.90 27.42 27.42 59.68 62.90 69.35 77.42 87.10 96.77

Isolation rate of Fault 1 (%) 75.00 74.00 70.00 70.00 4.00 4.00 3.00 8.00 16.00 75.00

Isolation rate of Fault 2 (%) 85.00 87.00 80.00 80.00 79.00 79.00 78.00 84.00 32.00 10.00

Isolation rate of Fault 6 (%) 59.00 59.00 56.00 56.00 79.00 79.00 79.00 38.00 55.00 14.00

Eigen FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 96.28 96.01 97.29 97.29 87.84 95.38 91.78 86.58 92.51 91.90

Overall Isolation Rate (%) 17.55 15.25 16.80 16.80 8.90 13.20 10.85 8.35 14.90 9.55

Attribute Reduction (%) 0.00 12.90 27.42 27.42 59.68 62.90 69.35 77.42 87.10 96.77

Isolation rate of Fault 1 (%) 90.00 87.00 94.00 94.00 8.00 11.00 9.00 8.00 63.00 78.00

Isolation rate of Fault 2 (%) 75.00 26.00 50.00 50.00 64.00 62.00 89.00 92.00 79.00 18.00

Isolation rate of Fault 6 (%) 100.00 99.00 99.00 99.00 10.00 87.00 9.00 10.00 78.00 20.00

Residual FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 98.86 98.41 98.66 98.66 98.95 98.73 98.30 98.66 100.00 0.00

Overall Isolation Rate (%) 20.15 19.50 18.85 18.85 9.40 14.50 12.40 13.20 8.65 0.00

Attribute Reduction (%) 0.00 12.90 27.42 27.42 59.68 62.90 69.35 77.42 87.10 96.77

Isolation rate of Fault 1 (%) 80.00 83.00 89.00 89.00 23.00 52.00 60.00 80.00 99.00 0.00

Isolation rate of Fault 2 (%) 61.00 72.00 79.00 79.00 45.00 58.00 80.00 93.00 0.00 0.00

Isolation rate of Fault 6 (%) 88.00 87.00 80.00 80.00 0.00 85.00 0.00 0.00 0.00 0.00
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Table 6.2: Performance of all three FDI methods using the attributed graph data as reduced by

Technique 2.

Distance FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 90.00 90.20 89.98 90.57 90.57 91.11 91.43 92.99 92.56 93.34

Overall Isolation Rate (%) 19.90 19.50 19.80 19.80 19.45 18.20 17.85 15.35 15.05 12.75

Attribute Reduction (%) 0.00 6.45 11.29 14.52 20.97 29.03 32.26 40.32 46.77 51.61

Isolation rate of Fault 1 (%) 75.00 74.00 74.00 73.00 72.00 69.00 70.00 78.00 67.00 74.00

Isolation rate of Fault 2 (%) 85.00 85.00 87.00 86.00 86.00 80.00 77.00 60.00 92.00 38.00

Isolation rate of Fault 6 (%) 59.00 58.00 60.00 59.00 59.00 56.00 53.00 41.00 26.00 29.00

Eigen FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 96.28 96.33 95.36 96.57 97.55 96.98 95.11 97.60 96.68 95.88

Overall Isolation Rate (%) 17.55 17.20 17.05 18.55 17.40 16.60 17.25 16.55 16.30 11.70

Attribute Reduction (%) 0.00 6.45 11.29 14.52 20.97 29.03 32.26 40.32 46.77 51.61

Isolation rate of Fault 1 (%) 90.00 93.00 83.00 94.00 88.00 88.00 89.00 88.00 94.00 96.00

Isolation rate of Fault 2 (%) 75.00 70.00 58.00 72.00 63.00 61.00 66.00 68.00 49.00 34.00

Isolation rate of Fault 6 (%) 100.00 100.00 100.00 100.00 99.00 91.00 92.00 93.00 90.00 3.00

Residual FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 98.86 98.88 98.89 98.84 98.86 98.85 98.67 98.87 99.81 99.64

Overall Isolation Rate (%) 20.15 19.70 19.75 19.70 19.60 19.90 20.20 17.85 15.15 12.45

Attribute Reduction (%) 0.00 6.45 11.29 14.52 20.97 29.03 32.26 40.32 46.77 51.61

Isolation rate of Fault 1 (%) 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 81.00 80.00

Isolation rate of Fault 2 (%) 61.00 61.00 61.00 61.00 61.00 61.00 61.00 61.00 60.00 22.00

Isolation rate of Fault 6 (%) 88.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 88.00 85.00
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Table 6.3: Performance of all three FDI methods using the attributed graph data as reduced by

Technique 3.

Distance FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 90.00 88.35 87.71 89.72 90.09 90.62 90.68 90.94 90.86 91.09

Overall Isolation Rate (%) 19.90 20.55 17.45 16.10 16.15 16.60 16.40 16.30 16.30 15.60

Attribute Reduction (%) 0.00 3.23 11.29 17.74 22.58 29.03 32.26 37.10 46.77 51.61

Isolation rate of Fault 1 (%) 75.00 10.00 16.00 11.00 11.00 10.00 10.00 10.00 8.00 8.00

Isolation rate of Fault 2 (%) 85.00 93.00 23.00 18.00 15.00 10.00 10.00 10.00 12.00 13.00

Isolation rate of Fault 6 (%) 59.00 87.00 88.00 84.00 83.00 82.00 82.00 83.00 77.00 64.00

Eigen FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 96.28 96.81 93.57 97.32 94.19 98.15 98.12 95.64 96.50 85.60

Overall Isolation Rate (%) 17.55 15.50 13.85 9.20 12.30 14.30 14.60 12.05 17.20 11.25

Attribute Reduction (%) 0.00 3.23 11.29 17.74 22.58 29.03 32.26 37.10 46.77 51.61

Isolation rate of Fault 1 (%) 90.00 3.00 15.00 13.00 10.00 7.00 8.00 5.00 10.00 7.00

Isolation rate of Fault 2 (%) 75.00 93.00 15.00 35.00 9.00 5.00 4.00 8.00 4.00 11.00

Isolation rate of Fault 6 (%) 100.00 89.00 56.00 5.00 65.00 9.00 10.00 14.00 85.00 9.00

Residual FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 98.86 99.56 99.32 99.91 99.97 100.00 100.00 100.00 100.00 100.00

Overall Isolation Rate (%) 20.15 22.50 19.80 19.95 18.60 14.70 11.65 14.10 14.60 13.20

Attribute Reduction (%) 0.00 3.23 11.29 17.74 22.58 29.03 32.26 37.10 46.77 51.61

Isolation rate of Fault 1 (%) 80.00 24.00 9.00 15.00 11.00 11.00 11.00 3.00 28.00 50.00

Isolation rate of Fault 2 (%) 61.00 95.00 34.00 52.00 21.00 8.00 17.00 4.00 14.00 15.00

Isolation rate of Fault 6 (%) 88.00 79.00 84.00 83.00 82.00 64.00 0.00 67.00 78.00 77.00
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Table 6.4: Performance of all three FDI methods using the attributed graph data as reduced by

Technique 4.

Distance FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 90.00 88.36 88.21 91.64 91.88 91.89 93.31 92.38 92.57 93.12

Overall Isolation Rate (%) 19.90 20.50 17.20 12.00 12.20 11.35 11.00 9.75 9.45 8.35

Attribute Reduction (%) 0.00 6.45 20.97 29.03 51.61 58.06 64.52 83.87 87.10 96.77

Isolation rate of Fault 1 (%) 75.00 9.00 17.00 23.00 12.00 11.00 9.00 10.00 10.00 14.00

Isolation rate of Fault 2 (%) 85.00 93.00 48.00 37.00 28.00 11.00 13.00 13.00 11.00 12.00

Isolation rate of Fault 6 (%) 59.00 87.00 90.00 61.00 88.00 84.00 82.00 69.00 63.00 27.00

Eigen FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 96.28 96.23 97.73 96.42 95.91 96.30 93.80 94.50 93.31 93.16

Overall Isolation Rate (%) 17.55 15.15 10.75 13.25 11.50 11.00 12.35 8.65 8.95 8.30

Attribute Reduction (%) 0.00 6.45 20.97 29.03 51.61 58.06 64.52 83.87 87.10 96.77

Isolation rate of Fault 1 (%) 90.00 16.00 25.00 8.00 33.00 22.00 22.00 34.00 28.00 12.00

Isolation rate of Fault 2 (%) 75.00 92.00 19.00 68.00 13.00 8.00 32.00 19.00 17.00 6.00

Isolation rate of Fault 6 (%) 100.00 89.00 92.00 84.00 82.00 55.00 79.00 9.00 30.00 73.00

Residual FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 98.86 98.79 98.20 97.95 99.10 97.85 94.39 100.00 100.00 0.00

Overall Isolation Rate (%) 20.15 20.05 15.60 7.65 12.65 10.50 8.25 7.45 4.95 0.00

Attribute Reduction (%) 0.00 6.45 20.97 29.03 51.61 58.06 64.52 83.87 87.10 96.77

Isolation rate of Fault 1 (%) 80.00 11.00 14.00 13.00 9.00 7.00 31.00 86.00 85.00 0.00

Isolation rate of Fault 2 (%) 61.00 95.00 0.00 0.00 17.00 0.00 0.00 0.00 0.00 0.00

Isolation rate of Fault 6 (%) 88.00 78.00 76.00 2.00 85.00 85.00 0.00 0.00 0.00 0.00
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Table 6.5: Performance of all three FDI methods using the attributed graph data as reduced by

Technique 5.

Distance FDI Method

Number of Mergers 0 1 2 3 4

Overall Detection Rate (%) 90.00 90.48 90.57 91.00 90.68

Overall Isolation Rate (%) 19.90 19.80 18.50 18.35 18.40

Attribute Reduction (%) 0.00 6.45 11.29 17.74 25.81

Isolation rate of Fault 1 (%) 75.00 73.00 75.00 75.00 77.00

Isolation rate of Fault 2 (%) 85.00 83.00 87.00 87.00 87.00

Isolation rate of Fault 6 (%) 59.00 58.00 50.00 49.00 47.00

Eigen FDI Method

Number of Mergers 0 1 2 3 4

Overall Detection Rate (%) 96.28 94.70 96.02 96.29 95.94

Overall Isolation Rate (%) 17.55 18.75 18.20 18.05 17.05

Attribute Reduction (%) 0.00 6.45 11.29 17.74 25.81

Isolation rate of Fault 1 (%) 90.00 91.00 90.00 93.00 92.00

Isolation rate of Fault 2 (%) 75.00 73.00 88.00 82.00 77.00

Isolation rate of Fault 6 (%) 100.00 100.00 98.00 96.00 100.00

Residual FDI Method

Number of Mergers 0 1 2 3 4

Overall Detection Rate (%) 98.86 99.16 99.45 99.58 99.37

Overall Isolation Rate (%) 20.15 20.10 20.45 19.75 21.95

Attribute Reduction (%) 0.00 6.45 11.29 17.74 25.81

Isolation rate of Fault 1 (%) 80.00 83.00 87.00 89.00 90.00

Isolation rate of Fault 2 (%) 61.00 72.00 77.00 77.00 76.00

Isolation rate of Fault 6 (%) 88.00 87.00 85.00 79.00 76.00
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6.3 Interpretation of results

The results provided in the previous section mainly indicate a negative linear relationship

between the overall isolation capabilities of the FDI methods and the increase in the number

of attributes reduced by the various reduction techniques. The overall detection capabilities

of the FDI methods, in contrast, remain relatively constant as more attributes are reduced.

This can be ascribed to the fact that for a method to detect a fault, the method must simply

discern between two options - faulty or normal. To isolate a fault successfully, the method

must discern between 20 conditions. When attributes are removed, the FDI method has fewer

data to analyse, and it is more manageable for the method to detect (decide between 2 options)

than isolate (decide between 20 options).

It is unclear, at this stage, if the direction and slope of the trajectories observed in the results

provided in the previous section are the rules or the exceptions when it comes to graph

reduction. It is, therefore, necessary to apply these reduction techniques to the attributed

graph data of another industrial process to compare the nature of the relationship between

the overall detection and isolation capabilities and an increase of the number of attributes

reduced of the TEP with that of the other industrial process.

Several anomalies occurred in the overall detection and isolation rates, as well as in the specific

isolation rates. Two types of anomalies could be identified from the results in the previous

section. The first type occurs when a downward trajectory changes to an upward trajectory

as the reduction interval is increased and then back to a downwards trajectory again once the

reduction interval is increased again, creating a local maximum. The second type occurs when

an upward trajectory changes to a downwards trajectory as the reduction interval is increased

and then back to an upwards trajectory again once the reduction interval is increased again,

creating a local minimum.

From these anomalies, specific observations can be made. The most important observation is

that there exists structural information in the graph data that is vital to FDI performance

as well as structural information that is non-vital to its performance. For instance, when

the overall detection and isolation rates, as well as the specific isolation rates, experience a

local maximum or a local minimum, it can be observed that the reduction iteration removes

attributes (non-vital structural information) that obfuscate the FDI method on the upward

trajectory part of the local maximum or minimum. It follows logically that the downward tra-

jectory part of the local maximum or minimum results from the reduction iteration removing

attributes (vital structural information) that bolster the FDI method.
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When looking at the specific isolation rates of all the FDI methods as more attributes are

reduced by the various reduction techniques, it can further be seen that specific attributes

can obscure or bolster the isolation capability of the FDI method with regards to a particular

fault condition, while having the opposite or even no effect on the capability of the method

with regards to other fault conditions. Such is the case with the specific isolation rates of the

distance FDI method, which are recorded in Table 6.1. For example, once the 30th percentile

threshold was increased to the 40th percentile threshold, the isolation rate of Fault 1 fell from

70 % to 4 %, the isolation rate of Fault 2 only dropped by one percent, and the isolation rate

of Fault 6 increased by 23 %.

This can be ascribed to the fact that a specific reduction operation can alter the structural

information so that the attribute features that the FDI method uses to diagnose a particular

fault are accentuated. In contrast, the attribute features that the same method uses to

diagnose a different fault are attenuated.

By conducting an intertechnique comparison, it is possible to determine which reduction tech-

niques better complement each of the three FDI methods. This comparison involves assessing

the overall detection and isolation rates, as well as the specific isolation rates of each FDI

method as stated in Tables 6.1 - 6.5. For example, for the distance FDI method, Techniques

1, 2, and 5 at specific thresholds were the most complementary reduction techniques when

examining the performance of the FDI method after these techniques were applied to the

graph data.

When looking at the performance of the eigendecomposition FDI method after the various

reduction techniques were applied to the graph data, Techniques 2 and 5 at specific thresh-

olds were also able to maximally reduce attributes while minimally affecting performance.

Techniques 1, 2, and 5 at specific thresholds were once again able to maximally reduce the

attributed graph data while minimally deteriorating the performance of the residual-based

FDI method. While Techniques 3 & 4 positively affected the overall detection and isolation

rates at certain reduction intervals, the specific isolation rates were adversely affected in most

instances.

This intertechnique comparison also allows for the evaluation of the different types of tech-

niques used to reduce the attributed graph data. For this evaluation, it is essential to note

the scale of attribute reduction, seeing as the techniques that reduce nodes can reduce far

more non-zero attributes than the techniques that are link attribute orientated. It should

also be taken into account that the scale of the x-axes in Figures 6.1 - 6.10 are not neces-

sarily displayed linearly. This evaluation serves to determine which techniques are better at

maintaining the level of performance achieved before reduction while still reducing non-vital
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structural information.

From assessing the trajectories of the performance indicators of the three FDI methods for

each of the five reduction techniques, it is evident that the techniques which rely on attribute

variation analysis (Techniques 1 & 2) outperformed the techniques which rely on attribute size

analysis (Techniques 3 & 4) across all three FDI methods when the same range of reduction

is used for the evaluation. This proves the validity of the argument, which stated that the

process noise does not significantly influence the variation analysis performed by Techniques

1 & 2.

Furthermore, when comparing the trajectories of the overall detection rates, overall isolation

rates, and the specific isolation rates of the three FDI methods for Technique 5 with that

of the other techniques over the same reduction range, it is also evident that Technique 5

resulted in the most stable and consistent response. This indicates that Technique 5 is highly

effective at reducing graph complexity while not significantly affecting FDI performance.

Seeing as the aim of graph reduction is to reduce the complexity of the attributed graph, and

subsequently the complexity of implementing the FDI methods, it is also necessary to compare

the influence that different styles of reduction (node attribute or link attribute) have on the

execution time of these methods. Table 6.6 contains a comparison of the execution times of

the unreduced graph data, the graph data reduced by Technique 1 with a 10th percentile

threshold, and the graph data reduced by Technique 2 with a 20th percentile threshold.

The percentage attributes reduced by the node attribute reduction technique (Technique 1)

and the link attribute reduction technique (Technique 2) at those respective thresholds are

approximately the same. The distance FDI method is used to diagnose graph data sets since

it has the longest execution time.

From the table, it is evident that while these two techniques reduced approximately the same

percentage of attributes, the node attribute reduction technique (Technique 1) far outper-

formed the link attribute reduction technique (Technique 2) in terms of reducing the execu-

tion time. This is because the node attribute reduction technique reduces the size of the NSM

while the link attribute reduction technique only sets attributes within the NSM to zero. To

emphasize the usefulness of graph reduction, it is noted that after applying Technique 1 at

that specific reduction interval, the FDI execution time decreased by 17 %, while none of the

performance indicators decreased by more than 1 %.
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Table 6.6: Comparison of the execution times of the distance

FDI method after applying different reduction techniques.

Reduction Type Attribute Reduction (%) Execution Time (s)

Unreduced 0.00 1365.42

Technique 1 12.90 1133.10

Technique 2 11.29 1323.04

6.4 Combining reduction techniques

It is of particular interest to determine how the performance and execution time of the FDI

methods are affected when node and link reduction techniques are applied to the attributed

graph data in combination with one another. This approach is akin to using an evolutionary

algorithm (EA) to iteratively and randomly combine favourable features from a population of

solutions to end up with a better solution.

Unlike evolutionary algorithms, this approach will not be applied randomly. This is because

this study is not necessarily focused on developing an optimized reduction technique but rather

determining if the performance of the FDI methods achieved when applying well-performing

techniques individually, can be improved by combining these well-performing techniques. Fur-

thermore, after applying these combined reduction techniques, it is also essential to gauge the

complexity of implementing the FDI methods. This is done by observing the execution times

of the FDI methods.

The combined reduction techniques proposed in this section are specific to each FDI method.

The combined techniques are formulated by identifying the individual complementary reduc-

tion techniques for each FDI method and the reduction interval at which these FDI methods

maintained the same level of performance achieved prior to any attributes being reduced.

A reduction technique is considered complementary to an FDI method when the reduction

technique can maximally reduce the size of the attributed graph data while resulting in a

minimal deterioration of FDI performance. To be clear, the combination techniques are not

combinations of the algorithms of individual techniques. Instead, the combined techniques

simply combine the outcomes of applying the individual techniques at specific reduction in-

tervals. For example, if Technique 1 removes node 2 and Technique 4 removes nodes 5 & 8,

the combined approach removes nodes 2, 5, & 8.

Once the FDI method’s specific combined reduction technique has been applied to the at-

tributed graph data, the percentage of attributes reduced is calculated, and the method’s
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performance is determined. The performance is again evaluated in terms of overall detection

rates, overall isolation rates, and specific isolation rates. The execution time of each FDI

method is also recorded after applying the combined reduction techniques. It should be noted

that some of the reduction operations performed by the complementary techniques, which are

combined to form the combined techniques, may overlap.

6.4.1 Combining techniques for the distance FDI method

When Technique 1 uses the 10th percentile threshold, Technique 2 uses the 30th percentile

threshold, and Technique 5 summarizes a single pair of nodes, they are all individually capable

of reducing the graph data in such a way that the distance FDI method maintains relatively

the same level of performance as when unreduced graph data is used. The performance is

evaluated in terms of the overall detection rate, overall isolation rate, and the specific isolation

rates of this FDI method.

Using the 10th percentile threshold, Technique 1 removes node 8 and all the links connected

to it from the graph data. By using the 30th percentile threshold, Technique 2 sets the links

between nodes 1 & 5, nodes 6 & 7, nodes 6 & 8, nodes 8 & 10, and nodes 4 & 13 to zero. By

conducting only one summarization, Technique 5 summarizes nodes 4 & 10. Table 6.7 contains

the performance results of the distance FDI method after the combined reduction technique,

specifically tailored for the method, was applied to the attributed graph data. These results

are compared with the results obtained when the FDI method uses unreduced graph data.

Table 6.7: Performance of the distance FDI method after ap-

plying the combined reduction technique.

Unreduced Graph Data Reduced Graph Data

Attribute Reduction (%) 0.00 25.81

Overall Detection Rate (%) 89.81 90.75

Overall Isolation Rate (%) 19.90 19.50

Isolation Rate Fault 1 (%) 75.00 72.00

Isolation Rate Fault 2 (%) 85.00 85.00

Isolation Rate Fault 6 (%) 59.00 57.00

FDI Execution Time (s) 1365.42 853.36

From the results recorded in Table 6.7, it is evident that the combined approach as proposed

for the distance FDI method can reduce 25.81 % of non-zero attributes while maintaining the

level of performance achieved prior to any reduction. Furthermore, when comparing these

performance results with the results of the distance FDI method after applying the individual
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complementary techniques to reduce approximately the same percentage of attributes, it is

clear that the combined technique outperforms each complementary reduction technique.

The combined reduction technique proposed for the distance FDI method also severely de-

creases the execution time of the FDI method. This indicates that this combined reduction

technique is highly effective at reducing graph complexity. The attributed graph diagram of

the TEP after being reduced by this combined technique can be seen in Figure 6.11. Graph

elements that have been removed are represented with dotted lines and have no colour. Some

reduction operations may overlap.

Figure 6.11: The attributed graph diagram after applying the

combined reduction technique specific to the distance FDI

method.

6.4.2 Combining techniques for the eigendecomposition FDI method

To compile a combined reduction technique which results in the eigendecomposition FDI

method maintaining a similar level of performance as it did prior to the graph data being

reduced, Technique 2 uses a 70th percentile threshold, and Technique 5 summarizes four pairs

of nodes. When Technique 2 is applied, the links between nodes 1 & 5, 2 & 5, 4 & 13, 5 & 1,

5 & 2, 5 & 6, 5 & 12, 5 & 13, 6 & 5, 6 & 7, 6 & 8, 7 & 6, 7 & 15, 8 & 6, 8 & 9, 8 & 10, 9 & 8,

10 & 8, 10 & 12, 13 & 4, 13 & 5, 13 & 14, 14 & 13, and 15 & 7 are all set to zero. Technique
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5 again summarizes nodes 4 & 10, 7 & 9, 1 & 2, and 5 & 12. Technique 5 summarizes nodes

4 & 10, 7 & 9, 1 & 2, and 5 & 12.

The performance of the eigendecomposition FDI method after applying the combined reduc-

tion technique can be seen in Table 6.8. This combined reduction technique is capable of

reducing 51.61 % of non-zero attributes. The performance of the eigendecomposition FDI

method after applying this combined technique to the attributed graph data is very similar,

and in certain regards better, than the method’s performance prior to any graph reduction

taking place. There is, however, a stark difference in the execution time of the method be-

fore graph reduction takes place and the execution time of the method after this combined

technique was applied to the graph data. The execution time of the method using graph data

reduced with the combined technique is substantially lower.

When the 90th percentile threshold is applied, Technique 2 is on its own also capable of re-

ducing 51.61 % of non-zero attributes. The FDI method’s performance once Technique 2 is

applied to the graph data at a 90th percentile threshold is much weaker than the method’s

performance after the combined technique is applied to the graph data. From the FDI ex-

ecution times recorded in Table 6.9, it is clear that the combined reduction technique far

outperformed Technique 2 with a 90th percentile threshold. Therefore, the combined reduc-

tion technique is superior at reducing graph complexity and should be used instead of the

individual complementary reduction techniques. The attributed graph diagram of the TEP

after applying this combined technique can be seen in Figure 6.12.

Table 6.8: Performance of the eigendecomposition FDI

method after applying the combined reduction technique.

Unreduced Graph Data Reduced Graph Data

Attribute Reduction (%) 0.00 51.61

Overall Detection Rate (%) 96.28 98.00

Overall Isolation Rate (%) 17.55 16.65

Isolation Rate Fault 1 (%) 90.00 91.00

Isolation Rate Fault 2 (%) 75.00 62.00

Isolation Rate Fault 6 (%) 100.00 98.00

FDI Execution Time (s) 61.94 24.54
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Table 6.9: Comparison of the execution times of the eigen-

decomposition FDI method after applying different reduction

techniques.

Reduction Type Attribute Reduction (%) Execution Time (s)

Combined 51.61 24.54

Technique 2 51.61 63.47

Figure 6.12: The attributed graph diagram after applying the

combined reduction technique specific to the eigendecomposi-

tion FDI method.

6.4.3 Combining techniques for the residual-based FDI method

The combined technique applied to the graph data used by the residual-based FDI method is

a combination of Technique 1 using the 10th percentile threshold, Technique 2 using a 60th

percentile threshold, and Technique 5 summarizing four pairs of nodes. When Technique 1

is applied to the graph data with a 10th percentile threshold, node 8 and all its links are

removed.

When Technique 2 is applied, the links between nodes 1 & 5, 2 & 5, 4 & 13, 5 & 1, 5 & 2, 5

& 6, 6 & 5, 6 & 7, 6 & 8, 7 & 6, 7 & 15, 8 & 6, 8 & 9, 8 & 10, 9 & 8, 10 & 8, and 13 & 4, 13

& 5, 13 & 14, and 14 & 13 are all set to zero. Technique 5 again summarizes nodes 4 & 10, 7
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& 9, 1 & 2, and 5 & 12. This leads to a 51.61 % reduction in non-zero attributes.

A comparison of the performance of the residual-based FDI method using unreduced graph

data and the performance of the method using graph data as reduced by this combined

technique can be seen in Table 6.10. All but one of the indicators in the table experienced

an enhanced performance once the FDI method was applied to the graph data as reduced by

the combined technique. None of the individual complementary reduction techniques could

reach a similar reduction percentage while resulting in the same level of FDI performance as

the combined technique. The resulting attributed graph diagram of the TEP after applying

this combined technique can be seen in Figure 6.13.

Table 6.10: Performance of the residual-based FDI method

after applying the combined reduction technique.

Unreduced Graph Data Reduced Graph Data

Attribute Reduction (%) 0.00 51.61

Overall Detection Rate (%) 98.86 99.31

Overall Isolation Rate (%) 20.15 20.65

Isolation Rate Fault 1 (%) 80.00 93.00

Isolation Rate Fault 2 (%) 61.00 93.00

Isolation Rate Fault 6 (%) 88.00 86.00

FDI Execution Time (s) 5.36 3.09

Figure 6.13: The resulting attributed graph diagram after

applying the combined reduction technique specific to the

residual-based FDI method.
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6.5 Verification

The final section of this chapter focuses on the verification process of the proposed reduction

techniques. The verification of the graph reduction techniques entails determining if each

technique has been correctly implemented in MATLAB® according to that technique’s original

design by also manually implementing the technique and comparing the results. This is

accomplished with Excel®. The Excel® environment requires each step of a technique’s

methodology to be implemented manually, which provides a great deal of user oversight.

While the implementation of the techniques in Excel® is quite laborious, it ensures that the

techniques are correctly implemented and that the attributed graphs are reduced as intended.

For each reduction technique, the technique is implemented with MATLAB® code which re-

duces the attributed graph data to a certain extent. The same technique is then implemented

in Excel® which reduces the attributed graph to the same extent. Finally, the implemen-

tation of a technique is verified when the reduced graph produced by the MATLAB® code

corresponds to the reduced graph produced with Excel®.

6.5.1 Verification of Technique 1

The reference attributed graph of all 21 process conditions is exported to Excel® where

the percentage of physical exergy variation for each node over the 20 fault conditions is

calculated. In addition, the percentage of chemical exergy variation for each node over the 20

fault conditions is also calculated. Finally, the average percentage of physical exergy variation

and the average percentage of chemical exergy variation over the 20 fault conditions are

determined and summated for each node. This produces a summated variation vector which

can then be divided into percentiles.

The Excel® function ‘PERCENTILE.EXC()’ is applied to the summated variation values

to determine the 30th percentile threshold. All the nodes with summated variation values

less than the 30th percentile threshold are removed from the attributed graph data. The

MATLAB® code is also used to reduce nodes with summated variation values below the 30th

percentile threshold, to compare the resulting reduced attributed graphs.

Table 6.11 contains the NSM, as reduced by Technique 1 in Excel®, of the reference attributed

graph of the process under NOC. Table 6.12 contains the NSM, as reduced by Technique 1 in

MATLAB®, of the reference attributed graph of the process under NOC. Since these reduced

matrices are identical, it is verified that Technique 1 was correctly implemented in MATLAB®.

109



For the sake of brevity, the verification of the remaining reduction techniques can be found in

Appendix C.
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Table 6.11: Reduced attributed graph produced by implementing Technique 1 in Excel.

-5.36E+07 -2.89E+05 0.00 0.00 0.00 5.50E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-7.77E+05 -2.51E+04 0.00 0.00 0.00 3.89E+03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.16E+07 -9.70E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55E+05 0.00 0.00

-3.04E+08 -3.90E+07 -5.50E+05 -3.89E+03 0.00 0.00 4.92E+06 0.00 0.00 0.00 -3.51E+06 -5.85E+05 0.00 0.00

6.42E+07 7.37E+06 0.00 0.00 0.00 -4.92E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 -3.43E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.19E+08

-5.94E+07 6.40E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.93E+04 3.51E+06 8.45E+05 0.00 0.00

3.82E+06 3.85E+05 0.00 0.00 0.00 0.00 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00 0.00

-3.05E+08 -3.07E+07 0.00 0.00 0.00 3.51E+06 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00 0.00

-1.45E+07 -6.85E+06 0.00 0.00 -1.55E+05 4.92E+06 0.00 0.00 -8.45E+05 0.00 0.00 0.00 6.48E+05 -1.43E+05

1.69E+08 2.56E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.48E+05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.18E+07 0.00 0.00 0.00 1.43E+05 0.00 0.00
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Table 6.12: Reduce attributed graph produced by implementing Technique 1 in Matlab.

-5.36E+07 -2.89E+05 0.00 0.00 0.00 5.50E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-7.77E+05 -2.51E+04 0.00 0.00 0.00 3.89E+03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.16E+07 -9.70E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55E+05 0.00 0.00

-3.04E+08 -3.90E+07 -5.50E+05 -3.89E+03 0.00 0.00 4.92E+06 0.00 0.00 0.00 -3.51E+06 -5.85E+05 0.00 0.00

6.42E+07 7.37E+06 0.00 0.00 0.00 -4.92E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 -3.43E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.19E+08

-5.94E+07 6.40E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.93E+04 3.51E+06 8.45E+05 0.00 0.00

3.82E+06 3.85E+05 0.00 0.00 0.00 0.00 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00 0.00

-3.05E+08 -3.07E+07 0.00 0.00 0.00 3.51E+06 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00 0.00

-1.45E+07 -6.85E+06 0.00 0.00 -1.55E+05 4.92E+06 0.00 0.00 -8.45E+05 0.00 0.00 0.00 6.48E+05 -1.43E+05

1.69E+08 2.56E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.48E+05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.18E+07 0.00 0.00 0.00 1.43E+05 0.00 0.00
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While verifying Technique 2, a discrepancy was noticed between the graph reduced with

MATLAB® and the graph reduced with Excel®. This could be ascribed to the incorrect

application of an absolute value function in the MATLAB® code. After correcting this, the

graphs reduced with MATLAB® matched all the corresponding graphs reduced with Excel®.

Thus, the implementation of all five graph reduction techniques has been verified. Therefore,

the verification mechanism used for this study could ensure that all the reduction techniques

were implemented as initially designed.

6.6 Conclusion

This chapter provides the detailed methodology of each of the five proposed graph reduction

techniques. The effect each technique ultimately has on the performance of the three FDI

methods is evaluated by conducting an experimental process that increases the number of at-

tributes reduced by each technique and then measures the subsequent performance of the FDI

methods. From the experiment results, it could be determined which FDI method responds

better to which reduction technique. The results also confirmed that it is possible to reduce

the complexity of the attributed graph data and maintain the level of performance achieved

before reduction.

It was found that by combining individual complementary reduction techniques, the perfor-

mance and/or execution time of all three FDI methods improved relative to the FDI perfor-

mance obtained when the complementary techniques were applied individually. After applying

the respective combination techniques, the performance of FDI methods was maintained, and

in some cases, even improved upon the level of performance achieved prior to any graph reduc-

tion taking place. The implementation of all five graph reduction techniques in MATLAB®

was successfully verified by implementing all the techniques in the Excel® environment.
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Chapter 7

Validation of graph reduction

techniques

7.1 Introduction

The purpose of this chapter is to validate graph reduction as a concept when it is applied

to attributed graph data used by FDI schemes to diagnose faults. The validation is done by

determining if the graph reduction techniques proposed in this study are general solutions

capable of reducing the graph data while maintaining the same level of FDI performance,

regardless of the process used to generate the graph data.

To this end, the graph data of a gas-to-liquids process is generated, and the reduction tech-

niques are applied to the data. The performance of each FDI method after applying these

techniques is then evaluated to determine if the successes achieved with the TEP are achieved

when using this gas-to-liquids process.

7.2 Gas-to-liquids process overview

The gas-to-liquids process (GTLP) is a chemical process that converts natural gas into syn-

thetic crude, which can, in turn, be upgraded and separated into various types of hydrocarbon

fractions. The three core processing sections of the GTLP can be seen in Figure 7.1 (Adapted

from [58]). In the first section, feedstock in the form of a gas is converted into synthesis gas.

The second section uses the Fischer-Tropsch (FT) reaction to convert the synthesis gas into

hydrocarbon products in liquid form. The final section upgrades the products to the suitable
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specifications by using cracking and hydro-processing [58], [59].

Figure 7.1: The main processing sections of a GTLP.

7.2.1 Synthesis gas production

The synthesis gas, also referred to as syngas, is a mixture of hydrogen (H2) and carbon

monoxide (CO) and chemical reforming is usually employed to produce it. The syngas pro-

duction section generally requires pre-reforming, reforming, and cleaning or conditioning [8].

Pre-reforming is used to prevent the heavier hydrocarbon products in the first section from

cracking [60].

After pre-reforming is employed, a reforming process, which is the primary mechanism for

producing syngas, is used [8]. Syngas then usually undergoes a cleaning process to remove

sulphur and nitrogen-containing compounds since these compounds degrade the catalysts of

the FT reactor. If required, the syngas may also undergo conditioning whereby aspects of the

syngas, such as composition or temperature, are altered [59], [61].

7.2.2 Fischer-Tropsch synthesis

The syngas product is fed into the FT reactor, where a catalytic transformation occurs to

produce syncrude. There exist several different variations of the FT technology used to convert

the syngas to syncrude. The syncrude produced is influenced by the reactor type, catalyst,

and operating conditions of the FT technology used for this synthesis [8]. The composition of

the syncrude can thus be customized to certain specifications by varying the combination of

these three aspects used in the FT technology [59], [61].

7.2.3 Product upgrading

The last step of the GTLP is the syncrude-to-product conversion which is done by upgrading

or refining the syncrude [8]. There are generally three types of syncrude-to-product conver-

sion, with the conversion type being determined by whether the products obtained are final
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or intermediate [61]. With upgrading, all the products must be refined to obtain the final

products (Intermediate). With partial refining, some products have to be refined while oth-

ers have to be blended to obtain the final products (Intermediate and Final). Finally, with

stand-alone refining, all the products that are obtained are final products (Final).

7.3 GTLP model overview

The GTLP model used in this study is the model developed by Greyling in [8]. In that study,

Greyling provides a detailed explanation of how the model works and the assumptions made

to develop the model. Since this study is more concerned with the data produced by the

model than the development thereof, only a short overview of the model will be provided.

The interested reader is referred to [8] for more details.

7.3.1 Modelling assumptions

Aspen HYSYS® is the software package used to simulate the GTLP. For practical reasons,

several assumptions were made while implementing the GTLP model in HYSYS®. Natural

gas is primarily made up of pure methane (CH4) but usually contains impurities [8]. For the

sake of simplicity, pure methane is used as feedstock to negate the need for pre-reforming. All

the other feedstock inputs are used in their pure form.

The GTLP model only contains the reformer used for syngas production, the reactor used

for the Fischer-Tropsch synthesis, and the recycling of any unreacted gas back to the FT

reactor. The upgrading section is too complex for the scope of the study conducted by

Greyling and is, therefore, not considered. An Equation of State (EOS) thermodynamic

package is used to create the model, seeing as this package is the most fitting package for

dealing with hydrocarbons. The thermodynamic package is the foundation of determining the

physical properties of the components and mixtures in the process as functions of pressure

and temperature.

When considering noise, the two most prominent sources of noise present in literature are

numerical and sensor noise. Numerical noise usually occurs in simulation models which use

differential equations, seeing as these equations are adaptive and do not necessarily converge

[62]. Sensor noise occurs when the output of the sensor deviates without the measurand

changing, but since this is a simulation model, it can be assumed that sensor noise is not

present [8]. Greyling noted that the numerical noise observed in HYSYS®, was of such a
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small scale that it had a negligible effect.

7.3.2 Modelled process flow

In [8], Greyling implements an autothermal reformer (ATR) since it offers several advantages

for single process streams and is suitable to be used in a GTLP fed by natural gas. Natural

gas, steam, oxygen, and carbon dioxide (CO2) are fed to the ATR in specific ratios to produce

syngas with the desired temperature and composition. The syngas is then cooled and cleaned

by separating some of the water. The syngas is then heated up substantially before being fed

into the FT reactor. The FT reactor then produces syncrude in the form of various types of

hydrocarbons. The syncrude is then cooled and sent to the 3-phase separator, which produces

vapour, light liquid, and heavy liquid products. Finally, the unreacted products are recycled

back to undergo the process again, while the liquid products are sent to for upgrading.

In order to cool the syngas produced by the ATR to an acceptable temperature before applying

FT synthesis, a cooler was used. This cooler resulted in the steam being converted to water. A

separator was then used to remove the water from the process. The cooling process produces

heat which is returned to the environment for the sake of simulation simplicity. The simulation

also includes a heater to heat the clean syngas before feeding it to the FT reactor.

To validate the model, Greyling evaluated the distribution of the product before including

any recycling in the simulation. This evaluation is concerned with the weight fractions of the

components after exiting the FT reactor. First, the logarithm values of all the weight fractions

divided by their corresponding carbon numbers were calculated and plotted. This was done

for both the theoretical and modelled products. Next, the slopes of both the theoretical and

modelled plots were calculated. The theoretical and modelled slopes only differed with 1.2 %,

which is a slight enough deviation for the simulation model to be deemed a valid representation

of the theoretical model.

The completed GTLP model as developed by Greyling [8] in Aspen HYSYS® can be seen in

Figure 7.2. The FDI methods used in Chapter 4 will be applied to the process data generated

by this model.
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Figure 7.2: Simulation model of the GTLP as developed by Greyling in Aspen HYSYS®.
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7.4 Fault conditions

7.4.1 Selecting faults

The fault conditions selected to evaluate the FDI methods were chosen by Greyling [8] by first

identifying the most vital process units of the GTLP. After reviewing the relevant literature,

possible process failures were identified, and the causes of these possible failures were then

used to define fault conditions. For a specific fault condition to be selected, it should also be

possible to emulate that condition within HYSYS®.

7.4.2 Fault sets

To compile the fault sets, the GTLP is divided into its three main processing sections: the

syngas production section, Fischer-Tropsch section, and the recycling section. For each section,

four-fault conditions were induced, resulting in 12 fault conditions being induced. In addition,

several variations of fault condition magnitudes were also induced.

When considering the fault conditions occurring in the syngas production section, it can be

observed that there are only two fault types at play: molar flow and pressure faults. Faults

F11 and F12 both represent deviations in the feed molar flow rate of the methane stream while

differing in the direction of the deviation. Faults F13 and F14 both represent low pressure in

the methane stream and ATR, respectively.

In the Fischer-Tropsch section, the reactor feed stream can either have a low temperature

(F21), or damaged pipes can cause the feed stream to leak (F22). Damaged pipes could also

result in leakages within the FT reactor (F23), or problems in the cooling unit of the reactor

could result in increased reaction temperatures (F24).

In the recycling section, the recycling compressor can degrade over time, resulting in a loss of

pressure (F31). A blockage in splitter one would result in less gas being recycled, which will

increase the volume of the purge gas (F32). A blockage in splitter two would have the opposite

effect, resulting in more gas being recycled back (F33). Damaged pipes could also result in

leakages within the recycling stream (F34).

Table 7.1 contains a summary of the 12 fault conditions, as well as the description and location

of each condition. Figure 7.3 shows the locations of all 12 fault conditions. The conditions

are indicated with yellow error triangles. The figure also shows which fault conditions have
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the same location within the GTLP.

7.5 Exergy-based graph of the GTLP

The procedure for developing the exergy-based attributed graph of the GTLP remains the

same as the procedure used to develop the attributed graph of the TEP. The components

or input/output streams are modelled as nodes, while the streams between components are

modelled as links. Node attributes represent the change in exergy over the representative

component or input/output stream, and link attributes represent the energy flow rate between

the different components (nodes).

The GTLP also has both physical and chemical exergy. All the changes in exergy and energy

flow rate values were calculated within HYSYS®. The NSM of the GTLP is constructed in

the same fashion as that of the TEP, with the node attributes (both physical and chemical

exergy values) being recorded in the first two columns and the energy flow rate values being

recorded in the remaining columns of the matrix. Since the GTLP has 18 nodes, the NSM

has 18 rows and 20 columns.

Figure 7.4 illustrates the attributed graph of the GTLP as developed by Greyling [8]. Table

7.2 contains a summary of which nodes represent which process components or input/output

streams. Unlike the simulation model of the TEP, the model of the GTLP does not model

environmental exchanges, and the environmental nodes are, therefore, omitted from the at-

tributed graph.
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Table 7.1: Summary of the simulated 12 fault conditions of

the GTLP.

Fault # Fault ID Location Description

Syngas production section

Fault 1 F11 Methane stream Molar flow

Fault 2 F12 Methane stream Molar flow

Fault 3 F13 Methane stream Pressure

Fault 4 F14 ATR Pressure

Fischer-Tropsch section

Fault 5 F21 Reactor feed stream Temperature

Fault 6 F22 Reactor feed stream Leakage

Fault 7 F23 FT reactor Pressure

Fault 8 F24 FT reactor Temperature

Recycling section

Fault 9 F31 Compressor Pressure

Fault 10 F32 Splitter 1 Lower split rate

Fault 11 F33 Splitter 2 Higher split rate

Fault 12 F34 Recycle to FTR Leakage

7.6 Applying the FDI methods to the GTLP

Just like in Chapter 4, the FDI control data of the GTLP is required to evaluate the perfor-

mance of the graph reduction techniques once they are applied to the attributed graph data

of the GTLP.

Unlike the TEP, the GTLP simulation is static and, therefore, generates steady-state data.

As a result, measured process data is not generated by sampling over time but rather by

using these steady-state measurements. Also, unlike the TEP model, it is possible to simulate

different magnitudes of the fault conditions. In the case of the TEP, all 21 process conditions

were sampled 501 times over the 25 hours to produce 10521 samples (10521 node signature

matrices). The 21 reference attributed graphs were generated by calculating the average of

the 501 samples for each process condition.
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Figure 7.3: Illustration of fault locations within the GTLP.
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Figure 7.4: Exergy-based attributed graph of the GTLP.

Table 7.2: Summary of the components and input/output streams representing each node.

Node number 1 2 3 4 5 6 7 8 9

Process component - - - - ATR Cooler 1 Separator 1 Mixer 1 Heater 1

Input/output stream Methane Steam Oxygen Carbon dioxide - - - - -

Node number 10 11 12 13 14 15 16 17 18

Process component FTR Separator 2 Cooler 2 3 phase separator Splitter 1 - - Compressor Splitter 2

Input/output stream - - - - - Light liquids Heavy liquids - -
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The GTLP, in turn, has 12 fault conditions and, together with the normal condition, has

13 process conditions in total. The reference attributed graph data for all 13 conditions is

generated by inducing each fault condition with a 10 % magnitude, as done by Greyling in

[8]. The reference normal attributed graph is simply the steady-state attributed graph while

no fault is present. To generate the operational attributed graph data of each fault condition,

the induced fault is adjusted to different magnitudes, and the steady-state attributed graph

is recorded for each magnitude. These magnitudes are 5 %, 8 %, 12 %, and 25 %.

With the TEP, each fault condition has 501 operational attributed graphs, while in the case of

the GTLP, each fault condition has four operational attributed graphs representing the four

different fault magnitudes. The attributed graph of the process in NOC remains the same,

irrespective of the different magnitudes. The four normal operational attributed graphs are,

thus, all the same as the reference normal attributed graph. The difference in the number of

graphs for each condition in the TEP and GTLP datasets (501 vs four graphs) prevent the

direct comparison of TEP FDI performance with GTLP FDI performance. This is, however,

no problem since the study aims to compare the response graph reduction has on the FDI

performance of each process and not the FDI performance itself.

The rationale behind using this configuration for the GTLP dataset is to mimic the data

configuration used by the FDI methods when applied to the TEP data. Using the attributed

graph data at different fault magnitudes, the operational attributed graph data of the GTLP

mirrors that of the TEP, which includes sampled measurements as the fault transitions from

a minimal magnitude to its rated magnitude. Using the graph data generated at a relatively

central fault magnitude as the reference graph data of the GTLP, an effect similar to using

the averages of the sampled measurements to construct the reference graph data of the TEP,

is achieved.

Seeing as the attributed graph of the GTLP has 18 nodes, the cost matrices generated by the

distance parameter and eigendecomposition FDI methods will be an 18 × 18 matrix, which

will produce 18 eigenvalues. The eigendecomposition FDI method is once again modified

according to the study conducted by Wolmarans [52], whereby only dominant eigenvalues are

used by the FDI method to diagnose faults. This is done to reduce the amount of information

required by the FDI method to accurately diagnose faults, which reduces the complexity of

implementing the FDI method.

Just like with the TEP, a trade-off is done between the number of dominant eigenvalues

selected and the FDI performance by evaluating this performance using a range of different

CPV values. Equation 4.4 is once again manipulated to determine the number of dominant

eigenvalues for a specific CPV value. Table 7.3 contains the results of the trade-off study.
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Using only five dominant eigenvalues (CPV of 75 %), the method achieved a higher overall

isolation rate while maintaining a very high overall detection rate. The eigendecomposition

FDI method is now modified to only consider the number of dominant eigenvalues with a CPV

of 75 %. Any future references to the eigendecomposition FDI method refer to this modified

version of the eigendecomposition FDI method.

Table 7.3: The performance of the eigendecomposition FDI

method applied to the GTLP for different CPV values.

CPV (%)
Number of dominant

eigenvalues
Overall detection rate (%) Overall isolation rate (%)

75 5 95.83 45.83

80 7 97.92 43.75

85 9 97.92 43.75

90 11 97.92 50.00

100 18 97.92 43.75

Seeing as this chapter explains how the attributed graph data and the FDI methods differ from

those applied to the TEP, only the results of each FDI method will be provided here. Table

7.4 contains a summary of the overall detection and isolation rates, as well as the isolation

rates of specific fault conditions when the FDI methods are applied to the GTLP. A table

containing the specific detection and isolation rates of each fault condition for each of the

three FDI methods can be found in Appendix D.

In the case of the TEP, the isolation rates of specific fault conditions, which the FDI methods

were highly capable of isolating, were also included in the control data to evaluate the graph

reduction techniques. This was done to determine if the graph reduction techniques deteriorate

the high-quality isolation capabilities of these specific faults. The same approach is used when

generating the control data of the GTLP, except for the specific fault conditions used for the

distance parameter FDI method. In the case of this FDI method, all but two fault conditions

experienced the same high level of performance. Therefore, one high performing fault condition

and the bottom two fault conditions are selected as specific fault conditions to determine if

the graph reduction techniques could improve these two faults’ capabilities.

The results, as captured in Table 7.4, now represent the control data that will be used to

evaluate the graph reduction techniques when they are applied to the GTLP.
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Table 7.4: Summary of the detection and isolation perfor-

mance of the FDI methods applied to the GTLP.

Distance parameter FDI method

Overall detection rate (%) 87.50

Overall isolation rate (%) 70.83

Isolation of Fault 1 (%) 75.00

Isolation of Fault 10 (%) 50.00

Isolation of Fault 12 (%) 50.00

Eigendecomposition FDI method

Overall detection rate (%) 95.83

Overall isolation rate (%) 45.83

Isolation of Fault 1 (%) 75.00

Isolation of Fault 5 (%) 75.00

Isolation of Fault 8 (%) 75.00

Residual-based FDI method

Overall detection rate (%) 97.92

Overall isolation rate (%) 39.58

Isolation of Fault 1 (%) 75.00

Isolation of Fault 2 (%) 100.00

Isolation of Fault 11 (%) 100.00

7.7 Evaluating the graph reduction techniques on the

GTLP graph data

The proposed graph reduction techniques now have to be evaluated on a different process to

show that graph reduction as a concept works and that it is a general solution and not confined

to only operating on a specific process. The methodology of each reduction technique, as

outlined in Chapter 6, remains unchanged when the techniques are applied to the GTLP graph

data. In the case of the TEP, a requirement was imposed that prevented the environmental

node from being removed to preserve practical structural information. Seeing as the GTLP

graph does not include environmental nodes, this restriction is not considered.

For the GTLP, the experimental evaluation is repeated, whereby the extent to which the

reduction techniques reduce attributes is incrementally increased, and the FDI performance

is recorded. Just like in Chapter 6, this experimental procedure will first determine if it is

possible to reduce graph attributes while maintaining the same level of FDI performance, and

secondly, identify which reduction intervals remove structural information that confuses the

specific FDI method.
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The overall detection and overall isolation rates of each reduction technique as the reduction

interval increases can be seen in Figures 7.5 - 7.14 below. The tables containing the overall

detection and overall isolation rates, as well as the specific isolation rates for each reduction

interval of every reduction technique, can be found in Appendix E.

Figure 7.5: The overall detection rates after applying Tech-

nique 1 to the GTLP graph data.

Figure 7.6: The overall isolation rates after applying Technique

1 to the GTLP graph data.
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Figure 7.7: The overall detection rates after applying Tech-

nique 2 to the GTLP graph data.

Figure 7.8: The overall isolation rates after applying Technique

2 to the GTLP graph data.
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Figure 7.9: The overall detection rates after applying Tech-

nique 3 to the GTLP graph data.

Figure 7.10: The overall isolation rates after applying Tech-

nique 3 to the GTLP graph data.
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Figure 7.11: The overall detection rates after applying Tech-

nique 4 to the GTLP graph data.

Figure 7.12: The overall isolation rates after applying Tech-

nique 4 to the GTLP graph data.
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Figure 7.13: The overall detection rates after applying Tech-

nique 5 to the GTLP graph data.

Figure 7.14: The overall isolation rates after applying Tech-

nique 5 to the GTLP graph data.

7.8 Observations from the results

The most important observation from these results is that the graph reduction techniques

proposed in this study are all capable of reducing graph complexity by removing unnecessary
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attributes from the graph data or reorganizing the structural information using summarization.

Furthermore, these reduction operations can reduce the graph data so that the FDI methods

maintain or improve on the level of performance achieved when unreduced graph data are

used.

When comparing the results obtained from evaluating the reduction techniques on the TEP

graph data with the results obtained from evaluating the techniques on the GTLP graph

data, some stark contrasts can be observed. One of the most notable contrasts is that the

overall isolation rates of the distance parameter and eigendecomposition FDI methods applied

to the GTLP data experience a much more constant trajectory as reduction intervals of all

the techniques increase. On the other hand, when looking at the overall isolation rates when

these two methods are applied to the TEP data, the rates generally experience downward

trajectories.

The overall detection rates of all three FDI methods applied to the GTLP data remained

relatively constant for most reduction intervals. However, the reduction techniques identified

as complementary to each FDI method applied to the GTLP data are not the same techniques

identified as complementary to each FDI method applied to the TEP data. This can be

ascribed to the fact that the structural composition of the two graphs differs, and an identical

reduction operation may remove information that is non-critical to the FDI method from one

graph while removing information that is critical to the method from the other. This results

in an FDI method performing very differently on two different graphs reduced by the same

technique. Therefore, the specific reduction intervals at which point each reduction technique

is most effective are of interest.

To determine each FDI method’s complementary reduction technique, the FDI method’s over-

all detection rate, overall isolation rate, and specific fault isolation rates are evaluated using

the control data as a benchmark. For example, when considering the residual-based FDI

method, Technique 2 (using the 60th percentile threshold), Technique 4 (50th percentile), and

Technique 5 (1 merger) could all maximally reduce the graph attribute data while minimally

deteriorating FDI performance.

For the distance parameter FDI method, Technique 1 (50th percentile), Technique 2 (60th

percentile), Technique 3 (80th percentile), Technique 4 (80th percentile), and Technique 5

(4 mergers) are all complementary reduction techniques as they are all capable of reducing

attributes while maintaining and/or even improving on the results in the control data. Like-

wise, for the eigendecomposition FDI method, Technique 1 (70th percentile), Technique 2

(70th percentile), Technique 3 (40th percentile), and Technique 5 (3 mergers) are all capable

of reducing the graph data while maintaining and/or even improving on the FDI performance
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when unreduced graph data is used.

From analysing each FDI method’s complementary reduction techniques, it is evident that

the reduction techniques which rely on attribute size analysis (Techniques 3 & 4) are more

effective when applied to the FDI methods using the GTLP attributed graph data than the

FDI methods, which use the TEP attributed graph data. It is further evident that the

reduction techniques that rely on attribute variation analysis (Techniques 1 & 2) are effective

when applied to the attributed graph data of both the GTLP and the TEP.

Certain similarities can also be observed between the performance of FDI methods when

reducing the TEP graph data and the performance of the methods when reducing GTLP

graph data. The main similarity is the occurrence of anomalies in the form of local minima and

maxima in FDI performance as more attributes are removed from the GTLP graph data. This

reinforces the argument that specific attributes, which represent the structural information

of the process, are vital to FDI performance (vital structural information) and bolster the

performance while others are non-vital (non-vital structural information) and obfuscate FDI

performance.

Also similar to the TEP, a reduction operation can result in the increase of the specific isolation

rate of one fault while resulting in the deterioration of the rate of another specific fault at the

same time. An example of this can be seen when the residual-based FDI method is reduced

with Technique 1 using the 70th percentile threshold.

7.9 Applying combination reduction techniques to the

GTLP

The effect of combining the individual complementary reduction techniques of each FDI

method and applying these combined techniques to the attributed graph data is evaluated

on the GTLP as well. This is done to determine if the advantages of combined reduction

techniques are only applicable to specific processes like the TEP or applicable in general.

This evaluation revealed that, unlike with the TEP, at least one reduction operation performed

by an individual complementary reduction technique resulted in a performance by each FDI

method that could not be outdone with any combined technique. These reduction operations

are Technique 4 with a 70th percentile threshold for the distance parameter FDI method,

Technique 1 with a 70th percentile threshold for the eigendecomposition FDI method, and

Technique 4 with a 70th percentile threshold for the residual-based FDI method.
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However, it was evident from the evaluation that it is possible to improve the FDI performance

resulting from individual complementary reduction techniques by combining these techniques,

albeit not in all instances. Therefore, for each of the three FDI methods, complementary

techniques were combined, and the resulting FDI performance was compared with the FDI

performance resulting from those individual complementary techniques.

From the performance of the distance parameter FDI method recorded in Table 7.5, it can be

seen that the combination of Technique 1 (50th percentile) and Technique 2 (60th percentile)

resulted in improved specific isolation rates, percentage attributes reduced, as well as FDI

execution time compared to the performance resulting from the complementary techniques

being applied individually.

For the eigendecomposition FDI method (Table 7.6), the combination of Technique 3 (40th

percentile) and Technique 5 (3 mergers) also yielded better specific isolation rates, attribute

reduction, and execution time compared to that of the individual techniques. For the residual-

based FDI method (Table 7.7), the combination of Technique 2 (60th percentile) and Tech-

nique 5 (1 merger) outperformed the individual reduction techniques in every metric used for

the evaluation.

While no combined technique could outperform every individual complementary reduction

technique for a given FDI method, there are instances where it is possible to increase the

efficacy of individual reduction techniques by combining them. The reduced attributed graph

diagrams resulting from the combined techniques in Tables 7.3, 7.5, and 7.6 can be seen in

Figures 7.15, 7.16, and 7.17, respectively.

Table 7.5: A comparative evaluation of combined reduction

techniques for the distance parameter FDI method.

Technique 1

(50th percentile)

Technique 2

(60th percentile)

Combined

Technique

Attribute Reduction (%) 50.00 25.00 61.11

Overall Detection Rate (%) 83.33 89.58 83.33

Overall Isolation Rate (%) 72.92 70.83 72.92

Isolation Rate Fault 1 (%) 75.00 75.00 75.00

Isolation Rate Fault 10 (%) 75.00 75.00 75.00

Isolation Rate Fault 12 (%) 75.00 50.00 75.00

FDI Execution Time (s) 0.86 6.84 0.82
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Table 7.6: A comparative evaluation of combined reduction

techniques for the eigendecomposition FDI method.

Technique 3

(40th percentile)

Technique 5

(3 mergers)

Combined

Technique

Attribute Reduction (%) 19.44 6.94 26.39

Overall Detection Rate (%) 100.00 93.75 91.67

Overall Isolation Rate (%) 50.00 43.75 47.92

Isolation Rate Fault 1 (%) 75.00 100.00 75.00

Isolation Rate Fault 5 (%) 75.00 75.00 100.00

Isolation Rate Fault 8 (%) 50.00 50.00 75.00

FDI Execution Time (s) 0.62 0.44 0.42

Table 7.7: A comparative evaluation of combined reduction

techniques for the residual-based FDI method.

Technique 2

(60th percentile)

Technique 5

(1 merger)

Combined

Technique

Attribute Reduction (%) 25.00 2.78 27.78

Overall Detection Rate (%) 97.92 97.92 97.92

Overall Isolation Rate (%) 35.42 41.67 41.67

Isolation Rate Fault 1 (%) 75.00 75.00 100.00

Isolation Rate Fault 2 (%) 100.00 100.00 100.00

Isolation Rate Fault 11 (%) 100.00 100.00 100.00

FDI Execution Time (s) 0.35 0.33 0.29

Figure 7.15: Attributed graph reduced by the combined re-

duction technique for the distance parameter FDI method.
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Figure 7.16: Attributed graph reduced by the combined re-

duction technique for the eigendecomposition FDI method.

Figure 7.17: Attributed graph reduced by the combined re-

duction technique for the residual-based FDI method.

7.10 Validation

To validate this study, it is necessary to show that graph reduction can successfully be applied

to the attributed graph data of any process as a general solution that is not restricted to a

specific process. To accomplish this, the GTLP was used as a secondary process to the TEP in

order to evaluate the effect of the proposed graph reduction techniques on FDI performance.

By analysing the results of both Chapters 6 & 7, it is clear that the proposed reduction

techniques are capable of reducing graph complexity by reducing attributes from the graph

while maintaining the same level of FDI performance achieved prior to any graph reduction,

regardless of the process data used.
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While each proposed reduction technique did not affect the FDI methods in precisely the same

manner when different processes were used, for both the TEP and GTLP, it was possible to

formulate at least one reduction technique for each FDI method which resulted in similar FDI

performance to that achieved prior to graph reduction. The concept of a general solution is

further supported by the fact that the two processes differ substantially in terms of graph

structure, fault conditions, and composition of graph data (dynamic vs steady-state system),

as well as the fact that three different FDI methods were used for the evaluation of the

techniques. It can, therefore, be concluded that graph reduction is a general solution and can

be considered validated.

7.11 Conclusion

This chapter introduces the gas-to-liquids process (GTLP) model and provides a brief overview

of how the model was created. Next, the differences in graph data between the TEP and

GTLP are explained, after which the three FDI methods are applied to the GTLP graph data

to generate the control data used to evaluate the reduction techniques. The method used to

evaluate the graph reduction techniques applied to the graph data is the same as that of the

TEP’s graph data.

It is found that it is possible to reduce the attributed graph data of the GTLP while main-

taining the level of FDI performance achieved before any reduction takes place. Furthermore,

when combination techniques are evaluated, it is shown that while no combined technique

could outperform the top individual technique for each FDI method, it is still possible to de-

rive significant value from combined techniques. Lastly, it is shown that since graph reduction

is a general solution, the study has been validated.
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Chapter 8

Conclusion

8.1 Introduction

This chapter serves as the conclusion of this study. First, the concluding remarks are provided,

which highlight the most important results and findings from this study. Then, the last section

of this chapter contains several recommendations on how these results and findings can be

used in future works.

8.2 Concluding remarks

The ultimate objective of this study was to identify and/or propose graph reduction techniques

that can be used to reduce the complexity of the attributed graph data of the Tennessee

Eastman process. These techniques had to reduce graph complexity while ensuring that the

FDI methods applied to the TEP graph data retain the level of performance achieved before

any reduction had taken place, thereby proving that graph reduction as a concept is a viable

solution.

Before any form of graph reduction could take place, control data of the performance of the FDI

methods when the standard, unreduced attributed graph data are used to diagnose faults, had

to be generated. The control data are used to evaluate the efficacy of the reduction techniques.

The distance parameter, eigendecomposition, and residual-based FDI methods are the three

FDI methods used to diagnose faults from the TEP graph data. The eigendecomposition FDI

method was updated according to the findings of a concurrent study to reduce the complexity

of the FDI method by only considering dominant eigenvalues.
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The indicators used to quantify the performance of each FDI method are the overall detection

rate, overall isolation rate, and the specific isolation rate of critical fault conditions. These in-

dicators were selected to facilitate a holistic evaluation while not overwhelming the evaluation

process with excessive amounts of data. When looking at these indicators for the three FDI

methods, it is clear that there is great variety in the performance indicators across the differ-

ent methods, making it challenging to select a top-performing method for the TEP. However,

this variety in performance indicators across the different methods in the control data set will

contribute to a robust evaluation of graph reduction techniques.

The graph reduction techniques proposed for this study are based on three theoretical con-

cepts. The first concept is that attributes experience slight variation from the NOC for all

fault conditions, have a negligible impact on the FDI process and can be removed. The sec-

ond concept is that attributes with small values contribute less to the FDI process and can

be removed. The final concept is that graph complexity decreases by methodically summa-

rizing nodes with similar attribute values with imposed limitations. This preserves attribute

information.

From these three concepts, five graph reduction techniques were formulated. The first two

concepts have a technique based on node attributes and a technique based on link attributes.

The final concept has one technique based on node attributes only. The five techniques

were formulated to remove structural information from the graph data without distorting

the remaining structural information and resulting in additional processing resources being

required. Furthermore, structural information is removed methodically, making it easier to

reconstruct the original graph. This was done to overcome the shortfalls of the techniques

identified in the literature.

An experimental process had to be used to determine if the proposed reduction techniques

formulated from the three theoretical concepts could reduce graph complexity without de-

teriorating FDI performance. This experimental process involves applying each reduction

technique iteratively and increasing the extent to which the technique reduces the TEP graph

data with each iteration. After each iteration, the FDI performance indicators are recorded.

This is done until there are no more attributes to reduce or the limitations and/or restrictions

prevent the technique from reducing any further. Then, the performance indicators obtained

after each reduction iteration were compared to the control data set indicators by plotting

some of these indicators as more attributes were reduced. This was done to determine the

efficacy of each technique.

Several interesting observations could be made from the performance of each FDI method’s

response to the reduction iterations of each reduction technique. However, the most important
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observation that can be made is the fact that for every FDI method applied to the TEP graph

data, it was possible to reduce the graph data with at least one reduction technique using a

specific reduction iteration while maintaining a similar level of performance as achieved in the

control data set.

Another important observation that could be made is the occurrence of anomalies in the form

of local minima or maxima as the reduction interval increases. These anomalies indicate that

there exists structural information in the attributed graph data that can be either vital or

non-vital to FDI performance. This observation inferred that the downward part of either

the local minima or maxima results from vital information that bolsters FDI performance,

being removed from the graph data. Conversely, the upward part of either the local minima or

maxima results from non-vital information that obfuscates FDI performance, being removed

from the graph data.

To determine which reduction techniques are more effective than others, the complementary

techniques of every FDI method were identified. Each complementary technique effectively

reduces graph data while maintaining a similar level of FDI performance achieved in the control

data set. For the TEP, the reduction techniques based on attribute variation (Techniques 1

& 2) were much more effective than those based on attribute size analysis (Techniques 3 &

4). Across all three FDI methods, Technique 5 resulted in the most stable response of FDI

performance for its reduction range.

To bypass the shortcomings of some of the individual reduction techniques, it was proposed

that specific individual techniques be combined by applying them to the graph data simulta-

neously. Thus, for each FDI method, that method’s complementary reduction techniques at

specific reduction intervals were applied simultaneously, and the standard performance indi-

cators and the execution time of the FDI method were recorded. By doing this, it was found

that for the TEP graph data, the performance and/or execution time of each FDI method

improved relative to the performance and/or execution time achieved when the individual

complementary reduction techniques were applied. The effect some of the individual and

combined reduction techniques had on the execution time of FDI methods, can be observed

in Sections 6.3 & 6.4. In some instances, the combined techniques resulted in a superior level

of FDI performance than that achieved in the control data.

For the verification of this study, it had to be verified that all five reduction techniques were

implemented as proposed. Therefore, each technique was first implemented in the MATLAB®

to reduce an attributed graph to a certain extent. The technique was then implemented in

Excel® to reduce the same attributed graph to the same extent. Finally, these two attributed

graphs were compared to each other in their NSM format. Since both matrices were identical

140



for each technique, it can be concluded that the study correctly implemented and verified each

proposed reduction technique.

The validation of this study entails showing that the proposed solution, in this case, the

concept of graph reduction, is a general solution. This involves showing that at least one

of the reduction techniques proposed in this study can reduce the attributed graph data of

more than one validated process model while maintaining a similar level of FDI performance

achieved prior to the graph data of those process models being reduced. To this end, a

validated GTLP model was used as an additional model to evaluate the graph reduction

techniques. The GTLP model differs from the TEP model with regards to the type of fault

conditions, complexity and structure of the attributed graph, and the composition of graph

data (steady-state model vs dynamic model). These differences help to enhance the generality

of the solution.

To evaluate the proposed reduction techniques on the GTLP, the same chain of events used

with the TEP was repeated. First, the control data set was generated by applying the FDI

methods to the standard, unreduced attributed graph data of the GTLP. Then, each reduction

technique’s response on each FDI method’s performance was evaluated using an experimental

process that applies the techniques iteratively, increasing the reduction interval with each

iteration. Thus, the performance of each FDI method was determined at every reduction

increment, and the indicators of each FDI method at these various reduction intervals could

be compared to the indicators in the control data set.

This evaluation yielded that it is possible to reduce the attributed graph data of the GTLP

while maintaining the FDI performance achieved prior to any graph reduction taking place.

Furthermore, since graph reduction could successfully be applied to both the TEP and the

GTLP, which are both validated models, it can be concluded that graph reduction is a general

solution, which ultimately validates this study. It should be stressed that this study does not

aim to compare the performance of FDI methods using TEP data with the performance

obtained using GTLP data. Instead, the aim is to investigate and compare the response

graph reduction has on the TEP FDI performance with the response it has on GTLP FDI

performance to determine if it is a viable and general solution.

When comparing the response on FDI performance after applying the reduction techniques to

the GTLP graph data to the response after applying the techniques to the TEP graph data,

anomalies in the form of local minima and maxima were again detected. This supports the

argument that certain reduction operations remove vital structural information (causing the

downward part of either the local minima or maxima). In contrast, certain other reduction

operations remove non-vital structural information (causing the upward part of either the
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local minima or maxima). This results in FDI performance being obfuscated or bolstered,

respectively.

When comparing the efficacy of the five different techniques applied to the GTLP graph data,

it can be noted that the techniques based on attribute size analysis (Techniques 3 & 4) were

more effective when applied to the GTLP data than they were applied to the TEP data.

However, seeing as the variance-based reduction techniques (Techniques 1 & 2) were effective

when applied to the data of both models, it can be inferred that they are more effective in

general than the techniques based on attribute size analysis.

Combining reduction techniques and applying them to the GTLP graph data did not yield

the same successful response as achieved when techniques were combined and applied to the

TEP graph data. While it could be shown that combining specific complementary techniques

for each FDI method had the possibility of being more effective than some of the individual

complementary techniques, an individual complementary technique at a specific reduction

interval was identified for each FDI method that could not be outdone.

8.3 Recommendations on future work

The purpose of this section is to recommend possible improvements to graph reduction and

to recommend potential future implementations of the findings of this study. These recom-

mendations include:

� For this study, it was deliberately decided not to use optimization algorithms to reduce

the attributed graph data since this would have produced an optimized solution. If

this were the case, the observations about the effects that different types of reductions

techniques have on the performance of the different FDI methods would have been

lost. The observations from this study can now be used as guidelines for selecting an

optimization algorithm and correctly formulating its cost function to reduce attributed

graph data optimally.

� Both the TEP and GTLP are large and complex systems. It is, therefore, of particular

interest to determine the effect of graph reduction of smaller systems with fewer fault

conditions. In addition, by applying these reduction techniques to smaller systems, it

would be possible to determine if any adjustments to the techniques are required for

these smaller systems.

� Once graph reduction has successfully been applied to the attributed graph of a process;

it will be possible to determine the most effective sensor placement. The sensors should
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be deployed so that they collect the majority of process data from components and

streams that remain in the graph after reduction. This will also assist in reducing the

cost of implementing FDI schemes.
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Appendix A

Algorithms of every FDI method

In this appendix, the algorithms of all three FDI methods are listed. Each algorithm describes

the process used to transform the input parameters into various data structures, such as cell

arrays, matrices, and vectors, which are ultimately used to analyse the performance of each

FDI method.

For the distance parameter method, operational and reference attributed graphs (GOP &GRef )

are used to generate cost matrices (C), which are subsequently used to determine distance

parameter values (DC).

Algorithm 1: Distance parameter FDI method. Apply algorithm for i ε [1, 2, ..., n] and

j ε [1, 2, ..., 501], where n is the number of process conditions (faulty and normal).

Algorithm input: Operational attributed graphs GOP (i, j) and reference attributed graph

GRef (1, n).

C {i, j} (n, 1)← (GRef (n, 1), GOP (i, j))

DC {i, j} (n, 1)← C {i, j} (n, 1)

For the eigendecomposition method, the reference normal and reference faulty attributed

graphs (GN avg & GF avg) are used to generate an array of cost matrices (ArrayA), which

is then used to calculate the set of eigenvalues for each cost matrix (~λNRef ). The reference

normal and operational attributed graphs (GN avg & GOP ) are used to generate an array of

cost matrices (ArrayB), which is again used to calculate the set of eigenvalues for each cost

matrix (~λNOP ).
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Algorithm 2: Eigendecomposition FDI method. Apply algorithm for i ε [1, 2, ..., n] and

j ε [1, 2, ..., 501], where n is the number of process conditions (faulty and normal).

Algorithm input: Operational attributed graphs GOP (i, j), reference normal attributed

graph GN avg, and the faulty reference attributed graphs GF avg(n).

C(1, n)← (GN avg, GF avg(n, 1))

ArrayA(1, n)← C(1, n)

~λNRef (1, n)← ArrayA(1, n)

&

C(i, j)← (GN avg, GOP (i, j))

ArrayB(i, j)← C(i, j)

~λNOP (i, j)← ArrayB(i, j)

For the residual-based method, the reference normal and reference faulty attributed graphs

(GN avg & GF avg) are used to generate an array of residual matrices (ArrayA of Gres), which

is then used to calculate the binary residual matrices (BINref ) from which the frequency

vector ( ~fcNRef ) is derived. The reference normal and operational attributed graphs (GN avg

& GOP ) are used to generate an array of residual matrices (ArrayB of Gres), which is then

used to calculate the binary residual matrices (BINOP ) from which the frequency vectors

( ~fcNO) are derived.

Algorithm 3: Residual-based FDI method. Apply algorithm for i ε [1, 2, ..., n] and

j ε [1, 2, ..., 501], where n is the number of process conditions (faulty and normal).

Algorithm input: Operational attributed graphs GOP (i, j), reference normal attributed

graph GN avg, and the faulty reference attributed graphs GF avg(n).

Gres(1, n)← (GN avg, GF avg(n, 1))

ArrayA(1, n)← Gres(1, n)

BINref (1, n)← ArrayA(1, n)

~fcNRef (1, n)← BINref (1, n)

&

Gres(i, j)← (GN avg, GOP (i, j))

ArrayB(i, j)← Gres(i, j)
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BINOP (i, j)← ArrayB(i, j)

~fcNO(i, j)← BINOP (i, j)
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Appendix B

Data and MATLAB® code used in

this study

These are the links to various folders containing the datasets and code used for this study:

� TEP graph data: A folder containing the TEP data as extracted from the Simulink®

model and processed into attributed graph format.

� TEP FDI methods: This folder contains all the MATLAB® code used to generate the

cost matrices and residual matrices used by the FDI methods applied to the TEP and

the code used to analyze the performance of each FDI method as applied to the TEP. It

should be noted that the code used to generate cost matrices for the Distance Parameter

FDI method was partially developed as part of the study done by Vosloo [42] and was

adapted for this study. All other code was developed as part of this study.

� TEP reduction techniques: The code of all the graph reduction techniques applied to

the TEP graph data can be found in this folder.

� GTLP graph data: The attributed graph data in the form of node signature matrices

can be found here.

� GTLP FDI methods: All the MATLAB® code used to generate the cost matrices and

residual matrices used by the FDI methods applied to the GTLP and the code used to

analyze the performance of each FDI method as applied to the GTLP, can be found in

this folder. The code only differs slightly from that used for the TEP to accommodate

the differences in the data structures of the two processes.

� GTLP reduction techniques: The code of all the graph reduction techniques applied to

the GTLP graph data can be found in this folder. The code only differs slightly from

that used for the TEP to accommodate the differences in the data structures of the two

processes.
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Appendix C

Additional reduction technique

verification

This appendix is dedicated to verifying the implementation of the remaining graph reduction

techniques. In each verification process, the reduction technique reduces the NSM of the

reference normal attributed graph.

C.1 Verification of Technique 2

The reference attributed graph data exported to Excel® is used to determine with what per-

centage each non-zero link attribute varies over the 20 fault conditions. First, the percentage

variation from that specific link attribute’s value in the reference normal attributed graph

is calculated for each link attribute. Each link attribute has 20 variation values which are

then averaged to obtain an average variation percentage for a given link attribute. Next, the

Excel® function ‘PERCENTILE.EXC()’ is applied to all the link attributes’ average percent-

age variation values to determine the 50th percentile threshold. Finally, all the links with

average percentage variation values below the 50th percentile threshold are set to zero in the

attributed graph data.

The MATLAB® code is used to remove links with average percentage variation values below

the 50th percentile threshold to compare the resulting reduced attributed graphs. Table C.1

contains the NSM reduced by implementing Technique 2 in Excel® and Table C.2 contains

the NSM reduced by implementing Technique 2 in MATLAB®.
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C.2 Verification of Technique 3

Technique 3 only requires data from the reference normal attributed graph to determine

which attributes must be reduced. First, the absolute values of all the link attributes in the

NSM of the reference normal attributed graph are determined. Next, the Excel® function

‘PERCENTILE.EXC()’ is applied to these absolute link attribute values to determine the

40th percentile threshold. Finally, all link attributes with absolute values less than the 40th

percentile threshold are set to zero in the attributed graph data.

The MATLAB® code is then used to remove links with absolute values below the 40th per-

centile threshold, to compare the resulting reduced attributed graphs. Table C.3 contains

the NSM reduced by implementing Technique 3 in the Excel® environment and Table C.4

contains the NSM reduced by implementing Technique 3 with the MATLAB® code.

C.3 Verification of Technique 4

Like Technique 3, Technique 4 only uses the sizes of the attributes in the reference normal

attributed graph to determine which nodes should be removed from the attributed graph data.

First, the absolute values of the node attributes in the reference normal attributed graph are

calculated. Then, ‘PERCENTILE.EXC()’ is applied to these absolute node attributes to

determine the 30th percentile threshold. Finally, all the node attributes with absolute values

less than the 30th percentile threshold are removed from the attributed graph data.

Once again, MATLAB® is used to remove node attributes with absolute values below the

30th percentile threshold in order to compare the resulting reduced attributed graphs. The

NSM reduced by implementing Technique 4 in the Excel® environment can be seen in Table

C.5 and the NSM reduced by implementing Technique 4 with the MATLAB® code can be

seen in C.6.

C.4 Verification of Technique 5

To verify the implementation of Technique 5 in Excel®, nodes 4 & 10 are summarized. To do

this, all the attributes in the row associated with node 10 are added to their corresponding

attributes in the row associated with node 4. Next, all the attributes in the column associated

with node 10 are added to their corresponding attributes in the column associated with node
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4. Finally, both the row and column associated with node 10, are removed from the graph.

This is done to all the graphs in the attributed graph data.

Nodes 4 & 10 are also summarized with the MATLAB® code. Table C.7 contains the NSM

reduced by implementing Technique 5 in Excel® and Table C.8 contains the NSM reduced by

implementing Technique 5 in MATLAB®.

Since the reduced matrices produced by Excel® match the reduced matrices produced with

the MATLAB® code, the implementation of all five graph reduction techniques have been

verified.
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Table C.1: Reduced attributed graph produced by implementing Technique 2 in Excel.

-5.80E+07 -3.06E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.36E+07 -2.89E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-7.77E+05 -2.51E+04 0.00 0.00 0.00 0.00 3.89E+03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.16E+07 -9.70E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-3.04E+08 -3.90E+07 0.00 0.00 -3.89E+03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.51E+06 -5.85E+05 0.00 0.00

6.42E+07 7.37E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 -1.03E+07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4.34E+08 4.44E+07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 -3.43E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.19E+08

-5.94E+07 6.40E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.93E+04 3.51E+06 8.45E+05 0.00 0.00

3.82E+06 3.85E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00 0.00

-3.05E+08 -3.07E+07 0.00 0.00 0.00 0.00 3.51E+06 0.00 0.00 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00 0.00

-1.45E+07 -6.85E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -8.45E+05 0.00 0.00 0.00 6.48E+05 -1.43E+05

1.69E+08 2.56E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.48E+05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.04E+08 0.00 6.18E+07 0.00 0.00 0.00 1.43E+05 0.00 0.00
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Table C.2: Reduced attributed graph produced by implementing Technique 2 in Matlab.

-5.80E+07 -3.06E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.36E+07 -2.89E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-7.77E+05 -2.51E+04 0.00 0.00 0.00 0.00 3.89E+03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.16E+07 -9.70E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-3.04E+08 -3.90E+07 0.00 0.00 -3.89E+03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.51E+06 -5.85E+05 0.00 0.00

6.42E+07 7.37E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 -1.03E+07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4.34E+08 4.44E+07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 -3.43E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.19E+08

-5.94E+07 6.40E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.93E+04 3.51E+06 8.45E+05 0.00 0.00

3.82E+06 3.85E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00 0.00

-3.05E+08 -3.07E+07 0.00 0.00 0.00 0.00 3.51E+06 0.00 0.00 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00 0.00

-1.45E+07 -6.85E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -8.45E+05 0.00 0.00 0.00 6.48E+05 -1.43E+05

1.69E+08 2.56E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.48E+05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.04E+08 0.00 6.18E+07 0.00 0.00 0.00 1.43E+05 0.00 0.00
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Table C.3: Reduced attributed graph produced by implementing Technique 3 in Excel.

-5.80E+07 -3.06E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.36E+07 -2.89E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-7.77E+05 -2.51E+04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.16E+07 -9.70E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-3.04E+08 -3.90E+07 0.00 0.00 0.00 0.00 0.00 4.92E+06 0.00 0.00 0.00 0.00 0.00 -3.51E+06 0.00 0.00 0.00

6.42E+07 7.37E+06 0.00 0.00 0.00 0.00 -4.92E+06 0.00 6.47E+06 6.57E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 -1.03E+07 0.00 0.00 0.00 0.00 0.00 -6.47E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.82E+08

4.34E+08 4.44E+07 0.00 0.00 0.00 0.00 0.00 -4.92E+06 0.00 0.00 2.15E+06 6.57E+06 0.00 0.00 0.00 0.00 0.00

0.00 -3.43E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -2.15E+06 0.00 0.00 0.00 0.00 0.00 0.00 1.19E+08

-5.94E+07 6.40E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.57E+06 0.00 0.00 0.00 3.51E+06 8.45E+05 0.00 0.00

3.82E+06 3.85E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-3.05E+08 -3.07E+07 0.00 0.00 0.00 0.00 3.51E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1.45E+07 -6.85E+06 0.00 0.00 0.00 0.00 4.92E+06 0.00 0.00 0.00 0.00 -8.45E+05 0.00 0.00 0.00 6.48E+05 0.00

1.69E+08 2.56E+06 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.48E+05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.04E+08 0.00 6.18E+07 0.00 0.00 0.00 0.00 0.00 0.00
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Table C.4: Reduced attributed graph produced by implementing Technique 3 in Matlab.

-5.80E+07 -3.06E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.36E+07 -2.89E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-7.77E+05 -2.51E+04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.16E+07 -9.70E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-3.04E+08 -3.90E+07 0.00 0.00 0.00 0.00 0.00 4.92E+06 0.00 0.00 0.00 0.00 0.00 -3.51E+06 0.00 0.00 0.00

6.42E+07 7.37E+06 0.00 0.00 0.00 0.00 -4.92E+06 0.00 6.47E+06 6.57E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 -1.03E+07 0.00 0.00 0.00 0.00 0.00 -6.47E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.82E+08

4.34E+08 4.44E+07 0.00 0.00 0.00 0.00 0.00 -4.92E+06 0.00 0.00 2.15E+06 6.57E+06 0.00 0.00 0.00 0.00 0.00

0.00 -3.43E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -2.15E+06 0.00 0.00 0.00 0.00 0.00 0.00 1.19E+08

-5.94E+07 6.40E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.57E+06 0.00 0.00 0.00 3.51E+06 8.45E+05 0.00 0.00

3.82E+06 3.85E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-3.05E+08 -3.07E+07 0.00 0.00 0.00 0.00 3.51E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1.45E+07 -6.85E+06 0.00 0.00 0.00 0.00 4.92E+06 0.00 0.00 0.00 0.00 -8.45E+05 0.00 0.00 0.00 6.48E+05 0.00

1.69E+08 2.56E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.48E+05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.04E+08 0.00 6.18E+07 0.00 0.00 0.00 0.00 0.00 0.00
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Table C.5: Reduced attributed graph produced by implementing Technique 4 in Excel.

-5.80E+07 -3.06E+05 0.00 0.00 0.00 2.76E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.36E+07 -2.89E+05 0.00 0.00 0.00 5.50E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.16E+07 -9.70E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55E+05 0.00 0.00

-3.04E+08 -3.90E+07 -2.76E+05 -5.50E+05 0.00 0.00 4.92E+06 0.00 0.00 -3.51E+06 -5.85E+05 0.00 0.00

6.42E+07 7.37E+06 0.00 0.00 0.00 -4.92E+06 0.00 6.57E+06 0.00 0.00 0.00 0.00 0.00

4.34E+08 4.44E+07 0.00 0.00 0.00 0.00 -4.92E+06 0.00 6.57E+06 0.00 0.00 0.00 0.00

-5.94E+07 6.40E+06 0.00 0.00 0.00 0.00 0.00 -6.57E+06 0.00 3.51E+06 8.45E+05 0.00 0.00

-3.05E+08 -3.07E+07 0.00 0.00 0.00 3.51E+06 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00

-1.45E+07 -6.85E+06 0.00 0.00 -1.55E+05 4.92E+06 0.00 0.00 -8.45E+05 0.00 0.00 6.48E+05 -1.43E+05

1.69E+08 2.56E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.48E+05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43E+05 0.00 0.00
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Table C.6: Reduced attributed graph produced by implementing Technique 4 in Matlab.

-5,80E+07 -3,06E+05 0,00 0,00 0,00 2,76E+05 0,00 0,00 0,00 0,00 0,00 0,00 0,00

-5,36E+07 -2,89E+05 0,00 0,00 0,00 5,50E+05 0,00 0,00 0,00 0,00 0,00 0,00 0,00

-5,16E+07 -9,70E+05 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,55E+05 0,00 0,00

-3,04E+08 -3,90E+07 -2,76E+05 -5,50E+05 0,00 0,00 4,92E+06 0,00 0,00 -3,51E+06 -5,85E+05 0,00 0,00

6,42E+07 7,37E+06 0,00 0,00 0,00 -4,92E+06 0,00 6,57E+06 0,00 0,00 0,00 0,00 0,00

4,34E+08 4,44E+07 0,00 0,00 0,00 0,00 -4,92E+06 0,00 6,57E+06 0,00 0,00 0,00 0,00

-5,94E+07 6,40E+06 0,00 0,00 0,00 0,00 0,00 -6,57E+06 0,00 3,51E+06 8,45E+05 0,00 0,00

-3,05E+08 -3,07E+07 0,00 0,00 0,00 3,51E+06 0,00 0,00 -3,93E+04 0,00 0,00 0,00 0,00

-1,45E+07 -6,85E+06 0,00 0,00 -1,55E+05 4,92E+06 0,00 0,00 -8,45E+05 0,00 0,00 6,48E+05 -1,43E+05

1,69E+08 2,56E+06 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 -6,48E+05 0,00 0,00

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,43E+05 0,00 0,00
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Table C.7: Reduced attributed graph produced by implementing Technique 5 in Excel.

-5.80E+07 -3.06E+05 0.00 0.00 0.00 0.00 2.76E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.36E+07 -2.89E+05 0.00 0.00 0.00 0.00 5.50E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-7.77E+05 -2.51E+04 0.00 0.00 0.00 0.00 3.89E+03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1.11E+08 5.43E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.57E+06 0.00 3.93E+04 3.51E+06 1.00E+06 0.00 0.00

-3.04E+08 -3.90E+07 -2.76E+05 -5.50E+05 -3.89E+03 0.00 0.00 4.92E+06 0.00 0.00 0.00 0.00 -3.51E+06 -5.85E+05 0.00 0.00

6.42E+07 7.37E+06 0.00 0.00 0.00 0.00 -4.92E+06 0.00 6.47E+06 6.57E+06 0.00 0.00 0.00 0.00 0.00 0.00

0.00 -1.03E+07 0.00 0.00 0.00 0.00 0.00 -6.47E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.82E+08

4.34E+08 4.44E+07 0.00 0.00 0.00 6.57E+06 0.00 -4.92E+06 0.00 0.00 2.15E+06 0.00 0.00 0.00 0.00 0.00

0.00 -3.43E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -2.15E+06 0.00 0.00 0.00 0.00 0.00 1.19E+08

3.82E+06 3.85E+05 0.00 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-3.05E+08 -3.07E+07 0.00 0.00 0.00 -3.93E+04 3.51E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1.45E+07 -6.85E+06 0.00 0.00 0.00 -1.00E+06 4.92E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.48E+05 -1.43E+05

1.69E+08 2.56E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.48E+05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.04E+08 0.00 6.18E+07 0.00 0.00 1.43E+05 0.00 0.00
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Table C.8: Reduced attributed graph produced by implementing Technique 5 in Matlab.

-5.80E+07 -3.06E+05 0.00 0.00 0.00 0.00 2.76E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-5.36E+07 -2.89E+05 0.00 0.00 0.00 0.00 5.50E+05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-7.77E+05 -2.51E+04 0.00 0.00 0.00 0.00 3.89E+03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1.11E+08 5.43E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.57E+06 0.00 3.93E+04 3.51E+06 1.00E+06 0.00 0.00

-3.04E+08 -3.90E+07 -2.76E+05 -5.50E+05 -3.89E+03 0.00 0.00 4.92E+06 0.00 0.00 0.00 0.00 -3.51E+06 -5.85E+05 0.00 0.00

6.42E+07 7.37E+06 0.00 0.00 0.00 0.00 -4.92E+06 0.00 6.47E+06 6.57E+06 0.00 0.00 0.00 0.00 0.00 0.00

0.00 -1.03E+07 0.00 0.00 0.00 0.00 0.00 -6.47E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.82E+08

4.34E+08 4.44E+07 0.00 0.00 0.00 6.57E+06 0.00 -4.92E+06 0.00 0.00 2.15E+06 0.00 0.00 0.00 0.00 0.00

0.00 -3.43E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -2.15E+06 0.00 0.00 0.00 0.00 0.00 1.19E+08

3.82E+06 3.85E+05 0.00 0.00 0.00 -3.93E+04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-3.05E+08 -3.07E+07 0.00 0.00 0.00 -3.93E+04 3.51E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-1.45E+07 -6.85E+06 0.00 0.00 0.00 -1.00E+06 4.92E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.48E+05 -1.43E+05

1.69E+08 2.56E+06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -6.48E+05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.04E+08 0.00 6.18E+07 0.00 0.00 1.43E+05 0.00 0.00
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Appendix D

Performance of the FDI methods

applied to the GTLP

This appendix contains the detection and isolation rates of all three FDI methods applied

to the attributed graph data of the GTLP. The detection and isolation rates of all the fault

conditions after applying the distance parameter, the eigendecomposition, and the residual-

based FDI methods to the GTLP can be seen in Tables D.1, D.2, & D.3 respectively.

Table D.1: Detection and isolation rates of the distance pa-

rameter FDI method applied to the GTLP.

Main F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

DR (%) 100 100 75 75 75 100 75 75 75 100 100 100

IR (%) F1 75 75 0 0 0 25 0 0 0 0 0 0 0

IR (%) F2 75 0 75 0 0 0 0 25 0 0 0 0 0

IR (%) F3 75 0 0 75 0 0 0 0 0 0 0 0 0

IR (%) F4 75 0 0 0 75 0 0 0 0 0 0 0 0

IR (%) F5 75 0 0 0 0 75 0 0 0 0 0 0 0

IR (%) F6 75 0 0 0 0 0 75 0 0 0 0 0 25

IR (%) F7 75 0 0 0 0 0 0 75 0 0 0 0 0

IR (%) F8 75 0 0 0 0 0 0 0 75 0 0 0 0

IR (%) F9 75 0 0 0 0 0 0 0 0 75 0 0 0

IR (%) F10 50 0 0 0 0 0 25 0 0 0 50 0 25

IR (%) F11 75 0 0 0 0 25 0 0 0 0 0 75 0

IR (%) F12 50 0 0 0 0 0 0 25 0 0 25 0 50
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Table D.2: Detection and isolation rates of the (modified)

eigendecomposition FDI method applied to the GTLP.

Main F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

DR (%) 100 100 100 100 75 100 100 100 75 100 100 100

IR (%) F1 75 75 0 0 0 0 0 0 0 0 25 0 0

IR (%) F2 25 25 25 0 0 0 25 0 0 0 0 0 25

IR (%) F3 25 0 0 25 25 25 0 0 0 0 0 25 0

IR (%) F4 25 0 0 50 25 0 0 25 0 0 0 0 0

IR (%) F5 75 0 0 0 0 75 0 0 0 0 0 0 0

IR (%) F6 50 0 25 0 0 0 50 0 0 0 25 0 0

IR (%) F7 25 0 0 0 25 50 0 25 0 0 0 0 0

IR (%) F8 75 0 0 0 0 0 0 0 75 25 0 0 0

IR (%) F9 50 0 0 0 0 0 0 25 0 50 0 0 0

IR (%) F10 25 0 0 0 25 0 25 0 0 0 25 0 25

IR (%) F11 50 0 25 25 0 0 0 0 0 0 0 50 0

IR (%) F12 50 25 25 0 0 0 0 0 0 0 0 0 50

Table D.3: Detection and isolation rates of the residual-based

FDI method applied to the GTLP.

Main F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

DR (%) 100 100 100 100 100 100 100 100 75 100 100 100

IR (%) F1 75 75 0 0 0 0 0 25 0 0 0 0 0

IR (%) F2 100 0 100 0 0 0 0 0 0 0 0 0 0

IR (%) F3 0 0 75 0 0 0 0 25 0 0 0 0 0

IR (%) F4 0 0 75 0 0 0 0 25 0 0 0 0 0

IR (%) F5 0 0 100 0 0 0 0 0 0 0 0 0 0

IR (%) F6 75 25 0 0 0 0 75 0 0 0 0 0 0

IR (%) F7 25 0 75 0 0 0 0 25 0 0 0 0 0

IR (%) F8 0 0 100 0 0 0 0 0 0 0 0 0 0

IR (%) F9 25 25 0 0 0 0 0 0 0 25 0 0 25

IR (%) F10 50 25 0 0 0 0 0 0 0 0 50 25 0

IR (%) F11 100 0 0 0 0 0 0 0 0 0 0 100 0

IR (%) F12 25 25 0 0 0 0 0 0 0 0 0 50 25
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Appendix E

Performance of the FDI methods using

the GTLP graph data as reduced by

all the reduction techniques

The purpose of this appendix is to provide the results of the experimental process conducted

in Chapter 7. Each graph reduction technique is applied incrementally to the graph data

of the GTLP, and the FDI performance is recorded with each increment. The percentage

attribute reduction increases with each increment. The results of Technique 1 to 5 can be

seen in Tables E.1 - E.5.
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Table E.1: Performance of all three FDI methods using the GTLP graph data as reduced by Tech-

nique 1.

Distance FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 87.50 87.50 87.50 87.50 85.42 83.33 83.33 100.00 100.00 97.92

Overall Isolation Rate (%) 70.83 70.83 68.75 70.83 70.83 72.92 68.75 56.25 56.25 22.92

Attribute Reduction (%) 0.00 0.00 25.00 27.78 38.89 50.00 66.67 83.33 84.72 93.06

Isolation rate of Fault 1 (%) 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 0.00

Isolation rate of Fault 10 (%) 50.00 50.00 50.00 75.00 75.00 75.00 75.00 0.00 0.00 0.00

Isolation rate of Fault 12 (%) 50.00 50.00 50.00 75.00 75.00 75.00 75.00 50.00 50.00 0.00

Eigen FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 97.92 95.83 100.00 100.00 95.83 93.75 97.92 97.92 97.92 85.42

Overall Isolation Rate (%) 43.75 45.83 50.00 52.08 43.75 43.75 47.92 43.75 43.75 18.75

Attribute Reduction (%) 0.00 0.00 25.00 27.78 38.89 50.00 66.67 83.33 84.72 93.06

Isolation rate of Fault 1 (%) 75.00 75.00 50.00 75.00 50.00 50.00 75.00 75.00 25.00 25.00

Isolation rate of Fault 5 (%) 75.00 75.00 75.00 50.00 75.00 75.00 100.00 75.00 50.00 50.00

Isolation rate of Fault 8 (%) 75.00 75.00 50.00 50.00 75.00 50.00 0.00 75.00 50.00 25.00

Residual FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 97.92 97.92 97.92 97.92 100.00 100.00 97.92 100.00 95.83 0.00

Overall Isolation Rate (%) 39.58 39.58 37.50 33.33 45.83 41.67 29.17 22.92 22.92 0.00

Attribute Reduction (%) 0.00 0.00 25.00 27.78 38.89 50.00 66.67 83.33 84.72 93.06

Isolation rate of Fault 1 (%) 75.00 75.00 50.00 25.00 0.00 100.00 100.00 100.00 100.00 0.00

Isolation rate of Fault 2 (%) 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00

Isolation rate of Fault 11 (%) 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 0.00 0.00
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Table E.2: Performance of all three FDI methods using the GTLP graph data as reduced by Tech-

nique 2.

Distance FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 87.50 87.50 87.50 85.42 83.33 85.42 89.58 89.58 93.75 93.75

Overall Isolation Rate (%) 70.83 70.83 68.75 66.67 64.58 66.67 70.83 68.75 68.75 68.75

Attribute Reduction (%) 0.00 2.78 8.33 13.89 16.67 22.22 25.00 30.56 36.11 38.89

Isolation rate of Fault 1 (%) 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00

Isolation rate of Fault 10 (%) 50.00 50.00 50.00 50.00 50.00 50.00 75.00 50.00 50.00 50.00

Isolation rate of Fault 12 (%) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Eigen FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 97.92 91.67 93.75 97.92 100.00 100.00 91.67 97.92 100.00 91.67

Overall Isolation Rate (%) 43.75 45.83 47.92 45.83 37.50 37.50 41.67 52.08 45.83 52.08

Attribute Reduction (%) 0.00 2.78 8.33 13.89 16.67 22.22 25.00 30.56 36.11 38.89

Isolation rate of Fault 1 (%) 75.00 75.00 75.00 50.00 75.00 75.00 25.00 50.00 100.00 75.00

Isolation rate of Fault 5 (%) 75.00 50.00 75.00 50.00 50.00 75.00 50.00 50.00 50.00 50.00

Isolation rate of Fault 8 (%) 75.00 50.00 75.00 50.00 50.00 25.00 50.00 75.00 50.00 50.00

Residual FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 97.92 97.92 97.92 97.92 97.92 97.92 97.92 100.00 100.00 100.00

Overall Isolation Rate (%) 39.58 39.58 39.58 37.50 35.42 35.42 35.42 35.42 31.25 33.33

Attribute Reduction (%) 0.00 2.78 8.33 13.89 16.67 22.22 25.00 30.56 36.11 38.89

Isolation rate of Fault 1 (%) 75.00 75.00 75.00 50.00 50.00 75.00 75.00 25.00 100.00 100.00

Isolation rate of Fault 2 (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Isolation rate of Fault 11 (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 75.00
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Table E.3: Performance of all three FDI methods using the GTLP graph data as reduced by Tech-

nique 3.

Distance FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 87.50 87.50 87.50 87.50 87.50 83.33 83.33 83.33 85.42 83.33

Overall Isolation Rate (%) 70.83 68.75 68.75 68.75 68.75 66.67 68.75 68.75 75.00 70.83

Attribute Reduction (%) 0.00 5.56 11.11 13.89 19.44 25.00 30.56 36.11 41.67 47.22

Isolation rate of Fault 1 (%) 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00

Isolation rate of Fault 10 (%) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Isolation rate of Fault 12 (%) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 100.00 75.00

Eigen FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 97.92 97.92 91.67 100.00 100.00 93.75 97.92 91.67 95.83 93.75

Overall Isolation Rate (%) 43.75 41.67 37.50 43.75 50.00 43.75 43.75 39.58 37.50 50.00

Attribute Reduction (%) 0.00 5.56 11.11 13.89 19.44 25.00 30.56 36.11 41.67 47.22

Isolation rate of Fault 1 (%) 75.00 25.00 75.00 75.00 75.00 75.00 75.00 50.00 50.00 75.00

Isolation rate of Fault 5 (%) 75.00 50.00 75.00 50.00 75.00 50.00 75.00 75.00 75.00 75.00

Isolation rate of Fault 8 (%) 75.00 75.00 25.00 50.00 50.00 50.00 50.00 25.00 50.00 50.00

Residual FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 97.92 93.75 100.00 100.00 100.00 97.92 100.00 100.00 100.00 100.00

Overall Isolation Rate (%) 39.58 47.92 50.00 50.00 45.83 45.83 41.67 39.58 33.33 18.75

Attribute Reduction (%) 0.00 5.56 11.11 13.89 19.44 25.00 30.56 36.11 41.67 47.22

Isolation rate of Fault 1 (%) 75.00 50.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Isolation rate of Fault 2 (%) 100.00 50.00 50.00 50.00 100.00 0.00 0.00 0.00 0.00 0.00

Isolation rate of Fault 11 (%) 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table E.4: Performance of all three FDI methods using the GTLP graph data as reduced by Tech-

nique 4.

Distance FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 87.50 87.50 87.50 87.50 87.50 87.50 87.50 89.58 89.58 100.00

Overall Isolation Rate (%) 70.83 70.83 72.92 72.92 72.92 72.92 72.92 72.92 72.92 62.50

Attribute Reduction (%) 0.00 22.22 38.89 44.44 55.56 66.67 75.00 83.33 88.89 94.44

Isolation rate of Fault 1 (%) 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00

Isolation rate of Fault 10 (%) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Isolation rate of Fault 12 (%) 50.00 50.00 50.00 50.00 100.00 100.00 100.00 100.00 100.00 25.00

Eigen FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 97.92 93.75 89.58 91.67 97.92 95.83 89.58 95.83 89.58 95.83

Overall Isolation Rate (%) 43.75 37.50 43.75 45.83 47.92 50.00 45.83 37.50 37.50 37.50

Attribute Reduction (%) 0.00 22.22 38.89 44.44 55.56 66.67 75.00 83.33 88.89 94.44

Isolation rate of Fault 1 (%) 75.00 50.00 75.00 75.00 75.00 50.00 75.00 75.00 50.00 75.00

Isolation rate of Fault 5 (%) 75.00 25.00 50.00 75.00 100.00 75.00 75.00 50.00 25.00 75.00

Isolation rate of Fault 8 (%) 75.00 25.00 25.00 25.00 0.00 25.00 50.00 75.00 25.00 50.00

Residual FDI Method

Percentiles 0th 10th 20th 30th 40th 50th 60th 70th 80th 90th

Overall Detection Rate (%) 97.92 97.92 97.92 100.00 100.00 100.00 100.00 100.00 31.25 0.00

Overall Isolation Rate (%) 39.58 56.25 58.33 52.08 47.92 50.00 31.25 16.67 2.08 0.00

Attribute Reduction (%) 0.00 22.22 38.89 44.44 55.56 66.67 75.00 83.33 88.89 94.44

Isolation rate of Fault 1 (%) 75.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00

Isolation rate of Fault 2 (%) 100.00 50.00 75.00 75.00 75.00 100.00 100.00 0.00 0.00 0.00

Isolation rate of Fault 11 (%) 100.00 100.00 25.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00
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Table E.5: Performance of all three FDI methods using the GTLP graph data as reduced by Tech-

nique 5.

Distance FDI Method

Number of Mergers 0 1 2 3 4

Overall Detection Rate (%) 87.50 87.50 87.50 87.50 87.50

Overall Isolation Rate (%) 70.83 70.83 70.83 70.83 70.83

Attribute Reduction (%) 0.00 2.78 5.56 6.94 12.50

Isolation rate of Fault 1 (%) 75.00 75.00 75.00 75.00 75.00

Isolation rate of Fault 10 (%) 50.00 50.00 50.00 50.00 50.00

Isolation rate of Fault 12 (%) 50.00 50.00 50.00 50.00 50.00

Eigen FDI Method

Number of Mergers 0 1 2 3 4

Overall Detection Rate (%) 97.92 97.92 93.75 93.75 95.83

Overall Isolation Rate (%) 43.75 41.67 37.50 43.75 41.67

Attribute Reduction (%) 0.00 2.78 5.56 6.94 12.50

Isolation rate of Fault 1 (%) 75.00 50.00 50.00 100.00 50.00

Isolation rate of Fault 5 (%) 75.00 50.00 50.00 75.00 75.00

Isolation rate of Fault 8 (%) 75.00 50.00 50.00 50.00 50.00

Residual FDI Method

Number of Mergers 0 1 2 3 4

Overall Detection Rate (%) 97.92 97.92 97.92 95.83 95.83

Overall Isolation Rate (%) 39.58 41.67 43.75 50.00 41.67

Attribute Reduction (%) 0.00 2.78 5.56 6.94 12.50

Isolation rate of Fault 1 (%) 75.00 75.00 50.00 50.00 50.00

Isolation rate of Fault 2 (%) 100.00 100.00 50.00 50.00 50.00

Isolation rate of Fault 11 (%) 100.00 100.00 100.00 100.00 0.00
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