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ABSTRACT  

A simplistic view of an unmanned aircraft is that it is an aircraft with a computer system and a 

radio-link that replaces the pilot. The unmanned aircraft merely forms part of the total system 

referred to as an Unmanned Aircraft or Aerial System (UAS). UASs have become a pervasive 

technology in diverse fields, from recreational to advanced military applications. Similar to many 

modern technologies, UASs have become less expensive and simpler to attain. A UAS can be 

controlled manually or autonomously through various methods. Existing UAS control methods 

and the possible means to simplify UAS control and improve automation techniques are 

discussed. The first simplified control system uses accelerometer data from a smartwatch to 

control the pitch, yaw, and roll of the UAS. A gesture recognition system presented in this study 

was implemented by using a smartwatch that captures accelerometer data, based on the hand 

gestures made by the pilot. The accelerometer data is then analysed by a Fast Fourier 

Transformation (FFT) and sent to a radial basis function neural network (RBFNN) to identify the 

gestures. Various automated tasks are assigned to these identified gestures to improve 

automation and simplify UAS control. A following function is also introduced to enable the UAS 

to autonomously follow the pilot, based on the GPS coordinates of the hand-held device. The 

UAS is further automated by using an activity recognition system that uses an accelerometer to 

gather data from the smartwatch while the pilot is doing an activity. The data is processed by an 

FFT and used to train an RBFNN model which then predicts the activity that was performed. 

Based on the activity that was identified, the speed of the UAS has been adjusted accordingly. 

The experiments show that the RBFNN can accurately distinguish between the different 

gestures. The RBFNN is also able to accurately predict the activity that was performed by the 

pilot. UAS control is simplified by enabling the UAS to autonomously follow the pilot, based on 

GPS coordinates, enabling the pilot to focus on other activities instead of flying the UAS. The 

ability of the RBFNN to identify gestures performed by the pilot enables the pilot to easily send 

control instructions to the UAS without the need to carry a bulky remote control in his/her hand. 

The RBFNN also improves UAS automation by autonomously identifying the activity the pilot is 

performing and then adjusting the speed accordingly, allowing the pilot to focus on other 

activities.  

Key terms: Artificial Intelligence Agents, Automation, Fast Fourier Transformation, Radial basis 

function neural network, Unmanned aerial vehicle, Unmanned Aircraft or Aerial System, UAS 

Control methods. 
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OPSOMMING 

’n Vereenvoudigde siening van 'n onbemande vliegtuig is dat dit 'n vliegtuig is met ’n 

rekenaarstelsel en radioskakel wat die vlieënier vervang. Die onbemande vliegtuig vorm slegs 'n 

deel van die algehele stelsel wat bekend staan as 'n onbemande vliegtuig of lugstelsel (OLS). 

OLS’e het 'n deurdringende tegnologie op verskillende terreine geword, van ontspannings- tot 

gevorderde militêre toepassings. Net soos baie moderne tegnologieë, het OLS’e goedkoper en 

eenvoudiger geword. ’n OLS kan deur middel van verskillende metodes met die hand of 

outomaties beheer word. Bestaande OLS-beheermetodes en die moontlike maniere om OLS-

beheer te vereenvoudig, asook die verbetering van outomatiseringstegnieke word bespreek. 

Die eerste vereenvoudigde beheerstelsel gebruik versnellingsmeterdata van 'n slimhorlosie om 

die toonhoogte, draai en rol van die OLS te beheer. Die gebaarherkenningstelsel wat in hierdie 

studie bespreek word, is geïmplementeer deur gebruik te maak van 'n slimhorlosie wat 

versnellingsmeterdata vaslê wat gebaseer is op die handgebare wat deur die vlieënier gemaak 

word. Die versnellingsmeterdata word dan ontleed met ŉ Vinnige Fourier Transformasie (VFT) 

en na 'n radiale basisfunksie neurale netwerk (RBFNN) gestuur om die gebare te identifiseer. 

Verskeie outomatiseringstake word aan hierdie geïdentifiseerde gebare toegewys om die OLS-

beheer te verbeter en outomatisering te vereenvoudig. Daar word ook ’n volgfunksie ingestel 

om die OLS in staat te stel om die vlieënier outonoom te volg op grond van die GPS-koördinate 

van die handtoestel. Die OLS word verder geoutomatiseer deur gebruik te maak van 'n 

aktiwiteitherkenningstelsel wat ’n versnellingsmeter gebruik om data vanaf die slimhorlosie in te 

samel, terwyl die vlieënier 'n aktiwiteit doen. Die data word verwerk deur ŉ VFT en gebruik om 

'n RBFNN-model op te lei met die aktiwiteit wat uitgevoer is en om die aktiwiteit dan te voorspel. 

Op grond van die aktiwiteit wat geïdentifiseer is, word die spoed van die OLS 

dienooreenkomstig aangepas. Die eksperimente wys dat die RBFNN akkuraat tussen die 

verskillende gebare kan onderskei. Die RBFNN is ook in staat om die aktiwiteit wat deur die 

vlieënier uitgevoer is, akkuraat te voorspel. OLS-beheer word vereenvoudig deur die OLS in 

staat te stel om die vlieënier outonoom te volg op grond van die GPS-koördinate. Dit stel die 

vlieënier in staat om op ander aktiwiteite te fokus in plaas daarvan om die OLS te beheer. Die 

vermoë van die RBFNN om gebare wat deur die vlieënier uitgevoer word, te identifiseer, stel die 

vlieënier in staat om beheerinstruksies maklik aan die OLS te stuur sonder om 'n lywige 

afstandbeheer in sy/haar hand te dra. Die RBFNN verbeter ook OLS-outomatisering deur die 

aktiwiteit wat die vlieënier uitvoer outomaties te identifiseer en dan die spoed daarvolgens aan 

te pas, sodat die vlieënier op ander aktiwiteite kan fokus. 

Sleutelterme: Kunsmatige Intelligensie-agente, Onbemande vliegtuig of lugstelsel, 

Outomatisering, Radiale basis funksie neurale netwerk, OLS-beheermetodes, Onbemande 

lugvaartuig, Vinnige Fourier Transformasie. 
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CHAPTER 1  INTRODUCTION 

A simplistic view of an unmanned aircraft1 is that it is an aircraft with no pilot on-board (Austin, 

2010). A computer system and a radio-link replace the pilot, but it is more complicated than that. 

The unmanned aircraft merely forms part of the total system referred to as an Unmanned 

Aircraft or Aerial System (UAS). The UAS has become a pervasive technology in diverse fields, 

from recreational to advanced military applications (Haluza & Cechak, 2016). Like many modern 

technologies, UASs have become less expensive and simpler to attain (Haluza & Cechak, 

2016). 

 

In this chapter, a background on UASs is given in Section 1.1. Defining automation is discussed 

in Section 1.2. Key UAS terminology is presented in Section 1.3, followed by a discussion on 

UAS applications in Section 1.4. In Section 1.5, UAS control automation is discussed. The 

problem statement is given in Section 1.6, followed by the research aim and objectives in 

Section 1.7. Ethical considerations are discussed in Section 1.8. The outline of the chapters is 

considered in Section 1.9, and in Section 1.10, the conclusion to the chapter is given. 

1.1 Background 

Before beginning the review of the present research and discussion of the aim of this study, it is 

beneficial to investigate and understand the history of UAS technology. The history of 

unmanned aircraft is the history of all aviation (Leylek & Costello, 2012). From centuries past, 

when the Chinese kites graced the skies to the first hot air balloon, unmanned flying was 

investigated first before the risk of testing manned aircraft. One of the earliest applications of the 

unmanned flight was by the Chinese general, Zhuge Liang. Liang used paper balloons fitted 

with oil-burning lamps that heated the air inside the balloon. Liang flew the balloons over the 

enemy at night to let them believe there was a divine force at work. Next, other forms of vertical 

flight and history are discussed.  

1.1.1 Kites 

A kite has a thin piece of string attached to it, and this is used to control the kite by pulling on 

the other end of the string. This is a form of unmanned aerial control in the same sense that a 

UAS is controlled by a controller that is held in a person’s hand. 

The exact origin of the kite is not known, but there are a few possible theories on the origination. 

One of these theories, as suggested by Waley (1936), is from an ancient Chinese method 

 
1 Although some people may find the term unmanned dated or non-inclusive in this context, it is frequently 

used in literature on Unmanned Aircraft or Aerial Systems. 
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where an arrow is shot with a line attached to it. When the arrow is shot, it could then be 

retrieved by hauling it in. 

One of the earliest forms of an unmanned application was when Chinese general Han Hsin flew 

a kite over the city walls of his enemy. Hsin wanted to measure the distance required by his 

army to dig a tunnel that would go past the enemy's defences (Needham, 1965). During World 

War I, man-lifting kites were invented for enemy observation (American Kitefliers Association, 

2016). Today, a UAS can be used, and there is no need for a pilot to be on board.  

1.1.2 Hot-air balloons 

Hot-air balloons are one of the oldest successful human flight technologies (Federal Aviation 

Administration, 2012). On 19 September 1783, Pilatre De Rozier launched the first hot-air 

balloon called “Aerostat Reveillon” into the air (Walker, 1975). The first passengers were a 

sheep, a duck, and a rooster. The first human-crewed hot-air balloon flight happened about two 

months later in Paris and flew for about 20 minutes. This was one of the first manned vertical 

flights. Unmanned air balloons equipped with sensors are currently used by the National 

Weather Service to predict the weather. Hot-air balloons are also found in the history of the 

military. Napoleon used anchored observation balloons in some of the battles and considered 

using balloons to ferry troops in his proposed invasion of England (Federal Aviation 

Administration, 2012). Today, UASs are used for military observations, and it is easier to control 

a UAS than it is to control a balloon.  

1.1.3 Unmanned aerial vehicles and systems 

Unmanned aerial vehicles (UAV) have captivated the imagination of humans for centuries 

(Valavanis & Vachtsevanos, 2015). The idea of a flying vehicle was thought to have first been 

perceived about 2 500 years ago, in ancient Greece and China. Pythagoras, Archimedes, and 

other inventors studied the use of autonomous machines for various applications. Archytas, 

from Tarentum in the south of Italy, is known as the Leonardo da Vinci of the ancient world.  In 

425 B.C. he developed the first autonomous flying machine, a mechanical bird made of wood, 

known as the pigeon. The bird flew using compressed air that was in the form of steam and was 

enclosed in the bird's stomach. The bird flew for about 200m before it started to fall to the 

ground after its energy was depleted. During the same era, in China, the first concept of an 

aircraft that could achieve vertical take-off and landing (VTOL) was documented (Leishman, 

2006). VTOL is a technique in which the aircraft rises directly into the air and lands vertically 

onto the ground. The device consisted of feathers at the end of a stick that was spun between 

hands to generate enough lift before it was released into the air for free flight. In 1483 Leonardo 

da Vinci designed an aircraft called the aerial screw (Valavanis et al., 2007). He envisioned that 
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the device could be capable of hovering. From these examples, it is apparent that man has 

been fascinated by flight for ages. 

UAVs, unmanned ground vehicles (UGVs), unmanned surface vehicles (USVs) (operating on 

water surfaces), and unmanned underwater vehicles (UUVs) all share a few standard features. 

Some of these features include architecture, propulsion, communication (which includes 

control), and technology that aims to improve autonomy (Valavanis & Vachtsevanos, 2015). 

These types of vehicle can perform various tasks in the fields of law enforcement, 

environmental monitoring, disaster relief, and recovery operations. The payload types of these 

vehicles are also significantly different, depending on sensing requirements, mission objectives, 

and various other factors. The military community primarily drives the most significant growth 

experienced in the UAV design and development sector. However, the growth is expected to 

gravitate more towards the civilian and public domains in the future.  

In the early years of aviation, the idea of having an aircraft with no pilot on board had the 

advantage of removing the risks to the pilot who was involved with manned flights (Leylek & 

Costello, 2012). The growth in the UAS development area has increased significantly due to the 

development of lightweight construction materials, microelectronics, signal processing 

equipment and GPS navigation (Finn & Wright, 2012). 

An unmanned system (US) is defined as an air, maritime, or ground vehicle that has no pilot on-

board (Valavanis & Vachtsevanos, 2015). An unmanned system can be manually controlled, or 

it can fly autonomously with the help of pre-programmed flight plans (Rouse, 2015). The US can 

be expendable or recoverable and can carry a variety of payloads similar to a UAV. The 

payloads of a US are usually determined by the type, functionality, operational characteristics, 

and mission objectives of the US (Valavanis & Vachtsevanos, 2015).  

As seen above, unmanned flights have a rich history that dates back to ancient times. The first 

systems that can be associated with the modern definition of UAV are recent, and mainly 

include reconnaissance drones that were developed during the Cold War. The design and 

development of modern UAVs have expanded and evolved into different architectures, for 

example, quadrotors, ducted fan, and blimps in addition to the classical helicopter and fixed-

wing approaches. In modern times, the unmanned aircraft has become a more autonomous air 

vehicle that flies to mimic and improve on the manoeuvres of manned aircraft. There are many 

benefits to the use of unmanned aircraft, but interacting with the environment can be 

challenging (Becerra, 2019).  It is beneficial to investigate automation to determine how it can 

be incorporated with UAS control to limit these challenges (some of these challenges are 

discussed in Section 1.5). Next, a brief introduction to automation is given. A more detailed 

review of automation is provided in Chapter 3. 
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1.2 Defining automation 

Automation is defined as a machine agent which is capable of carrying out functions that are 

usually performed by a human (Vincenzi et al., 2015). The definitive aim of automation is to 

replace human control, planning and problem solving with autonomous devices and computers 

(Bainbridge, 1983). It is often believed that the process of replacing manual operations with fully 

automated operations can be done by simply replacing the manual operator with a robot or 

advanced machine (Lindstr et al., 2008). In most cases, this is not the truth. Automation can be 

the full or partial replacement of functions carried out by a human operator (Parasuraman et al., 

2000). The advantage is that it can reduce the risk and cost in terms of time and money (Rafi et 

al., 2006). Implementations of automation can vary, and this introduces a broad spectrum of 

automation levels. Levels of automation, as defined by Parasuraman et al. (2000), rank from 

level one as the lowest level of automation to level ten the highest level of automation. These 

levels are as follows:  

• Level 1: The computer does not assist, and the human is left to make all the decisions 

and take action. 

• Level 2: The computer gives a complete set of decisions, actions, and alternatives. 

• Level 3: The computer narrows the selections down to a few. 

• Level 4: The computer suggests one alternative. 

• Level 5: The computer executes a suggestion only if the human approves. 

• Level 6: Allows the human a certain amount of time to veto before performing an 

autonomous action. 

• Level 7: Does autonomous actions and then informs the human of the actions. 

• Level 8: Provides information to the human only if required. 

• Level 9: Informs the human only if the computer decides it needs to. 

• Level 10: The computer does everything autonomously and ignores the human. 

Automation, as applied to a UAS, refers to the ability of a UAS to complete a mission with 

minimal human interactions involved (Vincenzi et al., 2015). The goal of UAS automation is to 

reduce the need for human-to-UAS interaction in such a way that fewer human operations are 

needed to fly the UAS (Rafi et al., 2006). In reality, an UAS will exhibit at least some degree of 

automation (Clarke, 2014). The stabilisation of attitude (the orientation of an aircraft with respect 

to the horizon) and altitude is an example of automation that is needed on most UASs. It is 

arguably better to perform these functions autonomously than to rely on a human pilot to be in 

control of these tedious, repetitive tasks. Other higher-level functions, such as take-off and 
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landing are often delegated from a human pilot to an auto-pilot function. It might be prudent to 

discuss modern terminology regarding UAS technology before continuing the discussion of the 

technology itself.  The next section contains an overview of the different terminologies that are 

used to describe unmanned aircraft. 

1.3 UAS terminology 

Various terms and acronyms are used in the field of unmanned aerial vehicles, more commonly 

referred to as drones. These terms and acronyms are included to provide basic definitions and 

clarify some confusion and misconceptions that might exist.  An overwhelming number of terms 

is used that describes the same concept. The different terms are often a result of the diverse 

requirements and concepts between military and civilian uses of these unmanned aircraft. 

Regulation and legal considerations also play a role in the definition of these terms. Several 

names have been given to describe unmanned aircraft. The American Federal Aviation 

Administration (FAA) uses the term Unmanned Aircraft System or Unmanned Aerial System 

(UAS) (Federal Aviation Administration, 2008). Remotely Piloted Vehicles (RPVs) is another 

term that was used in the Vietnam War. Today, the United States Air Force Unmanned Aircraft 

Systems Flight Plan (USAFP) has substituted Remotely Operated Vehicle (ROV) for Remotely 

Piloted Aircraft or RPA. This term is used to include the aircraft and the pilot. The United 

Kingdom has chosen Remotely Piloted Aircraft System (RPAS) as the preferred term to 

demonstrate that a person controls them (Federal Aviation Administration, 2008).  

 

Unmanned Aerial Vehicles (UAVs), also known as drones, refers to aircraft with no pilot on 

board (Joint Capability Group on Unmanned Aerial Vehicles, 2010). The word “unmanned” 

implies that there is no human who actively pilots the aircraft onboard. The unmanned aircraft is 

controlled by an onboard automated system or with a remote control. Various definitions have 

been given to describe the term Unmanned Aerial Systems. For several years, the term UAV 

was used, and the Joint Capability Group on Unmanned Aerial Vehicles defined an Unmanned 

Aerial System as a reusable aircraft that is developed to do operations without an on-board 

pilot. The aircraft does not carry any passengers and can be piloted remotely or with the use of 

pre-programmed flight plans to fly autonomously. In the description above, the word reusable is 

characterised to differentiate between an unmanned aircraft and a guided weapon or munition 

delivery system.  

 

The U.S. Department of Defence, U.S. Federal Aviation Administration, and the European 

Aviation Safety Agency adopted the same UAS term. These agencies consider a UAS an 

aircraft which can have external systems that consist of ground control stations, communication 

links, and launch and retrieval systems in addition to the aircraft itself (U.S. Department of 
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Defense, 2000). The FAA defines an Unmanned Aircraft as a device that is used or is intended 

to be used for flight in the air without a pilot onboard (Federal Aviation Administration, 2008). It 

includes all classes of aeroplane, helicopter, and airship that have no pilot onboard. Unmanned 

aircraft include three axes that can be controlled, thus excluding traditional balloons. 

 

The European Aviation Safety Agency (EASA) defines a UAS as an Unmanned Aircraft System 

with an individual system element that includes an unmanned aircraft, a control station, and any 

other system element that is necessary to enable flight with a command and control line and a 

launch and recovery element (Morier, 2010). In practice the term UAV and UAS are often similar 

and only when the system aspect is essential, does the term UAS have a preference. 

 

In this study, the term UAS will be used to refer to the system and the term UAV to refer to the 

aircraft itself. The term UAS encompasses all the aspects of deploying these aircraft and not 

just the platform itself (Marshall, 2009). As mentioned before, various types of UAS can be used 

to perform various functions.  Some of the possible UAS applications are discussed in the next 

section. These applications will provide insight into the technologies involved, the control of the 

system and the possibilities of automation. 

1.4 UAS applications 

The field of unmanned aircraft systems has grown exponentially over the past 20 years with 

military applications dominating the field. In 2013, a turning point was reached, and applications 

moved more to the commercial and public domain for the following three crucial reasons 

(Valavanis & Vachtsevanos, 2014): 

• The European Remotely Piloted Aircraft Systems (RPAS) Steering Group handed over 

to the European commission the “Roadmap for the Integration of Civil Remotely Piloted 

Aircraft Systems into the European Aviation System” (European RPAS Steering Group, 

2013). This roadmap aims at facilitating decisions taken by the involved organisations, 

providing transparency and efficiency in planning different initiatives, and supporting the 

coordination of related activities in Europe. 

• In November 2013, the U.S. Federal Aviation Administration (FAA) presented the 

“Roadmap for Integration of Civil Unmanned Aircraft Systems (UAS) in the National 

Airspace System (NAS)” (Huerta, 2013), which was created by the FAA and UAS 

Aviation Rulemaking Committee (ARC). The roadmap outlined the tasks and 

considerations that need to be completed to enable UAS integration into the NAS. 

• In December 2013, the FAA announced the six UAS research and test site operations 

across the United States that would be studying the broad range of issues and 

challenges related to the use of unmanned aircraft. The FAA also stated that they are 
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fully committed to the safe and efficient integration of UASs into the NAS to enable this 

emerging technology to be fully utilised. 

The actions mentioned by the European RPAS steering group and the FAA have opened the 

door to utilise unmanned aircraft in the civilian and public domain. The most prominent 

applications from literature are briefly mentioned in this section to illustrate the pervasive role 

UASs play in the civilian and public domain. 

1.4.1 Remote sensing 

Remote sensing is the technology used to obtain information about objects or certain areas 

from a distance by using an aircraft or satellite (Dyring, 1973). The use of a UAS for remote 

sensing applications has increased significantly over the past few years (Stark & Chen, 2016). 

Traditionally, satellites are used for remote sensing (Bhardwaj et al., 2016). Satellite remote 

sensing is useful, but is limited by the amount of data that is collected, and the cost of data 

acquisition is also high. Remote sensing with the use of a UAS can be more cost-effective, and 

minimal effort is required (Holness et al., 2016). A UAS is easy to deploy, and the sensors can 

easily be altered (Bhardwaj et al., 2016). An example of a sensor that is used on a UAS for 

remote sensing is an optical camera. It is also the core component that is used in any remote 

sensing system (Toth & Jóźków, 2016). A UAS can also be automated for optimal land 

coverage remote sensing (Bhardwaj et al., 2016). 

1.4.2 Environmental monitoring 

Over the past few years, there has been an increasing interest in developing tools that can aid 

with environmental monitoring (Ventura et al., 2016). In marine ecology, for example, it is 

essential to gather data about the seabed, landform, and other topographic data to define and 

map critical marine habitats. It has often been challenging and time-consuming to get access to 

this kind of data with a high level of detail for shallow and inaccessible marine habitats. With the 

development of new technologies, it is possible to overcome these constraints. UASs have 

been developed that can produce a highly accurate aerial map of the fish in a nursery area. The 

technology is inexpensive and straightforward to use, and it can produce aerial photographs of 

the marine areas. With environmental monitoring spatial analysis of imagery and geographic 

information systems, data import is sometimes required (Perry et al., 2008). A simultaneous 

collection of imagery with positional data is needed to acquire georeferenced images. UASs 

have positioning capabilities within the autopilot system, but to achieve a higher level of 

accuracy, it is essential to also use ground control points (GCPs). Although this solution 

provides a higher level of accuracy, it is not always a trivial solution, especially in impervious 

coastal areas. Research has shown that it is possible to eliminate GCPs by using a low-altitude, 

long-endurance UAS to collect precise data for direct image georeferencing. 
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1.4.3 Aerial surveillance 

An aerial surveillance system is an aerial vehicle that can be controlled remotely with 

capabilities to transmit real-time data to a ground control station (Zaheer et al., 2016). There is a 

growing need for surveillance in today’s world to ensure the safety and security of people. 

Several civilian and military applications require aerial surveillance. Some civilian aerial 

surveillance applications include the monitoring of forest fires, oil fields and pipelines, and the 

tracking of wildlife (Beard et al., 2006). Numerous military applications make use of aerial 

surveillance. The traditional approach to these applications is the use of manned vehicles for 

surveillance. Manned vehicles are expensive and mostly large. These manned vehicles are 

operated in hazardous environments and can be life-threatening to the pilot. The development 

of automated aerial surveillance systems with the help of UASs makes it easier to address 

these applications. Various military aerial surveillance missions, such as the surveillance of 

unknown areas, forest conservation, and spying on enemy territory can be performed with the 

use of a UAS (Ma’Sum et al., 2013).  A UAS has highly efficient electric motors that allow for 

discrete and almost silent aerial surveillance.  Police officers can also use these systems to 

patrol within a city to ensure that citizens are safe and that law and order are maintained 

(Zaheer et al., 2016). 

Natural disasters, such floods can cause a large number of casualties and material damage 

(Popescu et al., 2015). UASs have been successfully used for flood area detection. There is a 

need to examine these areas that were affected before a search and rescue mission can be 

attempted (Zaheer et al., 2016). UASs can be used to complete these tasks faster, and natural 

obstacles, such as steep mountain slopes, dangerous water currents, hostile desert areas and 

other dangerous areas can easily be overcome with the use of a UAS. Images or video streams 

are taken from UASs that cover large areas of observation. Contrary to this, satellites and fixed 

cameras are much more expensive to use than a UAS (Popescu et al., 2015).  

Autonomous UAS aerial surveillance is also possible. Nag et al. (2017) used Automatic 

Dependent Surveillance (ADS) transponders to automate aerial surveillance. The ADS 

transponders of the aircraft provide surveillance data. This data includes aircraft position, 

velocity, navigational intent and meteorological data and is automatically transmitted without 

operator input.  

1.4.4 Agriculture 

The continuous innovation and progression in UAS technology have facilitated a series of 

applications in the field of agriculture (Katsigiannis et al., 2016). Satellites with optical and 

multispectral technologies are used to capture images, which are processed to assist with the 
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correct production and usage of resources (Tripicchio et al., 2015). These techniques help to 

assess the state of healthy farming. The quality of these techniques with the use of satellites 

depends on the height and density of the crop, and it can also produce low-quality data when 

visibility is influenced by, for example, clouds (Fernandez et al., 2016). This method is difficult 

and costly (Grenzdörffer et al., 2008). A more cost-effective alternative is to capture low altitude, 

high-resolution images using a UAS.  This approach has the added benefit of being less 

susceptible to the influences of cloud cover, although the coverage area of this approach can be 

a drawback (Fernandez et al., 2016). The UAS is equipped with a GPS and digital camera to 

enable it to fly autonomously and to navigate in the area of interest (Grenzdörffer et al., 2008). 

Aerial photography produced by a UAS has several advantages for agriculture (Chivasa et al., 

2017). A UAS can be quickly and repeatedly deployed, is cost-effective, safer than piloted 

aircraft, flexible in terms of the height and duration of the flight and the images that are obtained 

are of high resolution. The images that are gathered can be used to observe individual plants, 

patches, gaps, and patterns over the fields. Farmers use a UAS to map an entire farm, scout for 

weeds and pests, and spot dry areas or plants with diseases. 

Several researchers have developed UASs for the agricultural sector. Herwitz et al. (2004) 

developed a UAS which uses solar power to collect high-spatial, multispectral images of a 

coffee plantation. The images were used to map the ripeness of the coffee in a plantation and to 

identify drip irrigation and weed problems. Hunt et al. (2006) used a UAS with five standard 

digital cameras and modified the filters of the camera lenses to acquire near-infrared images. 

This system can be used to monitor crop nitrogen requirements.  

The use of protected materials is a crucial component for pest management in agriculture. 

Fertilisers and chemicals are also frequently needed at specific times and locations to manage 

crops (Huang et al., 2009). These applications are generally made with the use of ground 

sprayers or aeroplanes. These methods are well suited for large cropping areas, but they may 

become inefficient or cumbersome when the application is needed on a smaller field. UASs that 

are cheaper and easier to operate may serve to address this need. A spray system was 

developed and successfully mounted on a UAS. The spray system directly communicated with 

the UAS electronic system that enabled the spray to be released, based on specified GPS 

coordinates and pre-programmed spray locations (Huang et al., 2009). UASs can apply 

chemicals much closer than traditional methods (the use of a manned aircraft) (Stark & Chen, 

2016). This means that there is less potential of the chemicals drifting to unwanted areas. The 

disadvantage is that the UAS requires an increased payload. Stark et al. (2016) proposed the 

use of a network of small UASs that autonomously spray the chemicals to reduce the payload. 
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1.4.5 Search and rescue 

When a search and rescue attempt is made, every second counts (Güldenring et al., 2020). Any 

delay can result in dramatic consequences or even human losses (Waharte & Trigoni, 2010). It 

is also essential to have a rapid overview of the situation, and the view is often only possible 

from the sky (Güldenring et al., 2020). It takes helicopters and planes a certain amount of time 

to be ready for deployment, while a UAS can be put into action almost immediately. UASs have 

been developed with a carbon fibre housing which allows them to fly in conditions with snow, 

rain, and extreme weather (Klimkowska et al., 2016). Data transfer occurs in real-time between 

the UAS and the ground station, and it is therefore no longer necessary for search and rescue 

personnel to enter dangerous areas to analyse the situation. These UASs are also equipped 

with various sensors that identify the amount of gas and smoke composition of fires. The 

information is used by the rescue personnel to inform the firefighters of the dangers. UASs have 

been developed by a group of Swiss researchers that can navigate forest trails autonomously to 

find people and aid with search and rescue attempts (Giusti et al., 2015).  

In a typical search and rescue scenario, the UAS is deployed in the area of interest equipped 

with sensors. The sensors on the UAS are used for finding evidence of possible victims. The 

finding is then communicated to a remote ground station or the search and rescue team 

(Waharte & Trigoni, 2010). In 2006, two UASs were deployed to survey the damaged area and 

search for possible survivors after Hurricane Katrina.  

A review of some of the UAS applications was presented in this section. It is evident that there 

has been a shift in the field of unmanned aircraft systems and the focus is no longer just on 

military applications. From the discussion in this section, a variety of control methods has been 

identified. Most of the control techniques are either remote-controlled or make use of a ground 

control station. Researchers are also investigating automation techniques for various functions 

to improve UAS control. In the next section, a brief introduction to UAS control automation is 

given. 

1.5 UAS control automation 

UAS control technologies have improved over the past few years (Chen et al., 2009). A UAS 

can perform increasingly complex autonomous manoeuvres, but most UASs are not fully 

autonomous and are mostly operated remotely by humans (Becerra, 2019).  Human remote 

piloting may not always be sufficient due to signal strength or in the case where speed and 

precision, which may be outside human capabilities, are needed to control the UAS. The 

process of fully automating UASs requires research on various technologies and algorithms. For 

example, UAS obstacle avoidance needs to be improved. Obstacle avoidance becomes 
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particularly important, as autonomous UASs start to share civil airspace that is also used by 

other aircraft. A detailed discussion of UAS control automation is given in Chapter 3. After 

introducing UAS technologies and some of the possible applications, the problem statement is 

given in the next section. 

1.6 Problem statement 

There are UASs that are capable of performing complex autonomous tasks, such as obstacle 

avoidance, landing on the ground or docking into a station. However, most UASs are not fully 

autonomous  (Becerra, 2019). Humans remotely pilot most UASs. Human remote piloting might 

not always be possible; for example, there might be a problem with the data communication link 

or the task that needs to be performed might be outside of the pilot's capabilities. To improve 

UAS automation, many technological and algorithmic advances are still needed (Becerra, 

2019).  

For many UASs, the problem is for a person to manually control the UAS while also performing 

an activity (Mugnier, 2015). Most UASs are remotely piloted with a remote control or a 

smartphone (Anand & Mathiyazaghan, 2016). These remote controls and smartphones can be 

rather bulky and need to be in the pilot’s hand to control the UAS effectively. It can be rather 

difficult for the pilot to have the remote control in his/her hand while performing activities, such 

as running, cycling, and climbing. It is, therefore, advisable to investigate methods to simplify 

and automate UAS control. 

From the applications mentioned in Section 1.4, it can be seen that some of these applications 

can benefit from autonomous target tracking. The possibility of having a UAS follow a person 

may have a tremendous impact on, for example, search and rescue scenarios (Giusti et al., 

2015). Autonomous target tracking also removes the responsibility of the pilot to manually and 

continuously control the UAS. This enables the pilot to focus on other tasks, and it also makes it 

easier (less skill is required to control the UAS) to deploy the UAS. There are currently UAS 

implementations that can follow people while they are doing different kinds of activity, for 

example, the DJI spark (DJI, 2017). Having the UAS autonomously follow the pilot already 

removes much responsibility from the pilot. It is also helpful in enabling the pilot to still be able to 

send control instructions to the UAS. The control needs to be simple, intuitive, and non-

intrusive, without the need for a sophisticated, bulky remote control device.  

There has been a significant increase in the popularity of smartwatches over the past few years 

(Xu et al., 2015). The increase in the popularity of smartwatches presents a unique opportunity. 

Since the smartwatch is worn on the wrist, it can be used to understand the user’s hand and 
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arm movements. Most smartwatches have a built-in accelerometer and gyroscope sensor. The 

sensor data can be recorded and analysed to identify the user’s hand and arm movements. 

The research question investigated in this study is: “Can hand gestures and activities that are 

classified by a Radial basis function neural network (RBFNN) be used to simplify UAS control 

and improve UAS automation?” To address this research question, the aim and objectives of 

the study are discussed in the next section. 

1.7 Research aim and objectives 

The primary aim of this study is to simplify UAS control and improve automation, using an 

RBFNN for hand gesture and activity recognition. 

To achieve the primary aim, the following secondary objectives must be met: 

1. Perform a literature review on UAVs, UASs, applications of UASs, the positivistic 

research paradigm, the design science research strategy, the SCRUM development 

methodology, control systems (manual and autonomous), automation of UAS control 

techniques, artificial neural networks, RBFNNs and the FFT algorithm. 

2. Implement a basic UAS control system which will act as the starting point for 

comparisons. 

3. Improve the system in (2) by controlling the UAS with smartwatch accelerometer data. 

4. Enhance the system in (3) with gesture recognition implemented through an RBFNN. 

5. Extend system (4) by implementing a pilot follow function to simplify UAS control. 

6. Improve UAS control of (5) with automated activity recognition, using an RBFNN. 

7. Evaluate the implemented systems, based on the simplification of control and the 

improved levels of UAS automation. 

In the following section, there is a brief discussion of the ethical considerations for the study. 

1.8 Ethical considerations 

The research proposal was presented to the ethics committee of the Faculty of Natural and 

Agricultural Sciences for ethical clearance. The study was approved as a no-risk study and the 

ethics number: NWU-01207-19-A9 was issued on 10 October 2019. 

1.9 Outline of chapters 

In this section, a brief discussion of each chapter of the dissertation is provided. 
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Chapter 1 – Introduction:  An introduction to the dissertation that provides a general 

background on UASs, applications and key terminology. The problem statement, 

research aim, secondary objectives and dissertation outline are also discussed. 

Chapter 2 – Research method:  A description of the research paradigm, methods and 

design methodologies used for the research in this study are presented. 

Chapter 3 - Literature review: Previous research related to UAVs, control systems, and 

automating UAS control is discussed. Neural networks in general and the radial basis 

function neural network used to perform gesture and activity recognition is considered. 

The Fast Fourier Transformation utilised for data pre-processing is examined. 

Chapter 4 - System design and implementation:  A discussion on how the various 

systems were implemented to simplify UAS control and improve automation is given. 

Chapter 5 - Results and discussion: The results from the systems implemented are 

documented and examined. 

Chapter 6 - Conclusion: In this chapter, the aim and secondary objectives of the study 

are revisited to determine if they were met. A summary of the contributions is presented. 

Finally, possible future work is suggested. 

The following section contains a conclusion to this chapter. 

1.10 Conclusion 

UASs have become a pervasive technology in diverse fields, from recreation to advanced 

military applications. UASs are now an extension of the human desire to create innovative 

solutions and serve as entertainment. Like many modern technologies, UASs have become less 

expensive and easier to attain. The field of unmanned aircraft systems has grown exponentially 

over the past 20 years with military applications dominating the field (Valavanis, K.P. & 

Vachtsevanos, 2014). There are different unmanned aircraft available, as discussed at the 

beginning of this chapter. The use of a UAV has become the preferred unmanned aircraft for 

various applications. With each application that was mentioned, it is evident that researchers 

are investigating techniques to simplify the process of completing tasks with a UAS. Automation 

plays a vital role in improving and simplifying these tasks. Automation techniques are also used 

for addressing various challenges with manual UAS control, as mentioned in Sections 1.5 and 

1.6.  Information about the background, scope and objectives of the research were provided. 

The research methodology that will be followed in this study is considered next. 
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CHAPTER 2  RESEARCH METHOD 

In this chapter, a brief review is given of the research methodology and aspects that are 

adopted for the study. The research of this study focuses on scientific research that involves the 

use of a systematic process, being objective, and obtaining a multitude of information that is 

used for analyses in order to draw a conclusion (Blankenship, 2010). The process focuses on 

systematically testing several ideas in such a manner that another individual could conduct the 

same study again. In this chapter, Section 2.1 is a discussion on the research paradigm, 

followed by a discussion on the research strategy in Section 2.2. The development methodology 

is discussed in Section 2.3. In Section 2.4, a conclusion to the chapter is presented. 

2.1 Research paradigm 

A paradigm is a set of mutual presumptions or means of thinking about some aspects of the 

world (Oates, 2015). Different communities share different ways of researching to create and 

obtain knowledge. There are several research strategies used in information systems research, 

each with its underlying philosophical paradigm. The positivist paradigm assumes an objective 

reality that is used by researchers to compare their claims and determine the truth. In this 

section, the positivistic paradigm is discussed. 

2.1.1 The positivistic paradigm 

Positivism, interpretivism, and critical research are three of the main philosophical paradigms. 

Of these three paradigms, positivism is the oldest (Oates, 2015).  Positivism is known as the 

scientific method, and the approach used in natural science research. The positivistic paradigm 

is well established and has evolved over the past 500 years from the time of Bacon, Galileo, 

and Newton. The term positivistic research can be used to refer to all the approaches in science 

where it is assumed that scientific knowledge can only be gathered through data that are 

directly observed (Susman & Evered, 2016). A positivistic paradigm is used in this study. The 

results of the experiments in the study need to be obtained through quantifiable observations, 

must be repeatable, and yield similar results when the experiment is repeated. In the next 

section, the ontology of positivism is discussed. 

2.1.1.1 Ontology 

In general, ontology is the study or concern of the types of things that exist and what objects 

there are in the universe. The term ontology is derived from the Greek term onto which means 

being and logia that translates to written. In information technology, ontology is defined as the 

working model of entities and interactions which are in some domain of knowledge or practices 



15 

(Larose & Kruse, 2005). The positivist ontology believes that the world is external and that there 

is only one objective reality to any research phenomenon or condition regardless of what the 

researcher’s perspective or belief is (Edirisinga, 2012). Positivistic ontology takes a controlled 

and structural approach to research by identifying a precise research topic and constructing an 

appropriate hypothesis. A positivist believes that reality is objectively given and can be 

measured using properties which are not dependent on the researcher and his or her 

instruments. In other words, a positivist believes that knowledge is objective and quantifiable. 

The positivistic researcher adopts scientific methods and knowledge acquisition with the help of 

quantification to enhance the accuracy of describing the parameters and relationships among 

them. Positivism is concerned with discovering the truth and presenting it through empirical 

means. In the next section, the epistemology of positivism is discussed. 

2.1.1.2 Epistemology   

Epistemology is the study of knowledge. Epistemologists are concerned with the nature of 

knowledge and the degree of human knowledge. The nature of knowledge is what it means to 

say that someone knows or fails to know something. The extent of knowledge is how much we 

know or how much we can know (Truncellito, 2015). The positivist epistemology accepts that 

facts can only be derived from the scientific method that can make valid knowledge claims. 

Positivism assumes that the researcher is separate from the research and does not affect the 

outcome of the research (Hjorland, 2009). The results that are gathered should be data-driven 

and should not be influenced by what the researcher believes. Next, the characteristics of 

positivism are discussed. 

2.1.1.3 Characteristics 

Characteristics are the features or qualities associated with a person, place, or thing and assist 

in identifying them. The characteristics of positivism are as follows (Priya, 2015): 

• Science is the only valid source of knowledge. 

• Facts are the entity of knowledge. 

• The philosophy does not retain a method different from science. 

• Positivism denies intuition, prior reasoning, and theological and metaphysical 

knowledge. 

• All knowledge derived through science must be based on direct experience. 

Other characteristics of positivism include the following (Watt, 2010): 

• Positivism believes that the laws of the universe govern every phenomenon. 

• It claims that once the knowledge is gained, it can be used to explain events. 
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• Positivist research is structured around the ideologies of verifiability or falsifiability. 

Positivistic characteristics, according to Oates (2015), are the following: 

• The world exists independently of humans: There is a social and physical world that 

exists which is not just in the human mind that can be studied, captured and measured. 

For example, the law of gravity will still exist even if some natural disaster or human 

accident wiped out the human population.  

• Measurement and modelling: The researcher discloses the world by making 

observations, measurements and creating models of how the world works.   

• Objectivity: The researcher is neutral and objective and seen as an impartial observer. 

Facts about the world can be discovered independently of what the researcher’s values 

and beliefs are.  

• Quantitative data analysis: This method of data analysis has a strong preference for 

mathematical modelling, proofs and statistical analysis. With the use of mathematics, the 

researcher can give a logical, objective means of analysing observations and results.   

• Universal laws: The researcher seeks generalisations: universal laws, patterns or 

indisputable facts that can be proved to be true regardless of the researcher and the 

occasion. 

Most research methodologies are criticised in order to determine the advantages and 

disadvantages associated with the research methodologies. The critique should not always be 

seen as a negative factor. It should instead be viewed as a tool to be used in order to determine 

if the research methodology is appropriate for the research. The critique of positivism is 

discussed next.  

2.1.1.4 Critique 

Critique is concerned with the examination or review of works of art or literature. A positivist 

believes that everything can be measured and calculated, and this makes positivism inflexible. 

Positivism tends to be inflexible once the data collection has started and cannot be changed. 

This paradigm is weak at understanding human social factors (Oughlin, 2012). Positivism relies 

on the repetition of results, and this is not always possible. The paradigm fails to take note of 

the fact that not everyone sees the world in the same manner. Positivism is dependent on 

experience as a source of knowledge, but a wide range of concepts, such as cause, time and 

space are not based on experience (Dudovskiy, 2016).  

Criticism of positivism, according to Oates (2015), is the following: 
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• Reductionism: It is not always possible to break complex problems down into more 

straightforward problems, or when the problem is broken down, the bigger picture is 

sometimes forgotten.  

• Repetition: It is not always possible to repeat the study several times with different 

researchers. 

• Generalising: The researcher might not always seek generalisation. The researcher 

might want to study the particular and uniqueness of something.   

• World view: Everyone does not have the same world view. People see the same thing 

in different ways.  

Even though there is critique against the positivistic paradigm, it is still the appropriate research 

methodology to use in this study. The disadvantages do not overshadow the advantages of the 

paradigm. In the next section, the methods used in positivistic research are discussed. 

2.1.1.5 Methods 

Methods are research strategies that are followed to collect evidence for the building and testing 

of theories and systems. Positivism methods include descriptive research which is anything that 

is a variable and varies to a defined degree and can be measured in the process. Descriptive 

research includes the following: surveys, case studies, causal-comparative studies, correlation 

studies, development studies, and trend studies. The other part of positivism is based on 

experimental research, and this includes the deliberate use of certain factors under highly 

measured situations (Feigl, 2015).  

The following three scientific techniques are used in positivism (Oates, 2015): 

• Reductionism: It is the process of breaking complex problems into smaller, more easily 

studied problems.  

• Repeatability: The researcher does not rely on the results of just one experiment. The 

experiment will be done several times to ensure that the same results are obtained. 

Other researchers will also try to repeat the experiment to determine if they will obtain 

the same results and to ensure that the original researcher did not influence the results 

that were obtained.   

• Refutation: If other researchers cannot repeat an experiment and obtain the same 

result, they will refute the hypothesis. The hypothesis can also be refuted if a researcher 

can show that the experiment which claims that A causes B is not valid under a specific 

circumstance.  

The methods identified above help with breaking the problem into smaller, more manageable 

pieces. Simplifying UAS control and improving automation can be viewed as a complicated 
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problem. Using the methods mentioned above, the problem is simplified by identifying the 

various aspects involved in this specific problem. For example, arising from the problem it can 

be inferred that various existing UAS control techniques should be investigated to determine 

solutions to simplifying UAS control. Next, the data gathering techniques of positivism are 

discussed. 

2.1.1.6 Data gathering 

Data gathering is the systematic approach of collecting information from a variety of sources to 

get a complete and accurate image of the area of interest (Rouse, 2015). Positivism relies on 

quantitative data collection. Quantitative data is collected and recorded systematically in a 

database for analysis. Quantitative data involves the use of numbers to assess information and 

the information can be evaluated, using statistical approaches which allow the researcher to find 

the meaningfulness of the data (Degeling, 2010). Experiments are one of the methods used to 

gather data when using the positivistic approach. When an experiment is conducted, the 

researcher makes precise and detailed observations of the outcomes and changes that 

occurred when a particular component is introduced or removed (Oates, 2015). In this study, 

quantitative data is collected through various experiments for analysis. The data analysis 

technique of positivism is discussed in the next section.  

2.1.1.7 Data analysis 

Data analysis is the process of evaluating and processing data, using analytical and logical 

reasoning. The data is analysed using mathematical and statistical approaches. This allows the 

researcher to look deeper into the data and to find the information which is needed. It is 

essential to analyse the data before a conclusion is generated. Positivists acknowledge that 

multivariate analysis can form fundamental connections among two or more variables 

(Trueman, 2015). This approach will be used to distinguish between different hand gestures in 

this study. 

The positivistic paradigm focuses on tests and experiments that can be controlled and 

measured. The results that were obtained can be used as a reference when the experiment is 

repeated and to ensure that the same results are obtained. In the next section, a discussion on 

the research strategy is presented. 

2.2 Research strategy 

A research strategy is a step-by-step guide that gives direction and enables the execution of 

research in a systematic and scheduled manner to produce quality results (Johannesson & 
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Perjons, 2014). The research strategy enables the researcher to stay focused, reduce 

obstacles, enhance quality, and save time and resources. 

2.2.1 Design science 

The design science research strategy focuses on the development of new information 

technology products, also known as artefacts (March & Smith, 1995). This research strategy 

enables the researcher to offer a construct, model or instantiation as a contribution to 

knowledge (Oates, 2015). Oates refers to design science as design and creation, but by 

investigating the sources Oates used, it can be seen that the sources refer to the term as a 

Design science. This strategy is ideal for this study. The tool used in design science helps to 

identify the method that works best. The method focuses on first creating a prototype, 

evaluating the prototype and then repeating the process to identify the best methods to use. In 

the next section, the framework of design science is discussed. 

2.2.1.1 Design science framework 

Every type of research has certain specific procedural guidelines. Several factors apply to most 

methods used for academic research. The research must be motivated by a problem that is 

suitable for the form of research being conducted (Ellis & Levy, 2008). The research must be 

based on research questions that can be answered by the sort of research being conducted. 

The research must recognise the assumptions, boundaries, and delimitations upon which the 

research is based. Results from the research can only be attainable by the approaches being 

used. The results of the research must support the conclusions. In the next section, the major 

steps of design science research are discussed. 

2.2.1.2 The major steps of design science research 

There are several different names and number of goals in literature when it comes to design 

science research (Nunamaker et al., 1991). Design science is a problem-solving approach. It 

uses an iterative process which involves the following five steps (Vaishnavi & Kuechler, 2004): 

awareness, suggestion, development, evaluation, and conclusion. The details of these steps 

are as follows: 

• Awareness: One of the essential aspects of using design science research is to identify 

the problem (Nunamaker et al., 1991). Not all problems that are identified are research 

worthy, and not all problems are appropriate to use with the design science research 

methodology (Ellis & Levy, 2008). Several different problems can drive design science 

studies. Newly emerging or evolving situations often create situations in which there is 

no product, tool, or model available to address this problem. Problems can be identified 
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by studying literature where the researcher identifies areas for further research, reading 

about discoveries in another field of study, finding a need for something, or from new 

development in technology (Oates, 2015). The output for this phase is a proposal for a 

new research effort (Vaishnavi & Kuechler, 2004).  
 

• Suggestion: Suggestion is the identification of a tentative idea that might solve the 

problem (Oates, 2015). A suggestion is an inventive step where new functionality is 

envisioned based on a new configuration of either current or new elements (Vaishnavi & 

Kuechler, 2004). The suggestion step has been criticised for bringing non-repeatability 

into the design science research method, as human creativity is still perceived as a 

poorly understood cognitive process. In positivistic research, creativity is the 

fundamental leap from the curiosity about a specific phenomenon. This leap is used for 

the development of an appropriate construct that operationalises the phenomenon. It is 

also an appropriate research design for the positivist measurements. 

 

• Development: In this phase, the tentative idea is further developed and implemented 

(Oates, 2015). How this will be implemented depends on the kind of artefact being 

proposed. An algorithm may require the construction of formal proof to show that the 

algorithm is correctly implemented (Vaishnavi & Kuechler, 2004). An expert system 

using new assumptions may require software to be developed. 

 

• Evaluation: Once the artefact has been created, it is evaluated according to the criteria 

that have been mentioned in the proposal of the research project (Vaishnavi & Kuechler, 

2004). An assessment is made of its value and how it deviates from expectations 

(Oates, 2015). Qualitative and quantitative deviations from expectations should be 

carefully noted, and tentatively explained (Vaishnavi & Kuechler, 2004).  

 

• Conclusion: In this phase, the result obtained from the design process is consolidated 

and written down. The knowledge that was gained is also written down together with any 

loose ends or unexpected or anomalous results that were identified which cannot be 

explained yet or could be subjected to further research (Oates, 2015). 

The design science phases are not followed in a rigid, stepwise manner. Design science uses a 

more fluid, iterative cycle (Oates, 2015). This method gives greater awareness of the nature of 

the problem when the researcher thinks about tentative solutions to the problem. A design 

science strategy thus enables the researcher to learn through making. The following section 

entails a discussion on the development methodology that is used in this study. 
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2.3 Development methodology 

Software development methodologies or system development methodologies is a software 

engineering framework that is used to structure, plan, and control the process of developing an 

information system (Gechman & Gechman, 2019). In this section, a brief discussion of the agile 

development methodology and Scrum, as an agile development methodology are presented. 

There is also a discussion on why Scrum was used in this study at the end of this section. 

2.3.1.1 Agile development methodology 

The agile software development method has become more popular during the past few years 

and has been accepted among mainstream software developers since the late 1990s (Begel & 

Nagappan, 2007). The increasing interest in agile development is due to the belief that agile 

methods are powerful development alternatives and can be better at avoiding project problems 

including low productivity, schedule delays, high costs, and lack of motivation (Cardozo et al., 

2010). Agile development is based on an iterative approach that is used for the development of 

software. The process is iterative, and this allows for software to be built in progressively small 

pieces, with each piece adding to the features of the preceding iteration (Williams, 2002). If for 

example, iteration A is completed and new information is found, it could lead to requirement 

adaption for iteration A + 1. A scope is chosen for each iteration to fill the iteration length. The 

iteration length stays the same for the chosen scope, but the scope is reduced to fit the iteration 

length. The main difference between agile and previous iteration methods is the length of each 

iteration. Scrum is agile and used for project management. 

2.3.1.2 Scrum methodology 

Scrum is one of the most studied agile methods for its novelty and can improve project 

productivity (Cardozo et al., 2010). Scrum uses an empirical process based on flexibility, 

adaptability, and productivity. 

The characteristics of the Scrum methodology, according to Schwaber (1995) are as follows: 

• The planning and closure phases consist of defined processes, where all the processes, 

inputs and outputs are well defined. Knowledge of how these processes will be 

completed is explicit. There are a few iterations in the planning phase, but the general 

flow is linear. 

• The sprint phase is an observational process. Many processes in the sprint phase are 

unknown or uncontrolled. It is treated as a black box that requires external controls.  
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• Sprints are flexible and nonlinear. When it is possible, explicit process knowledge is 

used. If explicit knowledge cannot be used, tacit knowledge and trial and error are used 

to build process knowledge.  

Scrum has the following phases: 

• Planning: Defining a new release based on current knowledge, along with the estimated 

schedule for completion. If a new system is being developed, this phase consists of 

conceptualisation and analysis. The limited analysis is used when an existing system is 

being enhanced. In this study, the planning phase is initiated by identifying the problem. 

The literature review forms part of the planning phase, and from the deliverables of the 

literature review, planning begins on the development of the system. 

• Architecture: Design of the implementation of items that can be completed in one 

sprint. The architecture phase also includes system architecture, high-level design, and 

forms the backbone of this study. This phase assists with the identification of platforms 

and development environments. 

• Development sprints: The development of new functionality, by considering variables 

of time, requirements, quality, cost, and competition. There are many iterative 

development sprints or cycles that are used to develop the system. Each problem that 

needs to be addressed in this study forms part of a sprint. Each sprint follows on the 

previous sprint. 

• Closure: Preparation for release, including final documentation, testing, and release. In 

the closure phase, the data that was collected will be analysed to determine if the 

solution is viable. 

Scrum has several controls that are used in various phases. Management can use these 

controls to manage backlogged items. Teams use these controls to manage changes and 

problems. 

Scrum has the following controls (Schwaber, 1995): 

• Backlog: The functionality requirements of the system which are not adequately 

addressed by the current product release. The following are backlog items: Bugs, 

defects, customer-requested enhancements, competitive product functionality, 

competitive edge functionality, and technology upgrades. 

• Release/Enhancements: Backlog items that will at a point in time serve as an 

appropriate release, based on the variables of requirements, time, quality, and 

competition.  
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• Packets: The components or objects which need to be changed in order to implement a 

backlog of items into a new release. 

• Changes: The changes that need to occur to a packet in order to implement a backlog 

item  

• Problems: The technical problems that could occur and that must be solved to 

implement a change 

• Risk: Risks are continuously assessed, and responses are planned to ensure the 

success of the project. 

• Solutions: Some solutions often result in changes to the project. 

• Issues: These are other project issues that are not defined in terms of packets, changes 

and problems. 

These controls are reviewed, modified, and reconciled at every sprint meeting. Scrum uses 

sprints which are discussed below.  

Sprints - Scrum uses sprints which are a set of development activities that need to be 

conducted over a pre-defined time, usually within one to four weeks (Cardozo et al., 2010). The 

content of the interval is based on product complexity, risk assessment, and the degree of 

oversight which is desired. The pre-determined duration of the sprint drives the intensity and 

speed of the sprint. Risk is continuously assessed, and adequate risk controls and responses 

are put in place. A sprint is used to produce a visible, usable, and deliverable product that 

implements one or more user interactions within the system (Rising & Janoff, 2000). The main 

idea behind each sprint is to provide valuable functionality to the system. Each increment builds 

on the previous increment.  

Each sprint consists of the following (Schwaber, 1995): 

• Develop: Defining the changes that are needed for implementing backlog requirements 

into packets, opening these packets, performing domain analysis, designing, 

implementing, testing, and documentation. The development consists of the following 

micro-processes: discovery, invention, and implementation. 

• Wrap: Completing the packet, creating an executable version of the changes and how 

they implement backlog requirements 

• Review: A meeting is held to present work and review progress, raising and resolving 

issues and problems, adding to new backlog items. Risk analysis is also conducted, and 

appropriate responses are defined.  

• Adjust: Applying the information that was gathered at the review meeting to the affected 

packets, including a new look, feel, and properties 
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2.3.1.3 The use of Scrum in this study 

The systems implemented in this study are completed in several phases, with each phase 

building on the previous phase. As mentioned, Scrum is agile and agile development is an 

iterative process. Complex problems are broken into smaller, more manageable problems with 

the help of reductionism. Reductionism is one of the methods used in positivism. By breaking 

the problems into smaller problems, it is easier to apply the Scrum technique. As stated, Scrum 

uses sprints, and it is an appropriate technique to combine with the process of reductionism. For 

example, the process of using hand gestures to control the UAS can be seen as a complex 

problem. There are various processes involved which are described in more detail in Chapter 4. 

The necessary process is to have communication between the smartwatch and the smartphone 

and then communication between the smartphone and the UAS. While these devices are 

communicating, data needs to be captured and processed by a neural network. It is relatively 

easy to see that it becomes a complex problem. However, by using reductionism, it can become 

more straightforward; for example, the process of communication between the smartphone and 

smartwatch can be seen as one problem. By using Scrum and sprints, the first sprint can be 

used to solve this problem and then the next sprint can be used to solve the process of having 

communication between the UAS and smartphone. Each sprint then builds on the previous 

sprint, and the process of problem solving becomes simpler. Another reason for using Scrum is 

that although this is an individual project, it could form part of a more significant project, and by 

using Scrum, it becomes simpler to share information. Other researchers could need the same 

techniques that were used, and because Scrum encourages short daily meetings, it can 

become a space to share knowledge. 

2.4 Conclusion 

In this chapter, the focus was on the research paradigm, research strategy, and development 

methodology that are followed in this study. Each of these research method characteristics is 

used throughout this study to aid in the process of finding a viable solution to address the 

problem statement. In the next chapter, a literature review is given, based on previous research 

on UASs and techniques that can be used to simplify control and improve the automation of a 

UAS. 
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CHAPTER 3 LITERATURE REVIEW 

In this chapter, the literature review is given. Various topics are discussed in the literature 

review, each aiding in the process of solving the problem statement addressed in this study. A 

UAS is more than just an unmanned aircraft (Klimkowska et al., 2016). The main components of 

the system consist of the unmanned aircraft, communication systems, payload (sensors, 

cameras, packages, or any additional equipment carried by the UAV), ground control station, 

recovery and launch equipment, as well as support equipment. The end goal is to automate the 

UAS, as defined by the problem statement in Chapter 1. Automating the UAS requires the 

investigation of various topics. The first topic, discussed in Section 3.1 is the unmanned aerial 

vehicle and its components which includes the aircraft, sensors, and actuators. In Section 3.2, 

the different types of control system for a UAS are discussed. In Section 3.3, the information 

gathered in the previous two sections is brought together, and techniques are investigated on 

automating UAS control. The content in these sections is used for automating the UAS, but it 

does not cover all the subjects that are involved in a UAS. Only the required UAS automation-

related topics for this study are covered. Artificial neural networks in general, the radial basis 

function neural network and the Fast Fourier Transformation, are also discussed. These 

techniques enable the recognition of gestures and activities performed by the pilot. In Section 

3.4, the support tools, such as algorithms and system development tools are investigated. The 

chapter is concluded in Section 3.5. 

3.1 Unmanned Aerial Vehicles 

UAVs are power-driven, reusable aeroplanes operated without a human pilot onboard (Chao et 

al., 2010). The first UAV was named the Q-2 and was made by Ryan Aeronautical. It was used 

in the 1950s for the military observation of a region in order to locate an enemy or discover 

strategic features (Herwitz et al., 2004). There are different UAVs available on the market, 

making it easier to choose one that is suitable for mission purposes (Klimkowska et al., 2016). 

UAVs can be classified into four major categories based on the UAV’s wing shape and body 

structure. These UAV characteristics are briefly discussed below: 

• Fixed-wing: These UAVs are unmanned aircraft with fixed wings. They are mainly used 

for aerial mapping and inspection of pipelines or power lines (Tahir et al., 2019). The 

main advantage of the fixed-wing UAV is that it has a simple structure (compared to a 

rotary wing) and is easy to maintain and repair (Klimkowska et al., 2016). The 

characteristics of the fixed-wing allow for longer flight duration at higher speeds which 

enables the surveying of larger areas. Fixed-wing UAVs are capable of carrying a large 

payload for longer distances. It enables the ability to attach bigger sensors to the 
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aircraft. One of the disadvantages of a fixed-wing UAV is that it needs a runway or 

catapult for take-off and landing. Another disadvantage is that the aircraft needs to be in 

a constant forward motion to enable the wings to produce lift. 
• Flapping-wing: The UAVs have small and flexible wings and are based on flying 

techniques used by insects and birds (Klimkowska et al., 2016). The primary motivation 

behind flapping-wing UAVs was the need for aerial surveillance inside a building that 

has confined spaces (Mueller, 2001). Flapping-wing UAVs’ movement has proved to be 

more stable than quadrotor UAVs that rely on rapid wing rotations (Shyy et al., 2010). 
• Rotary-wing: These UAVs have two or three rotor blades that revolve around a fixed 

mast known as a rotor (Klimkowska et al., 2016). There are several different rotary-wing 

UAV configurations available (the number of rotors is indicated in brackets): helicopter 

(1), bicopter (2), tricopter (3), quadcopter (4), hexacopter (6), and octocopter (8). All 

these UAVs have their unique characteristic advantages and disadvantages. Rotary-

wing UAVs work similarly to fixed-wing UAVs with the advantages of not requiring 

constant forward movement to generate airlift. The blades on a rotary-wing UAV are in 

constant movement which leads to the generation of the airlift. The most significant 

advantage of using a rotary-wing UAV is that the aircraft has the ability of vertical take-

off and landing. Rotary-wing UAVs are a complex mechanical and electronic 

construction which leads to more complex maintenance and repair processes. 
• Blimps, balloons, and kites: They are characterised as being lighter than air, can 

endure long distance at low flying speeds, and are relatively big in terms of size. These 

forms of aerial vehicle are worth mentioning to show that there are also unmanned 

aerial vehicles that can be operated without the use of a motor. 

The most commonly used UAV type is a quadcopter (Tahir et al., 2019). The quadcopter is 

a vertical take-off and landing platform that belongs to the rotary-wing UAV family (Criado & 

Rubio, 2015). A quadcopter has four brushless rotors (they use magnets to generate 

power) that generate the lift force, which allows the quadcopter to increase its maximum 

payload capability. The movement of a quadrotor UAV is further discussed in Section 3.1.3. 

Quadrotor UAVs are relatively inexpensive and easier to build than the other UAVs 

mentioned (Tahir et al., 2019). 

The quadcopter UAV is used in this study and the discussion on UAV sensors and actuators 

that follows will specifically focus on quadcopter UAVs. UAVs are flexible, as seen from the 

various applications (as discussed in Chapter 1) for which they are used. The various sensors 

and actuators associated with UAVs will be investigated to identify the tools that can be used to 

aid with automating and simplifying UAS control.  
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3.1.1 UAV sensors  

For the UAV to maintain a stable and controllable flight, various sensors are required (Tahir et 

al., 2019). Sensors and sensing strategies enable a UAV to measure aspects of its 

surroundings (Valavanis & Vachtsevanos, 2014). Sensors provide technologies that are 

essential when it comes to autonomous UAV flights. Most applications of UAVs (as discussed in 

Chapter 1) rely on the sensors to sense the UAV’s surroundings and relay the measurements 

back to the pilot. Some pre-defined actions might be taken according to specific measurements. 

In the next sections, some of the sensors that can be attached to a UAV are discussed. 

3.1.1.1 Global Navigation Satellite Systems sensors 

At the centre of most UAV navigation and guidance systems is the GNSS (Global Navigation 

Satellite System) (Grewal et al., 2007). The GNSS receiver receives and processes satellite 

signals to determine the distance between the receiver and satellites (Zhang & Hsu, 2018). The 

result is then used to determine the position of the UAV. The primary purpose of the GNSS is to 

provide the means for flight planning, tracking and UAV localisation (Tahir et al., 2019). Within a 

GNSS is an INS (Inertial Navigation System) and GPS (Global Positioning System). These 

systems’ interconnected nature has been recognised, and as a result, are the preferred sensor 

pair used in the majority of autopilot systems. Many autonomous landing systems for UAVs are 

based on a GPS (Merz et al., 2006). The GPS and INS sensors are not the only two sensors 

that are used for UAV navigation. Altimeters (laser-based and barometric) are also used with a 

GPS and INS to enhance the estimation of the UAV’s position (Grewal et al., 2007). Infrared 

attitude sensors (discussed in Section 3.1.1.2) can also be used and are more familiar with 

micro-UAV applications. 

Researchers have also experimented with the integration of several other sensors in 

combination with GPS and INS sensors, for example, a GPS with computer vision (Dusha & 

Mejias, 2008) and an INS with computer vision (Merz et al., 2006). In the next section, there is a 

discussion on the different electro-optical sensors that are used on UAVs. 

3.1.1.2 Electro-optical Sensors 

UAVs may use electro-optical (EO) sensors (Mejias et al., 2015). These sensors have become 

standard onboard many modern aerial vehicles. EO sensors can be used for navigation or 

surveillance and are one of the most common sensors found on UAVs. Some of the EO sensors 

found on UAVs are as follows: 

• A visible spectrum camera usually operates at a wavelength of about 390 nm-750 nm 

(Mejias et al., 2015). Visible spectrum cameras can be divided into two main categories: 
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digital still cameras and machine vision cameras. Digital still cameras are used for high-

resolution images, but cannot efficiently be used for a continuous stream of images. The 

number of images that can be taken by the digital still camera depends on the size of the 

internal memory. Digital still cameras are mainly used for remote sensing and aerial 

photography. Machine vision cameras operate at a relatively lower resolution than digital 

still cameras, but can provide a continuous stream of images up to a few hundred 

frames per second. The resolution and choice between digital or analogue output 

influence the speed. Machine vision cameras are suitable for tasks that require a fast 

perception of the environment. 

• Infrared cameras detect light and convert the light in the same way as conventional 

visible spectrum cameras, but are sensitive to light at longer wavelengths (Mejias et al., 

2015). The camera forms an image using infrared radiation at wavelengths from 5000 

nm-14000 nm. Infrared cameras are used to measure the thermal radiation of bodies. 

The intensity of each pixel is used to determine the temperature of the body. 

• Hyperspectral imaging sensors acquire data about images in multiple in-line spectral 

bands. Hyperspectral sensors generate a high volume of data that needs to be 

processed and interpreted according to specific properties and how they relate to the 

actual measurement made from the sensors. For example, a single cell’s position in an 

image will have a set of intensity or brightness levels for each of the wavelengths. The 

hyperspectral sensor examines different materials and identifies different intensity 

wavelength relationships, based on prior knowledge. The image data can then be used 

to identify the type of material. 

These sensors detect and process wavelengths in, or close to the visible part of the 

electromagnetic spectrum to create a visual representation of the UAV’s surroundings. EO 

sensors rely on vision to gather information. It is therefore necessary to investigate other 

sensors that can be used when optical vision is not available. In the next section, a discussion 

on radio wave sensors is provided. 

3.1.1.3 Radio wave sensors 

Radio wave sensors use radio waves to gather information and can aid with the UAV’s 

navigation in the air even when vision is weak or not available. Radio wave sensors that can be 

found on UAVs are as follows: 

• Airborne radio detection and ranging (Radar): This is a radio system and is used to 

determine the range, altitude, direction, and speed of objects (Mejias et al., 2015). The 

system transmits controlled radio pulses that are reflected by the object, and the 

distance between the system and object is determined by the time it takes for the signal 
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to return. Speed can be determined by tracking the change in distance with time or by 

using the Doppler effect (Stimson, 1998). Traditional radars in UAVs have one main 

drawback in that they consume a large amount of energy because of the weight and size 

(Mejias et al., 2015). New systems, such as the Synthetic-Aperture Radar are beginning 

to make onboard radar technology feasible UAVs (Hanlon, 2008). 

• Light Detection and Ranging (LIDAR): LIDAR uses a similar technique to radar 

(Schwarz, 2010). LIDAR uses light pulses instead of radio waves. LIDAR estimates 

distance by measuring the time it takes for light pulses to reflect from an object 

(Schwarz, 2010). LIDAR has become popular to use with mapping and infrastructure 

inspection (Liu et al., 2009). It is an active system that makes use of ultraviolet light to 

map objects without the need for external light for useful mapping (DJI, 2019).  

These sensors are used to aid the UAV with its navigation through the air. In addition to 

sensors, various techniques are used with these sensors for various requirements (discussed in 

Section 3.2.3). Sensors are also used in combination with actuators which are discussed in the 

following section.  

3.1.2 Actuators 

Actuators are mechanical or electromechanical devices that are used to control something 

(Thomasnet, 2018). Some of the actuators that can be found on UAVs are as follows: 

• The landing gear is usually found at the bottom of the UAV and aids the UAV to perform 

successful take-off and landing (Reagan, 2014). 

• The gimbal is a camera mount that can be found on most UAVs (Reagan, 2014). The 

gimbal allows the camera to move along multiple axes by remote control. Most gimbals 

used servo motors to move the camera, but recently brushless gimbals were introduced 

which are described by experts as simpler and requiring less maintenance. The 

brushless gimbal is controlled by three motors that can keep the camera level on all 

axes as the operator (or the UAV) moves the camera (Trofin, 2015). An inertial 

measurement unit is used to respond to movement to stabilise the camera by utilising 

the three motors.  

• There are several different types of energy sources available for UAVs. Most modern 

UAVs use lithium polymer batteries. These batteries are lightweight and have maximised 

charge capacity and power (Reagan, 2014). UAV batteries need to be small and light to 

push boundaries and flight performance (Drone Industry Insights, 2017). A specific limit 

has been reached when it comes to the power density of these batteries, and adding 

more batteries will not necessarily increase the flight times and payload capacity. There 

are a few aspects that need to be considered to achieve higher payloads and longer 
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flight times. Examples of these aspects include the mass-specific energy (how much 

power (Wh) per unit mass (kg) is needed) and the volumetric specific energy (how much 

power (Wh) per unit volume (m³) is required).  
• The intended mission also influences the decision for choosing the energy source. 

Besides, there are petrol-powered UAV solutions. The significant advantage with a 

petrol-powered UAV is that the UAV loses weight over time, making the UAV lighter and 

increasing the range. Solar power is also an option and is mainly used to increase the 

range of the UAV. There are various other energy sources and they all have their 

advantages and disadvantages (Drone Industry Insights, 2017). 

These actuators are some of the most common actuators that are found on UAVs. The rotors 

also form part of the actuators (discussed in Section 3.1). It is necessary to understand the 

movement of a UAV to determine how the UAV control can be automated. In the next section, 

an overview of how a UAV can fly and navigate through the air is presented. 

3.1.3 UAV vertical flight overview 

An aircraft rotates around its centre of gravity and the principal axes of pitch, roll, and yaw 

(Nigel, 2017; Rodkin, 2014). Figure 3-1 is a visual representation of the six degrees of freedom. 

Six degrees of freedom is a specific parameter count which represents the number of degrees 

of freedom an object has in a three-dimensional space (Techopedia, 2019). 

 

Figure 3-1: The six degrees of freedom: forward/back, up/down, left/right, yaw, pitch, 
roll (Nigel, 2017) 
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It means that there are six different ways the body of the object can move. The six degrees of 

freedom consists of the following movement parameters: 

• Translation: Moving along the different axes x, y and z. 

o Surging – Moving forwards and backwards along the x-axis (yellow arrow). 

o Swaying – Moving left and right alongside the y-axis (red arrow). 

o Heaving – Moving up and down the z-axis (blue arrow). 

• Rotation: Turning to face a different axis. 

o Pitch (green arrow) – Moving between the x and z axes. The aircraft moves up 

and down from front to back. 

o Yaw (orange arrow) – Moving between the x and y axes. The aircraft moves in a 

clockwise/anticlockwise rotation. 

o Roll (purple arrow) – Moving between the y and z axes. The aircraft moves left or 

right. 

In addition to pitch, roll, and yaw, a throttle is also used to control the UAV. The throttle controls 

the altitude (vertical distance between the aircraft and sea level) of the vehicle, getting airborne, 

and speed (Nigel, 2017). To achieve these six degrees of freedom on a quadrotor UAV, the 

speed of the rotors needs to be adjusted accordingly. In the next section is a discussion on how 

a UAV adjusts the speed of the rotors to achieve movement within the six degrees of freedom.  

3.1.3.1  UAV flight control overview 

A quadrotor UAV has two pairs of counter-rotating rotors and propellers that are positioned at 

the apexes of a square frame (Lee et al., 2010).  The two pairs of propellers (1, 3) and (2, 4) 

can be seen in Figure 3-2. Unlike traditional helicopters that have different pitch angles, a UAV 

has fixed pitch angle rotors (Altu et al., 2002). The speed of the rotors is adjusted to change the 

lift force and create motion (Bouabdallah et al., 2004). By increasing or decreasing the speed of 

all four propellers at the same time, it generates vertical motion. The quadrotor UAV is capable 

of vertical take-off and landing and does not require complex mechanical linkages like swash 

plates or teeter hinges that are commonly found on helicopters (Lee et al., 2010). To produce a 

roll rotation with lateral motion, the speed of propellers 2 and 4 needs to be changed 

(Bouabdallah et al., 2004). The speed of propellers 1 and 3 is adjusted to get a pitch rotation. 

Yaw rotation is achieved by the difference in counter-torque between each pair of propellers. 

The quadrotor enables the aircraft to have an increased payload capacity, and with more lift, 

heavier weights can be carried (Altu et al., 2002). Quadrotors are highly manoeuvrable, 

enabling flight in constrained places.  
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Figure 3-2: Description of quadrotor motion where the width of the arrow indicates the 

rotational speed (Bouabdallah et al., 2004) 

A UAV is commonly controlled with a remote control (Anand & Mathiyazaghan, 2016). Figure 3-

3 is a visual representation of a traditional UAV remote control.  

 
Figure 3-3: Visual representation of a traditional UAV remote control (Cho, 2016) 

 

The UAV is controlled according to the input from the remote control by giving the appropriate 

throttle, pitch, yaw and roll values manually (Anand & Mathiyazaghan, 2016). The input on a 

remote control is given as follows (Drone Industry Insights, 2017; Hobbytron, 2019): 

• Throttle: Push the left stick forward to increase and pull the left stick back to decrease. 

• Pitch: Push the right stick forwards or backwards. 

• Yaw: Push the left stick to the left or the right. 
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• Roll: Push the right stick to the left or right. 

In this section, a discussion on some of the different available types of unmanned aircraft was 

given. The discussions that followed focused on the quadrotor UAV and the sensors and 

actuators associated with these UAVs. A more in-depth discussion was given about the rotor 

actuator and how it is used to enable the UAV to navigate through an area. These discussions 

focused on the UAV itself, and in the next section, a discussion on some of the different control 

systems that can be used to control a UAV is given. 

3.2 Control systems 

A control system is an interconnection of components forming a system configuration that is 

used to get the desired response from the system (Dorf & Bishop, 2011). There are two types of 

control systems, an open-loop control system and a closed-loop control system. An open-loop 

control system uses the controller and actuators to obtain the desired response, and the system 

does not provide feedback. A close-looped control system utilises an additional measure of 

actual output and compares it to the desired output. It is beneficial to investigate the different 

types of UAV control system to identify methods that can be used to simplify and improve 

automated UAS control. The next section is a discussion on the traditional flight control systems 

that are commonly found on a UAS. 

3.2.1  UAS traditional flight control system 

A UAV requires a flight control system to ensure stable behaviour and desired performance 

(How et al., 2014). For example, when a UAV follows the desired trajectory, it should be with 

sufficient accuracy in the presence of external disturbances (e.g. trees and a building). The 

flight control system is architecturally mission/safety-critical, as an incorrect design can result in 

poor performance or even vehicle loss.  

There are various methods to control a UAV manually and autonomously (Stevenson et al., 

2015). There are different levels of automation (discussed in Section 3.3.4). On the lowest level 

of automation, the aircraft relies entirely on the remote control to be piloted (Stansbury et al., 

2009). In the absence of a pilot, the aircraft would lose control and crash. On the highest level of 

automation, the aircraft is autonomously controlled by an autopilot from take-off to landing. The 

pilot in command only intervenes in the case of an emergency and overrides the autopilot. Most 

modern UASs are equipped with manual remote control and autopilot technologies. UAV 

controls can be divided into two sections, autonomous and manual control (Stevenson et al., 

2015). The most common manual and autonomous UAV control include the following: 
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Manual control comprises 

• Radio control by an external pilot that in some cases uses a third-person remote view of 

the UAV; 

• A flight console which is similar to a cockpit and uses a fixed forward camera view to 

allow the external pilot to fly the UAV as in a simulator; and 

• First-person view flying that uses virtual reality and head-tracking techniques. 

Autonomous control comprises 

• Autopilot control, typically using GPS waypoints to define the flight plan; 

• Airspeed and pressure sensors which are used for inner-loop airframe (attitude of the 

UAV) control; and 

• Automatic take-off and landing capabilities that are offered by some autopilots. 

In the next section, some of the manual control systems used on a UAS are discussed. 

3.2.2 Manual control systems 

The instruments that are provided for manual control of flight paths are similar to those that can 

be found inside the cockpit of an aircraft (Tadema et al., 2007). The out-of-the-window view is 

represented by a camera that is usually facing forward. The richness of visual, motion and audio 

cues that are available on standard manned aircraft are not available to the UAS operator. 

Information that is available to the operator of the UAS suffers from slow update rates and low 

resolutions that are caused by sensor and data link bandwidth limitations. Most UAS accidents 

occur during the take-off or landing process, especially by a UAS that relies on manual piloting 

to accomplish these tasks (Stevenson et al., 2015). The UAS can be piloted in third-person or 

first-person view. 

When an external pilot controls the UAS in third-person with a radio controller, the pilot must 

control all three positioning angles (pitch, roll, and yaw) of the aircraft (Stevenson et al., 2015). 

The pilot must also control the throttle to maintain the correct altitude and airspeed. Various 

external problems can occur when controlling the UAS, for example, spatial disorientation. 

During spatial disorientation, the UAS can be in an abnormal position making it difficult to 

control. The controls can be inverted when the UAS is in an upside-down state or the incorrect 

orientation. The disorientation can cause the UAS to crash, primarily due to improper control 

inputs. There is also the problem of the UAS flying too far away from the pilot. Finally, adverse 

light conditions can make it difficult to see the UAS and almost impossible to determine the 

orientation of the aircraft.  
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A UAS can also be piloted using a first-person view with the help of first-person view goggles 

that streams the video directly to the pilot. Pitch, roll, and yaw are now directly linked to the 

forward-facing view of the pilot. First-person view gives the pilot a better view of the current 

situation of the UAS. Next, the control of a UAS with smartphones and tablets is considered. 

3.2.2.1 Smartphone- or tablet-controlled UAVs 

Traditionally, UAVs are controlled with dedicated remote controllers. Modern technology has 

enabled the control of UAVs with smartphones or tablets. UAVs can now be controlled by using 

an application loaded on the smartphone and a Wi-Fi or Bluetooth connection. 

There are various applications available for Android, iOS, and Windows devices that can be 

found on their respective application stores. FreeFlight Pro is a mobile application that is used 

to control Parrot drones (Parrot, 2018). Beginner and advanced pilots can use FreeFlight Pro. 

The application's interface can be customised to suit the skill level of the pilot. FreeFlight Pro 

provides advanced photo and video settings enabling photo capture and real-time video 

streaming. Pre-programmed autonomous flight plans can also be used with the FreeFlight Pro 

application. Various other UAV control applications are available for mobile devices. UAV 

manufacturers provide the user with the necessary documentation and software development 

tools to build custom applications. Smartwatches can also be used in conjunction with mobile 

handheld devices to control a UAV, as described in the following section. 

3.2.2.2 Smartwatch-controlled UAVs 

Wearable devices are widely used, and numerous companies have released various smart 

wearable devices, for example, smart glasses, bracelets, necklaces, and watches (Kim et al., 

2014). Among these devices, the smartwatch is the most commonly used wearable device 

trend. A smartwatch not only serves as a watch itself, but the watch also provides additional 

features by using various sensors, such as accelerometers and gyroscope sensors. There are 

several sensor-related apps, such as a pedometer, heart rate monitor, and exercise assistance 

apps. Smartwatch technologies provide opportunities to design new forms of user interactions 

with mobile phones. The significant advantage a smartwatch has is its ability to provide location 

information (Rawassizadeh et al., 2014). Like augmented reality glasses, a smartwatch does not 

always require both hands to operate the device. The user does not need to hold the device in 

his/her hands. Smartwatches enable the user to have access to multiple applications directly 

from his/her wrist without the need to touch his/her smartphone (Komninos and Dunlop, 2014). 

A smartwatch is employed in this study to control the UAV. Next, a discussion on voice-

controlled UAS control methods is given. 
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3.2.2.3 Voice-controlled UAVs 

A UAV can also be controlled by using voice commands (Anand & Mathiyazaghan, 2016). 

Draper et al. (2003) implemented a speech input system to control a UAV. The input of speech 

was achieved with Nuance. Nuance is a speaker-independent continuous speech recognition 

system that supports dynamically extensible grammars. The vocabulary of the experiment 

contained 160 words. A “push-to-talk” button activated the speech recognition system. From the 

results, it could be seen that the speech input was significantly better than the manual input. In 

this study, a system similar to the “push-to-talk” button to capture data is used. This system will 

be explained in more detail in Chapter 4. 

Chandarana et al. (2017) also implemented a speech recognition system. The system used a 

commercial off-the-shelf headset microphone with speech-to-text software. The user specifies 

the desired control by speaking into the microphone. The speech is broken into phonemes or 

small and distinct units of sound that usually correspond to consonants and vowels which are 

then compared to the application’s dictionary of phonemes and are then mapped to the different 

control formations. Gesture control is discussed next. It will be necessary to undertake an 

overview of gesture control, as it is one of the techniques implemented in this study to improve 

UAS control. 

3.2.2.4 Gesture-controlled UAVs 

Chandarana et al. (2017) used a commercial off-the-shelf Leap Motion Controller sensor to 

control a UAV. The Leap Motion device is placed in front of the user with the assumption that 

the user will be performing gestures with his/her right hand. Gesture movements performed by 

the user are used to determine the movement of the UAV. The Leap Motion sensor uses a 

natural interface that allows the user to present movements by merely imitating the shape. Input 

gathered from the Leap Motion is characterised by using a linear support vector machine model 

that was trained to recognise gestures. For each gesture, the movement of the user’s palm is 

tracked for three seconds. Eigenvalues and direction of the movement throughout the gesture 

are then used to extract raw data which are classified by the trained model. In another study, a 

smartwatch is worn on the user’s wrist (Xu et al., 2015). Data gathered from the smartwatch can 

then be used to identify the user’s arm, hand and possibly finger movements. The data is 

acquired by accessing accelerometer and gyroscope sensor data.  

Various other manual control systems can also be used to control a UAS. Smartphones and 

smartwatches are more readily available, making it easier to use these devices to improve UAS 

control. In the following section, a discussion on autonomous UAS control is given.  
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3.2.3 Autonomous UAV control systems 

A UAS can be considered autonomous when the UAS can make decisions and react to events 

without the direct intervention of a human pilot (Sebbane, 2015). There has been a significant 

amount of research done related to autonomous flight control of a UAS (Bry et al., 2012). It can 

be a challenge to operate a UAS autonomously (Rafi et al., 2006). Long-distance navigation 

and waypoint following are considered to be an easier automated task for a UAS. Close-range 

navigation and following a moving target (discussed in Section 3.2.3.6) are more challenging. 

Close-range navigation requires constant real-time decision making and the optimisation of 

many parameters that takes care of the physical constraints of the aircraft. It becomes even 

more difficult for the UAS to follow a moving target if the future position of the target is not 

known.  

The most crucial research goal of autonomous navigation and manoeuvring is to reduce the 

time and requirement for human interaction to operate the autonomous system (Rafi et al., 

2006). Some advantages of automating control are that it increases the exploration capabilities 

at a lower risk and reduces cost in terms of time and money. The goal of most researchers is to 

reduce the human and UAS interaction ratio so that fewer human interactions are needed to fly 

the UAS and human decisions can be changed into advanced or policy level manoeuvres. 

Several fundamental aspects are common to all autonomous vehicles. These aspects include 

the ability to sense and perceive the environment, analysing (the sensed information), 

communicating, planning, decision making, and acting based on these findings, using control 

algorithms and actuators. A few of the actuators were mentioned in Section 3.1.2. Some of the 

control algorithms that are used with actuators for autonomous UAS control are discussed next. 

3.2.3.1 Range sensor 

One control approach is to use range sensors, such as laser range finders, infrared sensors, or 

red, blue, and green depth sensors (Padhy et al., 2018). Bry et al. (2012) presented a state 

estimation method that was based on an inertial measurement unit and a planar laser range 

finder. The algorithm that was used is capable of maintaining an accurate state estimate of the 

air vehicle during aggressive flights in an unstructured three-dimensional environment without 

the use of an external positioning system. The algorithm is based on an extension of the 

Gaussian Particle Filter (GPF). The GPF partitions the state according to the measurements’ 

independence relationship. A pseudo-linear update is then calculated to allow for the use of 20 

times fewer particles than a native implementation which can achieve similar accuracy in the 

state estimate. Roberts et al. (2007) used a single ultrasonic sensor and four infrared sensors 

for collision avoidance, stability control, and anti-drift control for autonomous flights. These 

sensors are not standard on most UASs, as the onboard device is often too heavy for the UAS. 
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Next, a discussion on the simultaneous location and mapping algorithm implementation is 

provided. 

3.2.3.2 Simultaneous localisation and mapping 

A 3-D map of an unknown indoor environment can be inferred by using range sensors or visual 

sensors, while simultaneously estimating its position on the map (Checchin et al., 2010; Engel 

et al., 2014; Mei et al., 2011). Bachrach (2009) used a laser rangefinder sensor for high-level 

simultaneous location and mapping (SLAM) implementations and exploring unknown indoor 

environments. Çelik et al. (2009) presented a novel approach to an indoor navigation and 

ranging strategy by using a monocular camera. The algorithm which was proposed is integrated 

with a SLAM with the focus on indoor air vehicle applications. The proposed algorithm was 

validated by using a self-contained micro-aerial vehicle with onboard image processing and 

SLAM capabilities. The range measurement strategy was inspired by vital adaptive mechanisms 

for depth perception and pattern recognition found in humans and intelligent animals. The 

navigation environment was unknown and GPS-denied. The results of this experiment showed 

that the system is only limited by the capabilities of the camera and the availability of good 

corners. In the next section, a discussion on stereo vision is provided. 

3.2.3.3 Stereo vision 

The relative position and accurate depth estimation of a UAV are possible with the use of stereo 

cameras (Bachrach, 2009; Fraundorfer et al., 2012). Fraundorfer et al. (2012) implemented an 

autonomous vision-based quadrotor micro-aerial vehicle system that maps and explores 

unknown environments. The algorithms that were necessary for autonomous mapping and 

exploration ran onboard the micro-aerial vehicle. The quadrotor used a front-facing camera as 

the primary exteroceptive sensor with the Vector Field Histogram+ algorithm for local 

navigation. Bills et al. (2011) used a monocular camera to find vanishing points. These points 

were used to fly the aircraft in a corridor environment. For staircases, the centre of the staircase 

was found. Additionally, a front-facing short-range sensor was used to avoid collisions in 

corners and unknown environments. Next, a discussion on the imitation learning strategy is 

provided. 

3.2.3.4 Imitation learning strategy 

Ross et al. (2013) applied a novel imitation learning strategy by implementing the DAgger 

algorithm. The DAgger algorithm trains a policy that mimics the expert’s behaviour through 

multiple iterations of training. In this approach, the algorithm learned the controller policy that 

mimics a human pilot’s choice of actions from demonstrations of desired behaviours. Padhy et 

al. (2018) proposed an efficient system in which a quadcopter autonomously navigates indoors 
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and finds a specific target by using a single camera. A deep learning convolutional neural 

network is used to learn a control strategy that imitates an expert pilot’s choice of action. Neural 

networks are discussed in more detail later on in this chapter. Object detection can also be used 

in the process of automating UAS control. Object-detection applications are discussed in the 

next section. 

3.2.3.5 Object detection (visually) 

Object detection with a UAS has become an essential aspect of the development of an 

autonomous UAS for rescue and surveillance missions (Gaszczak et al., 2011). Object 

detection is an essential task for object tracking, since it is continually applied in every frame 

(Porikli & Yilmaz, 2012). One method that is used for detecting moving objects is by using 

temporal information that is extracted from a sequence of images. Temporal information can be 

utilised, for example, by computing the inter-frame difference, studying a static background 

scene model and comparing it to the current scene, or by finding high motion areas. Another 

method for object detection is to slide a window across the image and classify each of these 

local windows as containing the target or background. Alternatively, a local interest point is 

extracted from the image and each of these regions around the points can be classified, rather 

than observing all the possible sub-windows. Usually, when an object has been detected, it is 

required to track the object in order for the UAS to autonomously follow the object. Object-

tracking applications are discussed next. 

3.2.3.6 Object tracking (visually) 

Object tracking is a fundamental task in several areas of research (De Almeida Maia et al., 

2016). The purpose of object tracking is to provide the object’s position over time to enable the 

system to analyse the object’s behaviour.  

UASs have various sensors and actuators that can be used for autonomous object tracking and 

following (Bartak & Vykovsky, 2016). The UAS takes a snapshot with the camera after which the 

user marks an area as the object of interest, and the UAS will then autonomously follow the 

selected object when the object moves. The critical part of object tracking is the detection of the 

tracked object in a video stream that is captured by the camera of the UAS. The UAS then 

navigates, based on the target’s exact location.  

There are essentially two approaches that are used to follow a target within a video stream. The 

one approach uses the known location of a target from a single video frame by estimating the 

motions between successive video frames and computing the next position of the target. This 

method is generally used for object tracking and does not require much information about the 

target since it uses general techniques to process pictures. This method is prone to error, and 
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the precision of the method deteriorates with time, as the UAS will drift away from the real 

trajectory of the object that is being tracked. The method also fails to rediscover the object again 

when it loses the object that was being tracked. 

Another approach for object tracking is to use techniques such as template matching, feature 

detection, and matching on a static picture. The advantage of this method is that whenever the 

object of interest that needs to be tracked appears in the picture, it can be detected. The 

disadvantage of this approach is that to learn what the target looks like, it requires extensive 

training.  It is sometimes required to do multiple-object tracking. Some of the techniques that 

can be used are discussed next. 

Multi-object tracking: Tracking multiple objects can be decomposed into two separate steps 

that address independent problems (Berclaz et al., 2011). The first step is the use of time-

independent detection, where a prediction scheme is used to infer the number and location of 

the targets from the available signal at every time step independently. It typically includes either 

a generative model of the signal given the target presence, or a selective machine learning-

based process. The second step uses modelling detection errors and target motions to link 

object detections into possible trajectories. It is also essential for the UAS to know what to do 

when the object is obstructed. Techniques that can be used to track obstructed objects are 

considered next. 

Tracking obstructed objects: One of the main problems that needs to be solved when 

tracking moving objects is to separate the change in the image caused by the movement of the 

UAS from the change in the image movement caused by dynamic objects (Rodríguez-Canosa 

et al., 2012). One approach to solve this problem is to use a method called tracking-learning-

detection and decomposing the task of long-term object tracking into three subtasks: tracking, 

learning, and detection (Bartak & Vykovsky, 2016). This approach acknowledges the fact that 

object tracking and detection become prone to error when these methods operate on their own. 

The tracking method provides the detector with learning data in real-time, and it enables the 

detector to reinitialise the tracker in the event the object gets lost. The learner compensates for 

the errors that will be made by the detector and updates the model to avoid the errors from 

being made in the future. As mentioned earlier, the user frames the object that must be 

followed, for example, with a rectangle in the first image so that the UAS has the initial position 

of the object. The method identifies the rectangle frame of the moving object in the next image 

while assuming that the scaling of the rectangle may change as the UAS and object move. The 

tracking-learning-detection algorithm uses the Lucas-Kanade tracker that is enhanced by 

forward-backwards consistency checking. The Lucas-Kanade tracker improves the quality of 

tracking over a sequence of frames, and it self-evaluates the quality of tracking (Lucas, 1981).  
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Another approach is to use the Clustering of Static-Adaptive Correspondences for Deformable 

Object Tracking (CMT) algorithm (Chakrabarty et al., 2016). The CMT tracker represents the 

tracked object as a set of features which correspond to key points relating the current position of 

a feature to its position on the original image. The CMT algorithm distinguishes between the 

current image, the original image, and succeeding images. It then uses both kinds of 

correspondence to update the object model. The CMT algorithm also introduces a tolerance 

parameter which allows communication between frames to be robust to change due to 

deformations. The CMT algorithm uses a heuristic estimate to generate values that are related 

to the scale and rotation of the bounding box. These values are used with the estimated values 

of the centres of the object being tracked to determine the outputs of the CMT algorithm. Object 

tracking is used for object detection and tracking. It can also be used when an object cannot be 

visually detected or tracked. In the next section is a discussion of techniques that can be used 

to track an object without the use of visual actuators. 

3.2.3.7 Object-location tracking (without vision) 

In the past, the location tracking was implemented by carrying a sophisticated, complex, and 

extensive internal navigation system (INS) onboard the aircraft. It also required frequent 

updates from the control system by using a communication link. Radio tracking or recognition of 

geographical features was used to track the aircraft. Currently, global positioning systems are 

used to acquire location information from a series of earth-satellites. Newer GPSs are incredibly 

light in weight, compact, cheaper, and gives continuous location updates which result in only 

needing a straightforward form of INS.  

The location of a UAV needs to be available on demand at any moment in time (Austin, 2010). 

Location tracking may form part of all of a pre-programmed mission or be part of the return to 

home function. When fully autonomous flights are carried out without any communication 

between the aircraft and the control system, it can cause accidents. A GPS onboard a UAS can 

give approximate coordinates during various flight tasks (Tahar et al., 2016). Knowing the 

position and altitude can help the pilot to handle most circumstances during an emergency, 

such as the loss of signal or bad weather.  

When the communication between the aircraft and the control system needs to be continuous, 

or when there is a risk of the GPS being blocked, there are other navigation methods available 

(Austin, 2010). These methods include: 

• Radar tracking: The UAV is fitted with a transponder which communicates with a radar 

scanner from the control station. The position of the UAV can then be identified on the 

radar display of the control system. 



42 

• Radio-tracking: A radio signal is used to carry data from the UAV to the control system. 

The position of the UAV is determined by the time it takes for the coded signal to travel 

from the UAV to the control system or vice versa. 

• Direct reckoning: The position of the UAV can be determined by using computer 

integration velocity vectors and the time elapsed. For example, in the case that the 

mission is over land, and the UAV carries a camera surveying the ground, the position of 

the UAV can be confirmed by relating geographical features with the known position on 

a map. 

Many other studies have been conducted to overcome bad satellite reception and the loss of 

signal during a flight (Tahar et al., 2016). Another method that is used for dealing with this 

problem is to use a failsafe mode. When the UAS has a loss of signal, GPS, or low battery 

during the flight, the UAS will return to home. It can prevent accidents from happening, and the 

UAS can land safely.  

There are many different types of GPS available on the market. Every different type of GPS has 

its strengths and capabilities to acquire signals from the satellites. It is essential to know the 

constellation of the satellites during the flight mission to obtain accurate coordinates. Four 

considerations need to be taken into account when choosing a GPS for a UAV. These 

considerations are compliance, accuracy, interference, and errors. Recently, new regulation 

compliances are considered with UAV performance and the areas in which the UAV operates. 

UAV operators need to ensure the UAV avoids sensitive areas, such as airports, military bases 

and civilian areas.  The accuracy of the GPS depends on the type of signal received from the 

satellite platform. Cheap GPSs can only receive weak and selected signals. More expensive 

GPSs can support and receive many different types of signals, increasing real-time position 

tracking of a UAS. The required accuracy of a GPS depends on the type of application. For 

example, the GPS used for hobbies is not always as precise as the GPS used for military 

applications. Military applications may require a high accuracy rate to complete missions 

successfully. Signal interference during the flight might be caused by transmission lines, power 

systems and telecommunication towers. The operator needs to avoid potential areas that might 

cause signal interference. Various factors, such as wind, solar weather, electromagnetic waves 

and the surrounding environment can cause GPS errors. All these considerations can influence 

the accuracy of the UAV’s position. Visual and non-visual tracking each has its disadvantages. 

It is beneficial to investigate methods that can be used to combine these two methods and in 

the process, reduce the number of disadvantages of these two methods. Next, a discussion on 

methods that can be used for combining visual and non-visual location tracking is provided. 
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3.2.3.8 Combining visual and non-visual location tracking 

When a UAS navigates buildings and other obstacles in an urban environment, it can weaken 

the GPS signal and can even cause a complete loss of the signal. When the GPS signal is lost, 

the dead reckoning (the process of calculating the current position of an object by using a 

previously determined position) capability of the onboard INS does not allow for accurate 

navigation. This causes the position of the UAV to be determined visually. A vision system is 

self-contained, not jammable, and provides a position measurement one order of scale more 

accurate than a standard GPS. Limited image frame rates and sensor resolution make it difficult 

to estimate velocity from vision. The visually-based position needs to be combined with 

measurements from internal navigation sensors of the UAV. A vision-aided INS can be 

implemented by using a Bayesian framework and can be divided into two groups: loosely 

coupled and tightly coupled (Vu et al., 2012). The differences are as follows: 

Loosely coupled image feature-aided INS calculates the absolute position of the vehicle by 

using an imaging sensor and then using the computed absolute position to correct the INS. 

Conte and Doherty (2009) used a vision-aided INS method, based on visual odometry and 

georeferenced image matching. It is used when the GPS is not working. The method that was 

implemented used vision-aided components. A point mass filter was used to fuse the visual 

odometry measurements with the georeferenced image matching and an altimeter sensor to 

provide an absolute position. They obtained position errors that are consistently less than 2 m. 

Durrie et al. (2009) proposed a vision-based navigation system for UAVs that operate on 

airfields where GPSs are prohibited. The system uses a particle filter to determine the aircraft’s 

absolute position by extracting the edges of the image and then comparing it to the predicted 

edges from a lane-marking database. The INS reading is then improved by using the absolute 

position computed from the particle filter. The vision-based navigation system that is integrated 

with the INS runs in real-time and has a position error consistently below 15 m. 

Tightly coupled image feature-aided INS uses features of an image that are compared to 

mapped landmarks and are extracted in the image plane. The residual between the perceived 

and the forecasted feature locations together with the feature measurement function are applied 

to a Bayesian framework to correct the INS. Miller and Campbell (2008) used a particle filter 

approach to augment visual features, the GPS, and inertial navigation to estimate the position 

and altitude of the vehicle on a two-dimensional plane. The approach gave a positional 

accuracy of less than 3.5 m. 

Object tracking and location tracking are an essential aspect of the process of automating UAS 

control. In this section, it is evident that various methods can be used to control a UAS manually 

or autonomously. To make a UAS fully autonomous, many technological and algorithmic 
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developments are still needed (Becerra, 2019). One needs to understand what a fully 

autonomous UAS is. These findings can then be used to identify methods and techniques that 

can be used to automate and simplify UAS control. In the next section is a discussion on what 

UAS automation is and techniques on how to automate UAS control. 

3.3 Automating UAS control 

The level of automation of a UAS needs to be improved (Pippin, 2015). When a UAS has a high 

level of automation, fewer operations are required to control the UAS. This makes the UAS 

cheaper and easier to deploy. Another advantage is that it enables the operator to focus more 

on the high-level tasks rather than lower-level mundane operations. With the automation of 

planning capabilities, the UAS can respond faster to operation needs. Sensor data can be 

processed onboard the UAS and the high-level findings can be returned to the operator. 

Automated UAS are less susceptible to operator errors and communication link failures. What 

automation is and how it is applied to a UAS are discussed next. 

3.3.1 Automation 

Automation is defined as a machine agent which is capable of carrying out functions that are 

usually performed by a human (Vincenzi et al., 2015). The main goal of automation is to replace 

human control, planning and problem solving with autonomous devices and computers 

(Bainbridge, 1983). An overview of how humans process information and how it can be applied 

to the computerised system to improve automation must be carried out. In the next section is a 

discussion on human information processing and how it is applied to system automation. 

3.3.1.1 Human information processing applied to system automation 

According to Parasuraman et al. (2000), there are four stages of human information processing. 

The first stage refers to the acquisition and registration of multiple sources of information. This 

stage also includes the positioning and orientation of sensory receptors, sensory processing, 

initial pre-processing of data which are before the full perception, and selective attention. The 

second stage involves the conscious perception and manipulation of processed and retrieved 

information in working memory (Baddeley, 1974). This stage also includes intellectual 

operations such as rehearsals, integrations, and assumptions, but these operations occur 

before the point of decision.  At the third stage, decisions are made based on intellectual 

processing. The final stage involves the use of an action or response that is aligned with the 

chosen decision (Parasuraman et al., 2000). This four-stage model is a simplified version of the 

many components that are used for human information processing, as discovered by 

information processing and cognitive psychologists (Baddeley, 1974). To perform most tasks, it 

involves inter-dependent stages that overlap temporally within the processing of operations 
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(Wickens & Hollands, 2000). The four-stage model of human information processing can be 

applied to system functions that can be automated (Parasuraman et al., 2000). Parasuraman et 

al. (2000) propose that automation can be applied to four classes of function: 

1. Information acquisition 

2. Information analysis 

3. Decision and action selection 

4. Action implementation 

Each of these functions can be automated to different degrees or levels. The various levels of 

automation which are discussed in this section can be applied to the four classes of functions. 

These four classes of functions will be discussed next. 

3.3.1.2 Acquisition automation 

The automation of information acquisition applies to the sensing and registration of input data. 

This operation is equivalent to the first human information-processing stage, which supports 

human sensory processes (Parasuraman et al., 2000). On the lowest level of such automation, 

it may consist of strategies which are used to mechanically move sensors to scan and observe. 

An example of this is a commercial air-traffic controller that uses radar to acquire information on 

an aircraft by scanning the sky using a fixed pattern. Moderate levels of automation at this stage 

could involve the organisation of incoming information according to some type of criteria.  

3.3.1.3 Analysis automation 

The automation of information analysis involves cognitive functions, including working memory 

and inferential processes. At a low level of automation, algorithms can be applied to incoming 

data to allow extrapolation over time or predictions. For example, predictor displays have been 

developed which are fitted in the cockpit of an aircraft that shows the projected course of 

another aircraft in the airspace nearby (Hart and Wempe, 1979). A more advanced level of 

automation at this stage involves integration where numerous input variables are combined into 

a single value. An example of this is the use of a display that has an emergent perceptual 

feature, such as a polygon against a background of lines (Bennett and Flach, 1992).  

3.3.1.4 Decision automation 

The decision and action selection stage involves the selection of decision alternatives. 

Automation at this stage involves altering the different levels of augmentation or replacing 

human selection with the decisions provided by the computer system (Parasuraman et al., 

2000). An example of this can be seen within an expert system which is designed with 

conditional logic to specify a specific decision when a particular condition is met. This stage can 

be compared with the decision-making stage of human performance in that the system departs 
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from inferences because it makes explicit or implicit assumptions about the cost and value of 

the different possible outcomes of the decision process and nature of these outcomes.  

3.3.1.5 Action automation 

The final stage refers to the execution of the choice of action. Automation at this stage involves 

various levels of machine chosen actions that typically replaces the hand or voice of the human. 

The different levels of action automation may be characterised by the relative number of manual 

versus automatic activities used to execute a response. An example of action automation is 

when the control of an aircraft is automatically transferred from one airspace sector to another 

by pressing a single key. Action automation includes programming agents that track the user’s 

interaction with a computer and then execute specific sub-tasks automatically in a contextually-

appropriate manner (Lewis, 1998). Automation of a UAS can be divided into the following two 

sections: system architecture and software architecture. Next, a discussion on automation 

system architecture is given. 

3.3.2 UAS automation system architecture  

The design of a UAS may require many different types of automated system and can be 

different from those used for manned aircraft. The recommended architecture that is used to 

support autonomous UAS operations uses the front-seat-backseat driver paradigm, which is 

also used by many autonomous robotic systems (Benjamin et al., 2009). The front-seat driver 

can be seen as the flight control system and includes the autopilot, electronic system, and flight 

controller (Pippin, 2015). The backseat driver is the mission control computer and is more 

cautious and concerned with long-range planning. The main idea behind this paradigm is to 

distinguish between low-level and higher-level autonomous operations (the levels of automation 

are discussed later in this section). A high-level overview of this paradigm is presented in Figure 

3-4. Within this architecture, the flight control system can be operated in a stand-alone mode by 

a remote-control device, a predefined waypoint route, or the mission processor can drive it.  In 

general, the flight control system can be operated as a black box, and it does not matter where 

the commands originate. The mission processor also operates separately from the flight 

controller and has little knowledge of its internal details. The flight control system includes the 

autopilot, GPS, operating system, and a dedicated link to a ground station computer which is 

used to send waypoints and control commands to the autopilot. The flight control system also 

produces the control signals for the aircraft’s control surfaces and throttle. The system should 

be able to operate autonomously and be isolated from the mission control computer by having 

dedicated data links and power sources. It provides the system with some fault tolerance, and it 

enables the system to be easily extensible.  

 



47 

 

Figure 3-4: UAV system architecture (Pippin, 2015) 

These components need to be easily extendable to accommodate future processing needs, 

autonomous behaviours, and sensor payloads. Multiple input and output options should be 

available to the processors and should be relatively low in power consumption and be 

lightweight. The mission processor should have a source of power and data links for 

communication to the ground. The mission processor will also connect to the sensor payload 

directly, and this will allow the behaviours to incorporate the perception data. The perception 

data can be processed directly on the mission computer itself. Alternatively, it can be processed 

on a separate payload computer. This design allows for future sensor payloads to be easily 

added to the system and consumed by the autonomous behaviours. Software architecture is 

also required for automated systems and is discussed in the next section. 

3.3.3 UAS automation software architecture 

The primary purpose of the mission processor is to execute high-level mission planning and 

behaviour processes and to send and receive messages between processes, other vehicles, 

and the ground station (Tisdale et al., 2006). One of the key design goals of the system is that it 

should be flexible with the architecture and should have the potential for expansions (Pippin, 

2015). Different autonomous behaviours, sensors, and communication capabilities may be 

added in the future. The functionality may even run across multiple processors on separate 

payload computers. The software components must communicate using open and flexible 

architectures. An example of an open and flexible architecture is the use of message-oriented 

middleware. The separate processes send messages to each other, and processes have little 

or no knowledge of each other.  
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In a UAS, several processes encapsulate the details of interacting with various sensors, the 

autopilot system, data links, and autonomous behaviours. Each process can send or receive 

messages from the others. Since the processes have little or no knowledge of each other, it is 

easy to add processes in the future without changing the existing system. The following are 

examples of processes, and the message types used: 

• The avionics process interacts with the flight control computer and obtains messages 

from the autopilot and avionics components related to the aircraft status. The process 

can send messages which include information about the position and orientation of the 

aircraft. It can also subscribe to waypoints or other command messages from the 

autonomous behaviours. In other words, these messages can check for accuracy and 

forward the information to the flight control computer. 

• Sensory processing uses multiple sensors that can be operated at once to process 

perceptions from cameras, radar, or other sensors, onboard the aircraft. These sensors 

can also send messages to a related sensor. For example, a process might send a 

message to another sensor to indicate that an object was detected at a given location. 

• Behaviours are the highest level of autonomous processing. It operates as a set of 

behaviours which can perform high-level autonomous operations and planning. For 

example, a behaviour focussing on searching might generate a pattern of waypoint 

messages that could be consumed by the avionics process and then sent to the flight 

controller. The behaviours can get messages from the sensor processes and change 

behaviour, based on the information received. The behaviours also communicate 

mission control information for other processes to consume. 

• Communications are used to encapsulate access to the mission data link and do 

access control between the physical data link and onboard processes. 

• The filter process could attach to any of the messages, such as sensor data and 

perform additional filtering or data fusion and produce the result to other processes. 

• The Joint Architecture for Unmanned Systems (JAUS) or other standard-related 

processes can be used to convert messages among standard formats to support 

interoperability.  

This approach to automation software supports extensibility and encapsulates lower-level 

components from other processes. Additional sensors could easily be added to the system in 

the future. A new standard for processes could also be added to support the translation from 

one standard to another for further support of interoperability. There are various system and 

software architectures available to use when automating a UAS. It is necessary to understand 

the different levels of automation. Understanding the different levels of automation can be used 
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to determine the level of automation of a system. The different levels of automation used within 

a system are discussed in the next section.  

3.3.4 Automation levels 

The system does not have to be fully automated. It can fluctuate across a continuum of levels, 

from the lowest level of fully manual performance to the highest level of full automation. There 

are several levels of automation between these two extremes, as defined in Section 1.2 

(Parasuraman et al., 2000). These measures are repeated here for completeness and are 

expressed on a ten-point scale. On this scale, level 1 is the lowest level of automation, and level 

10 is the highest level of automation as follows: 

• Level 1: The computer does not assist, and the human is left to make all the decisions 

and take action. 

• Level 2: The computer gives a complete set of decisions, actions, and alternatives. 

• Level 3: The computer narrows the selections down to a few. 

• Level 4: The computer suggests one alternative. 

• Level 5: The computer executes a suggestion only if the human approves. 

• Level 6: Allows the human a certain amount of time to veto before performing an 

autonomous action. 

• Level 7: Does autonomous actions and then informs the human of the actions. 

• Level 8: Provides information to the human only if required. 

• Level 9: Informs the human only if the computer decides it needs to. 

• Level 10: The computer does everything autonomously and ignores the human. 

It can be seen at level 2 that several options are given to the human by the computer, but the 

computer has no further say in which action is chosen. At level 4, the computer suggests one 

action to take, but in the end, the human still retains authority over what action should be 

chosen. At level 6, the computer gives the human only a certain amount of time to choose an 

action before acting.  

Autonomous systems can operate within a specific level on this continuum. For example, a 

conflict detection and resolution system can notify an air-traffic controller of a conflict within the 

current flight paths of two or more aircraft. The autonomous system can then suggest conflict 

resolution. The level of automation would be categorised as level 4 automation. At level 6 or 

higher, the system would automatically execute its conflict resolution advisory, unless the 
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controller intervened. The following four levels represent the level of UAS automation (Clarke, 

2014): 

• Level 1: All high-level piloting is controlled manually. 

• Level 2: Some high-level piloting is still controlled manually unless the piloting is 

switched over to automatic. 

• Level 3: The UAS control is by default automatic, but can be switched to manual 

piloting. 

• Level 4: A fully autonomous system. 

Level 1 is the lowest level of automation, and level 4 is the highest level of automation. To 

improve the level of automation of a UAS in this study, various algorithms and tools were 

identified that could be used to simplify and improve UAS automated control. In the next section 

is a discussion on these algorithms and tools that were used. 

3.3.5 Automation with programming agents 

“An agent is anything that can be viewed as perceiving its environment through sensors and 

acting upon that environment through actuators” (Russell & Norvig, 2010). The definition of 

agents covers an extensive spectrum. An agent can be a simple thermostat which does not 

learn anything new.  It can also be worms that learn a small repertoire of behaviours or humans 

who are considered to be the most exceptional learners on earth thus far (Mills & Stufflebeam, 

2005). An agent perceives its environment with the help of sensors. Something as simple as a 

keyboard and video camera can function as sensors when attached to the agent. An agent uses 

effectors as instruments to show responses from the environment that the agent perceives. 

Examples of effectors are monitors, printers, robots and robotic arms. 

The environment of the agent is generally represented by the domain or world of the agent. The 

domain of the agent must be limited to a specific type of situation. If the domain of the agent is 

not defined at the start, an infinite number of possibilities is available to the agent. Two types of 

environments impact the computational challenges of the agent’s program (Mills & Stufflebeam, 

2005). In the first environment, the agent is non-deterministic. The environment should be easily 

accessible to the agent to enable the agent to effectively use its sensors to obtain complete 

information about the state of affairs. This information is then used by the agent to complete its 

goal. For example, a thermostat always has complete access to the temperature of the room, 

and the agent does not need to store any information. The agent has access to whatever 

knowledge is needed at any given time, and there is no need to store the state of the world 

internally. In the second environment, the environment is deterministic. The future state of 

affairs is deducible from the current state of affairs, and nothing is left to chance. Board games 
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have this feature, even though the tree of possibilities may extend out into billions of possible 

moves and counter-moves. There are various types of agent. Each agent is designed and used 

for a specific goal in mind. Next, a discussion on a simple reflex agent is provided. 

3.3.5.1 Simple reflex agent  

The most basic type of agent is a simple reflex agent (Mills & Stufflebeam, 2005). This type of 

agent selects its actions, based on its current percept, and ignores the rest of the percept 

history. The simple reflex agent uses a set of rules to determine what action to do next. For 

example, if an agent is programmed to search for a specific rock at a specific location, it will 

collect that rock, and if it finds the same rock at a different place, it will also pick it up. The agent 

does not take into account that it has already picked up that specific rock. A simple reflex agent 

acts upon a specified percept with one of the pre-programmed responses. Even if there are 

several possible responses to a single percept, the agent has a list of situation-action rules to 

execute for this specific percept. A situation-action rule can be explained as a simple 

hypothetical imperative. For example, if situation A is the current state of the agent and goal C 

requires plan B to be executed, then plan B is executed. Alternatively, even more simply, given 

A, execute B. Simple reflex agents are admired for being simple, but they have limited 

intelligence. The agent is useful when a quick automated response is needed. Humans have a 

similar automated response to fire. The human brain instructs our hand to be pulled away 

without even thinking that there could be other possible dangers that can be in the path of our 

arm. These actions are called reflex actions. Simple reflex agents are easy to work with, but 

their intelligence limits the complexity of the task that can be performed by the agent. Because 

simple reflex agents have basic intelligence, it can limit the level of automation that can be 

achieved by this specific agent. It is, therefore, advisable to investigate what other types of 

agent can be used to acquire a higher level of automation. The utility-based agent is discussed 

in the next section. 

3.3.5.2 Utility-based agent  

In more sophisticated agents, such as a utility-based agent, a utility measure is applied to the 

different possible actions that can be performed in the specific environment (Mills & 

Stufflebeam, 2005). The utility-based agent will try and produce the best outcome by rating 

each scenario to determine if it will achieve specific criteria. A utility-based agent will consider 

the following: the probability to succeed, the number of resources that are needed to complete 

the scenario, the importance of the goal that needs to be achieved, and the time it will take to 

complete the scenario. These considerations are all factored when the utility function is 

calculated. The behaviour of the agent is not only built on its knowledge about the world but 

also the agent’s percept sequences. The sequences of perceptions are not always predictable 
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by the agent. This unpredictability is found mainly in non-deterministic environments. The agent 

obtains input from its sensors throughout the constant changing world. The agent can decide to 

map its percept sequences to formulate a plan of action in pursuit of its goals that need to be 

completed. The architecture of the agent can also include a learning program so that the agent 

can go through trial and error in a novel situation to accomplish its goals.  

It is difficult to predict every state of the world in which the agent will be, and writing rules for 

each scenario would be laborious. The solution is to give the agent some goals, the ability to re-

evaluate its state continuously, the ability to learn through a trial and error process and ways to 

evaluate possible plans that can become a possible path to get to the goal. Artificial neural 

networks can be used to aid the utility-based agent employed in this study to learn. Next, a 

discussion on artificial neural networks is provided. 

3.3.6 Artificial neural networks 

Artificial neural networks are statistical models that are inspired by the biological neural network 

of the brain (Castrounis, 2016). Artificial neural networks are capable of modelling and 

processing nonlinear relationships between inputs and outputs in parallel (Ranasinghe et al., 

2017). The algorithms that are used with these neural networks are part of machine learning 

and can be used in several applications (Deng & Yu, 2013). 

The character of the neural network is defined by the adaptive weights and the paths between 

the neurons. The weights and paths can be adjusted by a learning algorithm which learns from 

data. It enables the model of the neural network to be improved. Neural networks should also 

be given an appropriate cost function. Cost functions are used by the neural networks to learn 

the best solution for the problem that needs to be solved (Castrounis, 2016). The process 

involves determining the best values for all the model’s parameters. It includes the neuron path 

adaptive weights that are the primary target and the algorithm’s alteration of parameters such as 

the learning rate. The implementation requires optimisation techniques, such as stochastic 

gradient descent or gradient descent. The optimisation techniques need to try and optimise the 

solution of the neural network. Solutions need to be as close as possible to the optimal solution. 

If the optimisation technique is successful, it means that the neural network is capable of solving 

the intended problem with a higher performance (better accuracy rate in this study). 

The architecture of an artificial neural network is modelled by layers of artificial neurons, also 

known as computational units. These units can receive input and apply an activation function 

with a threshold to determine if the message passes through the network (Suzuki, 2011). The 

most basic neural network model consists of an input layer, followed by one or more hidden 

layers, and lastly, an output layer. Neural network models can become more complicated by 

increasing the number of hidden layers and the number of neurons in any of the layers or the 
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number of paths that are between neurons. As the model becomes more complex, it also 

increases abstraction and problem-solving capabilities. It should be noted that overfitting (when 

the performance on a test set is much lower than the performance on the training set) can occur 

when the complexity of the model is increased too much.  

The primary components of neural network techniques are the architecture and adjustment of 

the model, in addition to the actual learning algorithms themselves (Castrounis, 2016). These 

characteristics of a neural network can have a substantial impact on how the model performs. 

The models are also characterised and adjustable by the activation functions that are used to 

convert a neuron’s weighted input into its output activation. Several different transformations 

can be used as the activation function. The abstraction of the output is a form of distributed 

representation as a result of the transformation of the input data that goes through neurons and 

layers and is in contrast to a local representation. An example of local representation is the 

means that is represented by a single neuron.  An entire network is a form of distributed 

representation due to the many transformations across layers and neurons. Artificial neural 

networks are extremely powerful, can be very complicated, and are considered to be black box 

algorithms, as the inner working of the neural network is sometimes challenging to understand 

and explain. Various artificial neural network algorithms can be used for specific goals in mind. 

The radial basis function neural network architecture utilised in the study is discussed in the 

next section. 

3.3.6.1 Radial basis function neural networks 

The radial basis function neural network (RBFNN) was introduced by Broomhead & Lowe 

(1988). They introduced the RBFNN for function approximation, time-series forecasting, and 

classification or clustering tasks. RBFNNs have been extensively researched and studied over 

recent years (Pazouki et al., 2015). RBFNNs have been successfully used in many applications, 

including interpolation, chaotic time-series modelling, speech recognition, image restoration, 

three-dimensional object modelling and data fusion. Figure 3-5 is a visual representation of the 

architecture of an RBFNN. The RBFNN architecture consists of an input vector, a layer of RBF 

neurons, and an output layer per category or class of data. The input vector is the n-

dimensional vector that needs to be classified. Each RBF neuron knows the entire input vector. 

RBFNNs act on the input patterns and send the outcomes to the output neurons, which are in 

the output layer. The output neuron of the network is the weighted sum of the patterns of the 

hidden neurons.  

Generally, an RBF is a multivariate function Φ:ℝ𝑠𝑠  → ℝ, such that 

Φ(𝓍𝓍,𝓍𝓍𝒸𝒸) =  𝜙𝜙(∥ 𝓍𝓍 − 𝓍𝓍𝒸𝒸 ∥),                                                   (3-1) 
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where 𝜙𝜙: [0, ∞) → ℝ is a univariate function, 𝓍𝓍 is the input, 𝓍𝓍𝒸𝒸 is the centre point of the RBF, the 

norm ∥ . ∥ is typically the Euclidean distance, and s is the dimension of input patterns. The 

centre points (𝜇𝜇𝑘𝑘 in Figure 3-5) and shape parameter (𝑟𝑟 in Equation 3-2) characterise the RBF.  

 

Figure 3-5: Radial basis function neural network (Pazouki et al., 2015) 

An RBF reaches its maximum value when it is applied to the centre points and decline when 

applied to points far away from the centre points. The decrements are affected by the shape 

parameter of the RBF, as seen in Figure 3-6.  

 

Figure 3-6: Gaussian with 𝒓𝒓 = 1 on the left and 𝒓𝒓 = 1/3 on the right that is centred at the 

origin 
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The Gaussian function is often used as the RBF, i.e. 

 𝜙𝜙(𝜛𝜛) = exp(−𝑟𝑟2𝜛𝜛2),  (3-2) 

where 𝜛𝜛 ∈ ℝ and 𝑟𝑟 > 0, known as the radius is the shape parameter. The Gaussian function 

Equation 3-2 can be expressed explicitly as the following RBF in Equation 3-1: 

 Φ(𝓍𝓍,𝓍𝓍𝒾𝒾𝑐𝑐) = exp(−𝑟𝑟2 ∥ 𝓍𝓍 − 𝓍𝓍𝒾𝒾𝑐𝑐 ∥2) = exp(−∥ 𝓍𝓍 − 𝓍𝓍𝒾𝒾𝑐𝑐 ∥2/2𝜎𝜎2),                               (3-3) 

where 𝜎𝜎2 = 2/𝑟𝑟2  is the variance of the normal distribution.  

 

For a specified input pattern 𝑥𝑥 ∈  ℝ𝑠𝑠, the typical output 𝑜𝑜(𝑥𝑥) ∈ ℝ of an RBFNN is 

 𝑜𝑜(𝓍𝓍) = � 𝓌𝓌𝒾𝒾Φ(𝓍𝓍,𝓍𝓍𝒾𝒾𝑐𝑐),𝑛𝑛
𝑖𝑖=0  (3-4) 

 

where n is the number of neurons in the hidden layer, 𝓌𝓌𝒾𝒾 is the weight of hidden neuron 𝑖𝑖 and 

𝓍𝓍𝒾𝒾𝑐𝑐 is the centre point of hidden neuron 𝑖𝑖. 

 

An RBFNN is opportune for function approximation and pattern recognition due to the simple 

topological structure of the RBFNN and the ability of the RBFNN to reveal how learning 

proceeds in an explicit manner (Tao, 1993). In the next section is an example of solving a 

simple XOR classification problem by using an RBFNN. 

 

Example of RBFNN implementation 
Figure 3-7 denotes a two-dimensional vector having two values, namely X₁ and X₂. On the X₁ 

axis, X₁ can have values 0 and 1. On the X₂ axis, X₂ can also have values 0 and 1.  

 

Figure 3-7: Visual representation of XOR classification problem 
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The XOR function is defined as follows in Table 3-1: 

X1 X2 XOR function 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Table 3-1: XOR function. 

This two-dimensional vector is then cast into a four-dimensional vector by using four Radial 

basis functions, as shown below: 

𝜙𝜙1 → 𝑡𝑡1 = (0,0); 𝜎𝜎1 = 1; 𝜙𝜙1(𝓍𝓍) =  exp −∥𝓍𝓍−𝑡𝑡1∥2

2
                           (3-5) 

𝜙𝜙2 → 𝑡𝑡2 = (0,1); 𝜎𝜎2 = 1; 𝜙𝜙2(𝓍𝓍) =  exp −∥𝓍𝓍−𝑡𝑡2∥2

2
                           (3-6) 

𝜙𝜙3 → 𝑡𝑡3 = (1,0); 𝜎𝜎3 = 1; 𝜙𝜙3(𝓍𝓍) =  exp −∥𝓍𝓍−𝑡𝑡3∥2

2
                           (3-7) 

𝜙𝜙4 → 𝑡𝑡4 = (1,1); 𝜎𝜎4 = 1; 𝜙𝜙4(𝓍𝓍) =  exp −∥𝓍𝓍−𝑡𝑡4∥2

2
                           (3-8) 

In the first part of the equation, are four radial basis functions, namely 𝑡𝑡1 … 𝑡𝑡4. In the second 

part, is the spread for the radial basis functions, 𝜎𝜎1 …𝜎𝜎4. In this example, the value of 2 was 

chosen for P (number of nearest receptors). This means that the two nearest neighbours need 

to be chosen. For every receptor given, there are three neighbours, two of the neighbours are at 

a distance of 1, and one is at a distance of 1.4 (√2). Table 3-2 is a summary of the calculations. 

The four feature vectors can be seen in the input column, followed by the function values for 

each RBF function. In the last row are the weights that were chosen and used to calculate the 

values in the output column. The output was calculated as follows: if the value (in the second 

last column) is more than 0 the output is 1 and if the value is less than 0 the output is 0. 

Input ∅1 ∅𝟐𝟐 ∅𝟑𝟑 ∅𝟒𝟒 �𝒘𝒘𝒊𝒊∅𝒊𝒊 Output 
(0, 0) 1.0 0.6 0.6 0.4 -0.2 0 
(0, 1) 0.6 1.0 0.4 0.6  0.2 1 
(1, 0) 0.3 0.4 1.0 0.6  0.2 1 
(1, 1) 0.4 0.6 0.6 1.0 -0.2 0 

  -1 +1 +1 -1     

Table 3-2: Summary of calculations 

In the next section, an overview of some of the advantages of using an RBFNN are presented.  
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Advantages of an RBFNN 

RBFNNs have the advantages of easy design, good generalisation, strong tolerance to input 

noise, and online learning ability (Yu et al., 2011). The favourable properties of an RBFNN 

make it suitable to design flexible control systems.  The RBFNN also has a quick turnaround 

time for processing training data (Zemouri et al., 2003). The RBFNN is widely used for pattern 

recognition tasks for its advantage of having fast learning algorithms (Ghosh & Ari, 2011). One 

of the proposed solutions in this study is to use a smartwatch with an RBFNN to simplify and 

automate UAS control. The data gathered from the smartwatch needs to be pre-processed for 

the RBFNN. In the next section is a discussion of the Fast Fourier Transform algorithm that can 

be used to pre-process the data for the RBFNN. 

3.3.7 Fast Fourier Transform algorithm 

The Fourier Transform is a mathematical operation that is used to express any function with 

regard to time as a function in regard to frequency (Rao et al., 2011). A Fourier Transform is 

useful for signal processing, as all signals being analysed are a function of time. By analysing a 

single function concerning frequency rather than time can give much information about the 

source, whether it is a broad sound, a specific colour, or a radio signal at a specific frequency.  

A Discrete Fourier Transform (DFT) is a form of Fourier Transform that transforms a discrete-

time input into a frequency. The DFT is used for any continuous signals that are sampled over a 

limited amount of time and transformed into a frequency. The DFT is sufficient for frequency 

analysis; however, performing mathematical operations can be very computationally costly. 

The Fast Fourier Transform (FFT) algorithm is an algorithm that can be used to improve the 

complexity of the original DFT and still effectively transform a signal into its frequency domain. A 

general description of the algorithm is given in this section to explain the workings of the 

algorithm. In complex notation, the time and frequency domains each contain one signal 

composed of N complex points (Smith, 1997). Each of these complex points is made up of two 

numbers; one is the real part, and the second is the imaginary part. The FFT works by first 

decomposing an N point time-domain signal into N time-domain signals each composed out of a 

single point. Secondly, the N frequency spectra that correspond to these N time-domain signals 

are calculated. The final step is to synthesise the N spectra into a single frequency spectrum. 

General FFT algorithms are sometimes limited to data of arbitrary length. The Bluestein FFT 

algorithm is not restricted to data of arbitrary length. The Bluestein, also known as the chirp z-

transform algorithm, is an FFT algorithm that computes the discrete Fourier transform (DFT) of 

arbitrary sizes by re-expressing the DFT as a convolution (Agarwal et al., 1994). The FFT 

algorithm is used in this study to transform accelerometer data into signals that are then 
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processed by the RBFNN. In the next section is a discussion on techniques that can be used for 

automating and simplifying UAS control by using gesture and activity recognition. 

3.3.8 Automating UAS control with hand-held and wearable devices 

UAVs are traditionally controlled by using joystick remote controllers, mobile applications, and 

embedded computers (Natarajan et al., 2018). Using traditional control methods might not 

always be natural or inherent (Lu et al., 2017). It is, therefore, necessary to investigate 

techniques that could be used to interact with the UAVs, using hand-held and wearable devices.  

Although this study focuses on gesture and activity recognition with hand-held and wearable 

devices, it is also useful to investigate vision-based gesture and activity recognition and why it 

might not be sufficient for UAV control. Vision-based gesture recognition UAV control is 

discussed in the next section. 

3.3.8.1 Gesture recognition with a UAV camera 

Natarajan et al. (2018) developed a vision-based hand gesture recognition framework for UAV 

control. In this implementation, a video stream is continuously recorded and then segmented 

into a sequence of still images. These images are then analysed through a hand gesture 

recognition process. The process includes feature extraction, hand region identification, and 

gesture classification. The gesture detected is then mapped to various UAV control instructions. 

Five gestures were used for this implementation and included the following: fist, palm, go 

symbol, v-shape, and little finger. Classification results showed that an average accuracy of 90 

percent was obtained when the UAV was within three feet of the pilot’s hand. When the 

distance between the pilot and the UAV was increased, the average accuracy decreased. One 

advantage of the vision-based hand gesture system is that most commercialised UAVs already 

have a camera onboard. Using vision-based gesture recognition is usually also limited by the 

intensity of light and the surrounding environment (Vu et al., 2012). One possible solution to 

obtain higher accuracy is to use a higher quality camera on the UAV. The alternative is to use 

hand-held and wearable devices for gesture recognition; this is discussed in the next section. 

3.3.8.2 Gesture recognition using hand-held and wearable devices 

Vu et al. (2012) implemented a hand gesture classification system that used an armband with 

one inertial measurement unit (IMU) and three mechanomyography (MMG) sensors to gather 

acceleration data. The following gestures were used: clenching fist, snapping, thumb up, thumb 

down, double tap on the forearm, palm up, palm down, and a double clenching fist. These 

gestures were mapped to various high-level UAV controls. A convolutional neural network was 

used for gesture classification. The results showed that five out of eight gestures were classified 
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with an average of 94.38 percent accuracy, with an overall average of 85.4 percent accuracy. 

The experiment showed a sufficient accuracy rate, but based on the implementation, various 

sensors are required, and the armband is rather bulky, as shown in Figure 3-8, compared to a 

smartwatch. 

 

Figure 3-8:  Armband with one IMU and three MMGs 

Liu et al. (2020) implemented a wearable human-machine interface based on MMG signals. A 

three-axis accelerometer was fixed to the strap of a smartwatch to measure MMG signals 

generated by the extensor digitorum muscle (muscle on the forearm).  An Arduino was used to 

enable communication between the sensors and a computer. The system was used to capture 

eight different gaming gestures, namely finger-snapping, index finger flick, fist, clapping, coin 

flip, wrist extension, wrist flex, and shooting. These gestures were used with the k-nearest 

neighbour's algorithm for classification. The results showed an average accuracy between 85 

percent and 98 percent. In this experiment, specialised sensors were used to enable gestures 

to be recorded based on the movements made by a person's forearm.  The experimental results 

were not used to control a UAV, but the classifications could be mapped to UAV control 

instructions.  Vision-based activity recognition UAV control is discussed in the next section. 

3.3.8.3 Activity recognition with a UAV camera 

Mliki et al. (2020) developed a new approach for human activity recognition by using video 

sequences captured from a UAV camera. The approach entails two phases: an offline phase 

and an inference phase. In the offline phase, the human activity recognition model is created 

with a convolutional neural network. Scene stabilisation is also done in the offline phase based 

on the calculation of the optical flow applied to detect the possible motions in the scene 

recorded. In the inference phase, the trained model is used to detect humans and recognise 

their activities. Two different methods carry out human activity classification. The first method is 

to classify video frames, and the second method is to classify an entire video sequence. The 

following activities were identified for classification: walking, running, digging, throwing, and 

waving. The overall results showed an accuracy of 56 percent for classification on video frames 
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and 68 percent accuracy on sequence classification. The accuracy of vision-based activity 

recognition is relatively low when compared to activity recognition with hand-held and wearable 

devices which is discussed in the next section. 

3.3.8.4 Activity recognition using hand-held and wearable devices 

Smartwatches and smartphones have accelerometers embedded that can sense a user’s 

movements and can help identify the activity the user is performing. Weiss et al. (2016) 

compared smartwatch- and smartphone-based activity recognition accuracy using standard 

machine learning algorithms. Accelerometer data were recorded for various activities (walking, 

running, standing, sitting, eating, and writing). The smartwatch accelerometer data provides an 

accuracy of 91.9 percent for activity recognition, and the smartphone accelerometer data had 

an accuracy of 72.6 percent. Based on these results, it is better to use a smartwatch for activity 

recognition. 

Lu et al. (2017) proposed a wearable approach to control a UAV. The system used inertial 

sensors embedded inside a smartwatch and smartglasses. The smartwatch is used to sense 

the periodic movement of the pilot’s arm for step detection. Smartglasses are used to sense the 

movement of the pilot’s head with the use of an accelerometer and then to move the UAV, 

based on the pilot’s head movements. A hand-held device is used to link the smartwatch and 

smartglasses and send pitch, roll, and yaw commands to the UAV. Motion recognition was 

designed to enable the UAV to take-off/rise, descend, stop rising or descending, and take 

photos based on the accelerometer data gathered from the smartwatch. The experimental 

results showed that the accuracy of step detection is above 92 percent. The disadvantage of 

this implementation is that the UAV moves when the pilot moves his/her head, which might not 

always be the desired behaviour.  

Based on the discussions above, there are several techniques available for gesture and activity 

recognition to enable simplified UAS control and to improve automation.  The tools and 

platforms that are used for implementing a possible solution to improve automated UAS control 

systems are discussed next. 

3.4 Proposed research design 

This section is divided into two parts. The first part focuses on the hardware that is used in this 

study, followed by a discussion on the software that is used. 
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3.4.1 Hardware 

Two different types of Parrot quadcopter, the Parrot AR.Drone and Parrot Bebop, were made 

available for this study. Next, an overview of these quadcopters is given to identify which 

quadcopter is better suited for the system implementation. 

3.4.1.1 Parrot AR.Drone  

The Parrot AR.Drone 2.0, as seen in Figure 3-9, is a high-tech flying toy, and it can also be 

used for augmented-reality games (Bartak & Vykovsky, 2016). On the technical side, it is a 

quadcopter with sensors and a controller. The AR.Drone has two cameras; one of the cameras 

is facing down and is used by the onboard software to stabilise the drone by preventing drift 

(François et al., 2011). The front camera is used for video streaming or to take photos, has a 

resolution of 1280 x 720 pixels and runs at 30 fps (Bartak & Vykovsky, 2016). The AR.Drone is 

equipped with a three-axis gyroscope measuring pitch, roll, and yaw. It also has a 

magnetometer that increases the accuracy of these measurements (François et al., 2011). The 

AR.Drone has a 3-axis accelerometer that can be used to measure acceleration in all three 

dimensions. A pressure and ultrasound sensor measures the altitude of the AR.Drone. Altitude 

is measured just above the ground by the ultrasound sensor and is mostly used during take-off 

and landing (Bartak & Vykovsky, 2016). The pressure sensor measures the altitude a few feet 

above the ground when the ultrasound sensor does not give a reasonable estimate.  

The AR.Drone is powered by a 1GHz 32bit ARM Cortex A8 processor with 1GB DDR2 RAM 

that runs at 200MHz (Bartak & Vykovsky, 2016). The operating system of the AR.Drone is 

GNU/Linux, which makes it possible to install software on it, but it has limited power, so 

alternatively, an external computer can be used. The motherboard embeds the processor, a Wi-

Fi chip, the vertically-oriented camera and a connector to the front camera (François et al., 

2011). The AR.Drone is controlled externally via WLAN through a set of commands which is 

sent from the ground to the quadcopter. Three UDP (User Diagram Protocol) channels are used 

for all communication. The command channel is used to send commands to the AR.Drone. 

Attention commands sent through UDP port 5556 are used to control and configure the drone. 

These commands are sent 30 times per second (Piskorski et al., 2012). The following 

commands can be sent to the AR.Drone at a frequency of 30Hz: take-off, land, setting limits, 

calibrate sensors, swap cameras, set rotation speed of rotors, set pitch, roll, yaw, and vertical 

speed (François et al., 2011).  

The state of the AR.Drone can be obtained by using the navigation data (Navdata) channel 

which sends Navdata from the drone to the client via UDP port 5554 and provides the following 

data: state of the drone (flying, steady, landing, take-off, calibration, booting), and sensor data 

(current pitch, roll, yaw, altitude, battery remaining, and the speed of all rotor axes). The 



62 

navigation data also includes tag detection, which can be used to create augmented reality 

games. The last channel is the stream channel, and it provides visual information either from the 

front view or the bottom view (Bart and Vyˇ, 2015). Views can be switched by merely sending a 

particular command to the AR.Drone indicating which view needs to be activated. The video 

stream is sent from the AR.Drone to the client on UDP port 5555. These images and video 

stream can be decoded using a codec which is included in the SDK (Piskorski et al., 2012). 

 

 

Figure 3-9: Parrot AR.Drone 2.0 

The complexity of the Parrot AR.Drone is abstracted to only four intuitive inputs (pitch, roll, yaw, 

and vertical velocity). This enables the researchers to focus on the particular field of research 

without being concerned about problems such as sensor fusion and the optimal flow of 

algorithms. The Parrot Bebop Drone is discussed next. 

3.4.1.2 Parrot Bebop Drone  

The Parrot Bebop Drone can be controlled by using the Freeflight 3 (a very intuitive application). 

Freeflight 3 is developed for iOS and Android Smartphones and tablets (Parrot, 2014). The 

application is user-friendly, allowing the pilot to focus on flying the drone. The return to home 

function returns the Bebop Drone directly to its starting position when the altitude is greater than 

10 metres. If the altitude is less or equal to 10 metres, the Bebop Drone will rise and stabilise 

itself at 10 metres before returning to the original take-off position in a straight line. When it 
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reaches the take-off position, it will stop and hover two metres above the ground. A 

deconstructed picture of the Bebop Drone can be seen in Figure 3-10. 

 

Figure 3-10: Parrot Bebop architecture 

The drone has the following components: 

1. Motherboard – The navigation computer features a Parrot P7 dual-core CPU and quad-

core GPU with 8GB flash memory. These items are fixed on a magnesium shelf that acts 

as electromagnetic shielding and as a radiator. The operating system is based on Linux, 

and an open-source SDK is available for development. The Parrot Bebop Drone 

computer is eight times more powerful than the Parrot AR.Drone 2.0’s onboard 

computer. 

2. Camera – The Parrot Bebop has a 14-megapixel “Fisheye” camera. The drone records 

video and pictures in a 180° field with good image quality. The drone has full-digital 

image stabilisation technology that allows the Bebop Drone to take stable and clear 

aerial footage when the drone moves. The lens is splash and dustproof.  

3. The four brushless out-runner motors 

4. The glass fibre reinforced ABS structure (weighing 400g) makes the Parrot Bebop Drone 

robust and safe. If a collision occurs, the propellers will automatically stop. The 

emergency enables the drone to land immediately. 

5. Three-blade auto-block propellers in polycarbonate with fast disassembly system  
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6. Inertial measurement unit – The Parrot Bebop has a GPS that allows for the return to 

home function to quickly bring the Bebop drone back to its take-off point, a three-axis 

accelerometer, a three-axis gyroscope, a three-axis magnetometer, and a pressure 

sensor. Data analysed from these sensors ensures optimal stability without 

compromising the manoeuvrability.  

7. Wi-Fi MIMO (multiple input, multiple output) antennas – The Bebop comes with two 

double-set ceramic antennas that allow it to handle both 2.4 and 5 GHz frequencies. It 

generates its own Wi-Fi 802.11 network. Depending on the network interface, the user 

can select the frequency of his/her choice.  

8. (a) Optical-flow sensor – The Bebop Drone has a vertical stabilisation camera that takes 

an image of the ground every 16 milliseconds and compares it to the previous reading to 

determine the speed of the drone.  

(b) Ultrasound sensor – Analyses the flight altitude up to eight metres. 

Both of these sensors are used to track the speed of the drone. 

9. High-resistance expanded polypropylene outdoor hull – It clips and unclips easily to 

adapt to indoor and outdoor flight and protects the propellers against potential bumps. It 

can be removed to reduce wind factors.  

10. Anti-vibration bumpers  

3.4.1.3 Comparing Parrot Bebop and AR 2.0 Drones 

The SDKs for the Parrot AR 2.0 and Bebop are freely available on the Internet (Parrot, 2012). 

The SDK contains several libraries that can be used to develop applications and have 

functionalities such as video streaming, joystick and hand-held controller input, navigation data 

acquisition, and display (Martin, 2012).  In Table 3-3 is a comparison between the Bebop and 

AR 2.0 drones. These two drones are very similar, but the Bebop has some advantages over 

the AR 2.0 drone. One of the significant advantages is the quality of the camera. The Bebop 

has a 14-MP camera, and the AR 2.0 has a 0.9-MP camera. The signal range of the Bebop is 

200m further than the AR 2.0, meaning that the drone can be flown further from the control 

system. The battery life of the Bebop is almost double the AR 2.0 battery life. This means that 

the Bebop can endure longer flight times. One major disadvantage of the AR 2.0 is that it is an 

older model of the Parrot drone range and it is not available for purchase from the Parrot store 

anymore. It is because of these advantages that the Bebop Drone is chosen to conduct the 

experiments. The smartwatch that is used for capturing gestures is described in the next 

section. A more detailed discussion on how the smartwatch is used for simplifying UAS control 

is given in Chapter 4.  
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Description BeBop AR 2.0 
Camera     
Resolution 14 MP 0.9 MP 
Maximum video resolution 1080p 720p 
Video Stabilizer Yes No 
Dimension (with indoor protection)     
Height 380mm 584mm 
Width 330mm 584mm 
Depth 36mm 127mm 
Weight 410g 1810g 
Connectivity     
Wi-Fi 802.11 b/g/n/ac 802.11 b/g/n/ac 
Signal range 250m 50m 
Battery     
Battery life 22 min. 12 min. 
Battery capacity 1,200 mAh x 2 1,000 mAh 
Sensors     
Accelerometer Yes Yes 
Gyroscope Yes Yes 
Barometer Yes Yes 
Magnetometer Yes Yes 
GPS Yes Yes 
Availability     
Still sold Yes No 

Table 3-3: Comparison between Bebop and AR.2.0 Drone (Parrot, 2018) 

3.4.1.4 Moto 360 smartwatch 

The wearable device that is available for this research study is the Moto 360 (2nd generation). 

According to reviews by Vergara (2015) and Charara (2015), the specifications of the Moto 360 

(2nd generation) smartwatch are summarised below in Table 3-4. The essential sensor used on 

the smartwatch for the experiments is the accelerometer. The accelerometer used in a 

smartwatch is an electromechanical device which is employed to measure acceleration forces 

(Weiss et al., 2016). These forces can be static, like the constant force of gravity, or they can be 

dynamic and caused by movement or vibration. Accelerometers can measure acceleration on 

one, two, or three axes. Accelerometers contain capacitive plates internally, and some of these 

are fixed, while others are attached to minuscule springs that move internally as acceleration 

forces act upon these sensors. When the plates move, the capacitance between them changes. 

The changes in the capacitance are used to determine the acceleration. The Moto 360 (2nd 

Generation) smartwatch has a nine-axis motion processing chip that combines a three-axes 

gyroscope, three-axes accelerometer, and three-axes compass. 
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Specification Description 

Display IPS LCD screen and features a 360 x 330 resolution which is protected by a 
Corning Gorilla Glass 3 panel 

Performance Qualcomm Snapdragon 400 MHz processor and 512 MB of RAM 

Hardware 
The watch comes with the same type of heart rate monitor that is available 
on almost every Android Wear smartwatch. The Moto 360 uses a wireless 
charging dock and has a 400 mAh battery. The watch has 4GB of internal 
storage. 

Sensors Accelerometer, ambient light sensor, gyroscope, and vibration/haptics 
engine 

Software Android Wear 

Table 3-4: Moto 360 (2nd generation) specifications 

Next, a discussion on the software platform that is used for this study is provided. 

3.4.2 Software 

Various development platforms are available to use for automating UAS control. In the next 

section is a short overview of the software platforms that are used for this study. 

3.4.2.1 Weka 

Weka is a collection of machine learning algorithms and data-processing tools that are used for 

data-mining tasks (Frank et al., 2016). Weka is designed so that the user can easily try out 

existing methods on new data sets in flexible ways. Weka provides the user with extensive 

support for the process of experimental data mining which includes the following: the 

preparation of the input data, evaluating learning schemas statistically and presenting the input 

data and result of learning visually. The user can pre-process a data set, feed it into a learning 

scheme, and analyse the classifiers’ results and performance. 

Weka includes the following methods which can be used for the primary data-mining tasks: 

regression, classification, clustering, association rules, and attribute selection. These algorithms 

take input from a single relational table that can be read by a file, or it can be generated by 

using a database query. One way to use Weka is by applying a learning method to a given data 

set and analysing the output to learn more about the data. A second method is to use learned 

models to produce forecasts on new occurrences. Another method is to apply several different 

learners to the problem and to compare their performances to choose one that will be used for 

the predictions.  An overview of Android Studio is given in the next section. 

3.4.2.2 Android Studio 

Android Studio is the official Integrated Development Environment (IDE) used for Android 

application development, based on IntelliJ IDEA (Android Studio, 2017). Android Studio 
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provides the fastest tools that are required to build applications on every type of Android device. 

An overview of MATLAB™ follows. 

3.4.2.3 MATLAB™ 

MATLAB™ (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-

generation programming language. MATLAB™ is a proprietary programming language that is 

developed by MathWorks. MATLAB™ allows for matrix manipulations, plotting of functions and 

data, implementations of algorithms, creation of user interfaces, and interacting with programs 

written in different languages including C, C++, C#, Java, Fortran, and Python. MATLAB™ is 

intended for numerical computing, but can do symbolic computing through the use of an 

optional toolbox called the MATLAB™ symbolic engine. MATLAB™ will be used for the FFT 

(Fast Fourier Transform) calculations on accelerometer data. 

3.5 Conclusion 

In this chapter, the focus was on some of the available literature related to the current 

knowledge of this field of study. Various topics were discussed in the literature review, each 

aiding in the development of the solution to the problem statement that is addressed in this 

study. The information gathered from this chapter is used to aid in the development of possible 

solutions and is discussed in Chapter 4. 
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CHAPTER 4  SYSTEM DESIGN AND IMPLEMENTATION 

In this chapter, the knowledge gained from the literature review in Chapter 3 is used for the 

design and implementation of proposed systems that can be used for simplifying UAS control 

and improving automation. The proposed systems are implemented to identify and evaluate 

different methods that can be used to improve and simplify the control of a UAS. Each part of 

the system is designed and developed by incorporating Scrum principles. Sprint, as mentioned 

in Chapter 2, is one of the Scrum tools that can be used for system design and implementation. 

Each sprint builds on the previous sprint to improve automation and simplify UAS control.  

The first system is implemented in Section 4.1 with the use of basic control techniques. In 

Section 4.2 is a discussion on using the smartwatch accelerometer data to control the UAS. The 

third system which uses gesture control to improve UAS control is discussed in Section 4.3. In 

Section 4.4 is a discussion on the UAS follow function. Improved UAS control with automated 

activity recognition is provided in Section 4.5. The chapter is concluded in Section 4.6. Next is a 

discussion on basic UAS control. 

4.1 Basic UAS control implementation 

It is essential to investigate the basic UAS control system to gain knowledge of the workings of 

the system from a practical point of view. In Section 3.1.3.1, it is mentioned that remote control 

is traditionally used for UAS control. The first implementation is, therefore, implemented with the 

use of remote control. Figure 4-1 is a high-level visual representation of a traditional UAS 

control architecture. 

 

Figure 4-1: High-level visual representation of a UAS traditional control architecture 
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The traditional UAS control architecture consists of the UAV, the control system that can be any 

form of control that can be used by the pilot to remotely control the UAV, and the pilot who uses 

the control system. 

The Parrot Bebop drone is used for all the experiments and shown in Figure 4-2. 

 

Figure 4-2: Parrot Bebop drone 

The creators of the Parrot Bebop drone made the software available for researchers and 

developers to use. Parrot also provides documentation and a sample project that can be used. 

The sample project uses a smartphone as a remote control. A visual representation of the 

smartphone user interface of the sample project can be seen in Figure 4-3. The controls are 

overlaid on the live image obtained from the camera mounted on the drone. The user interface 

is mostly used for manual control, except for the take-off, landing (indicated as a download in 

the figure), and emergency functions which are autonomously controlled. The sample project 

provides the base for building an application that can be used for improving and simplifying UAS 

control. 
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Figure 4-3: Visual representation of the sample project’s smartphone user interface 

The next section is a discussion on using the Moto 360 (2nd generation) smartwatch shown in 

Figure 4-4 and smartphone to simplify UAS control.  

 

Figure 4-4: Moto 360 (2nd generation) smartwatch 
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4.2 Controlling the UAS with smartwatch accelerometer data 

It is possible to use the smartwatch to communicate with the smartphone and then send control 

instructions to the UAS. This would mean that the user interface shown in Figure 4-3 needs to 

be replicated on the smartwatch. One problem with this implementation is that the user control 

interface is too big to fit on the smaller screen of the Moto 360 smartwatch. One possible 

solution is to make the controls smaller so that they can fit on the smartwatch screen, but this 

could make it difficult to press a single button and can cause multiple buttons to be pressed at 

once. An alternative that was explored in this study was to use the accelerometer data from the 

smartwatch to control the UAS directly. A high-level overview of this implementation can be 

seen in Figure 4-5. The Moto 360 smartwatch is small and can easily be worn on the pilot’s 

wrist. With this implementation, instead of pressing on a button, the pilot can move his/her arm 

in the direction that the UAS needs to move instead of pressing on a button. The accelerometer 

data is gathered from the smartwatch when the pilot moves his/her arm. The accelerometer 

data is then sent to the smartphone, which updates the pitch, yaw or roll values of the UAS.   

 

Figure 4-5: High-level visual representation of the UAS control architecture with a 
smartwatch 

Figure 4-6 is a visual representation of how the pilot needs to move his/her arm to control the 

pitch, yaw and roll of the UAS (Fernandez et al., 2016). In the figure, the positive and negative 

values for each instruction are indicated by the plus and minus signs. This means, for example, 

that when the pilot moves his/her arm upwards, the value of pitch will increase, and if the pilot 

moves his/her arm downwards, the pitch will decrease. The UAS will move upwards when the 
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pitch is increased and downwards when the pitch is decreased. This enables the pilot to control 

the UAS without the need of having the smartphone in his/her hand. 

 

Figure 4-6: Visual representation of yaw, pitch and roll arm movement 

Table 4-1 denotes sample accelerometer data that was gathered for yaw movement. In the first 

row is the type of movement, in the second row, are the indicators for the positive (increase) 

and negative (decrease) movements and in the third row, are the axes indicators. The rows that 

follow are the actual accelerometer data for each movement. The negative values were 

gathered when the pilot moved his/her arm to the left, and the positive values were gathered 

when the pilot moved his/her arm to the right. The negative values do not necessarily mean that 

the accelerometer data will be negative; it means that there is a decrease in the accelerometer 

value from the original position. For positive values, the values are increasing, but will not 

necessarily be positive.  

Yaw 
- + 

x y z x y z 
-2.4645 0.00958 9.10754 2.81403 -3.8004 9.54329 
-2.4836 0.56982 8.82102 2.45969 -3.2992 9.8258 
-2.7853 0.36948 8.81545 2.14844 -4.0366 9.48182 
-2.905 0.11647 8.98706 2.23942 -3.5187 9.41323 

-2.0638 0.21548 9.20131 2.48919 -3.0877 9.48471 
-2.4181 0.44053 9.0748 2.32238 -3.6344 9.23204 
-2.8748 0.04866 9.02368 2.63285 -3.5961 9.80587 
-2.8748 0.83797 9.56946 2.12049 -3.6152 9.95287 
-2.8199 0.06859 9.85453 2.46046 -2.9497 9.97848 
-2.8112 0.16915 9.38048 2.87628 -3.3695 10.0804 
-2.9337 0.1883 9.92714 2.88586 -3.7047 10.3493 

Table 4-1: Yaw sample accelerometer data obtained from the smartwatch 
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The sample accelerometer data for the roll movement is presented in Table 4-2. Negative roll 

movement is done by tilting the arm to the left, and positive roll is achieved by tilting the arm to 

the right. 

Roll 
- + 

x y z x y z 
-8.805874 1.139640 -4.678270 -9.102755 1.556231 -2.662352 
-8.537724 1.115698 -4.663905 -9.515114 1.465251 -2.762909 
-8.408437 0.828394 -4.735731 -9.572019 1.259350 -2.796428 
-8.757990 0.694319 -4.845864 -9.342176 1.422156 -2.614468 
-8.781932 0.976834 -4.860230 -9.279925 1.422156 -2.595315 
-8.513782 0.191536 -4.912902 -9.227253 1.374272 -2.628834 
-9.073688 0.300763 -4.726931 -9.206987 1.283292 -2.695871 
-9.028483 0.750873 -4.525041 -9.461885 1.278504 -2.892196 
-9.072472 0.974375 -4.685065 -9.212888 1.345541 -2.777274 
-8.556100 1.039084 -4.620033 -8.963891 1.412579 -2.662352 
-8.370130 1.245761 -4.673482 -8.714894 1.479617 -2.547431 

Table 4-2: Roll sample accelerometer data obtained from the smartwatch 

In Table 4-3 is the sample accelerometer data for the pitch movement. A positive pitch 

movement is made when the pilot moves his/her arm upwards, and a negative pitch movement 

is made by moving the arm downwards. 

Pitch 
- + 

x y z x y z 
-2.331953 -6.426037 7.163452 -1.143652 -1.215478 9.447520 
-2.370260 -6.239290 7.321469 -1.216255 -1.177947 9.394848 
-2.422932 -6.694188 7.125145 -1.503559 -1.120486 9.083601 
-2.001553 -6.785168 7.096414 -0.900220 -1.043872 9.155427 
-2.451663 -5.679047 7.053318 -0.928950 -1.909797 9.308656 
-2.432509 -6.493075 7.268796 -1.077391 -1.465251 9.744401 
-2.470816 -5.640739 7.905654 -1.000776 -1.474828 9.653421 
-2.159570 -6.761226 7.125145 -1.096544 -1.335965 9.390059 
-2.442086 -6.282385 7.503428 -1.173159 -1.781286 9.409213 
-2.384625 -6.617573 7.158663 -1.240197 -2.001553 9.481039 
-2.480393 -6.631939 7.201759 -1.297657 -1.829170 9.744401 

Table 4-3:  Pitch sample accelerometer data obtained from the smartwatch 

One of the goals of this study is to integrate simplified user control into a UAS control system. 

Controlling the UAS with a smartwatch, instead of the smartphone, simplifies UAS control. The 

pilot does not need to have a smartphone in his/her hand to control the UAS. Although it is 
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possible to control the UAS with the smartwatch by using the accelerometer data, the problem is 

that it is difficult to control the UAS while the pilot is moving. The UAS moves as the pilot moves 

his/her arm because the accelerometer data gets updated when the smartwatch is moved. In 

the next section is a discussion on simplifying UAS control to possibly solve this problem.  

4.3 Improved UAS control with gesture recognition implementation 

Various UAS control techniques are investigated in Chapter 3 (Section 3.2.2), and one of the 

control techniques that is investigated in the study is gesture control.  With gesture control, as 

mentioned in Section 3.2.2.4, the pilot can wear a device on the arm or wrist, and accelerometer 

data can then be used to capture arm, hand, and also possible finger gestures. This was also 

demonstrated in the previous section. The system implemented in this study uses 

accelerometer data with a radial basis function neural network (RBFNN) to control the UAS. 

Gestures are used instead of using accelerometer data directly to control the UAS. The system 

uses a smartwatch to capture gesture data which is then sent to the smartphone. With the use 

of an RBFNN that performs inference on the phone, the gesture is recognised. Predefined rules 

are then used to map these gestures to various control tasks that can be performed by the UAS. 

These gestures are used to control the UAS instead of controlling the UAS with the remote 

control. Figure 4-7 is a high-level visual representation of the UAS control architecture that uses 

integrated gesture control to simplify and automate UAS control.  

 

Figure 4-7: High-level visual representation of UAS control architecture with integrated 
gesture control 
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Improved UAS control with the gesture recognition system is implemented in five steps. The first 

step is to identify the gestures that will be used for UAS control. After the gestures are identified, 

the accelerometer data for these gestures are captured. The third step is to apply a Fast Fourier 

Transform (FFT) analysis on the gesture accelerometer data. In Section 3.3.7, it is mentioned 

that an FFT can be used to analyse periodic data. The accelerometer data is transformed into 

the frequency domain, which then shows how the frequencies change over time. After the 

accelerometer data is processed, the fourth step is implemented by using the data to train the 

RBFNN model. This model is then subsequently used for gesture recognition. The last step is to 

integrate the gesture recognition system to simplify UAS control. The next section is a 

discussion on the control gestures that are used for this system. 

4.3.1 Control gestures 

In this section, gestures are identified that can be used to control the UAS. Instead of controlling 

the UAS directly with the accelerometer data, the data are mapped to the gestures by the 

RBFNN. In this study, different gestures were investigated and evaluated that could be used for 

gesture recognition. Based on the evaluations, the following three gestures were identified and 

used for gesture recognition: up and down, circle, and up then right and left gesture. These 

gestures are visually presented in Figures 4-8, 4-9, and 4-10. In Figure 4-8 is the first (up and 

down) gesture. To perform this gesture, the pilot moves his/her arm in an upward and then 

downward motion.  

 

Figure 4-8: Gesture 1 - Moving arm up and down motion gesture 

Figure 4-9 denotes the second (circle) gesture. The pilot moves his/her arm in a circular motion, 

starting from the left-hand side in a clockwise direction.  
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Figure 4-9:  Gesture 2 - Moving arm in circular motion gesture 

The third (up and then right and left) gesture is shown in Figure 4-10. To perform this gesture, 

the pilot moves his/her hand in an upward motion, to the right and lastly to the left. This gesture 

forms a T-shaped arm motion. 

 

Figure 4-10:  Gesture 3 - Moving arm up and then right and left motion gesture. 

For the experiment to work, the smartwatch should be worn on the arm that is used to make the 

gesture. After the gestures are identified, the example accelerometer data must be captured for 

each gesture. This data acquisition is discussed in the next section. 

4.3.2 Acquiring example accelerometer data for gesture recognition 

The accelerometer data is acquired from the Moto 360 smartwatch that is worn on the pilot’s 

wrist. When the pilot presses the capture gesture button on the smartwatch, the pilot's arm 

movements are captured by recording the accelerometer data of the smartwatch for five 

seconds. Table 4-4 is a sample of the accelerometer data measured in metre per second 

squared (m/s²). In the first column is the gesture that was performed. In this case, it was the first 

gesture which is the up and down arm motion. In the second column is the iteration count of 

gesture one. It indicates that this is the first reading of gesture one. In the last three columns are 

the actual accelerometer data and each column indicates from which axis the accelerometer 

data is captured. Multiple iterations of each gesture are recorded to provide sufficient training 

data for the RBFNN. 



77 

Gesture Iteration x-axis y-axis z-axis 
1 1 -1.67115 -0.70390 -9.75398 
1 1 -1.73819 -0.78051 -9.77792 
1 1 -1.73819 -0.66080 -9.66779 
1 1 -1.76692 -0.73741 -9.69173 
1 1 -1.67594 -0.64643 -9.58638 
1 1 -1.58496 -0.82361 -9.72046 
1 1 -1.77650 -0.78530 -9.73482 
1 1 -1.70946 -0.89064 -9.69652 
1 1 -1.75734 -0.74220 -9.66779 
1 1 -1.60412 -0.89543 -9.73482 
1 1 -1.72383 -0.87628 -9.63427 
1 1 -1.87227 -0.86191 -9.69173 
1 1 -1.86748 -0.92416 -9.68215 

Table 4-4: Sample of accelerometer data that is obtained from the smartwatch 

Table 4-5 is a summary of the complete data set. The total number of data points per axis for 

gesture one was 16700, which gives an average of 167/5 readings per second (Hertz). This 

means that the measurements were taken at intervals of approximately 5/167 seconds each. 

Similar calculations can be made for the second and third gestures. 

Gesture Iterations Axis  Iterations per axis Data points per axis 

1 100 
x 100 16700 
y 100 16700 
z 100 16700 

2 100 
x 100 13900 
y 100 13900 
z 100 13900 

3 100 
x 100 15400 
y 100 15400 
z 100 15400 

Total 300   900 138000 

Table 4-5: Summary of complete data set of the accelerometer data for gesture 
control 

The next step is to apply an FFT analysis to the accelerometer data of Table 4-5. The FFT 

adapts the accelerometer data so that it can be used by the RBFNN and is discussed in the 

next section.  
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4.3.3 Accelerometer data processing 

MATLAB™ was used for converting the accelerometer data into FFT values, and the visual 

result is shown in Chapter 5. A sample of the accelerometer data that was converted into FFT 

values is presented in Table 4-6. 

Gesture Iteration x-1 x-2 x-3 y-1 y-2 y-3 z-1 z-2 z-3 

1 1 472.89 790.59 225.79 561.19 11.62 211.55 715.35 238.31 245.59 

2 1 481.83 449.07 197.96 353.97 65.08 88.19 467.87 199.53 106.61 

3 1 307.42 68.83 44.79 127.69 35.73 32.52 232.48 71.11 45.01 

1 2 506.59 623.36 236.15 461.44 59.92 139.84 601.36 182.96 188.44 

2 2 420.96 410.94 189.35 294.16 65.82 58.39 359.73 161.84 87.76 

3 2 446.21 111.43 41.67 168.95 82.83 112.82 392.30 100.20 14.05 

1 3 644.54 666.96 284.99 423.35 59.95 135.99 614.46 271.95 179.07 

2 3 433.75 430.42 191.93 360.91 46.75 79.38 405.97 170.11 132.71 

3 3 244.40 115.09 88.48 109.51 149.34 84.35 393.62 88.07 50.57 

1 4 438.94 688.45 203.20 420.11 27.42 141.33 681.52 169.89 259.56 

2 4 437.08 393.48 182.73 252.47 38.85 98.09 384.03 169.26 98.16 

3 4 239.77 125.32 61.62 130.14 94.27 58.90 376.42 66.17 46.88 

1 5 466.60 665.68 198.87 538.22 6.07 129.17 708.46 175.88 226.30 

2 5 483.71 413.22 190.50 351.31 37.74 115.84 385.79 188.75 85.12 

3 5 189.81 84.91 63.64 93.93 107.25 69.09 319.05 66.74 34.37 

Table 4-6: Sample of accelerometer data that were converted into FFT values 

The first column indicates the gesture that is performed, in the second column is the iteration of 

the gesture and in the columns that follow, are the first three FFT values for the x, y, and z-axis 

of the accelerometer measurements respectively. After the data is processed, it can be used to 

train the RBFNN model, which is discussed in the next section.  

4.3.4 Training the RBFNN model 

After the gestures have been identified, and the accelerometer data has been converted into 

FFT values, the next step is to use the data to train the RBFNN model. A visual representation 

of the RBFNN architecture that is used for this experiment is shown in Figure 4-11. This RBFNN 

consists of the input layer, hidden layer, and output layer. The input layer comprises the 

accelerometer data of each gesture that was converted into FFT values. This means that each 

input will consist of the nine FFT values, as shown in Table 4-6 in the previous section.  

A process of trial-and-error was followed to determine the best number of hidden nodes.  Eight 

hidden nodes were eventually chosen for training the model. The output layer should indicate 

the gesture that is associated with the FFT values of the input layer. The output layer has three 



79 

nodes, and each node should return a probability. These output probabilities are associated 

with a specific gesture identified in Section 4.3.1. Each gesture was captured for a total of one 

hundred times (iterations), and the first three FFT values of each axis (x, y, and z) were used 

per gesture. In total, it gives nine FFT values per iteration. This means that the data set 

consisted of one hundred data points per gesture and three hundred data points in total. 

Seventy per cent of the data was used to train the RBFNN model, and twenty per cent of the 

data was used for the validation set. The last ten per cent of the data was used to test the 

trained RBFNN model. The results obtained are discussed in Chapter 5. 

 

Figure 4-11: Visual representation of the RBFNN architecture 

The computational power of the hand-held and wearable devices is limited when compared to 

traditional computers (desktop and laptop). It can cause a delay in performance when these 

devices are used for training the RBFNN model. The RBFNN model is therefore trained using a 

traditional computer and then exported to speed up the process. This process enables the 

trained model to be loaded on the hand-held device instead of training the model on the device 

itself. The computer that was used to train the RBFNN model is an Intel 4200H 64bit desktop 



80 

computer, running the Windows 10 operating system, with 8GB RAM, an NVIDIA GTX 950 M 

graphics card, and a Samsung 750 EVO 250GB SSD. Training the model on a traditional 

computer also provides the advantage of visually inspecting the results which are discussed in 

Chapter 5. After the RFBNN model is trained and integrated into the sample application, it can 

be used for gesture recognition. In the next section is a discussion on how gesture recognition 

is integrated to simplify and improve UAS control.  

4.3.5 Integrating gesture recognition 

Figure 4-12 is a process flow diagram of the integrated gesture control implementation. On the 

left side of the diagram is the component that is responsible for these specific tasks and on the 

right side is the processes flow of the task performed. The gesture is captured when the pilot 

clicks on the gesture button on the smartwatch which is connected to a hand-held device. The 

data is gathered from the accelerometer for five seconds and is then processed by applying an 

FFT analysis on the data. After the data is processed, it is sent to the RBFNN that is executing 

on the smartphone for gesture recognition. The trained RBFNN model that was loaded on the 

smartphone is then used to determine the type of gesture that was performed by the pilot. The 

gesture result can then be used to send control instructions to the UAS, based on the 

predefined rules that are built into the application. For example, if the pilot moves his/her wrist 

up and down the UAS will move upwards. 

This experiment is used to simplify UAS control by enabling the pilot to use his/her arm to 

control the UAS instead of having the smartphone in his/her hand. When the pilot does not need 

to have his/her smartphone in his/her hand, it enables the pilot to do other things. Unlike the 

experiment where the accelerometer data is directly used for controlling the UAS, the UAS does 

not move when the pilot moves his/her arm because the accelerometer data is not used to 

control the UAS. Instead, it is used to record the gesture which is mapped to predefined control 

instructions. The rules can also be associated with more sophisticated control instructions.  In 

the next section is a discussion on an example of a more complex implementation that enables 

the UAS to follow the pilot autonomously with the help of GPS information. 
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Figure 4-12: Process flow diagram of integrated gesture recognition 

4.4 UAS follow function 

Enabling the UAS to follow the pilot autonomously can simplify UAS control. When the UAS 

follows the pilot autonomously, the pilot can focus on other activities instead of controlling the 
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UAS manually to follow him/her. In Section 3.2.3.7, it is mentioned that a GPS can be used for 

object-location tracking. A simple rule-based method is implemented to enable the UAS to 

autonomously follow the pilot by using GPS coordinates; this is visually shown in Figure 4-13. In 

this experiment, the GPS coordinates of the pilot’s hand-held device are sent to the UAS. The 

method uses the GPS coordinates and calculates the distance between the UAS and the pilot 

through the haversine formula (Bujari et al., 2012). This distance calculation helps to prevent 

the UAS from crashing into the pilot if the pilot is moving slowly or standing still. This calculation 

works as follows: if a distance of ten metres is used, it will follow the person from ten metres 

away. If the UAS comes within or less than ten metres of the pilot, it will go into a hovering state 

and will follow the pilot again, once the distance between the pilot and the UAS is more than ten 

metres. The following function can be initiated by mapping a gesture to the function. The UAS 

uses piloting states to determine the current piloting behaviour of the UAS. These piloting states 

help to prevent the UAS from performing an “illegal” action. For example, the UAS cannot 

change to the hovering state if the UAS is currently on the ground. The UAS first needs to be in 

a taking-off state before it can transition into a hover state. 

 

Figure 4-13: High-level visual representation of UAS follow function 

In Figure 4-14 is a process flow diagram of the piloting states used by the UAS for this 

implementation. The following function was added as a state to ensure the UAS can safely 

transition into the following state. It is also worth noting that the UAS can only move into the 

flying state after the UAS has successfully entered a hover state. The solid lines indicate the 

flow between possible piloting states, and the dotted lines indicate the process flow towards the 

emergency state. When something goes wrong, the UAS moves into the emergency state. 
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Figure 4-14: Piloting states process flow diagram 

Table 4-7 is an overview of the piloting states and a description of the behaviour of each piloting 

state. 

Nr. State Behaviour 
1 User take-off Waiting for the pilot to initiate take-off action 

2 Taking-off Occurs after the user has initiated take-off and the UAS is lifting off the 
ground 

3 Hovering The UAS is hovering and not moving in any specific direction 
4 Flying The UAS is moving either forwards, backwards, left, right, up or down 
5 Landing The UAS is preparing to land on the ground 
6 Emergency The autopilot takes over, and all other flying commands are ignored 
7 Landed The UAS has landed on the ground 
8 Follow The UAS follows the pilot, based on GPS coordinates 

Table 4-7: UAS piloting states 
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The follow function simplifies UAS control by enabling the UAS to follow the pilot autonomously. 

There is no need for the pilot to use a smartphone to control the UAS to follow him/her 

continuously. UAS control is automated by using sensor data to navigate through the air instead 

of being piloted by remote control. Although the follow function does enable the UAS to follow 

the pilot autonomously, the speed of the UAS still needs to be manually adjusted if the pilot 

wants to change it. One possible method to automate the speed of the UAS is investigated and 

implemented in the next section. 

4.5 Improved UAS control with automated activity recognition 

In the gesture recognition implementation, gestures were used to automate various high-level 

UAS control tasks. In this experiment, a similar approach is used in an attempt to automate the 

speed of the UAS. The system is implemented by using a smartwatch to capture data 

associated with various activities (in terms of movement) performed by the pilot. The data is 

processed by an RBFNN to autonomously identify the activity that was performed by the pilot 

and to adjust the speed of the UAS accordingly.  This process is done in four steps. The first 

step is to identify the activities and gather example data for the activities. In the second step, the 

data is pre-processed. In the third step, an RBFNN is used to train the activity recognition 

model. The last step is to integrate the activity recognition experiment with the UAS. In the next 

section, the data gathering process is discussed. 

4.5.1 Acquiring data 

Before the data is gathered, the activities that are going to be used for activity recognition are 

identified. Three activities are used for this experiment and are as follows: stand, walk and run. 

These activities are associated with what the pilot is currently doing in terms of movement. The 

data is gathered from the accelerometer (x, y, and z-axis values) of the smartwatch while the 

pilot is performing an activity. In the previous experiment, the data were collected for five 

seconds. Five seconds was the maximum time needed to capture any of the gestures. In this 

experiment, a buffer of sixty-four measurements is used to collect the data instead of a 

predetermined time limit. This buffer ensures that the same amount of data is collected for each 

activity and that the data collected is a power of two (26 = 64). The specific FFT algorithm that 

is used in this implementation requires a buffer that is a power of two. This technique is further 

discussed in Section 5.4.2. Table 4-8 is an example of the accelerometer data collected. Exactly 

sixty-four readings of each accelerometer axis (x, y, and z) were collected for each iteration. In 

the first column is the activity. In this case, it was the first activity (stand) that was performed. 

The second column is the iteration for this specific activity. For each activity, one hundred 

iterations were performed. In this example, it is the first iteration of activity one. The third column 

indicates the reading number for the iteration. It starts at one and goes to fifty. This means that 
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fifty readings of each accelerometer axis (x, y, z) were collected for each iteration. It gives a 

total of one hundred and fifty accelerometer readings per iteration. In the last three columns are 

the accelerometer data for each axis. 

Activity Iteration Reading x y z 
1 1 1 -3.542840 -2.101360 8.846017 
1 1 2 -3.533840 -2.113360 8.856217 
1 1 3 -3.793970 -3.251330 8.536947 
1 1 4 -3.164230 -0.359130 9.466674 
1 1 5 -3.792400 -1.643870 8.799416 
1 1 6 -4.782710 -1.000780 8.389840 
1 1 7 -3.573600 -1.810010 8.936160 
1 1 8 -3.847300 -1.944090 8.974141 
1 1 9 -3.182500 -1.684510 9.156217 
1 1 10 -3.134820 -1.304120 8.995430 
1 1 . . . . 
1 1 64 -3.104900 -1.508900 9.199766 

Table 4-8: Sample of accelerometer data of the activity 

Table 4-9 is a summary of the complete data set for the accelerometer data.  

Activity Iterations Axis  Iterations per axis Data points per axis 

1 100 
x 100 6400 
y 100 6400 
z 100 6400 

2 100 
x 100 6400 
y 100 6400 
z 100 6400 

3 100 
x 100 6400 
y 100 6400 
z 100 6400 

Total 300   900 57600 

Table 4-9:  Summary of complete data set of the accelerometer data for activity 
recognition 

The next step is to process the data that was collected and this is discussed in the next section. 

4.5.2 Data processing 

Data gathered in the previous step is obtained in three different axes (x, y, and z). In this step, 

the data from the three different axes are transformed into a single scalar value. The motivation 
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for this is that the smartwatch could be in different positions on the pilot’s body, which may 

influence the results (Bujari et al., 2012). The reason for not applying this method to the gesture 

recognition experiment was that the smartwatch needs to be in a specific position to be able to 

perform the gesture. If the smartwatch was not in the same relative position, the wrong gesture 

might be identified. The three-axis values are transformed into a single scalar value by 

calculating the magnitude of the accelerometer vector with the use of the equation 

𝑣𝑣 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2                                              (4-1) 

where v denotes the magnitude of the acceleration and x, y and z denote the acceleration 

values of the three axes respectively. By using Equation 4-1, the data becomes independent of 

the position of the smartwatch while the data was collected. An example of calculating the 

magnitude by using the accelerometer vector is as follows: 

𝑣𝑣 = �−3.542842 + (−2.10136)2 + 8.8460172 

=  9.758045 𝑚𝑚/𝑠𝑠2. 

In Table 4-10, a sample of the data is shown after the magnitudes are calculated.  The 

magnitude values in the third column of Table 4-10 were derived by applying Equation 4-1 to 

the sample data in Table 4-8. 

Iteration Reading Standing Walking Running 
1 1 9.75804519 10.21534900 9.97039530 
1 2 9.76662148 10.22367700 10.04308400 
1 3 9.89165402 10.23187200 10.12737800 
1 4 9.98795487 10.27524900 10.03193600 
1 5 9.72184799 10.16278700 10.08087300 
1 6 9.70903140 10.27801000 9.99508740 
1 7 9.79294178 10.24629400 10.07627700 
1 8 9.95572247 10.14315600 10.10631100 
1 9 9.83881039 10.25824500 10.01536800 
1 10 9.61486278 10.17152100 10.06846400 
1 . . . . 
1 64 9.82613239 10.27755500 10.09586800 

Table 4-10: Sample of accelerometer data after magnitudes are calculated 

After the magnitude is calculated for each accelerometer vector, an FFT analysis is applied to 

the data. In Table 4-11, a sample of FFT values that are calculated is shown. The first three FFT 

values for each iteration per activity are used to train the RBFNN model 
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  FFT value 
Activity Iteration 1 2 3 

1 1 5.078410 6.559039 4.004165 
1 2 7.681911 6.176175 2.360158 
1 3 1.574130 0.823663 2.228085 
1 4 4.501405 6.979974 4.826355 
1 5 5.381146 3.011971 2.605436 
2 1 15.327155 32.879104 8.724568 
2 2 3.728278 10.457231 11.915903 
2 3 20.107205 11.447385 3.353977 
2 4 50.420773 26.833764 25.024884 
2 5 22.828280 28.263717 29.515372 
3 1 27.963420 13.021914 12.951687 
3 2 14.502067 19.082311 9.764349 
3 3 46.770897 53.609531 28.651377 
3 4 79.968221 45.254785 31.638573 
3 5 55.047675 7.561278 23.675691 

Table 4-11: Sample of FFT values after magnitude is calculated, and an FFT is applied 

After the data has been processed, it can now be used in the training of the RBFNN model, 

which is discussed in the next section.  

4.5.3 Training the RBFNN model 

The training step of the activity recognition system is done similarly to the gesture recognition 

system. The input layer of the RBFNN comprises the first three FFT values of each activity. This 

means that each input will consist of three FFT values. As with the gesture recognition system, 

the best number of hidden nodes was found by the process of trial-and-error. Five hidden nodes 

were eventually chosen when training the model. The output layer should indicate the activity 

that is associated with the FFT values of the input layer. The output layer has three nodes, and 

each node should return a probability associated with a specific activity. Seventy per cent of the 

data was used to train the RBFNN model, and twenty per cent of the data was used for the 

validation set. The last ten per cent of the data was used to test the trained RBFNN model. 

Each activity was captured for a total of one hundred times. For each activity, the first three FFT 

values were used. This means that each activity consisted of one hundred data points, and the 

complete data set consisted of three hundred data points. Training for activity recognition was 

done with the same computer that was described in Section 4.3.4. After the RBFNN model for 

activity recognition was trained, it could be used for this task. In the next section is a discussion 

on integrating the activity recognition model with the UAS to simplify and improve UAS control.  
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4.5.4 System integration 

Figure 4-15 is a process flow diagram of the integrated activity control implementation.  

 

Figure 4-15: Process flow diagram of integrated activity control 
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While the UAS is in the following piloting state, the smartwatch will capture the accelerometer 

data autonomously. The data is captured every ten seconds after the UAS’s speed has been 

adjusted. Capturing and adjusting the speed of the UAS only every ten seconds, reduces 

battery consumption of the smartwatch and smartphone. Sending the data continuously could 

negatively impact the battery life of these devices. It is possible to change the intervals for 

capturing the data for a specific-use case. After the data has been captured, the magnitude is 

calculated for each accelerometer vector. An FFT analysis is then performed on the data and 

sent to the RBFNN model, which determines the type of activity the pilot is performing. The 

speed of the UAS will be adjusted accordingly at that moment, based on the activity that was 

identified. 

The activity recognition system simplifies UAS control and improves UAS automation by 

enabling the UAS to autonomously adjusts the speed of the UAS. The pilot does not need to 

adjust the speed of the UAS by using the smartphone. In the next section is the conclusion of 

the chapter. 

4.6 Conclusion  

By using the literature studied in Chapter 3, various systems were implemented in this chapter 

to simplify UAS control and to improve automation with the help of gestures and activity 

recognition and an RBFNN. In the first implementation, the basic control techniques for the UAS 

were explored. With the second implementation, the smartwatch was used with accelerometer 

data to control the UAS.  In the third implementation, specific control tasks could be automated 

with the help of gesture recognition and an RBFNN. A follow function was implemented to 

enable the UAS to follow the pilot autonomously. The last implementation used activity 

recognition to adjust the speed of the UAS autonomously. 

The gesture recognition and activity recognition systems were similar. However, the main 

difference between these two systems was that the activity recognition system did not require 

the pilot to perform any control instruction to adjust the speed of the UAS. The speed was 

autonomously adjusted when the UAS was following the pilot. With the gesture recognition 

implementation, the pilot first needed to perform the gesture to send the UAS control 

instructions. Each implementation provided its use case which is discussed further in Chapter 6. 

Sample code of these implementations can be seen in Annexure A. In the next chapter is a 

discussion on the results that were obtained from these systems that were implemented. 
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CHAPTER 5  RESULTS AND DISCUSSION 

In this chapter, the results obtained from the systems implemented in Chapter 4 are presented 

and discussed. The systems are compared to the four levels of automation that were discussed 

in Chapter 3 to determine if UAS control is simplified and automation improved.  The levels of 

automation that were previously discussed in Section 3.3.4 are as follows: 

• Level 1: All high-level piloting is controlled manually. 

• Level 2: Some high-level piloting is still controlled manually unless the piloting is 

switched over to automatic. 

• Level 3: The UAS control is by default automatic but can be switched to manual piloting. 

• Level 4: A fully autonomous system 

The goal is to get to a higher level of automation. Reaching a higher level of automation 

simplifies UAS control and improves automation by reducing the number of control tasks that 

need to be performed by the pilot. When the tasks are automated in this case, the pilot can 

focus on other tasks instead of UAS control tasks. The type of application for which the UAS 

is used determines the task that needs to be automated. This study only focuses on 

simplifying UAS control and improving automation in general and not on a specific application. 

The tasks that will be used to measure the level of automation are as follows: take-off and 

landing, follow the pilot and adjusting the speed of the UAS. 

The basic control system findings are presented in Section 5.1. In Section 5.2, is a discussion 

on the results from using the smartwatch accelerometer data to control the UAS. The third 

system, which uses gesture control to improve UAS control results, is discussed in Section 5.3. 

Section 5.4 is a discussion on the results obtained from the activity recognition system. The 

chapter is concluded in Section 5.5. 

5.1 Basic control system findings 

The basic control implementation in Chapter 4, Section 4.1, uses a remote control to control the 

UAS. In this implementation, a smartphone with the app developed by the designer of the 

drone was used as a remote control. The application only has basic control functionality. 

Most piloting is controlled manually except for take-off, landing, and emergency controls. Take-

off and landing are automated, but the pilot needs to use the remote control to initiate the take-

off or landing instruction.  

There is no autonomous follow functionality built into the basic control system. If the pilot wants 

the UAS to follow him/her, the pilot will need to control the UAS manually. The speed of the 

UAS is also manually updated by the pilot, using the remote control. Based on the levels of UAS 
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automation mentioned in the previous section, this system uses level 1 automation. The basic 

control system provides the base that is required to control the UAS, and it also offers the 

necessary tools that are required to add functionality that can improve and simplify UAS control. 

In the next section, the results from controlling the UAS with smartwatch accelerometer data are 

discussed. 

5.2 Controlling the UAS with smartwatch accelerometer data results 

One of the first steps in simplifying and automating UAS control was to investigate the possible 

methods that could be used. One method that was identified in this study was to use the 

smartwatch to control the UAS, as discussed in Chapter 4, Section 4.2. The Moto 360 (2nd 

generation) smartwatch was used to control the UAS. Accelerometer data were gathered to 

control the yaw, roll, and pitch. In Figures 5-1, 5-2, and 5-3 are visual representations for 11 

readings of the yaw, roll, and pitch movements.  In each of these figures, the negative movement 

is shown by the solid lines, and the dotted lines show the positive movement. The values of the 

x-axis are shown by the red lines, the y-axis values are in blue, and the z-axis values are in 

green. A visual representation from the accelerometer data for yaw is presented in Figure 5-1.  

 

Figure 5-1: Accelerometer data comparison for yaw 

From Figure 5-1, it can be seen that the x-axis shows the most significant change between the 

positive and negative values. This gives relatively the same effect as pushing the left stick on a 
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traditional UAS remote control (Section 3.1.3.1, Figure 3-3) to the left (negative) or the right 

(positive). The results from the accelerometer data for roll are shown in Figure 5-2. The biggest 

change can be seen on the y-axis. The roll movement is relatively the same as pushing the right 

stick on a traditional UAS controller to the left or right.  

 

Figure 5-2: Accelerometer data comparison for roll 

The results from the pitch movement can be seen in Figure 5-3. From Figure 5-3, it can be seen 

that the z-axis shows the most significant change between the positive and negative values. On 

a traditional UAS controller, this is relatively the same as pushing the right stick forwards or 

backwards. From Figures 5-1, 5-2, and 5-3, it can also be seen that there is sometimes a spike 

in the accelerometer data when compared to the other values. This is caused by the speed at 

which the arm is moved. The negative values also do not necessarily mean that the 

accelerometer data will be negative; it means that there is a decrease in the accelerometer 

value from the original position. For positive values, the values are increasing, but will not 

necessarily be positive. The advantage of this implementation was that the pilot could control the 

UAS without the need to have the smartphone in his/her hand. Control is simplified by using arm 

and wrist movements to control the UAS. This eliminates the need for controlling the UAS by 

using the smartphone directly or, in this case, trying to press the buttons on the smartwatch 

screen, which is relatively small. The disadvantage of this implementation is that it is difficult to 

control the UAS while moving, and the UAS moves as the pilot moves his/her arm because the 
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accelerometer data gets updated when the smartwatch is moved. To solve this problem, gesture 

recognition was investigated to control the UAS instead. 

 

Figure 5-3: Accelerometer data comparison for pitch 

The next section is a discussion on the results obtained from this implementation.  

5.3 Improved UAS control system with gesture control results 

The results from implementing gesture recognition with an RBFNN to control the UAS are 

presented and discussed in this section.  

5.3.1 Control gesture results 

In Chapter 4, Section 4.3.1, three gestures were identified to try and map accelerometer data to 

the gestures. The results from the gesture data should indicate that these gestures can be 

distinguished from each other. If the gestures are too closely matched, it can cause the wrong 

control task to be performed. Figure 5-4 is a visual representation for twenty samples of each 

axis of the accelerometer data gathered for gesture 1 (up and down). The acceleration of the x, 

y, and z-axis accelerometer data reading is shown on the y-axis. On the x-axis of Figure 5-4, the 

reading number is indicated. The x-value from the accelerometer reading is shown in red. Blue 

indicates the y-value, and green the z-value. From the x-value, it can be seen that the values 

increase and then decrease. This behaviour is similar to the previous experiment where the 
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accelerometer data was increased for positive movement and decreased for negative 

movement. The increase is caused by the upwards movement of the arm, followed by a 

decrease caused by the downwards movement of the arm. 

 

Figure 5-4: Accelerometer data of gesture 1 (up and down) 

From the y-values, it can be seen that the values increase, decrease, and then increase and 

decrease again. This is caused by the arm extending forwards towards the middle of the 

movement and then back towards the top of the movement. When the arm is moving 

downwards, the same happens. The z-values should stay relatively unchanged, but from the 

results, it is clear that there is sometimes a small increase or decrease. This can be caused by 

the arm moving slightly in another direction while moving up and down. From Figure 5-4, it can 

be seen that it takes on average between 160 and 180 readings to perform gesture 1. The data 

lengths (number of readings) are essential for an FFT analysis and are later discussed in 

Section 5.3.2.  

Twenty accelerometer data samples for each axis for the second gesture (circle) are shown in 

Figure 5-5. Between 120 and 140 readings are required to perform gesture 2. The 

accelerometer data for the x-value is shown in red, the y-value in blue, and the z-value in green. 

The x-value in Figure 5-5 is showing relatively the same pattern as the x-values in Figure 5-4. 

This is caused by similar upwards and downwards movements that are also made when 

performing the circle gesture. When performing the circle gesture, the pilot’s arm also moves 

slightly to the right and left, which can be seen in the slight increase and decrease in the y-

values. The z-value should stay relatively the same, but from Figure 5-5, it can be seen that 
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there are an increase and decreases in the z-values. This can be caused by the forward and 

backwards movement that might sometimes occur while performing the circle gesture.  

 

Figure 5-5: Accelerometer data of gesture 2 (circle) 

Figure 5-6 is a visual representation of twenty sample accelerometer data readings for each 

axis from performing the third gesture (up and then right and left).  

 

Figure 5-6: Accelerometer data of gesture 3 (up and then right and left) 
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It takes on average between 60 and 80 readings to perform gesture 3. The accelerometer data 

for the x-value is also shown in red, the y-value is in blue and the z-value is in green. From the 

x-value it can be seen that when the arm moves upwards, there is an increase, followed by a 

relative consistent acceleration when the arm moves right and then left and then a decrease 

when the arm moves downwards. The right and left arm movements can be seen in green. 

When the arm moves right, there is an increase in acceleration and when the arm moves to the 

left the acceleration decreases. The y-values should stay relatively consistent, but the arm could 

move forwards or backwards while performing the gesture. 

Figure 5-7 is a visual representation of all three gestures in the same figure. The red lines 

represent gesture 1 (moving arm up and down motion), the green line shows gesture 2 (moving 

arm in a circular motion), and the blue line shows gesture 3 (moving arm up and then right and 

left motion).  With the results obtained from the accelerometer data, the pilot should, for 

example, be able to perform the first gesture, and the result should be in the same range as the 

red lines. It is possible to see that visually each gesture is different from the other. It might not 

be as clear when using the accelerometer directly, and that is why an FFT analysis is applied to 

the accelerometer data. The FFT analysis transforms the data into the frequency domain, which 

then shows how the frequencies of the data change over time. 

 

Figure 5-7: Results from accelerometer data for all three gestures 

The result from the FFT analysis is presented and discussed in the next section. 
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5.3.2 Gesture recognition FFT accelerometer data results 

Each gesture from which the accelerometer data was collected had different data lengths 

(number of readings). This is caused by the different length of time it takes to perform each 

gesture. For this specific experiment, the FFT algorithm that is used needs to be able to do 

calculations on data of arbitrary length. The Bluestein’s FFT algorithm, also known as the chirp 

z-transform algorithm, is an FFT algorithm that computes the discrete Fourier transform of 

arbitrary sizes by re-expressing the discrete Fourier transform as a convolution (Agarwal et al., 

1994). The Bluestein algorithm is therefore used to apply the FFT analysis to the accelerometer 

data. Figure 5-8, the result of applying the FFT analysis on the first gesture, up and down, in the 

frequency domain is presented. On the y-axis is the magnitude and on the x-axis are the three 

FFT terms of this specific gesture. The magnitude shows the strength in terms of the frequency 

when the FFT values are compared to each other. The x-axis is shown in red, the y-axis in 

green, and the z-axis in blue. One hundred iterations of each axis are shown in Figure 5-8. 

When gesture 1 is performed, the expected FFT values should be in the same ranges, as 

shown in Figure 5-8. There is some variation in the magnitude which could be caused by 

inconsistencies when the gesture is performed. For example, the speed at which the gesture is 

performed could influence the magnitude.  

 

Figure 5-8: Results from the FFT analysis of gesture 1 (up and down) 
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The results from an FFT analysis for the second gesture, the circular motion, are presented in 

Figure 5-9 in the frequency domain.  

 

Figure 5-9: Results from the FFT analysis of gesture 2 (circle) 

When the second gesture is performed, the FFT values should be relatively in the same ranges, 

as shown in Figure 5-9. 

In Figure 5-10, the results from the third gesture, up, right, and left are presented in the 

frequency domain. When gesture 3 is performed, the expected FFT values should be in the 

same ranges, as shown in Figure 5-10. There is also some variation in the magnitude. This 

could also have been caused by the speed at which the gesture was performed. Getting these 

inconsistencies should be expected. The pilot will rarely perform the gesture in the same way. 

The speed might differ, or for example, the circle of gesture 2 might be smaller or bigger each 

time. As long as these inconsistencies are relatively small, it should be possible to get more or 

less the same result when the gesture is performed again.  
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Figure 5-10: Results from FFT analysis of gesture 3 (up, right and left) 

Figure 5-11 denotes the FFT values of all the gestures together.  

 

Figure 5-11:  Comparing three gestures with a fast Fourier transform analysis 
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The first gesture is shown in red, and clusters at the top of the graph. The second gesture, 

shown in green, forms a group in the middle. The last gesture is indicated in blue and groups at 

the bottom of the graph. Visually, it is possible to distinguish between the different values by 

only using the first three FFT values of each gesture. The results from using an RBFNN for 

gesture recognition with the FFT data is presented and discussed in the next section. 

5.3.3 RBFNN gesture recognition results 

In Chapter 4, it was mentioned that the RBFNN was trained by using seventy per cent of the 

data, and twenty per cent was used to validate the model. The last ten per cent of the data was 

used to test the RBFNN. In Table 5-1 is a summary of the results that were obtained after 

testing the RFBNN model with the test data.  

Result Value 
Correctly classified instances  96.67% 
Incorrectly classified instances 3.33% 
Kappa statistic 0.9667 

Table 5-1: Result from testing the RBFNN model 

The RBFNN correctly classified 96.67 per cent of the gestures, with only 3.33 per cent 

incorrectly classified. The kappa statistic was 0.9667.  The kappa statistic is a measure of how 

closely the instances classified by the machine learning classifier matched the truth (Witten et 

al., 2011).  The kappa coefficient is interpreted, using the guidelines outlined by Landis and 

Koch (1977). The strength of the kappa coefficients is interpreted, as shown in Table 5-2. 

Value  Result 
0.01 - 0.20 slight 

0.21 - 0.40 fair 

0.41 - 0.60 moderate 

0.61 - 0.80 substantial 

0.81 - 0.99 almost perfect 

1.0 perfect 

Table 5-2: Strength of the kappa coefficients 

According to the guidelines, the kappa statistic of the model is almost perfect. This indicates that 

the RBFNN can successfully predict the correct gesture, based on the FFT values.  

The confusion matrix is used for summarising the performance of a classification algorithm 

(Papapetrou et al., 2011). By using the classification accuracy alone, can be misleading when 

the number of observations in each class is unequal or when there are more than two classes in 

the data set that was used for training. The confusion matrix gives a better idea of what the 
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classification model classifies correctly and what type of error it is making. Table 5-3 indicates 

the results of training the RBFNN for gesture recognition presented in the confusion matrix 

format. In the first column, are the actual gestures are depicted. In the first row, the last three 

columns display the gesture that was identified by the RBFNN. From the confusion matrix, it can 

be seen that there was one instance where the wrong classification was made. In the third 

column, the value 1 indicates that the classifier predicted it was gesture 2, but it should have 

been gesture 1. 

 
Predicted gesture 

Actual gesture 1 2 3 

1 9 1 0 
2 0 10 0 
3 0 0 10 

Table 5-3: Confusion matrix from RBFNN gesture recognition results 

In the next section is a discussion on the results from testing the trained RBFNN model for 

gesture recognition in the project application on the smartphone. 

5.3.3.1 Testing the RBFNN model in the project application 

The previous results were obtained from Weka running on a desktop computer, mentioned in 

Chapter 4. The trained RBFNN model was also tested on the mobile project application to 

ensure the same results were obtained on the mobile application. Table 5-4 shows a sample of 

the test data that was used for testing the RBFNN model.  

Gesture X-1 X-2 X-3 Y-1 Y-2 Y-3 Z-1 Z-2 Z-3 Prediction 

1 472.89 790.59 225.79 561.19 11.62 211.55 715.35 238.31 245.59 1 

2 481.83 449.07 197.96 353.97 65.08 88.19 467.87 199.53 106.61 2 

3 307.42 68.83 44.79 127.69 35.73 32.52 232.48 71.11 45.01 3 

1 506.59 623.36 236.15 461.44 59.92 139.84 601.36 182.96 188.44 1 

2 420.96 410.94 189.35 294.16 65.82 58.39 359.73 161.84 87.76 2 

3 446.21 111.43 41.67 168.95 82.83 112.82 392.30 100.20 14.05 3 

1 644.54 666.96 284.99 423.35 59.95 135.99 614.46 271.95 179.07 1 

2 433.75 430.42 191.93 360.91 46.75 79.38 405.97 170.11 132.71 2 

3 244.40 115.09 88.48 109.51 149.34 84.35 393.62 88.07 50.57 3 

Table 5-4: Sample of test results from RBFNN gesture recognition 
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In the first column, the actual gesture is shown and in the last column is the gesture predicted 

by the RBFNN classifier. In Figures 5-12, 5-13, and 5-14 are examples of each gesture that was 

tested on the mobile application by using the test data in Table 5-4.  

 

Figure 5-12: RBFNN gesture recognition results on the smartphone for gesture 1 

 

Figure 5-13:  RBFNN gesture recognition results on the smartphone for gesture 2 
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Figure 5-14:  RBFNN gesture recognition results on the smartphone for gesture 3 

From the cases presented in Figures 5-12, 5-13, and 5-14 it can be seen that the same results 

are obtained on the mobile application when comparing the data on the test data label and 

predictions label to the test data in Table 5-4. Only the results from the first three rows from 

Table 5-4 are presented. The results on the full test data set are available in Annexure B.   

Most high-level piloting is controlled autonomously, but some tasks still need to be controlled 

manually. Take-off and landing are controlled autonomously, but still need to be initiated by 

pressing the take-off or landing button on the smartwatch. The UAS which follows the pilot is 

autonomously based on the user’s GPS. The pilot does not have to control the UAS manually 

for the UAS to be able to follow the pilot. The following function just needs to be initiated by 

performing the gesture associated with the following function. The speed of the UAS needs to 

be adjusted manually by the hand-held device. Based on the automation level model presented 

in Chapter 3, this implementation uses level 2 automation. In the next section is a discussion on 

the activity recognition implementation results. 

5.4 Improved UAS control with automated activity recognition results 

In the previous implementation, gestures were identified by mapping accelerometer data to the 

three gestures. In this implementation, activities were used to map the accelerometer data to 

different activities. The results from the activity data should indicate that the different activities 



104 

can be differentiated from each other. The results from calculating the magnitude of the 

accelerometer data are discussed next. 

5.4.1 Activity recognition accelerometer data magnitude results 

The accelerometer data of all three axes for the activity recognition implementation was 

transformed into a single scalar value, as discussed in the previous chapter. Figure 5-15 is a 

visual representation of ten acceleration sample values per activity. 

 

Figure 5-15: Results from calculating magnitude for accelerometer data 

The standing activity is shown in red. Walking is shown in green, and running is shown in blue. 

From Figure 5-15, it can be seen that the acceleration of standing is the lowest, walking has the 

second-lowest and running has the biggest acceleration. The result from applying an FFT 

analysis on the acceleration data for activity recognition is discussed in the next section. 

5.4.2 Activity recognition FFT accelerometer data results 

Applying an FFT analysis to the accelerometer data for gesture recognition has proven to be 

very beneficial. An FFT analysis is also applied to the accelerometer data of the different 

activities to get more information about the data. The accelerometer data collected for the 

activity recognition experiment had the same data lengths (number of readings). Each iteration 

for each activity had sixty-four readings. It is therefore not necessary to use an FFT algorithm 

that can do calculations on data of arbitrary length as with the previous experiment. It is better 
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to use an FFT that can be a power of two (the number of accelerometer readings need to be a 

power of two) because it improves the performance of the calculations (Kerr, 1998). In Figure 5-

16, the results from applying an FFT analysis on the first activity (standing) in the frequency 

domain is presented. One hundred iterations of the standing activity are presented. On the y-

axis is the magnitude and on the x-axis are the FFT terms of this specific gesture. The 

magnitude indicates the strength of the accelerometer data after an FFT analysis was applied 

relative to each other. From the results, it can be seen that there is some variation in the results 

even though this is the standing activity. This can be caused by the pilot moving his/her arm 

while standing still. When performing the standing activity, it is expected that the results will be 

in the same ranges as presented in the figure. 

 

Figure 5-16: Results from FFT analysis on the first activity (standing) 

The results from applying an FFT analysis on the accelerometer data from the second activity 

(walking) in the frequency domain for one hundred iterations are presented in Figure 5-17. The 

variations in the results can be caused by the different speeds at which the pilot is walking. 
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Figure 5-17: Results from FFT analysis on the second activity (walking) 

In Figure 5-18, the results from applying an FFT analysis on the third activity (running) in the 

frequency domain are presented for one hundred iterations.  

 

Figure 5-18: Results from FFT analysis on the third activity (running) 
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There are also some variations in the results which could be caused by the different speeds at 

which the pilot was running. 

Figure 5-19 depicts the results of Figures 5-16, 5-17, and 5-18 combined. From Figure 5-19, it 

can be seen that the standing activity is shown in red with the lowest magnitude. This is as 

expected, since the pilot carried out little to no movement. The walking activity shown in green 

has a higher magnitude than the standing activity. The blue lines represent the running activity. 

The running activity shows the highest magnitude on average.  

From the results shown by the FFT analysis, it is visually possible to differentiate between the 

different activities.  

 

Figure 5-19: Results from converting accelerometer data into FFT values for all three 
activities 

In the next section is a discussion of the results obtained from implementing activity recognition 

with an RBFNN. 
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5.4.3 RBFNN activity recognition results 

Seventy per cent of the data was used to train the model, and twenty per cent was used to 

validate the model. The last ten per cent of the data was used to test the model. The test results 

are shown in Table 5-5. 

Result Value 
Correctly classified instances  93.33% 
Incorrectly classified instances 6.67% 
Kappa statistic 0.9333 

Table 5-5: Result from testing the RBFNN model 

The RBFNN correctly classified 93.33 per cent of the gestures with 6.67 per cent incorrectly 

classified. According to the kappa statistic guidelines shown in Table 5-2, the model is almost 

perfect.  

The results from testing the activity recognition model are also shown as a confusion matrix in 

Table 5-6. From the table, it can be seen that all the standing activities were correctly predicted 

for this test data set. For the second activity, the walking activity, there is one case where the 

classifier predicted that the pilot was currently running instead of walking. This also happened 

for the running activity, but in this case, the classifier predicted that the pilot was walking instead 

of running 

 
Predicted activity 

Actual activity 1 2 3 

1 10 0 0 
2 0 9 1 
3 0 1 9 

Table 5-6: Results from RBFNN gesture recognition 

The results show that the RBFNN can successfully predict the current activity performed by the 

pilot to enable autonomous UAS speed control. In Section 5.3.3.1, the results from Weka on the 

desktop computer were compared to the results obtained on the mobile platform to ensure that 

the same results were obtained on both platforms. The Weka results from the desktop computer 

were also compared for the activity recognition implementation and can be seen in Annexure B. 

The activity recognition system was implemented to further improve and automate UAS control 

by automating the speed of the UAS. The UAS follows the pilot and adjusts the speed 
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autonomously. Most of the UAS control is now autonomously controlled. Based on the 

automation level model discussed in Chapter 3, this implementation uses level 3 automation. 

Table 5-7 is a summary of how the experiments improved UAS control and improved 

automation. 

Experiment Control simplification Automation improvement 

Basic control 
implementation 

With the basic control system, the UAS 
is mostly remotely piloted except for 
take-off, landing, and emergency 
controls. There are no follow 
capabilities built into the basic control 
system. The UAS needs to be manually 
controlled to be able to follow the pilot 
and the speed of the UAS also needs to 
be updated manually. No control 
simplification is established. 

This implementation is used as 
the base for comparison, and no 
improvements were made to 
automation. Based on the levels 
of UAS automation, this system 
uses level 1-automation. 

Smartwatch 
accelerometer 
data control 

Controlling the UAS with smartwatch 
accelerometer data enables the pilot to 
control the UAS without the need to 
have a smartphone in his/her hand. 

Automation is not improved with 
this implementation, and the level 
of automation for this system is 
also level 1. 

Gesture 
recognition 

The gesture recognition system also 
enables the pilot to control the UAS 
without having the smartphone in 
his/her hand. Unlike the previous 
implementation, the UAS does not 
move when the pilot moves his/her arm 
because the accelerometer data is not 
used to control the UAS directly. 

Gesture recognition is used for 
control instructions which enable 
most high-level piloting to be 
controlled autonomously. Based 
on the levels of UAS automation, 
this implementation uses level 2-
automation. 

Follow Function 

The pilot does not have to control the 
UAS manually for the UAS to be able to 
follow the pilot. 

The follow function enables the 
UAS to follow the pilot 
autonomously. Although this 
implementation improves 
automation, based on the levels 
of UAS automation, this system 
also uses level 2-automation. 

Activity 
recognition 

Activity recognition enables the speed 
of the UAS to be autonomously 
adjusted, and there is no need for the 
pilot to set the speed manually. 

Most of the UAS control is now 
autonomously controlled. Based 
on the UAS automation level 
model, this implementation uses 
level 3-automation. 

Table 5-7: Summary of control simplification and automation improvements 

In the next section, a conclusion to the chapter is presented. 
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5.5 Conclusion 

The results from the various systems implemented in Chapter 4 were presented and discussed 

in this chapter. These results are used to provide evidence that UAS control can be simplified 

and that automation can be improved by using gesture and activity recognition with an RBFNN. 

The basic control system results showed that the system uses little to no automation, except for 

take-off, landing and the emergency piloting control task. Results from the second 

implementation indicated that it is possible to control the UAS with the smartwatch acceleration 

data, but it did not improve UAS automation. Gesture control was used in the third 

implementation, and the results showed that it is possible to use accelerometer data with an 

RBFNN to improve and automate UAS control. The last implementation results showed that it is 

possible to improve UAS control and automation by automating the speed of the UAS with the 

help of an RBFNN. In the final chapter, the study is concluded. 
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CHAPTER 6  CONCLUSION  

UASs have a rich history that goes back to ancient times. Throughout the years, the UAS has 

become both lightweight and cost-effective. UASs have tended to be driven by military 

applications, but in the last few years, various commercial fields have also been utilising the 

UASs (Chapter 1). The study aimed to simplify UAS control and improve automation, using an 

RBFNN for hand gesture and activity recognition. There are currently various methods to control 

UASs (Chapter 3).  It is also notable that many automation techniques are also being 

investigated and improved to simplify UAS control. In this study, some of these techniques were 

explored and improved to simplify UAS control.  

The remainder of the chapter will be as follows. The research goals are evaluated in Section 

6.1. In Section 6.2, is a summary of the key contributions from this study. Future work is 

discussed in Section 6.3, followed by the conclusion of the chapter in Section 6.4. 

6.1 Evaluation of research goals 

The research question for this study was presented in Chapter 1, Section 1.6 as follows: “Can 

hand gestures and activities that are classified by a radial basis function neural network 

(RBFNN) be used to simplify UAS control and improve UAS automation?” To address this 

research question, seven secondary objectives were set. A discussion of how these secondary 

objectives were met is presented below. 

1. Perform a literature review on UAVs, UASs, applications of UASs, the positivistic 
research paradigm, the design science research strategy, the SCRUM development 
methodology, control systems (manual and autonomous), automation of UAS control 
techniques, artificial neural networks, RBFNNs and the FFT algorithm. 

In Chapter 1, literature on UAVs and UASs was discussed. Various terms and acronyms that 

are used in the field of UAVs were considered. Some of the most prominent applications from 

the literature were briefly mentioned to illustrate the pervasive role UASs play in the public 

domain. The positivistic research paradigm, the design science research strategy and the 

SCRUM development methodology were discussed in Chapter 2. In Chapter 3, control systems 

(manual and autonomous), automation of UAS control techniques, artificial neural networks, 

RBFNNs and the FFT algorithm were considered. 

2. Implement a basic UAS control system which will act as the starting point for 
comparisons. 

In Chapter 4, Section 4.1, a basic UAS control system was implemented. The system used a 

traditional UAS control architecture. The UAS was piloted by means of remote control and had 
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only basic functionality. Only the take-off, land, and emergency functions were autonomously 

controlled. Key findings for the basic control system were discussed in Chapter 5, Section 5.1.  

3. Improve the system in (2) by controlling the UAS with smartwatch accelerometer 
data. 

The third objective was achieved by implementing a UAS control system that used 

accelerometer data from a smartwatch, as discussed in Chapter 4, Section 4.2. Pitch, yaw, and 

roll movements obtained from accelerometer data were used to control the UAS. The results 

were discussed in Chapter 5, Section 5.2. This implementation improved the system in (2) by 

enabling the pilot to control the UAS without the need to have the smartphone in his/her hand. 

4. Enhance the system in (3) with gesture recognition implemented through an RBFNN. 

Three gestures were identified in Chapter 4, Section 4.3.1. These gestures were used for UAS 

control. Accelerometer data for each gesture were recorded and mapped to various control 

tasks that could be performed by the UAS. The gesture recognition system enhanced the 

system in (3) by using gesture recognition with an RBFNN instead of using accelerometer data 

directly to control the UAS. The results were discussed in Chapter 5, Section 5.3. 

5. Extend system (4) by implementing a pilot follow function to simplify UAS control. 

In Chapter 4, Section 4.4, a follow function was implemented to enable the UAS to follow the 

pilot with the help of GPS information autonomously. The follow function simplified UAS control 

by enabling the UAS to follow the pilot autonomously. There was no need for the pilot to use a 

smartphone to control the UAS to follow him/her continuously. 

6. Improve UAS control of (5) with automated activity recognition using an RBFNN. 

An automated activity recognition system was implemented in Chapter 4, Section 4.5. In this 

implementation, the accelerometer data were mapped to different activities with the help of an 

RBFNN. The activity recognition system further improved and automated UAS control by 

automating the speed of the UAS. The UAS followed the pilot and adjusted the speed 

autonomously. The results were discussed in Chapter 5, Section 5.4. 

7. Evaluate the implemented systems, based on the simplification of control and the 
improved levels of UAS automation. 

Each system was evaluated in Chapter 5 based on the simplification of UAS control and the 

four levels of UAS automation presented in Chapter 3, Section 3.3.4. In Chapter 5, Table 5-7 is 

a summary of the evaluations. 
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All the goals set in Chapter 1 were met, and the following key findings were made: 

• Literature review: UASs are used in various commercial and military fields. There 

are currently various control methods that can be used to control a UAS.  From the 

research, it is evident that there are numerous control and automation techniques 

that can be used to simplify and automate UAS control.  

• Smartwatch control: The UAS can be controlled with a smartwatch by using the 

accelerometer data provided by the smartwatch when the pilot moves his/her hand. 

The downside to this implementation is that the UAS moves whenever the pilot 

moves his/her hand. The UAS also moves when the pilot is not standing still. This 

makes it difficult to control the UAS while the pilot is moving. 

• Gesture recognition: Gestures can be mapped to the accelerometer data gathered 

from the smartwatch. The process of applying an FFT analysis to the data provides 

more information about the accelerometer data. An RBFNN can classify the gesture 

that was performed by the pilot, based on these FFT values with high accuracy. 

These gestures can be assigned to various control tasks that can be performed by 

the UAS.  

• UAS following function: The GPS coordinates of the pilot’s hand-held device can 

be used to instruct the UAS to navigate to the provided GPS coordinates.  

• Activity recognition: Activities can be mapped to accelerometer data gathered from 

the smartwatch while the pilot is flying the UAS. Applying an FFT analysis also 

provided more information about the accelerometer data. An RBFNN can also be 

trained and used to classify the activity, based on the FFT values. The speed of the 

UAS can then be autonomously updated, based on the activity classification made 

by the RBFNN. 

In the next section is a summary of the contributions made in this study.  

6.2 Summary of contributions 

This study made the following contributions: 

• A literature review on UAVs, UASs, applications of UASs, the positivistic research 

paradigm, the design science research strategy, the SCRUM development 

methodology, control systems (manual and autonomous), automation of UAS control 

techniques, artificial neural networks, RBFNNs and the FFT algorithm 
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• The sample application provided by the manufacturer of the Parrot for the Bebop 

Drone was enhanced to enable the smartphone to communicate with the smartwatch 

in order the gather accelerometer data from the smartwatch which enabled the UAS 

to be piloted, based on the accelerometer data. 

• A gesture recognition system was implemented, enabling the UAS control task to be 

mapped to gestures with the help of an RBFNN. 

• A follow function was implemented to enable the UAS to follow the pilot based on 

his/her GPS coordinates autonomously. 

• An activity recognition system was implemented to enable the UAS to autonomously 

update the speed of the UAS, based on the current activity performed by the pilot 

with the help of an RBFNN. 

• Results from the experiments that were implemented to simplify UAS control and 

improve automation were obtained and examined. 

Suggestions for future work are discussed next. 

6.3 Suggestions for future work 

Further research could focus on implementing autonomous UAS control with the aid of vision 

control. In Chapter 3, it was mentioned that various vision-based techniques could be used to 

enable the UAS to follow the pilot. The results can be compared to the GPS implementation of 

this study to determine which implementation works better or to determine if the two 

implementations can be combined to minimise the disadvantages that may be presented by 

each implementation.  

A utility-based agent could be implemented for the UAS. The agent could be given some goals 

(UAS control tasks) to perform, and the RBFNN could then evaluate the state according to the 

user’s feedback. Through trial and error, the agent could learn which control task the UAS 

should autonomously perform in a similar scenario.  

6.4 Conclusion 

In this study, the research question “Can hand gestures and activities that are classified by a 

radial basis function neural network (RBFNN) be used to simplify UAS control and improve UAS 

automation?” was investigated. The results in Chapter 5 showed that an RBFNN could 

accurately classify hand gestures and activities performed by the pilot based on the 

accelerometer data recorded from a smartwatch to simplify UAS control and improve 

automation. 
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ANNEXURE A – JAVA CODE SAMPLES 

/* 
 * Reads the x, y, z axis accelerometer data of the smartwatch 
 * and send the data to the smartphone 
 */ 
 
public void onSensorChanged(SensorEvent sensorEvent) { 
    float[] data = sensorEvent.values; 
    putDataMapReq = PutDataMapRequest.create("/SAMPLE"); 
    putDataMapReq.getDataMap().putFloatArray(KEY,data); 
    putDataReq = putDataMapReq.asPutDataRequest(); 
    resultado = Wearable.DataApi.putDataItem(mApiClient,putDataReq); 
    Wearable.DataApi.putDataItem(mApiClient,putDataReq); 
} 
 
/* 
 * Gets the x, y, z axis accelerometer data from the smartwatch. 
 * Apply FFT analysis on the data. 
 * Perform RBFNN prediction. 
 */ 
 
public void onDataChanged(final DataEventBuffer dataEventBuffer) { 
    //listens for data changes from smartwatch 
    for (DataEvent event : dataEventBuffer { 
     if ((event.getType() == DataEvent.TYPE_CHANGED) &&(test)) { 
        DataItem item = event.getDataItem(); 
        if (item.getUri().getPath().equals("/SAMPLE")) { 
        DataMapItem dataMapItem = DataMapItem.fromDataItem(item); 
        acel_xyz = dataMapItem.getDataMap().getFloatArray(KEY); 
        runOnUiThread(new Runnable() { 
        @Override 
        public void run() { 
        //store the accelerometer data received from the smartwatch 
        xData.add(acel_xyz[0]); 
        yData.add(acel_xyz[1]); 
        zData.add(acel_xyz[2]); 
        dataSize = xData.size(); 
          timer.postDelayed(new Runnable() { 
             @Override 
              public void run() { 
              //check if prediction should be performed 
              if(predict) { 
              //create imaginary values for FFT analysis 
              imaginaryX = new double[dataSize]; 
              imaginaryY = new double[dataSize]; 
              imaginaryZ = new double[dataSize]; 
              //perform FFT analysis on the accelerometer data 
              double[] fftValueX = performFFT(fft, xData, imaginaryX); 
              double[] fftValueY = performFFT(fft, yData, imaginaryY); 
              double[] fftValueZ = performFFT(fft, zData, imaginaryZ); 
              //gather all FFT values 
              double[] fftArray = new double[9]; 
              System.arraycopy(fftValueX, 0, fftArray, 0, 3); 
              System.arraycopy(fftValueY, 0, fftArray, 3, 3); 
              System.arraycopy(fftValueZ, 0, fftArray, 6, 3); 
              //perform prediction 
              pilotWithPrediction(neuralNetworkPrediction(fftArray)); 
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} 
   else { 
    //clear data 
      xData = new ArrayList<>(); 
      yData = new ArrayList<>(); 
        zData = new ArrayList<>(); 
        imaginaryX = new double[0]; 
        imaginaryY = new double[0]; 
        imaginaryZ = new double[0]; 
        timer.removeCallbacksAndMessages(null); 
        } 
           } 
            //timer is set for 5 seconds 
              }, 5000); 
                } 
                 }); 
                } 
           } 
       } 
} 
 
/* 
 * Apply FFT analysis on the data. 
 */ 
 
public static double[] performFFT(Fft fft, double[] re, double[] im) { 
    fft.transform(re,im); 
    double[] fftData = new double[3]; 
    for (int i = 0; i < 3; i++) { 
        fftData[i]= (int) (Math.sqrt(im[i]*im[i] + re[i]*re[i])  * 1000) / 1000.0; 
    } 
    return fftData; 
} 
 
/* 
 * Neural network prediction based on FFT data received. 
 */ 
 
public String neuralNetworkPrediction(double[] fftArray){ 
    //setup data for neural network 
    RBFData[] rbfData = new RBFData[]{ 
            new RBFData(fftArray) 
    }; 
    StringBuilder sb = new StringBuilder("Test Data:\n"); 
    for(RBFData s : rbfData) { 
        sb.append(s.toString() + "\n"); 
    } 
    //get trained model from rescources 
    try { 
        mClassifier = (Classifier) 
weka.core.SerializationHelper.read(assetManager.open("RBFModel.model")); 
    } catch (IOException e) { 
        e.printStackTrace(); 
    } catch (Exception e) { 
        e.printStackTrace(); 
    } 
    //set attributes for neural network 
    final Attribute X1 = new Attribute("X1"); // x - axis 
    final Attribute X2 = new Attribute("X2"); 
    final Attribute X3 = new Attribute("X3"); 
    final Attribute Y1 = new Attribute("Y1"); // y - axis 
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    final Attribute Y2 = new Attribute("Y2"); 
    final Attribute Y3 = new Attribute("Y3"); 
    final Attribute Z1 = new Attribute("Z1"); // z - axis 
    final Attribute Z2 = new Attribute("Z2"); 
    final Attribute Z3 = new Attribute("Z3"); 
    //set classes for prediction 
    final List<String> classes = new ArrayList<String>() { 
        { 
            add("Circle"); 
            add("Up Down"); 
            add("Left Right"); 
        } 
    }; 
    //perform prediction 
    try { 
        double result = mClassifier.classifyInstance(newInstance); 
        String className = classes.get(new Double(result).intValue()); 
        String prediction = "Predicted: " + className; 
        return prediction; 
    } catch (Exception e) { 
        e.printStackTrace(); 
        return null; 
    } 
} 
 
/* 
 * Pilot the UAS based on the prediction made. 
 * 
 */ 
 
public void PilotWithPrediction(String prediction) { 
    if (prediction.equals("Predicted: Circle")) { 
        //get the flying state in order to ensure the control task can be performed 
        switch (mBebopDrone.getFlyingState()) { 
        case ARCOMMANDS_ARDRONE3_PILOTINGSTATE_FLYINGSTATECHANGED_STATE_LANDED: 
         //send take off notification to smartwatch 
         sendAsyncMessage(WEAR_MESSAGE_PATH, "Take off"); 
         mBebopDrone.takeOff(); 
         break; 
        case ARCOMMANDS_ARDRONE3_PILOTINGSTATE_FLYINGSTATECHANGED_STATE_HOVERING: 
         //send landed notification to smartwatch 
         sendAsyncMessage(WEAR_MESSAGE_PATH, "Landed"); 
         mBebopDrone.land(); 
         break; 
        default: 
        } 
    } 
    //follow the pilot based on gps coordinates 
    else if(prediction.equals("Predicted: Up Down")){ 
        switch (mBebopDrone.getFlyingState()) { 
        case ARCOMMANDS_ARDRONE3_PILOTINGSTATE_FLYINGSTATECHANGED_STATE_LANDED: 
 //send take off notification to smartwatch 
         sendAsyncMessage(WEAR_MESSAGE_PATH, "Take off"); 
         mBebopDrone.takeOff(); 
        case ARCOMMANDS_ARDRONE3_PILOTINGSTATE_FLYINGSTATECHANGED_STATE_FLYING: 
         //send following notification to smartwatch 
         sendAsyncMessage(WEAR_MESSAGE_PATH, "Following"); 
         mBebopDrone.PilotWithGPS(latitude, longitude, altitude); 
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        case ARCOMMANDS_ARDRONE3_PILOTINGSTATE_FLYINGSTATECHANGED_STATE_HOVERING: 
         //send following notification to smartwatch 
         sendAsyncMessage(WEAR_MESSAGE_PATH, "Following"); 
         mBebopDrone.PilotWithGPS(latitude, longitude, altitude); 
      break; 
     default: 
      } 
   } 
} 
 
/* 
 * Get the pilots location data. 
 */ 
 
public void onLocationChanged(Location location) { 
    latPilot = location.getLatitude(); 
    longPilot = location.getLongitude(); 
    altPilot = location.getAltitude(); 
} 
 
/* 
 * Navigate the UAS to the pilots location. 
 */ 
 
public void PilotWithGPS(double latPilot, double longPilot, double altPilot) { 
  //check if distance between pilot and UAS is sufficient 
  boolean sufficientDistance = calculateDistance(latPilot, longPilot, latUAS, 
  longUAS); 
    if(mDeviceController != null) && (sufficientDistance) { 
        mDeviceController.getFeatureARDrone3(). 
         //UAS navigates to GPS coordinates 
 sendPilotingMoveTo((double)latPilot, (double)longPilot, (double)altPilot, 
        (ARCOMMANDS_ARDRONE3_PILOTING_MOVETO_ORIENTATION_MODE_ENUM. 
 ARCOMMANDS_ARDRONE3_PILOTING_MOVETO_ORIENTATION_MODE_TO_TARGET),0); 
    } 
} 
 
/* 
 * Calculates the distance between the UAS and the pilot to determine if the  
 * distance is sufficient. 
 */ 
 
public static boolean calculateDistance(double latPilot, double longPilot, 
                                        double latUAS, double longUAS) { 
     
    Location locationPilot = new Location("point A"); 
    locationPilot.setLatitude(latPilot); 
    locationPilot.setLongitude(longPilot); 
    Location locationUAS = new Location("point B"); 
    locationUAS.setLatitude(latUAS); 
    locationUAS.setLongitude(longUAS); 
    //calculates the distance between the pilot and the UAS 
    float distance = locationPilot.distanceTo(locationUAS); 
    //if the distance is equal or more than 5 meters return true 
    if (distance >= 5) { 
        return true; 
    } else { 
        return  false; 
    } 
} 
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/* 
 * Adjust the speed of the UAS based on the activity prediction. 
 */ 
 
public void PilotWithSpeed(String prediction) { 
    switch (prediction) { 
        case "standing": 
            //adjust speed by setting the pitch value. 
            mBebopDrone.setPitch((byte) 0); 
        case "walking": 
            mBebopDrone.setPitch((byte) 50); 
        case "running": 
            mBebopDrone.setPitch((byte) 100); 
        default: 
            mBebopDrone.emergency(); 
    } 
} 
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ANNEXURE B – RESULTS COMPARISON 

          Prediction 

Gesture X-1 X-2 X-3 Y-1 Y-2 Y-3 Z-1 Z-2 Z-3 PC Phone 

1 472.89 790.59 225.79 561.19 11.62 211.55 715.35 238.31 245.59 1 1 

1 506.59 623.36 236.15 461.44 59.92 139.84 601.36 182.96 188.44 1 1 

1 644.54 666.96 284.99 423.35 59.95 135.99 614.46 271.95 179.07 1 1 

1 438.94 688.45 203.20 420.11 27.42 141.33 681.52 169.89 259.56 1 1 

1 466.60 665.68 198.87 538.22 6.07 129.17 708.46 175.88 226.30 1 1 

1 360.15 587.09 134.10 421.39 54.01 129.06 600.87 235.52 152.49 2 2 

1 454.91 722.47 163.94 458.50 158.87 133.01 827.52 339.78 218.72 1 1 

1 379.74 638.66 134.96 547.87 27.25 148.95 707.66 236.07 202.67 1 1 

1 604.41 691.51 243.52 566.19 120.99 187.03 785.55 311.37 217.69 1 1 

1 608.10 729.72 208.89 590.54 96.66 111.11 895.00 371.31 211.41 1 1 

2 481.83 449.07 197.96 353.97 65.08 88.19 467.87 199.53 106.61 2 2 

2 420.96 410.94 189.35 294.16 65.82 58.39 359.73 161.84 87.76 2 2 

2 433.75 430.42 191.93 360.91 46.75 79.38 405.97 170.11 132.71 2 2 

2 437.08 393.48 182.73 252.47 38.85 98.09 384.03 169.26 98.16 2 2 

2 483.71 413.22 190.50 351.31 37.74 115.84 385.79 188.75 85.12 2 2 

2 365.24 375.01 158.75 349.84 83.15 100.74 486.78 126.28 68.43 2 2 

2 397.64 398.60 179.98 429.52 70.11 114.46 447.65 155.08 59.11 2 2 

2 352.78 163.85 126.57 778.40 42.81 49.42 680.70 157.57 91.63 2 2 

2 391.21 428.21 119.31 442.45 55.74 117.09 659.53 182.22 66.17 2 2 

2 465.03 585.18 158.16 534.52 16.60 152.80 691.53 221.52 93.86 2 2 

3 307.42 68.83 44.79 127.69 35.73 32.52 232.48 71.11 45.01 3 3 

3 446.21 111.43 41.67 168.95 82.83 112.82 392.30 100.20 14.05 3 3 

3 244.40 115.09 88.48 109.51 149.34 84.35 393.62 88.07 50.57 3 3 

3 239.77 125.32 61.62 130.14 94.27 58.90 376.42 66.17 46.88 3 3 

3 189.81 84.91 63.64 93.93 107.25 69.09 319.05 66.74 34.37 3 3 

3 222.59 97.75 73.91 51.20 109.50 60.59 351.72 74.35 36.81 3 3 

3 266.08 149.37 82.36 126.44 117.31 104.85 441.09 94.69 42.60 3 3 

3 160.50 132.98 48.38 128.33 81.40 30.01 313.20 63.49 30.77 3 3 

3 202.61 143.45 46.75 165.44 94.72 37.37 362.28 85.75 45.35 3 3 

3 390.07 200.81 65.01 196.52 100.77 76.75 506.94 109.80 4.13 3 3 

Table A-1: Comparison between Weka results on the computer and mobile application for 
gesture recognition 
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           Prediction 

Activity 1 2 3 4 5 6 7 8 9 10 PC Phone 

1 3.41 1.73 10.17 5.24 2.89 2.75 2.55 1.58 1.60 1.48 1 1 

1 5.07 6.49 3.99 1.43 0.95 1.90 1.34 0.42 0.54 0.66 1 1 

1 7.59 6.17 2.27 2.11 1.24 0.56 0.27 1.08 0.83 0.83 1 1 

1 1.54 0.74 2.13 2.88 1.52 1.07 0.64 0.25 0.45 0.20 1 1 

1 4.46 6.94 4.77 1.97 2.24 0.93 0.48 0.46 0.69 0.83 1 1 

1 5.29 2.95 2.51 1.15 0.69 1.48 0.78 0.52 0.60 0.59 1 1 

1 3.08 0.57 0.39 0.51 0.30 0.16 0.29 0.38 0.37 0.12 1 1 

1 0.91 0.85 1.05 0.69 0.54 0.42 0.20 0.59 0.10 0.55 1 1 

1 1.85 0.15 1.24 1.32 0.96 0.34 0.04 0.57 0.12 0.23 1 1 

1 3.99 0.99 1.09 1.14 0.69 0.71 0.40 0.24 0.49 0.35 1 1 

2 14.85 32.63 7.91 9.47 5.91 4.00 2.35 2.74 2.24 1.74 2 2 

2 3.46 9.57 11.30 8.82 6.24 0.82 1.44 0.71 0.49 0.81 2 2 

2 19.85 10.56 2.90 4.21 9.62 7.10 5.04 4.38 3.16 1.93 2 2 

2 49.99 25.90 24.54 6.94 13.18 8.29 3.38 2.72 0.25 3.27 2 2 

2 22.32 28.20 29.47 29.58 17.67 18.23 11.25 10.60 9.53 7.34 2 2 

2 41.08 33.61 37.68 28.31 27.19 20.68 16.28 10.88 6.40 6.10 2 2 

2 42.17 20.95 24.56 14.06 2.79 4.39 3.97 1.18 0.97 1.47 2 2 

2 64.79 26.36 4.96 10.16 2.06 0.97 1.29 2.64 1.49 1.97 2 2 

2 125.07 31.05 17.89 1.35 6.69 1.99 2.67 2.52 0.77 1.54 3 3 

2 14.61 7.97 16.54 12.25 3.67 11.37 6.92 4.43 4.11 2.19 2 2 

3 27.05 12.34 12.72 18.56 15.82 7.87 4.48 3.62 3.59 1.47 3 3 

3 14.43 18.18 9.31 21.32 14.61 7.53 2.26 2.30 1.72 3.52 2 2 

3 146.71 52.88 28.10 50.92 19.75 24.52 28.18 12.91 12.95 10.49 3 3 

3 79.52 45.09 31.28 35.11 49.08 53.92 17.54 14.12 4.71 6.52 3 3 

3 54.90 7.20 22.73 19.82 22.41 7.08 4.80 2.67 5.88 6.07 3 3 

3 62.19 17.06 48.50 31.55 17.35 7.89 22.40 15.56 3.68 5.84 3 3 

3 39.62 40.19 30.77 17.81 26.34 23.22 6.11 2.66 3.90 1.83 3 3 

3 39.21 8.92 33.49 45.52 28.23 19.55 14.67 13.13 0.31 6.10 3 3 

3 36.24 81.43 59.56 38.45 48.95 64.00 42.96 11.19 9.43 8.48 3 3 

3 149.32 66.79 106.97 44.94 23.27 26.70 25.81 27.01 17.83 17.01 3 3 

Table A-2: Comparison between Weka results on the computer and mobile application for 
activity recognition 
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