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Abstract 

The celebrated Black-Scholes equation is used to find the fair price of a financial 

instrument such as call and put options, the warrants and the down-and-out op

tions as well as to find the implied volatility. Using Lie symmetry analysis we 

construct group-invariant solutions under some of the symmetry operators of the 

Black-Scholes equation . We then investigate the symmetry properties of the one

factor term structure option-pricing model by Jonsson and Keppo [ Option Pricing 

for large Agents, Appl. Math. Finance, (2002) 9 261-272] which is a nonlinear 

modified Black-Scholes partial differential equation using Lie group analysis . An 

optimal system of one-dimensional subalgebras is derived which is used to obtain 

symmetry reductions and familie::; of group-invariant solutions. 
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Introduction 

The theory of option pricing began in 1900 when the French mathematician Louis 

Jean-Baptiste Alphonse Bachelier [1] deduced an option pricing formula based on 

the assumption that stock prices follow a Brownian motion. 

Since the nineteen seventies many researchers, led by Black and Scholes, started 

using linear evolution equations to model the derivative security markets. The 

Black-Scholes equation 

(1) 

which does not cater for large traders was introduced by Black and Scholes [2] as the 

general equilibrium model of option pricing which is particularly attractive because 

the final formula is a function of observable variables. The assumptions which were 

used to derive this equation were considered too restrictive and unrealistic. 

Equation (1) was also derived in [3] with weaker assumptions than those given in 

the original paper [2]. By introducing more assumptions, new explicit formulas 

were obtained for pricing both the call and put options as well as the warrants and 

the down-and-out options. Merton [3] was the first one to refer to equation (1) as 

the Black-Scholes equation. Equation (1) is sometimes referred to as the Black

Scholes-Merton equation and because of this work they were awarded the Nobel 

prize in economics , in 1997 even though Black did not receive it, as he passed away 

in 1995. The equation is mainly used to find the fair price of a financial instrument 
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(derivative) and to find the implied volatility. 

In the past few decades, a considerable amount of development has been made in 

symmetry met hods for differential equations. This is evident by the number of 

research papers, books [4-15] and many new symbolic softwares [16-24] devoted 

to the subject. 

Semi-invariants for the ( 1 + 1 )-dimensional linear parabolic equations with two in

dependent variables and one dependent variable were derived by Johnpillai and 

Mahomed [25]. In addit ion, the joint invariant equation was obtained for the lin

ear parabolic equation and it was found that the (1+1)-dimensional linear parabolic 

equation was reducible via a local equivalence transformation to the one-dimensional 

heat equation. In [26], a necessary and sufficient condition for the parabolic equa

tion to be reducible to the classical heat equation under the equivalence group was 

provided which improved on the work done in [25]. 

Goard [27] found group-invariant solutions of the bond-pricing equation by the 

use of classical Lie method. The solutions obtained showed that they satisfied the 

condition for the bond price, that is , P(r, T ) = 1, where Pis the price of the bond. 

Here r is the short-term interest rate which is governed by a stochastic differential 

equation and T is time to maturity. 

Pooe et al. [28] obtained the fundamental solutions for a number of zero-coupon 

bond models by transforming the one-factor bond pricing equations corresponding 

to the bond models to the one-dimensional heat equation whose fundamental solu

tion is well-known. Subsequently, the transformations were used to construct the 

fundamental solutions for zero-coupon bond pricing equations. 

Sinkala et al. [29] computed the zero-coupon bonds (group-invariant solutions sat

isfying the terminal condition u(T, T) = 1) using symmetry analysis for the Vasicek 
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and CIR equations, given by 

1 2 
Ut + 2 Cl Uxx + K; ( 0 - X) Ux - XU = 0, 

Ut + }o-2
XUxx + r;,(0- x) u x - XU = 0, 

respectively. In [30] an optimal system of one-dimensional subalgebras was derived 

and used to construct distinct families of special closed-form solutions of CIR 

equation. In [31], group classification of the linear second-order parabolic partial 

differential equation 

(2) 

where a, J3, ,\, p and I are constants was carried out . Lie point symmetries 

and group-invariant solutions were found for certain values of 'Y- Also the forms 

where the equation admitted the maximal seven Lie point symmetry algebra, (2) 

was transformed into the heat equat ion. Vasicek, CIR and Longstaff models were 

recovered from group classification and some other equations were derived which 

had not been considered before in the literature. 

Dimas et al. [32] investigated some of the well known equations that arise in the 

mathematics of finance , such as Black-Scholes, Longsaff. Vasicek, CIR and Heath 

equations. Lie point symmetries of these equations were found and their alge

bras were compared with that of the heat equation. The equations with seven 

symmetries were transformed to the heat equation. 

The assumption for the linear one-factor models applicable in liquid markets was 

that all traders are small , however , the assumption does not hold for illiquid mar

kets which means that we need to have nonlinear models. In any illiquid market 

there are few interested buyers and hence most of the traders are large traders and 

their trading strategies determine market prices. In addition, big energy companies 

may affect the electricity price and any strategy trying to hedge their cash fl.ow. 
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The general framework for securities ' pricing in arbitrage-free complete markets 

without large agents is derived in [33-36]. The option replication for a large trader 

has been studied in [37-41] using nonlinear models. 

In [37] the impact that derivative security markets have on market manipulation 

was investigated. Cvitanic and Ma [38] started by defining the large agent's impact 

function on the underlying price process and described option prices in terms of a 

forward-backward stochastic differential equation. The continuous-time version of 

Jarrow's model was studied in [39] and the existence and uniqueness of large agent 

hedging strategies for certain European options were proved. Option pricing under 

feedback effects from hedging was considered in [40 ,41]. 

Jonsson and Keppo [42] presented a framework to value vanilla options , that is , 

European options and a model to estimate the parameters in their equation. Also, 

the same equation was derived for a single hedging agent and mult iple hedging 

agents. A pricing game was considered which led to an equation for the number 

of outstanding options and it was shown that it was the same as determining 

the market shares of small and large agents. Numerical results were provided for 

option pricing in the presence of large and small agents, respectively. Recently 

a new partial Hamiltonian approach has been developed to deal with nonlinear 

modeb arising in matliematics of fina11ce and economic growth theory H:J]. 

In this dissertation, we study the nonlinear option pricing PDE 

1 ') 2 ') 
V - - S-0' e-av•v - TSV + TV = 0 

T 2 SS S l (3) 

which was first introduced in [42]. The parameter T = T - t is time to maturity, 

s is the underlying stock, r is risk-free interest rate and O' is the volatility. The 

number a is a measure of the combined effect that the hedging activities of the 

agents have on the option prices and the option price v . This equation was first 

derived by assuming directly the form of the large agent effect on the underlying 
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asset dynamics. 

The aim of this work is to investigate the symmetry properties of the one-factor 

term structure option-pricing model by Jonsson and Keppo [42]. An optimal sys

tem of one-dimensional subalgebras is derived which is used to obtain symmetry 

reductions and family of group-invariant solutions. 

The outline of this dissertation is as follows: 

In Chapter one , the basic definitions and theorems concerning the one-parameter 

groups of transformations are presented. 

In Chapter two, Lie symmetry method is employed to find symmetries of the 

Black-Scholes equation. The symmetries obtained are then used to compute group 

invariant solutions. 

In Chapter three, we find Lie point symmetries of equation 3 and obtain optimal 

systems of one-dimensional subalgebras . vVe also obtain group-invariant solutions. 

In Chapter four, a summary of the results of the dissertation is presented and 

future work is discussed. 

Bibliography is given at the end of this dissertation. 
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Chapter 1 

Lie symmetry analysis for partial 

differential equations 

In this chapter, we present some salient features of Lie symmetry analysis of partial 

differential equations (PDEs). vVe also provide the algorithm to determine the Lie 

point symmetries of PDEs. 

1.1 Introduction 

Lie group analysis was developed by Sophus Lie (1842-1899) in the lat er half of the 

nineteenth century. He showed that the majority of adhoc methods of integration 

of differential equations could be explained and deduced simply by means of his 

theory. Recently, many books have appeared in literature on this subject. These 

are Ovsianikov [4, 5], Bluman and Kumei [6], Bluman and Anco [7], Stephani [8], 

Olver [9], Ibragimov [10-12], Hydon [13], Cantwell [14] and Bluman et. al [15]. 

Definitions and results given in this Chapter are taken from the books ment ioned 

above. 
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1.2 Cont inuous one-parameter (local) Lie group 

A transformation will be understood to mean an invertible transformation, that is , 

a bijective map. Let t and x be two independent variables and u be a dependent 

variable. Consider a change of the variables t , x and u given by 

Ta : t = f (t,x,u ,a), x = g(t , x,u ,a), ii= h(t , x,u ,a), (1.1) 

where a is a real parameter which continuously ranges in values from a neighbour

hood 'D' C D C IR of a = 0 and f , g and h are differentiable funct ions. 

Definit ion 1. 1 A set G of transformations (1.1) is called a continuous one-parameter 

(local) Lie group of transformations in the space of variables t, x and u if the fol

lowing three conditions are satisfied: 

(i) For Ta. n E G where a. b E 'D' C D then nTa = Tc E G, c = </>(a, b) E 'D 

(Closure) 

(ii) T0 E G if and only if a= 0 such that To Ta = Ta To = Ta (Identity) 

(iii) For Ta E G, a E 'D' C D. Ta-I = Ta-1 E G, a- 1 E 'D such that 

Ta Ta-1 = Ta-1 Ta = To (Inverse) 

From (i) it follows that the associativity property is satisfied. Also, if the identity 

transformation occurs at a = a0 -/= 0, i.e. , Ta0 is the identity then a shift of the 

parameter a= a+ a0 will give T0 as above. The group property (i) can be written 

as 

I f( t , x , ii , b) = f (t , x ,u ,<f>(a , b)), 

x 

ii, 

g(t, x , ii, b) = g(t, x , u, </>( a, b)), 

h(t, x ,u ,b) = h(t ,x, u ,<f>(a,b)) . 

7 
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The function ¢ is termed as the group composition law. A group parameter a is 

called canonical if ¢( a, b) = a + b. 

Theorem 1.1 For any ¢( a, b), there exists the canonical parameter a defined by 

- r ds a cp (s, b) I 
a= l o w(s)' where w(s) = ob b=O. 

We now give the definition of a symmetry group for PDEs by considering, for 

example, evolutionary equations of the second-order, namely 

Ut = F(t, X, U, Ux, Uxx), (1.3) 

Definition 1.2 (Symmetry group ) A one-parameter group G of transforma

tions (1.1) is called a symmetry group of equation (1.3) if (1.3) is form-invariant 

(has the same form) in the new variables t, x and u, i.e., 

(1.4) 

where the function F is the same as in equation ( 1. 3). 

1.3 Infinitesimal transformations 

The Lie's theory st ates that, the construction of the symmetry group G is equiva

lent to the determination of the corresponding infinitesimal transformations : 

t ~ t + aT(t , x , u), x ~ x + a~ (t, x , u ), u ~ u + a17(t , x , u ) (1.5) 

obtained from (1.1) by expanding the functions f , g and h into Taylor series in a 

about a = 0 and also taking into account the initial conditions 

fja=O = t , g ja=O = X, h ja=O = U · 
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Thus , we have 

of l T(t , x,u) = ~ , 
ua a= O 

ogl 
~(t, x, u) = oa a=O' 

ohl TJ (t, x, u) = oa a=O . (1.6) 

The vector ( T, ~ ' 77) with components (1.6) is the tangent vector at the point (t, x, u) 

to the surface curve described by the transformed points ( t, x, u), and is therefore 

called the tangent vector field of the group G. 

'vVe introduce the symbol of the infinitesimal transformations by writ ing (1.5) as 

t ,:::;; (1 + a X )t , x ,:::;; (l + a X )x, u ,:::;; (l + a X )u, 

where 

(1. 7) 

This differential operator X is known as the infinitesimal operator or generator of 

the group G. If the group G is admitted by (1.3), we say that X is an admitted 

operator of (1.3) or X is an infinitesimal symmetry of equation (1.3). 

1.4 Group invariants 

Definition 1.3 A function F (t, x, u) is called an invariant of the group of trans

formation ( 1.1) if 

F (t , x, u) = F(f (t, x, u , a), g(t , x, u , a), h(t, x, u , a)) = F (t , x , u), (1.8) 

identically in t , x, u and a. 

Theorem 1.2 (Infinitesimal criterion of invariance ) A necessary and suffi

cient condition for a function F (t, x, u ) to be an invariant is that 

oF oF oF 
X F = T(t, x, u )at + ~(t , x , u ) ox + 77 (t , x, u ) ou = 0 . (1.9) 
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It follows from the above theorem that every one-parameter group of point trans

formations (1.1) has two functionally independent invariants, which can be taken 

to be the left-hand side of any first int egrals 

of the Lagrange 's system 

dt dx du 
T(t , X, u) ~(t, x, u) r7(t , x , u)' 

Theorem 1.3 Given the infinitesimal transformation (1.5) or its symbol X , the 

corresponding one-parameter group G is obtained by solving the Lie equations 

dt -
da = T(t , x, u), du (- ) 

da = T/ t , x, u (1.10) 

subject to the initial conditions 

1.5 Construction of a symmetry group 

We now briefly describe the algorithm to determine a symmetry group for a given 

PDE. Firstly, we need t o give some basic definitions. 

1.5 .1 Prolongation of point transformat ions 

Consider a second-order PDE 

(1.11) 

where t and x are two independent variables and u is a dependent variable. Let 

(1.12) 
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be the infinitesimal generator of the one-parameter group G of transformation 

( 1.1). The first prolongation of X is denoted by x [1l and is defined by 

[1] _ . ~ ~ 
X - X + (1(t, x, u, Ut , Ux ) a + (2(t, x , u , Ut, Ux) a , 

Ut Ux 

where 

(1 Dt (TJ ) - UtDt(T) - UxDt(~), 

(2 Dx(r7 ) - UtDx(T) - UxDx(() 

and the total derivatives Dt and Dx are given by 

a a a a - + Ut - + Utx - + Utt - + · .. · at au OUx OUt ' 
a a a a 
~ + Ux ~ + Uxx~ + Utx~ + · · · • 
uX uU UUx UUt 

Likewise, the second prolongation of X , denoted by x [2l , is given by 

where 

(n - Dt( (1 ) - UttDt(T) - UtxDt(~), 

(12 Dx((1) - UttDx (T) - Utx Dx(O, 

(22 Dx((2) - Utx Dx(T) - UxxDx((). 

Using the definitions of Dt and Dx, one can write 

(n 7Jtt + 2Ut7Jtu + Utt 'T/u + u;rJuu - 2UttTt - UtTtt - 2u;Ttu - 3UtUttTu 

- u:Tu,u, - 2Utx(t - Ux(tt - 2UtUx(tu - u;uX~1J,1J, 

11 
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(1.14) 

(1.16) 

( 1.17) 

(1.18) 



(1.19) 

(1.20) 

1.5.2 Group admitted by a PDE 

The operator 

X = T(t , x, u) :t + l; (t, x, u) :x + r7(t , x , u) :u , (1.21) 

is said to be a (generator of) point symmetry of the second-order PDE 

E (t, X, U, Ut, Ux, Utt, Utx · Uxx) = 0 (1.22) 

if 

(1.23) 

whenever E = 0. This can also be written as (symmetry condit ion) 

x [2l El = o 
E=O ' (1.24) 

where the symbol le=o means evaluated on the equation E = 0. 

Definition 1.4 Equation (1.24) is called the determining equation of (1.22), be

cause it determines all the infinitesimal symmetries of equation (1.22) . 

The theorem below enables us to construct some solutions of (1.22) from the known 

ones. 
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Theorem 1.4 A symmetry of equation (1.22) transforms any solution of (1.22) 

into another solution of the same equation. 

Proof: It follows from the fact that a symmetry of an equation leaves invariant 

that equation. 

1.6 Lie algebras 

Let X 1 and X2 be any two operators defined by 

and 

Defini t ion 1.5 (Commutator) The commutator of X1 and X2, written as [X1. X2], 

is defined by the formula X1 . X2] = X1(X2 ) - X2 (X1 ). 

Definition 1.6 (Lie algebra) A Lie algebra is a vector space L of operators such 

that , fo r all X1, X2 E L, the commutator [X1, X2] E L. 

The dimension of a Lie algebra is the dimension of the vector space L. 

It follows that the commutator is 

1. Bilinear: for any X , Y , Z E L and a, b E lR , 

[aX + bY, Z] = a[X, Z] + b[Y, Z], [X , aY + bZ] = a[X , Y] + b[X, Z]; 

2. Skew-symmetric: for any X, YE L, 

[X, Y] = - [Y,X]; 
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3. and satisfies the J acobi identity: for any X , Y, Z E L, 

[[X, Y], Z] + [[Y, Z], X] + [[Z, X ], Y] = 0. 

Theorem 1.5 The set of all solutions of any determining equation forms a Lie 

algebra. 

1. 7 Con cl us ion 

In this chapter we gave a brief introduction to the Lie group analysis of PDEs and 

presented some results which will be used throughout this work. vVe also gave the 

algorithm to determine the Lie point symmetries of PDEs. 
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Chapter 2 

Sym met ry analysis of t he 

Black-Scholes equation 

In this chapter we consider the Black-Scholes (BS) equation, which arises in fi

nancial mathematics. and compute its symmetry Lie algebra. vVe also find group

invariant solutions under five symmetry generators of the BS equation. BS equation 

( 1) was first investigated from the first perspective of Lie point symmetry analysis 

by Gazizov and Ibragimov [44], who found its symmetries and used two different 

transformations to transform it to the heat equation, which was used to solve the 

initial value problem. The invariance principle was used to construct the funda

mental solution that could be used for general analysis of an arbit rary initial value 

problem. 

Pooe et al. [45] obtained two classes of optimal systems of the one-dimensional 

subalgebras for the BS equation using the two transformations obtained by Gazizov 

and Ibragimov [44] that transformed BS to the heat equat ion. Sukhomlin and 

Ortiz [46] obtained solutions for the BS equation and the diffusion equation by 

ansat z using similarities between the two equations. Also in [46], the equivalence 
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group for the BS equation was established and the largest set of transformations, 

each of which converts the BS equation to the diffusion equation was obtained. 

In [47] two potential symmetries were found and used to obtain new solutions to 

the BS equation. First, the equation was written in conserved form which required 

the conservation laws. Conservation laws were found by the method of Kara and 

Mahomed [48] , which uses symmetries to directly compute the conservation laws. 

Many other researchers also studied the BS equation from the point of view of Lie 

symmetry analysis and pricing of contingent claims. See for example [32, 49-53]. 

2.1 Lie point symmetries of the Black-Scholes 

equation 

Consider the BS equation 

1 2 2 Ut + - AX Uxx + B xux - Cu = 0, 
2 

(2 .1 ) 

where A, B and C are constants. This equation admits the one-parameter Lie 

group of transformations with infinitesimal generator 

f) f) f) 
X = r(t, x, u ) fJt + t (t , x, u) fJx + TJ (t, x, u) fJu (2.2) 

if and only if 

x [2l(ut + ~A2x2Uxx + Bxux - Cu)I = 0. 
(2.1 ) 

(2.3) 

Using the definition of X [2l from the previous chapter, we obtain 

(1 + A XUxx( + (22-A X +(Bux+ Bx(2 - TJC = 0, 2 1 2 2 I 
2 (2.1 ) 

(2.4) 

where (1, (2 and (22 are given by equations (1.16), (1 .17) and (1.20) respectively. 

Substituting the values of ( 1 , (2 and (22 in equation (2.4) (and replacing Uxx by 
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A;x2 [ Cu - B xux - Utl ), we get 

[ 7Jt + Ut1Ju - UtTt - u;Tu - Ux~t - 'UtUx~u] + A2
~x [ A;x2 ( Cu - Bxux - Ut)] + 

1A2x2 [1Jxx + 2Ux1Jxu + u;r}uu - Ux~xx - 2u; ~xu - u!(uu - 2UtxTx -

UtTxx - 2UtU:z:Txu - 2U:z;UtxTu - UtU;Tuu + A;x2 ( Cu - Bxux - Ut ) 

( A 2x~ + 1Ju - 2~x - 3ux~u - UtTu ) ] = 0. (2.5) 

Since T , ~ and 77 are independent of the derivatives of u, we can split on the 

derivatives of u. This yields the following over determined system of linear PDEs: 

Utx Tx = 0, (2.6) 

UxUtx Tu = 0, (2.7) 

UtUx ~ 1.£ = 0, (2. 8) 

u2 
:z; 7luu = 0, (2.9) 

') 

Ut 2~x - ~~ - Tt = 0, (2.10) 
X 

A2 2 
•) ? X 

(2.11) U:z; -~t + B x~x + A-x -1}xu - ~~xx - B~ = 0. 

A2x2 2Cu 
(2.12) 1 7}t + Bxr}x - Cr7 + -

2
-1Jxx + 01..lT}u + ---;-~ - 201..l~x = 0. 

Equations (2.6) and (2.7) imply that 

T = a(t) , (2.13) 

where a(t) is an arbitrary function oft. Equat ion (2.8) gives 

~ = b(t , x), (2 .14) 

where b(t, x) is an arbitrary function oft and x. The integration of equation (2.9) 

twice with respect to u yields 

7J = c(t , x)u + d(t, x), (2 .15) 
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where c(t, x) and d(t , x) are arbitrary functions oft and x. Substituting this value 

of~ in (2.10), we obtain 

Solving the above equation for b(t, x) we obtain 

b(t, x) = l a' (t)x ln x + xe(t) , 

where e(t) is an arbitrary function oft. Thus 

1 
f, = 2 a'(t)x ln x + xe(t) . 

Substituting the values off, and 7/ in (2 .11 ), we obtain 

_ _ 1_ "( ) 
1 

e'(t) a'(t) _ Ba'(t) 
Cx - 2xA2 a t nx + xA2 + 4x 2xA2 · 

Integrating the above equation with respect to x, we obtain 

(2.16) 

(2.17) 

(2. 18) 

a"(t)(lnx) 2 Ba'(t)(lnx) e'(t)(lnx) a'(t)(lnx) 
c(t, x) = 4A2 - 2A2 + A2 + 4 + J (t ). (2.19) 

where f (t) is an arbitrary function of t. Substituting the values of f, and '7 in 

(2.12), we obtain 

A2x2 
CtU + dt + Bx(cxu + dx) - Cd(t, x) + -

2
- (cxxU + dxx) -

2cu(a'(t)gnx) +e(t)) +Cua'(t ) ln x=O. (2 .20) 

Separating (2.20) with respect to u, we obtain 

u A
2
x

2
Cxx '( ) Ct+ Bxcx + 

2 
- Ca t = 0 

A2 x2
dxx 

dt+Bxdx-Cd(t ,x) + 
2 

=0. 

Substituting the value of c from (2.19) into (2.21), we obtain 

a"' ( t ) (ln x ) 2 Ba" ( t) (ln x ) e" ( t ) ln x a" ( t) ln x , 
4A2 - 2A2 + A2 + 4 + f (t) + 

18 

(2.21) 

(2.22) 



Bx --- - -- + - + -+----- - --- + [ 
a" ( t) ln x Ba' ( t) e' ( t ) a' ( t) l A 2 x2 [ a" ( t ) a" ( t) ln x 

2A2x 2A2x A2x 4x 2 2A2x2 2A2x2 

Ba'(t ) - e'(t) - a'(t)] - Ca'(t) = 0. (2.23) 
2A2x2 A2x 2 4x2 

Separating (2.23) with respect to ln x , we obtain 

(ln x )2 

(lnx) 

1 

a111 (t) = 0 

e" (t) = 0 
, B 2a'(t) Be' (t) Ba' (t ) 

f ( t ) - 2A 2 + A 2 + 2 + 
a" ( t) e' ( t) A 2 a' ( t) , 
-

4
- - -

2
- -

8 
- Ca (t) = 0. 

Integrating (2.24) with respect to t three times, we obtain 

A-+2 
a(t ) = T + A2t + A3 . 

Now integrating (2.25) gives 

Substituting the values of a(t ) and e(t ) into (2.26), and integrating gives 

f( t) = B2A1t2 B2 A2t _ BA4t _ BA1t'2 _ BA2t _ A1t 
4A2 + 2A2 A2 4 2 4 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

+At+ A2~lt2 + A2:2t + C~1t2 + CA2t + A5 . (2.29) 

Substituting the values of e(t), a(t) and J(t) into (2.19) we obtain 

( ) 
_ A1(lnx)2 _ B (A1t + A2) lnx A4 ln x (A1t + A2) lnx 

C t , X - 4A2 2A2 + A2 + 4 + 
B2 A1t2 B2 A2t BA4t BA1t2 BA2t A1t A4t 

4A2 + 2A2 - ~ - 4 - - 2- - 4 + 2 + 

A2~1t2 + A2:2t + C~1t2 + CA2t + A5. (2.30) 

Thus 

(2 .31 ) 
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1 
( = 2(A1t + A2)x lnx + x( A4t + A5 ) 

-(A1 (lnx)2 
_ B (A1t+A2 ) lnx A4lnx (A1t+A2) lnx 

11 - 4A2 2A2 · + A2 + 4 

B 2 A1t2 B 2 A2t BA4t BA1t2 BA2t A1t A4t 
+ 4A2 + 2A2 - A2 - 4 - -2- - 4 + 2 

A2 A1t2 A2 A2t CA1t2 ) + 
16 

+ 
8 

+ 
2 

+ CA2t + A6 u + d(t , x ) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

where D = B-A.2 / 2 and dis an arbitrary solution of (2.1 ). Furthermore, X 1 . • • • , 

X6 are operators which generate six parameter group and Xd generates an infinite 

group. 

2.2 Invariant solutions of the BS equation 

In this section we construct group-invariant solutions under some of the symmetry 

operators of the BS equation. We start with the operator X1 . 

Case 2 .1 Let us calculate the invariant solut ion under the symmetry operator X1 . 

The operator X 1 is given by 
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The characteristic equations are 

dt dx du 
-

1 0 0 ' 

which provide the two invariants 11 = x and 12 = u. Thus, the invariant solution 

is given by 12 = ¢( 11 ), that is , 

u = </>(x). 

Substituting this value of u in (2.1), we obtain the following Cauchy-Euler ODE 

~ A2x2¢>" + Bx</>' - C</> = 0 2 . 

The solution of this Cauchy-Euler equation is given by 

(2.41) 

where K 1 and K 2 are arbitrary constants. Hence the invariant solution of (2.1 ) 

under X1 is 

(2.42) 

Case 2.2 'vVe now obtain the invariant solution under the symmetry operator 
f) 

X2 = X ax. 
The characteristic equations are 

dt dx du 
0 X O ' 

which provide the two invariants 11 = t and 12 = u . Thus the invariant solution 

is given by 12 = ¢(11) , i.e., 

u = </>(t). 

Substituting this value of u in (2.1 ), we obtain 

</>' - C</> = 0. 
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Thus the second-order Black-Scholes PDE (2.1) reduces to first-order ODE 

d¢ - C¢ = 0. 
dt · 

Solving the above variables separable equation, we obtain 

¢(t) = K exp ( Ct), 

where K is an arbitrary constant of integration. Hence the invariant solution of 

( 2 .1) is given by 

u(t , x) = K exp(Ct). 

Case 2.3 Let us now construct an invariant solution under the symmetry gener

ator 
8 8 8 

X3 = 2A
2
t at+ A2

xlnx ox+ (2A
2
Ct + D2t - Dln x)u ou' 

where D = B - A2 / 2. 

The characteristic equations 

dt dx du 

2A2t A2x ln x (2,FCt + D 2t - D ln x)u 

( 
D

2 
) Dln x 

provide the two invariants 1 1 = ln x / .Ji and 12 = t 
2
A 2 + C - ~ . Thus 

the invariant solution is given by 12 = </>(11), i.e ., 

{ ( 
D

2 
) Dlnx} (lnx) u = t 2A2 + C - ~ ¢ .Ji, . 

Substituting this value of u in (2.1 ), we obtain 

2 " , lnx A ¢ - z¢ = 0 where z = .Ji, . 

The solution of the above second-order ODE is given by 

22 



where c1 and c2 are arbit rary constants and Erfi (z) denotes the imaginary error 

function Erf(iz)/i [54]. Hence the invariant solution of (2.1) under X 3 is given by 

{ ( 
D

2 
) D ln X } ( F ( ln X ) ) u(t, x) = t 

2
A2 + C -~ y 2Ac1 Erfi Av'2t + c2 . 

Case 2.4 Let us calculate the invariant solution under the operator X4 , namely 

where D = B -A2/ 2. 

Now 

The characteristic equat ions of (2 .43) are 

dt dx du 
0 A2tx (ln x - Dt)u · 

Thus, one invariant is J1 = t. The other is obtained from the equation 

dx du 
_--l2tx (ln x - Dt)u ' 

{ 
(lnx - Dt)2

} 
and is given by J2 = u/ exp 

2
A2t . 

Consequently, the invariant solution of (2.1 ) under X4 is J2 = ¢(J1), i.e., 

{ 
(lnx - Dt)2

} 
u = exp 2A2t </>(t), 

(2.43) 

(2.44) 

where </> is an arbitrary function oft. Substituting (2.44) into equation (2.1), gives 

This is a fin,t-order variables separable equation and its solutions is given by 

23 



where K is an arbitrary constant, and hence the invariant solution of the BS 

equation under the operator X4 is 

K {. (lnx - Dt) 2 
} 

u(t, x) = .,fl exp 2A2t + Ct . 

Case 2.5 Let us find the invariant solution under the operator X5 , namely 

The characteristic equations are 

dt dx du 
2A 2t2 2A 2tx ln x 

By considering 

dt dx 
2A2t2 2A2txlnx 

lnx 
and integrating, we obtain one invariant as J1 = T he other invariant is 

t 
obtained from the equation 

dt 
2A2t2 

du 

{ 
(lnx - Dt)2 

} 
and is given by J2 = u.fi/exp 

2
A2t + Ct • 

Consequently, the invariant solution under X5 is J2 = ¢(J1), i.e. , 

_ J_ { (lnx - Dt)
2 

C } ,1... (lnx) 
u - .,fl exp 2A2t + t 'f' t . 

Substituting u, Ut, Ux and Uxx in (2.1) and simplifying yields 

¢" = 0. 

24 

(2.45) 

(2.46) 



Solving equation (2.46) we obtain </>(11 ) = K 111 +K2 where K 1 and K 2 are arbitrary 

constants of integration . Hence equation (2.45) becomes 

Remark: vVe note that the operators X6 and Xd do not provide invariant solutions. 

2.3 Conclusion 

In this chapter we obtained the symmetry Lie algebra for BS equation. This 

equation arises in the mathematics of finance . We then constructed group-invariant 

solutions under some infinitesimal generators of the BS equation. 
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Chapter 3 

Lie symmetry analysis of a 

nonlinear Black-Scholes equation 

3.1 Introduction 

In this chapter we study a nonlinear option pricing PDE in the presence of large 

traders given by 
1 2 ? ? 

V - -S a- - e - av,V - TSV + TV = 0 
T 2 SS S l (3.1 ) 

which was first int roduced in [42]. 

vVe start by determining the Lie point symmetries of (3.1 ) and then use them to 

find a one-dimensional opt imal system of subalgebras from its Lie bracket and the 

adjoint representation table. We then perform symmetry reductions and obtain 

group-invariant solutions through the use of elements of the optimal system. 

This work has been submitted for publication [55]. 
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3.2 Lie point symmetries of (3.1) 

The Lie point symmetries for (3.1) are given by the vector field 

if and only if 

where 

Here (i's are given by 

(1 = DT(''7) - vT DT (e) - VsDT(e), 

(2 = Ds(TJ ) - vT Ds(e) - Vs Ds(e), 

where the total derivatives D 7 and Ds are defined as 

(3.2) 

(3.3) 

Expanding equation (3.3) and replacing vT by ½s2CJ2e2av.Vss + rsv8 - rv, we obtain 

+ 2s2 CJ2V8 V58 e2avs ( s2 
CJ

2 e2avs ~;v + 2ar s~; - 2arv~; + 2a~; - 2arJv + 2~~) 

+ s2 CJ2 v;vsse2avs (s2CJ2 ~;ve2av. + 4ars~; + 4a~~) 

+ SC72V88e2av. ( CJ
2 s3 ~;

8
e2av. - 4ar sv~; - 4aSTJ8 - 4e + 2r S2 

~; + 2r sv~; 
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+ 4vs (-e + r 2s2
~; + r 2sv~; - c2r - rs~;+ rs(;+ rv~~) 

- 2s
2 

0'
2 e2avs ( rv~;s + rJss) - 4r2 sv~; - 4r2v2 e; - 4r SrJs + 4rv~; - 4rVrJv 

On separating the above equation on derivatives of v we get an overdetermined 

system of linear PDEs 

V
2 . _cl _ 0 
ss · '>s - , 

V V · s 2
n-

2 e2av.,cl + 2arscl - 2m·vC 1 + 2a c 2 - 2an + 2.C2 = 0 s ss · v '> sv C,,s '>v '>s •iv '>v , 

V · e72 s3c1 e2av. - 4arsvP - 4asn - 4,c 2 + 2rs2F1 + 2rsvC1 
- 2s.C1 + 4s,c2 = 0 ss . '>ss '>S • IS .,, '> S ',,v ',,T '> S ) 

'),c2 - - 0 -',, sv 7lvv - , 

. ') 2 2 2av. ( ,cl _ ') ,cl + c 2 _ 2 ) + 1 (-,c2 , 2 2,cl + 2 ,cl Vs . ~S O' e rs',, ss ~rv.,,sv ss 7lsv -± ',,T Tr S ',s r sv.,,v 

Simplifying the above system and further splitting on ev•, we obtain 

(; = 0, (3.4) 

1 0 (V = ) (3.5) 

<;~ = 0, (3.6) 

'r/ss = 0, (3.7) 
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17vv = 0, 

·r1v - es= 0, 

rry + 77T - rs775 - TV77v + rv~; = 0. 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

To solve the above system of equations, we first observe from equations (3 .4) and 

(3.5) that e does not depend on s and v, which means that e is a function of T 

only. Thus 

(3.14) 

Equation (3.6) implies that (2 depends on both T and s but not on v. Thus 

(3.15) 

Integration of equation (3 .7) with respect to s twice gives 

(3. 16) 

where A(T, v) and b(T. v) are arbitrary functions of T and u. Using the expressions 

for 77 and (2 into (3.9) we obtain 

The above equation can be satisfied if and only if 

~;5 (T, s) = c(T), 

2Av(T, v) = c(T), 

(3 .17) 

(3.18) 

where c( T) is an arbitrary function of T. Solving equations (3.17) and (3.18) we 

obtain 

(3.19) 
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vc(T) 
A (T, v) = - + d(T), 

2a 
(3.20) 

where d(T), e(T) and j(T ) are arbitrary functions of T. Substituting (3.20) into 

(3 .16) yields 

(3.21) 

Substituting (3.21 ) into (3.8) and integrating twice with respect to v we get 

(3.22) 

where g(T) and h(T) are arbitrary functions of T. Substituting (3 .22) into (3. 21 ) 

we obtain 

(3 .23) 

Substituting the expressions of T/ and e into equation (3 .10) and separating on s, 

we obtain 

S: c(T) = 0, 

1 : j(T) = g(T). 

The two above equations mean that 

e = sg(T) + e(T), 

T/ = sd(T) + vg(T) + h(T). 

Substituting (3.14), (3.26) and (3.27) into equation (3. 11) we get 

After splitting the above equation on s we obtain 
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(3 .25) 

(3 .26) 

(3.27) 

(3 .28) 



(3.29) 

Hence the new expression for e is given by 

(3.30) 

Using expressions (3.14) and (3.30) in equation (3.12) yields 

(3.31) 

Integrating the above equation with respect to T and making e subject of formula 

we obtain 

(3.32) 

where c1 is an arbitration constant of integration. 

Substituting equations (3.32), (3.30) and (3. 27) into equation (3 .13) we obtain 

The above equation gives the following two equations on splitting on s 

s: d1(T) = 0, 

1 : h' ( T) + r h ( T) = 0. 

Integration of equations (3.33) and (3.34) yield 

(3.33) 

(3.34) 

(3.35) 

(3 .36) 

where c2 and c3 are arbitrary constants of integration. Substituting (3.32) into 

(3.29) and integrating we get 

(3.37) 

31 



where c4 is an arbitrary constants of integration. Hence we get the following 

solution of equations (3.4) - (3.13): 

cl () 2 C4 <,, T = C1 - aC3T - - , 
r 

e(T, s) = 2aC3TST + C4S, 

(3.38) 

(3.39) 

(3.40) 

Thus the Lie algebra of infinitesimal symmetries of (3.1) is spanned by the four 

vector fie lds 

(3.41) 

3.3 Optimal system of one-dimensional subalge

bras of (3.1) 

In this section we determine the set of equivalent families of group-invariant so

lutions from which all other solutions can be derived. Since there are too many 

combinations of symmetries to construct group-invariant solutions, it is not usu

ally feasible to list all possible group-invariant solutions of a certain differential 

equation. We need an effective, systematic means of classifying these solutions, 

leading to an optimal system of group-invariant solutions [9]. 

In this regard we first need to find the optimal system of one-dimensional subalge

bras. vVe start by computing the tables of Lie Brackets and the adjoint represen

tation. 
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3.3.1 Computation of Lie Bracket 

For any two symmetries X i and Xj , its Lie bracket is given by [Xi, Xj] = Xi(Xj) -

Xj (X i). The Lie Bracket has the properties that it is skew-symmetric, that is, 

[Xi, Xj] = - [Xj , Xi] and that the diagonal elements in the Lie bracket table are 

all zero. The Lie Bracket table for the four Lie point symmetries of (3.1) is given 

in Table 3.1. 

Table 3.1: The Lie Bracket table of Lie point symmetries 

[, l X1 X2 X3 X4 

X1 0 - rX2 0 2arX3 

X2 rX2 0 0 0 

X3 0 0 0 -2aX3 

X4 - 2arX3 0 2aX 3 0 

3.3.2 Adjoint representation 

To compute adjoint representations of symmetry operators (3 .41) for equation 

(3.1), we use the result given in [9] 

Thus, the entries of table of adjoints are tabulated in Table 3.2. 
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Table 3.2 : Adjoint representation of Lie point symmetries 

Ad X1 X2 X3 X4 

X1 X1 ere X2 X3 -2an:X3 + X4 

X2 X1 - r cX2 X2 X3 X4 

X3 X1 X2 X3 2acX3 + X4 

X4 X1 + r (1 - e- 2a1o) X3 X2 e- 2a1o X3 X4 

3.3 .3 Opt imal system of one-dimensional subalgebras 

The Lie algebra L4 spanned by the four Lie point symmetries provides a possibility 

to find invariant solutions of equation (3.1 ) which is based on an optimal system 

of one-dimensional subalgebras of L4 . In light of this we can write an arbitrary 

operator from L4 as 

(3.42) 

which depends on the four arbitrary constants a1 , a2 , a3 , and a4 . 

To construct the optimal system of one-dimensional subalgebras, we follow the 

method given in [9]. We act by adjoint map generated by X 2 and obtain 

X = Ad(ecX2 )X 

= a1 (X1 - rcX2 ) + a2X2 + a3X3 + a4X4 

= a1X1 + (a2 - a1rc) X2 + a3X3 + a4X4. 

If a1 =f O and without loss of generality we choose a1 = 1, we can set E = a2/ r 

which results in 
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Furthermore, if we assume a4 -=/- 0 and that a4 = 1, then when we act on X by the 

adjoint map generated by X 3 we get 

- X -
X = Ad(ee 3 )X = X1 + a3X3 + 2acX3 + X4 

= X1 + (a3 + 2ac) X3 + X 4 . 

We set c = - a3/( 2a) and obtain 

which cannot be simplified further. 

Now, if we assume a4 = 0 and a1 = 1 in (3.42) then we obtain X = X 1 + a2 X 2 + 
a3X 3. The groups generated by X 2 and X--1 make the coefficients of X2 and X 3 

vanish, respectively. Hence, X is simplified to X1 . 

vVe now consider the case when a1 = 0 but a4 = 1. The group generated by X3 

makes the coefficient of X3 vanish and we get 

which cannot be simplified further. 

We now consider a1 = 0 and a4 = 0 in (3 .42). This lead to 

The group generated by X 1 when it acts on X gives 

(3.43) 

If we assume a3 -=/- 0 and a3 = 1, then we can choose c such that a2ere is equal to 

0, ±1. Therefore, we get 

Lastly, we set a3 = 0 in (3.43), which results in X 2 . 
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Hence, the one-dimensional optimal system of subalgebras of (3.1) is given by 

The discrete symmetry (T, x , v) i---+ (T, -s, - v) will map X 3 - X 2 to X 3 + X2 , and 

hence the final optimal system of one-dimensional subalgebras is given by 

3.4 Symmetry reductions and group-invariant 

solutions 

We use the optimal system of one-dimensional subalgebras computed in the previ

ous section to construct group-invariant solutions of equation (3. 1). This system of 

one-dimensional subalgebras gives six cases of group-invariant solutions. vVe note 

that operator X2 does not have useful invariants, hence it is omitted when finding 

invariant solutions . 

Case 1. X1 

The invariants are found from the solution of the associated Lagrange's system 

dT ds dv 

1 0 0 

and are J1 = s and J2 = v. Thus, the group-invariant solution of the equation 

(3.1) is given by v = f (s), where f (s) satisfies the nonlinear ODE 

2r f(s ) - 2rsf' (s) - s2 e72 e2af' (s) f" (s) = 0. (3.44) 

Equation (3.44) has one Lie point symmetry 
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The first-order invariants of G are used to reduce (3.44). These invariants are 

found from the solution of the associated Lagrange 's system 

ds df df' 

s f 0 

and are u = f /sand w = f' . Using these invariants the equation (3.44) is trans

formed to 
dw -2r 

This is a variables separable equation whose solution is given by 

4ar 
e2aw = --2 U + C1, 

(J 

where c1 is a constant of integration. Reverting back to the original variables we 

obtain 
2av' 4arv 

e = --- +c1 
sa2 

which can be reduced to the quadrature 

J dv 
S + C2 = 2a 1 ( 4arv ) . 

n C1 - a2s 

Case 2. X3 

For this Lie point symmetry, the invariants are J1 = verT and J2 = sen and hence 

the group-invariant solution is J1 = J(J2), that is, 

(3.45) 

Substituting (3.45) into (3.1), we obtain f" = 0, whose solution is f = c1serT + c2 . 

Thus, the group-invariant solution under X 3 is 

where c1 and c2 are constants of integration. 
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The two invariants of X 2 + X 3 are 11 = serr and 12 = TT + verT, and the group

invariant solut ion is v = e-rT [f ( () - TT] , where ( = serr and f satisfies the second

order nonlinear ODE 

(3.46) 

The solution of equation (3 .46) is given by 

and hence the group-invariant solution of (3.47) under the symmetry X 2 + X 3 

( ) _ -rT( 1 { rTl [') ( 2re-"T )] 2rln (ciso-
2
en +2r)} v T, s - e - se n ~a c1 + 2 + 2 2a SO- C10" 

+ C2 - TT ) , 

where c1 and c2 are arbitrary constants. 

For the symmetry operator X 1 + X4 we have the two invariants given by 

The group-invariant solution of (3.1) is given by 

1 { ( ln(l-2aT) T)}( TT r ) v= - exp 2ar -
2 

-- 2af(()-se (1-2aT)2°ln(l-2aT), 
2a 4a 2a 

where ( = serT (1 - 2aT Y l(2a) and f satisfies the second-order nonlinear ODE 

(3.48) 

The equation (3 .48) has one Lie point symmetry which is given by 
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The first-order invariants of G are used to reduce (3.44) . These invariants are 

found from the solution of the associated Lagrange 's system 

d( 

( 
-

df 

f 
df' 

0 

and are u = f / ( and w = f'. Using these invariants the equation (3.44) is trans

formed to 

dw = 2e-
2
aw ( 1 _ r) 

du u2 (w - u) · 

For the symmetry operator X4 + bX2 we get the two invariants 

J 
rT d J erT(s ln(2arT + b) + 2av) 

1 = se an 2 = ---------. 
2a 

The group-invariant solution of equation (3. 1) is given by 

v = e-rT f (.:-) _ s ln(2arT + b), 
2a 

where z = serT and f ( z) satisfies the second-order nonlinear ODE 

The solution of the above equation is given by 

1 { ( 2r z ln z) ~ ( u
2 
c1 ) } </>( z) = 

2
a 2az ln c1 - Cl2 - e 2r Ei ln z - ~ + c2 , 

where c1 and c2 are arbitrary constants and Ei is the exponential integral function 

[54]. Thus, the group-invariant solution of (3. 1) under symmetry X4 + bX2 is 

s ln(2arT + b) ecw2 
/

2r-rTEi (ln ( erT s) - u 2ci/2r) 
v( 7 ' 8 ) = - 2a - 2a 

sln [2a(c1 - 2rln (ser7 )/u2
)] -1.. -rT 

+ 
2
a , c2e . 
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3. 5 Con cl us ion 

In this chapter, we showed that the nonlinear Black-Scholes PDE (3 .1 ) admitted a 

four-dimensional Lie algebra. We used this four dimensional Lie algebra to compute 

the optimal system of one-dimensional subalgebras. With the help of the optimal 

system found, we performed symmetry reductions and constructed group-invariant 

solutions of equation (3.1). The solutions might have applications in finance and 

other fields of study. 
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Chapter 4 

Concluding remarks 

In recent years many phenomena in fina.ucial mathematics have been modelled by 

linear amt nonlinear partial differential equations. The first. mathematical model 

was provided by Black and Scholes and the partial differential equation is called 

Black- choles eqnation. 

In this dissertation we first recalled some important definitions and results from 

Lie group analysis, which were later used in the dissertation. 

In Chapter two we studied the Blc1.ck- cl1oles equation. VVe fin;t obtained the Lie 

point symmetries of the Black-Scholes equatiou. We the11 used five symmetries of 

thi::; e4uation and obtained five group-invariant solution::;. 

In Chapter three, we first obt ained Lie point symmetries of the nonlinear Black

Scholes equation (3.1). vVe showed that the Lie algebra consisted of four sym

metries. We then used these symmetries to determine an optimal system of one

dimensional subalgebras of (3.1). Finally, the group-invariant solutions of (3.1) 

were constructed based on the optimal system of one-dimensional subalgebras of 

(3.1). 
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In future work, I intend to compute group-invariant solutions of the nonlinear 

Black-Scholes equation (3.1) that would satisfy the terminal conditions. 
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