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Abstract 

Humanitarian logistics is the planning and implementation of cost-effective and efficient 

procedures to manage the flow and storage of relief items between an origin, such as a relief 

or medical station, and the people affected by an event, such as a natural disaster. However, 

in practice numerous problems and practical difficulties may occur that will prevent the 

smooth operation of a humanitarian logistics chain. A problem that often occurs is 

accessibility – following a natural disaster, certain areas may be inaccessible, and it may be 

difficult or impossible to reach people trapped in these areas. In addition, there is a need to 

establish sufficient relief facilities in a disaster area to maintain a humanitarian relief supply 

chain that can provide shelter, medicine, food and other emergency items.  

In this study, the use of maze generation and maze-solving techniques together with discrete 

facility location models that can be used to assist humanitarian logistics in disaster situations 

is proposed. Different maze generation algorithms are used to develop a maze that 

represents a real-world disaster-stricken area. The maze is then solved, using different 

maze-solving algorithms that produce optimal traversable routes. Discrete facility location 

models are also formulated to determine the extent to which mathematical models can assist 

with the decision-making process of establishing relief facilities. To implement and 

demonstrate the proposed techniques and algorithms, a software application is developed 

that enables users to perform the computations in a fast and efficient manner. The proposed 

techniques and models are applied in a real-world disaster situation and data obtained from 

Hurricane Katrina that occurred in 2005 in New Orleans in the United States of America is 

used. Results obtained from the application of the models and algorithms suggest that the 

proposed methodology does indeed produce valuable and useful results that are typically 

required in a humanitarian logistics scenario.  

Keywords: Facility location models; Grid-based maze; Humanitarian logistics; Natural 

disaster; Optimal route. 
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Chapter 1 Introduction and problem description  

1.1. Introduction 

Natural disasters are a worldwide phenomenon that can cause great destruction and loss of 

lives. The Merriam Webster Dictionary (Merriam-Webster Inc., 2020) defines a natural 

disaster as “a sudden and terrible event in nature (such as a hurricane, tornado or flood) that 

usually results in serious damage and many deaths”. There are normally five broad 

categories of natural disaster which include 

- Geophysical (earthquakes, landslides, tsunamis, volcanic activity), 

- Hydrological (avalanches and floods), 

- Climatological (extreme temperatures, droughts, wildfires), 

- Meteorological (cyclones, storms, wave surges), 

- Biological (disease epidemics, insect/animal plagues). 

These categories and others are detailed in the work of Shaluf (2007). 

Although the number of people who are killed annually in natural disasters is declining, there 

is still an average death rate of 60 000 people who are killed each year globally. Historically, 

droughts and floods were the most fatal disaster events, but the deadliest events today tend 

to be earthquakes (Ritchie and Roser, 2019). To illustrate the global deaths from natural 

disasters, Figure 1.1 presents a graphical display of deaths for the period 1900-2016. 

 

Figure 1.1 Global deaths due to natural disasters for the period 1900-2016 
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To further highlight the demolishing capabilities of natural disasters, examples of a few 

recent disasters can be quoted. The recent wildfires that spread across the South Wales 

region in Australia prompted the Australian Government to declare a state of emergency in 

November 2019 (Calma, 2020). Thousands of people had to be evacuated and at least 3 

000 houses were either completely destroyed or seriously damaged. According to estimates 

one billion animals also lost their lives in the disaster. Even the smoke became a disaster on 

its own with smoke pollution reaching New Zealand, 1 000 miles away. Figure 1.2 shows a 

picture of the fire and smoke.  

 

Figure 1.2 Australia wildfire 2019 

Another natural disaster occurred early in 2019 in Japan and cause widespread evacuations. 

Typhoon Hagibis caused major upheaval in Japan, leaving more than 138 000 households 

without water and nearly 500 000 without power. According to the Japan Fire and Disaster 

Management Agency, about 38 000 people had to evacuate their homes due to large scale 

flooding (Olano, 2019). Also in Japan, a tsunami caused by an offshore earthquake that was 

classified as a magnitude-9 earthquake hit the east coast of Japan in 2011. More than a 

million houses were left uninhabitable with about 120 000 completely destroyed and a death 

toll of approximately 16 000. Some of the damage can be seen in Figure 1.3 which depicts 

the east coast town, Sukuiso, a week after the earthquake. According to the Japanese 

government, the total economic cost that was caused by the earthquake reached up to $235 

billion (Orskin, 2017). 

In the United States of America, Hurricane Sandy was regarded as one of the most 

devastating natural disasters to hit the USA and parts of the Caribbean during the 2012 

Atlantic hurricane season. Sandy raged on for nine days before calming down and caused 

the death of approximately 220 people (Gibbens, 2019). 
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Figure 1.3 Sukuiso, Japan – one week after the tsunami 

It was estimated by the National Oceanic and Atmospheric Administration that the hurricane 

caused at least $70 billion in damages. More than 600 000 housing units were destroyed in 

the New York and New Jersey areas with an estimated cost of $19 billion. In Figure 1.4 part 

of the damage can be seen.  

 

Figure 1.4 Damage caused by Hurricane Sandy in the USA  

Natural disasters and the large-scale destruction caused by them is an important subject of 

study and many researchers aim to understand the nature of natural disasters while others 

focus on the support and evacuation of disaster victims, e.g. humanitarian logistics. 

Examples of such studies can be found in Ahmed et al., (2019), Boustan et al., (2020), 

Massazza et al., (2019) and Munyaka and Yadavalli (2020).  
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One of the primary tasks during and immediately after a disaster is to make provision for 

relief and medical teams to assist victims and to be able to send medical, food and other 

relief items to specific locations. According to Pradhananga et al. (2016), the immediate 

provision of emergency supplies in the case of large-scale natural disasters, such as 

tornados, hurricanes and floods is a critical task. This critical task is managed through a 

humanitarian logistics chain. Duran et al. (2013) define humanitarian logistics as the 

planning and implementation of a process to control flow and storage of goods between their 

origin and the people affected by the disaster in the most efficient and cost-effective manner. 

However, in a disaster situation, a myriad of problems and practical difficulties may occur 

that will inhibit the smooth operation of a humanitarian logistics chain. One such problem is 

accessibility to certain areas to reach the disaster victims. Bíl et al. (2015) describe the 

enormous impact natural disasters have on roads and pointed out that transportation 

infrastructure is often demolished which cause residents or other victims to be cut off from 

the outside world and from any help. Addressing the problem of transporting resources to 

people in need in areas with no or little infrastructure is the core of humanitarian logistics and 

often leads to the demand for new and innovative ways of reaching people in need and 

evacuating them to appropriate and safe locations. In addition to finding optimum traversable 

routes to reach people, it is also common practice to assist disaster victims by establishing 

emergency medical or rescue facilities in a disaster-stricken area (Bíl et al., 2015).  

In this study, the aim is to make a contribution to the humanitarian logistics problem of 

finding suitable routes in a disaster-stricken area, as well as to determine appropriate 

locations for the establishment of relief facilities. The primary focus of the study is the 

development of a grid-based maze that can be used to represent traversable routes in a 

disaster-stricken area. Linked to this focus is the formulation of mathematical models that 

can be used to determine a suitable number and corresponding locations for emergency and 

relief facilities 

A maze can be viewed as a grid that is divided into a collection of paths with an entrance 

(starting cell) and an exit (end cell). To solve a maze, a path must be found that connects the 

entrance to the exit. Doing so becomes increasingly more difficult, since many potential 

paths may exist, most leading to dead ends (incorrect paths). In a disaster area, mazes 

become more difficult, as damaged areas need to be taken into account when constructing 

the maze which in turn will have an impact on the possible routes. In this study, a grid-based 

maze will be constructed in a real-world disaster area. The maze will then be evaluated, 

using different algorithms to solve the basic humanitarian logistics problem of finding the 

optimum traversable route between different pre-specified points. Two different solution 
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options will be considered, namely the Lee algorithm (Lee, 1961) and the A-star algorithm 

(Hart et al., 1968). In addition, two facility location models will be formulated for the same 

real-world disaster area. The first model (a set-covering model) will illustrate how a minimum 

number of relief facilities (covering the entire disaster area) may be determined while the 

second model (a maximal covering model) will demonstrate the various options of covering a 

maximum population, given a fixed number of relief facilities to be established. The data 

from the 2005 hurricane, Katrina, which hit New Orleans in the United States of America, will 

be used.  

This chapter serves as an introduction to the study and the remainder of the chapter is 

organised as follows. A research question is formulated followed by the research objectives 

and aims. The methods used to conduct the study will be highlighted and an outline of the 

chapters will be presented. The chapter is then concluded with a brief summary statement. 

1.2. Research question 

The focus of the study is to support the humanitarian logistics chain in a disaster-stricken 

area by formulating and implementing algorithms and mathematical models that can be used 

in the identification of optimal routes and suitable relief facility locations. A grid-based 

structure is proposed as an approach to solve the humanitarian logistics problem explained 

earlier. Consequently, the research question for this study is formulated as follows: To what 

extent can a grid-based maze approach, linked with a facility location problem, support the 

activities of a humanitarian logistics chain in a disaster-stricken area? 

1.3. Research aims and objectives 

The primary objective of this research is encapsulated in the research question and aims to 

determine to what extent a mathematical modelling approach can support the activities of a 

humanitarian logistics chain in a disaster-stricken area. It is therefore proposed that a grid-

based maze approach, linked with a facility location problem, be investigated as a solution 

strategy. 

To achieve the primary aim of the study, the following secondary objectives must be 

achieved:  

• Conduct a literature review on maze generation algorithms, solving strategies and 

facility location modelling problems; 

• Design and develop a grid-based maze generator to represent traversable routes in a 

real-world disaster-stricken area; 
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• Evaluate and apply two different optimum path-finding algorithms to the grid-based 

maze in the real-world disaster-stricken area; and 

• Formulate and implement appropriate facility location models to address relief and 

rescue station location problems in the real-world scenario. 

1.4. Research design 

The research project is conducted in a positivistic paradigm and the applicable 

characteristics of a positivistic approach are taken into account. The study entails an 

experimental design to create a grid-based maze model that can be utilised in a real-world 

natural disaster scenario. In addition, specific selected algorithms are evaluated to solve the 

grid-based maze while mathematical models are formulated and solved to address the 

problem of locating relief facilities. 

The data used include publicly available data on a real-world natural disaster and include 

data regarding the damage caused by the disaster (to generate and solve the maze), as well 

as the geographical regions or neighbourhoods in the disaster area and the population of 

each region (to formulate and solve the relief facility location problem). The real-world 

natural disaster data used in this study is data obtained from Hurricane Katrina that hit the 

New Orleans area in the United States of America in 2005.     

1.5. Ethical considerations 

The research proposal was presented to the ethics committee of the Faculty of Natural and 

Agricultural Sciences for ethical clearance. The study was approved as a no risk study and 

the ethics number NWU-01455-20-A9 was issued on 28 May 2020.  

There are no humans or other participants involved in the study and the data used in the 

study is publicly available online.  

1.6. Outline of chapters 

Apart from this introductory chapter, this dissertation consists of a further six chapters which 

will be briefly discussed here. 

Chapter 2 – Generation of grid-based mazes 

The objective of Chapter 2 is to provide background knowledge of maze generation 

algorithms. Different algorithms are reviewed and insight from the literature on previous 

implementations of these algorithms is provided.  
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Chapter 3 – Solution strategies for grid-based mazes 

While Chapter 2 presents details on maze generation algorithms, in this chapter, details of 

algorithms that can be employed to solve a maze are provided. Selected maze-solving 

algorithms are briefly reviewed and related to the appropriate literature.  

Chapter 4 – Discrete facility location models 

The focus of Chapter 4 is to present an introduction to the formulation of different discrete 

facility location models. Aspects such as a taxonomy and classification of the different 

models as well as model descriptions and formulations are presented. Relevant literature 

resources on these topics are also presented.  

Chapter 5 – Grid-based maze model development: a real-world case study 

In Chapter 5, details of a real-world natural disaster case study, based on the techniques 

and algorithms presented in Chapters 2 and 3 are provided. A software solution that 

implements the specific algorithms is described and a demonstration of how these 

algorithms may be used in humanitarian logistics is presented. 

Chapter 6 – Relief facility location 

A proposed solution strategy for the placement of relief facilities, based on standard 

mathematical programming models, is presented in Chapter 6.  

Chapter 7 – Conclusion 

In Chapter 7, the study is concluded and details of how the set goals were achieved will be 

presented. Limitations of the study, as well as opportunities for further research will also be 

highlighted. 

1.7. Summary  

In this chapter, the reader was introduced to the research study. A general description of 

natural disasters and the accompanying problems were presented. Based on this, a 

research question was formulated, and specific research aims and objectives were 

identified. The chapter was concluded with an outline and organisation of the chapters of the 

dissertation.   
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Chapter 2 Generation of grid-based mazes 

2.1. Introduction 

In this study, the feasibility of using a maze as an aid in humanitarian logistics will be 

investigated. A maze will be developed that can be used in a disaster-stricken area to 

determine different access routes and the best paths to follow. These paths must allow 

disaster relief teams to navigate the disaster terrain in the quickest way possible, allowing 

them to deliver supplies to affected civilians and to transport injured individuals to the closest 

functioning healthcare facility. Because a wide variety of maze generation algorithms exists, 

it is important to gain proper background knowledge of the most influential maze generation 

algorithms. The goal of this chapter is firstly, to supply some background information on 

maze generation algorithms. Four well-known maze generation algorithms were chosen for 

this review. Secondly, a short insight from the literature will be given about previous 

implementations of these maze generation algorithms. Definitions of a maze and associated 

concepts, such as grid-based structures will first be given. The four selected maze-

generation algorithms will then be explained. This will also include a brief literature review of 

how the algorithms were applied and implemented in different studies.  

2.2. Grid-based maze structure 

In this section, the structure of a maze that is generated using a grid map will be discussed. 

Firstly, a grid map will be defined followed by a discussion of the concept of a maze. The 

section will conclude with a discussion of how these concepts can be used together to 

produce a grid-based maze; this will be illustrated with data from a disaster-stricken area.   

Grid maps 

The use of grid maps in scientific study is widely acknowledged as a useful method to 

represent any environment. In layman’s terms, a grid map is a map of any location with a 

grid placed over it to represent data in the real world. Harabor and Grastien (2011) define 

grid maps as a graphical representation of an environment that is divided into equal sections 

where each section represents a measured distance. Grid maps are used in several fields, 

stretching from leisurely games to scientific research. Grid maps are further used in 

situations where more needs to be known about a location or where a form of navigation 

between points on a map is required. This is accomplished by using a grid map to capture 

data of a certain location in a graphical manner which makes it easier for the reader to read 

and understand. 
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A graphical example of a grid map is represented in Figure 2.1 where a section of London, 

England, was taken and a 6x5 grid placed over it. The grid map is read by determining 

where the rows and columns intersect on the map. For example, the first cell (top left cell) 

will be referenced as A1, since row A intersects with column 1. This notation can now be 

applied to facilitate locating certain points and recording their location. Referring to Figure 

2.1, the different locations of landmarks can be identified with greater ease; for example, the 

Planetarium is located at B3 and Buckingham Palace in D4. 

 

Figure 2. 1 A 6x5 grid map of London, England 

Many uses for grid maps exist. While Figure 2.1 represents a basic use of grid maps in 

pathfinding by determining the location of different landmarks, there are many other 

implementations as well. Some of these applications will be briefly mentioned in the following 

paragraphs.   

The method of using grid maps as a pathfinding tool is elaborated on by Bekker and Schmid 

(2006) with their research on ships traveling safely through a minefield. In this study, a grid 
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map is used to plan paths that avoid minefields in the studied location. The geographical 

location of each minefield is recorded on a grid map. They used two pathfinding algorithms 

to determine the shortest and safest path through the minefield. Dijkstra’s algorithm is used 

alongside a generic algorithm to achieve a method where two optimisation algorithms 

interact with each other to determine an optimal path that considers both the dangers of the 

sea mines and the surrounding environment. By using the grid map with all this collected 

data and different pathfinding algorithms, they are able to determine the optimal path 

through the minefield while still avoiding the detonation of any mine which makes their 

methods applicable for sea mine avoidance.   

Nelson and Smith (2016) discuss the use of grid maps in gaming. A grid map is represented 

with tiles that are laid down next to each other, both vertically and horizontally, forming a grid 

structure. Different objects are then placed on the grid structure, such as walls, buildings, 

NPCs (Non-Player Characters) or any environmental item, such as trees, mountains, rocks 

or bodies of water to form the desired virtual environment of the game. Any further 

interaction with the grid will then be determined by the game’s mechanics. The mechanics 

will determine which tiles (cells) are traversable and what actions can be performed within 

this virtual environment. 

Batista e Silva et al. (2013) used grid maps to represent the population of Europe over larger 

geographical areas. Graphically representing large quantities of data on populations is 

historically difficult; however, advances in technology and scientific methods, such as 

dasymetric mapping techniques (using symbols to classify large volumes of data according 

to a location) have increased the accuracy with which the data can be displayed over larger 

geographical areas. Many countries in Europe originally collected data only spanning their 

municipal area, but this was inadequate for analyses in many fields. To represent the 

population data over the entire Europe, they used the population data of 2006 along with a 

spatial resolution of 100 x 100 meters (divided segments of the graphical map) to validate 

the data against reference data (gathered through study) to produce a final map of Europe’s 

population.  

Fankhauser and Hutter (2016) developed a universal grid map library that can be used as a 

mapping framework for mobile robotics. The library was designed to provide a wide variety 

of applications with examples, such as online surface reconstruction and terrain 

interpretation for rough terrain navigation.  

Grid maps can further be used to store arbitrary data about the given location. Konrad et al., 

(2011) present an approach where grid maps are used to map large geographical areas 
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while limiting the memory used to process the data, making it real time capable. Each cell of 

the grid map can store data gathered from arbitrary sensors, such as laser scanner data, 

calculated grey values from video images and intensities from imaging radar sensors. With 

this data, a digital road map (like the maps of a GPS) can match a laser scanner grid map. 

Examples of other studies that were conducted using grid maps are presented in Table 2.1.  

Table 2.1 Additional literature examples for grid maps 

Authors Year Title 

Kim, J.H., Min, K.S. and Yeo, 
W.Y.  

2014 A design of irregular grid map for large-scale Wi-Fi LAN 
fingerprint positioning systems 

Marın-Plaza, P., Beltrán, J., 
Hussein, A., Musleh, B., Martın, 
D., de la Escalera, A. and 
Armingol, J.M. 

2016 Stereo vision-based local occupancy grid map for 
autonomous navigation in ROS 

Saeedi, S., Paull, L., Trentini, M. 
and Li, H. 

2015 Occupancy grid map merging for multiple robot 
simultaneous localisation and mapping 

Sturtevant, N.R. 2012 Benchmarks for grid-based pathfinding  

From the above-mentioned studies, it is clear that grid maps form an important basis for 

much scientific research. It does not only allow for data to be represented more accurately 

but also provides additional functionality that can be applied to research, as indicated in the 

above studies. One advantage of a grid is that it may be used to generate a maze. In the 

subsequent paragraphs the concept of a maze and its use will be briefly introduced.  

Mazes 

A maze, also referred to as a labyrinth, is a puzzle that is designed with the intension that it 

should be solved. An average maze usually consists of an area that is divided into a 

collection of paths with an entrance (starting point) and an exit (goal point). The typical path 

that must be found to solve the maze is the one that connects the entrance to the exit. 

Usually, there are also many other potential paths which could possibly lead to a dead end 

(not the correct path to exit). A formal definition of a maze is given by Lee et al. (2010) as a 

grid consisting of cells which include the starting and ending cells, as well as walls that 

ultimately form the traversable paths and dead ends within the maze. Graphical examples of 

mazes are represented in Figure 2.2 and Figure 2.3. The first maze in Figure 2.2 is a 

representation of a simple maze (image drawn by hand or computer) with and entry point 

(start) and an exit point (finish). The second maze in Figure 2.3 is an example of a real-world 

garden hedge maze that is created by growing and cutting hedges in different shapes and 

sizes to form the walls of a maze.  

Mazes have been widely used in science and technology for many years. One of the oldest 

recollections of a maze is in ancient Greek mythology (The Knossos Labyrinth) that dates 
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back over a thousand years (Castleden, 2012). Pershin and Di Ventra (2011) use mazes as 

a means of testing the capability of their memristor (resistors with memory) network. This 

network of memristors showed the capability of not only completing each maze, but also of 

sorting the paths according to their lengths. 

 

 

 

 

Real-world mazes are popular tools in the field of science for conducting studies on the 

behaviour of different organisms. Adamatzky (2012) discusses the use of such a maze. A 

Plasmodium of Physarum Polycephalum (a large cell visible to the naked eye) is placed in a 

maze with a source to which it is attracted. The study found that the Plasmodium cell formed 

a network of protoplasmic tubes that connects the cell to the source of attraction. The tubes 

that are formed represent the path in a maze from a start cell (Plasmodium cell) to the end 

cell (source of attraction).  

Different maze forms can be observed in different real-world structures. Wang et al. (2011) 

noticed this occurrence in the structure of bread. Through testing different bread samples, 

they determined that approximately 99% of a bread’s total porosity is influenced by a single, 

vastly interconnected, open cell found in a loaf of bread. They concluded that the sponge 

structures of both bread and cakes exhibit a maze-like structure where all the open cells in 

the structure are connected.  

Diamond et al. (1999) discuss the extension of using a modified version of the Morris water 

maze to test the effects that predator exposure has on the working memory of rats. A Morris 

Figure 2.3 Real-world hedge maze 
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water maze contains four or six paths that originate from a central area. At the end of one of 

these paths is a hidden platform (goal state) which the rat should identify in order to follow 

the correct path. The study was conducted by allowing several rat subjects to solve the 

maze and gain memory of the correct path. After a brief waiting period the rats are placed 

back into the maze to test if their memory is maintained and if this makes it easier for them 

to solve the maze. 

As in the above-mentioned studies, the versatility of mazes allows researchers to shape the 

mazes as it would best fit their research. This advantage of mazes allows for a large number 

of studies to be conducted. Some of these studies are briefly mentioned in Table 2.2.  

Table 2.2 Additional literature examples for a maze 

Authors Year Title 

Ashlock, D., Lee, C. and 
McGuinness, C. 

2011 Search-based procedural generation of maze-like levels 

Brown, M.F. 1992 Does a cognitive map guide choices in the radial-arm maze? 

Derdikman, D., Whitlock, J.R., 
Tsao, A., Fyhn, M., Hafting, T., 
Moser, M.B. and Moser, E.I. 

2009 Fragmentation of grid cell maps in a multicompartment 
environment 

Lerch, J.P., Yiu, A.P., Martinez-
Canabal, A., Pekar, T., Bohbot, 
V.D., Frankland, P.W., 
Henkelman, R.M., Josselyn, 
S.A. and Sled, J.G. 

2011 Maze training in mice induces MRI-detectable brain shape 
changes specific to the type of learning.  

Soukup, J. 1992 Maze router without a grid map 

  

It is clear that mazes are not only used as a puzzle to find an optimal path, but also to 

provide a means of testing an individual’s cognitive abilities. Many more uses for a maze 

exists to conduct research or assist in real-world scenarios. One such use is to incorporate a 

grid map within a maze to form a grid-based maze structure. Next, the uses of a grid-based 

maze structure will be discussed to determine how it can assist in a real-world disaster 

situation.  

Grid-based maze structures 

Mazes and grid maps both play an essential role in their separate fields of study and 

entertainment but by using a grid map along with maze generation techniques (to be 

discussed in Section 2.3), it can be used to form a grid-based maze structure. Such a 

structure allows for a maze to be generated, using the grid as a basis where the edges of 

each cell can represent a possible wall in the maze. A graphical example of a maze 

generated using a grid-based structure is presented in Figure 2.4. On the left side of Figure 

2.4 is an empty 6x6 grid from which a maze can be generated. On the right side of Figure 

2.4 is the same 6x6 grid with a maze, generated from a maze generation algorithm, fitted on 
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the grid. The bold black lines represent the walls of the maze that prevent movement 

through them.  

 

Figure 2.4 A simple grid-based maze 

Kim (2019) describes a grid-based maze structure as follows: a computer-generated maze 

typically makes use of a two-dimensional array with each array value representing a cell 

(node) in the maze. The traversal between cells (nodes) can only occur in four possible 

ways. This includes both horizontal and vertical transitions as in Figure 2.5, but no diagonal 

movements as in Figure 2.6 are allowed.  

 

 

 

 

 

 

 

 

 

Figure 2.6 Prohibited diagonal movements Figure 2.5 Allowed horizontal and vertical 
movements 
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The structure of an average maze is a spanning tree of the possible paths with a cell 

represented as a node in the tree. The root node is represented as the starting cell and 

expands until a goal cell (leaf node) is reached. A graphical example of a spanning tree 

representing paths in a maze is illustrated in Figure 2.7. 

 

Figure 2.7 Spanning tree structure of maze 

By using a grid map as a basis for a grid-based maze structure allows for real-world 

environments to be graphically represented in a maze. Any real-world obstacles can easily 

be represented as a wall in the maze, redirecting an optimal path as it would in a real-world 

scenario (Jubair & Hawa, 2020). This method can be especially useful in the planning for 

humanitarian logistics. The wake of destruction left behind by natural disasters can be used 

to form a grid-based maze using a grid map of the disaster-stricken area. Each wall in the 

maze can be a graphical representation of inaccessible paths in the real-world disaster-

stricken area. By finding an optimal path in the maze, a similar optimal path is found in the 

real-world scenario which allows humanitarian logistics to be applied in a more efficient 

manner by predetermining the optimal path to traverse to certain areas.  

To illustrate the practical use and advantages of a grid-based maze structure in a real-world 

scenario, consider the devastation of Hurricane Florence that made landfall in North Carolina 

in September 2018. 

Most of the destruction caused by Hurricane Florence was due to flooding. During the life 

span of the hurricane, 913 mm of rain was recorded in Elizabethtown, North Carolina 

(Pender County, 2019). Even though Hurricane Florence made landfall as a category 1 
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hurricane, it was still able to uproot trees and cause major power outages due to its wind 

speeds. At least 57 deaths were recorded and property damage estimated at $24 billion was 

caused. 

Figure 2.8 shows the damage caused in the town of Cartersville in North Carolina. 

 

Figure 2.8 Flooding caused by Hurricane Florence in Cartersville, North Carolina 

It is clear from Figure 2.8 that the scale of damage to property and the flooding of the 

surrounding environment, restricts the movement of civilians caught up in the tragedy, as 

well as that of any possible aid. Figure 2.9 illustrates how a grid-based maze can be used to 

navigate the terrain. 

Initially, a grid is placed over the entire image. All cells that cannot be reached via any form 

of transportation, such as a boat or car are then blacked out, indicating inaccessible cells. By 

connecting all these cells, a maze structure is formed with all the inaccessible cells indicating 

walls in the maze and the open cells indicating possible paths through the maze. The red 

line in Figure 2.9 provides an example of a route through the maze by means of a boat or 

any waterborne vehicle to reach the affected individuals. It is assumed that air transport is 

not available. In the case of air transport being used, optimal routes and the location of relief 

facilities would not pose any problems.  Different maze traversal techniques can now be 

implemented to generate valid paths that can be followed to solve the maze and also to 

generate an optimal route to reach a pre-specified destination. For illustration purposes, the 

maze is also placed on a Google satellite image of the same location (Cartersville, North 

Carolina) and is shown in Figure 2.10. 
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Figure 2.9 Cartersville, North Carolina with grid-based maze overlay 

Figures 2.9 and 2.10 represent an important use of a grid-based maze in scientific research. 

Other examples of similar research will be briefly mentioned in the following paragraphs.   

Jannu and Jana (2016) discuss the use of a grid-based structure in the planning and 

implementation of a clustering and routing algorithm to solve a hot spot problem in wireless 

sensor networks. Nodes situated closest to an origin are often overburdened with large loads 

of traffic which results in quick energy exhaustion. By designing the network in a grid-based 

structure, the use of different pathfinding algorithms to determine optimal paths for data to 

flow through the network can be implemented.  
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Figure 2.10 Cartersville, North Carolina with grid-based maze overlay - Google Maps satellite image 

In the world of gaming, finding the shortest path from point A to B is no easy task. Barnouti 

et al. (2016) propose one way of simplifying this task. By generating a maze according to the 

structure of the in-game environment, maze routing algorithms can be applied to easily find 

the shortest path. In this scenario, the maze paths represent the possible routes that can be 

traversed within the game and the walls represent all the inaccessible areas (mountains, 

buildings, rivers, etc.). To accomplish this task, a grid is placed over a selected environment 

whereafter each cell that contains inaccessible areas is marked as wall cells until only the 

traversable cells remain. The A-star search algorithm was then applied to the generated 

maze to find the shortest path. 

The A-star search algorithm in the field of maze routing is very popular and is viewed by 

many researchers as the go-to option since it produces results in fast search times. Zhang et 

al. (2016) propose a new and improved version of the A-star algorithm to be used in grid-

based maps. They propose a Rectangle Expansion A-star (REA*) algorithm which explores 

maps in units of unblocked rectangles. The proposed algorithm uses the bounds of each 

rectangle (edges in grid) as the nodes to explore, instead of points within those bounds 
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(inside cell area). This allows for the algorithm to plot fewer points on the grid map and have 

a shorter open list than the normal A-star algorithm which in turn shortens the search time.  

Additional examples of research studies where grid-based structures combined with mazes 

were used can be found in Gordon and Matley (2004), Nelson and Smith (2016) and 

Sturtevant (2012).  

In this section, introductory information on grid-based maze structures was presented. 

Discussions on grid maps and mazes were introduced separately and then combined to 

show how grid-based maze structures can be constructed and applied. The discussion was 

substantiated by appropriate literature resources. In the next section, some of the most well-

known maze generation algorithms that are used to design a maze will be introduced.  

2.3. Maze generation algorithms 

Generating a basic maze can happen in one of two ways: algorithmic or non-algorithmic. 

Foltin (2011) describes algorithmic maze generation algorithms as a predefined order of 

steps which is followed to create a maze. Non-algorithmic mazes which follow no predefined 

order of steps, such as a fractal maze (a maze created by combining mazes) will not be 

discussed further in this chapter, since they hold no value for this study. In this section, the 

focus will rather be on graph-based maze generation algorithms which create a maze based 

on a minimum spanning tree that corresponds to the maze. A minimal spanning tree is a 

group of edges of a connected, weighted and undirected graph that connects all the vertices 

together and eliminates the possibility of any cycles occurring and yielding the minimum total 

edge weight to explore the graph (Grygorash et al., 2006). A spanning tree can be created 

by either continuously expanding the maze from a single randomly selected position (e.g. 

Prim’s algorithm – see Section 2.3.1) or by joining smaller fragments of tree structures to 

build the maze (e.g. Kruskal’s algorithm – see Section 2.3.2). Two basic methods exist to 

generate a maze, i.e. wall adding and passage carving. A wall adding algorithm focuses on 

the positioning of the walls (algorithm adds walls to an empty canvas) while passage carvers 

focus on cell positioning and relationships between the cells (algorithm removes cell edges 

from a grid).  

A number of different techniques and algorithms exists that can be used to generate a maze, 

such as algorithms based on greedy principles (Foltin, 2011), spanning-tree approaches 

(Kim, 2019) and graph theory (Bollobás, 2013). Four of the most well-known maze 

generation algorithms will be discussed to gain appropriate knowledge for the completion of 

this study. The choice of algorithm is based on the popularity of the algorithm and the variety 
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of fields to which the algorithm can be applied. The chosen algorithms are also popular for 

solving different problems, for example, a minimum spanning tree problem (Neumann & Witt, 

2010). The four algorithms that will be discussed in this section are Prim’s algorithm, 

Kruskal’s algorithm, recursive backtracking algorithm and the hunt-and-kill algorithm. 

Additionally, a matrix maze (Aki & Güllü, 2016) will also be discussed in a later chapter, 

since it has significance for this study, but has no predefined algorithm to follow, as it is 

designed, based on the preferences of the user. 

2.3.1. Prim's algorithm 

Prim’s algorithm is a greedy algorithm that was initially developed to solve the minimum 

spanning tree problem in graph theory. A European mathematician, Vojtěch Jarník (Jarník, 

1930), was the first to develop the algorithm and it is sometimes called Jarník's algorithm. It 

was only later that the algorithm was rediscovered and published in 1957 by computer 

scientist, Robert C. Prim (Prim, 1957). 

The working of the algorithm is briefly illustrated with a graphical example as described by 

Jeong and Kim (2016). The main assumption in the algorithm is that every cell in a grid can 

be a wall. Based on this assumption, the following six steps illustrate the generation of a 

maze. 

        

        

      
Start 

        
 

        

        

    Next Start 

      Next 

 

Step 1 - Select a random starting cell.  

A path is systematically generated from a selected 

starting cell and walls are created along the path.  

 

Step 2 – Random cell selection 

Randomly select a pair of neighbouring cells that will be 

explored next. 
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    Wall   

  Wall  Start 

    Wall   

   

        

    Wall   

  Wall Path 

    Wall   

 

    Next   

    Wall   

  Wall Path 

    Wall   

  

  Wall 

  

Wall 

      

    Path 

        

 

By repeating this process, a complete maze pattern can be generated as in Figure 2.11.  

Step 3 – Wall placement  

One of the randomly selected cells is selected as part of 

the path and four walls are placed around it. 

Note that cells previously selected as part of the path or 

cells that would occur outside the area of the grid are not 

selected as possible walls. For this reason, only three 

walls are shown. 

 
Step 4 – Path progression 

The blue cells indicate the partially generated path, and 

the orange cells indicate cells that are currently selected 

as walls. 

 

Step 5 – Penetrating wall cell 

Randomly select one cell out of the previously generated 

walls and penetrate (pass through) it to select the next 

cell in a forward motion from the wall cell.   

 

Step 6 – Iterative path development 

The process continues by adding new wall cells to 

surround the selected cell and repeating the above steps 

to further generate the path.  
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Figure 2.11 Example maze generated from Prim’s algorithm 

 The pseudocode of Prim’s algorithm is presented in Algorithm 2.1. 

Algorithm 2.1: Prim’s maze generation algorithm (Foltin, 2011) 

Input:  S - Set of cells  
             T - Set of edges  
Output M - Maze is generated 
Process: Generating a perfect maze from a set of cells by Prim's algorithm 

1. declare c: cell and e: edge 
2. Select a random cell c ∈ S  
3. M ← c  
4. while M is not full do  
5.  Select an unmarked random cell c ∈ S 
6.  if c is adjacent to one of the cells in M then  
7.   M ← M ∪ c    
8.   e = {c, c (adjacent)} 
9.   remove e from T 
10.  endif  
11.  mark c so it will not be selected again in S  
12. end while 
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Using Prim’s algorithm to generate a maze is very popular, since it can generate a perfect 

maze (a maze that will always yield a solution), based on a minimum spanning tree of all the 

cells. This allows for multiple implementations in various fields of science. The following 

paragraphs are brief discussions of different case studies in which the algorithm is 

implemented. 

Manen et al. (2013) use a randomised version of Prim’s algorithm in generic object detection 

software. The aim of this software is to give computers vision, enabling them to detect 

objects within an image. The algorithm is used to generate a minimum spanning tree, using 

the pixels of a picture as the collection of vertices and the connections between the super-

pixels (grouping of pixels with similar colours or grey levels) as its edges.  

In cases of power outages, where the power supply is isolated from a main network, it is 

important to maintain a minimum shortage of power flow within the affected area. Sudhakar 

and Srinivas (2011) determine the appropriate switching of power lines within a distribution 

network. Prim`s algorithm is selected to perform this task since it gives an optimal path that 

visits each of the vertices (power supplies) through which power will flow.  

Wang and Hsieh (2018) identify areas that could possibly become isolated in the case of a 

natural disaster. Areas that are most likely to be affected by a natural disaster are targeted 

and then used to construct a tree according to Prim’s algorithm by using roads and bridges 

as the vertices. From this tree, it can be determined if resources would be required at certain 

areas, given the possibility of restricted movement when certain vertices (roads and bridges) 

are demolished by a natural disaster. The system further determines possible disaster relief 

areas through the analysis of the decision tree model and relevant patterns that will indicate 

if the area might become isolated or not.  

Iqbal et al. (2017) discuss the shortest route for planting fibre optic cables in a city or town, 

using the principles of Prim’s algorithm. By identifying the best route before any cables are 

installed, it is possible to save costs through the elimination of any excess cables that would 

have been used.  

Due to the versatility of Prim’s algorithm, many different studies use the algorithm to 

accomplish specific research goals. Examples of such studies are briefly mentioned in table 

2.3. 
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Table 2.3 Additional literature examples for Prim`s algorithm 

Authors Year Title 

Mariano, A., Lee, D., 
Gerstlauer, A. and Chiou, 
D. 

2013 Hardware and software implementations of Prim’s algorithm for 
efficient minimum spanning tree computation 

Patil, A. and Nipanikar, 
S. 

2017 Implementation of MATLAB-based self-healing grid using Prim’s 
algorithm 

Sudhakar, T.D. and 
Srinivas, K.N. 

2010 Prim’s Algorithm for loss minimisation and service restoration in 
distribution networks  

Sudhakar, T.D. and 
Srinivas, K.N. 

2011 Power system reconfiguration, based on Prim's algorithm  

Wang, W., Huang, Y. and 
Guo, S. 

2011 Design and implementation of GPU-based Prim's algorithm  

2.3.2. Kruskal's algorithm 

Joseph Bernard Kruskal was born to Jewish parents in New York City in 1928. Kruskal 

attended the University of Chicago where he completed a bachelor’s degree and a master’s 

degree in mathematics. He later continued to complete a PhD at Princeton University in 

1954. In the field of computer science, Kruskal is most famous for his work that led to 

Kruskal’s algorithm (Kruskal, 1956).  

This algorithm is a greedy algorithm that aims to solve the minimum spanning tree problem 

but can be implemented within a connected or disconnected graph. Foltin (2011) describes 

the steps of the algorithm as follows: 

 

 

 

If the two cells connected by the wall are from different sets, the two sets will be linked, and 

the wall will be removed between cells [2,2] and [3,2] to create a new set containing two 

[2,2]

[3,2]

Step 1 – Initial grid 

Start by creating a set for each cell and a list of all the walls in 

a grid. Each differently coloured cell represents a different set. 

Step 2 – Random wall selection 

Randomly select a wall from the 

list of walls. 
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cells. However, if the two cells connected by a wall are from the same set, the wall will be 

removed from the list of walls but will not be removed from the maze.  

 

 

 

When all the sets are joined to form one large set, a maze structure is formed that 

represents the final maze generated by the algorithm.  

The pseudocode of this maze generation algorithm is presented next in Algorithm 2.2. 

Algorithm 2.2: Kruskal’s maze generation algorithm (Foltin, 2011) 

Input: S - Set of a collection of sets containing cells to explore 
output: M - Maze   
Process: Generating a perfect maze from a set of cells by Kruskal's algorithm  
1. declare e: edge and c1, c2: cells 
2. Select a random edge e = (c1, c2) ∈ S  
3. M ← {(c1, c2)}  
4. while number of sets in S >1 do //all cells do not belong to the same set 
5.  Select a random edge e = (c1, c2) ∈ S with c1 and c2 in different sets  
6.  M ← M ∪ {(c1, c2)}  
7.  unify c1 and c2 in S into a single set 
8. end while 

Step 3 – Select next random 

wall 

The process is repeated by 

selecting a new random wall and 

joining the sets if they are from 

different sets.  

 

 

After a few iterations of the 

process (until each cell is part of a 

larger set), a maze-like structure is 

formed. 

 Step 4 – Combine all sets 

The process will continue to 

remove walls until all sets are 

combined into one set or there are 

no walls available in the list of 

walls from which to select. 
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According to Foltin (2011), one of the advantages of using Kruskal’s algorithm is that fewer 

dead ends are generated which results in lower execution time. It also generates a perfect 

maze which causes an increase in the algorithm’s popularity. A number of studies where 

Kruskal’s algorithm has been employed is reported on in the literature. A few examples of 

these studies are briefly introduced in the following discussion.   

Han and Lim (2010) discuss the use of this algorithm in an energy management system for a 

smart home. A smart home is an establishment that contains appliances, lights, doors, etc. 

that can communicate with each other over a network. This enables the user (homeowner) 

to control the components remotely or by a predefined time schedule. Kruskal’s algorithm is 

used to minimise the total amount of power consumption within this network of connected 

appliances by seeking a path that would yield the lowest power consumption.  

Dense traffic is a problem that arises in many densely populated cities. Lindorfer et al. 

(2013) describe the use of this algorithm in a simulation of street networks to improve the 

network structure and reduce the possibility of dense traffic. The algorithm is used to create 

a network of the highways that could form a bottleneck in the traffic.  

When delivering packages, the length of the road travelled comes second to the time it takes 

to reach the destination. Ribeiro and Laporte (2012) use a modified version of Kruskal’s 

algorithm to help solve the cumulative capacitated vehicle routing problem. The modified 

algorithm does not iterate until all the vertices are visited, but rather stops as soon as two 

connected components are found.  

Table 2.4 presents more examples of studies where the algorithm was successfully applied. 

Table 2.4 Additional literature examples for Kruskal’s algorithm 

Authors Year Title 

Katsigiannis, A., Anastopoulos, 
N., Nikas, K. and Koziris, N. 

2012 An approach to parallelise Kruskal's algorithm using helper 
threads  

Montemanni, R. and 
Gambardella, L.M. 

2005 A branch and bound algorithm for the robust spanning tree 
problem with interval data  

Moret, B.M. and Shapiro, H.D. 1991 An empirical analysis of algorithms for constructing a 
minimum spanning tree  

Quirin, A., Cordón, O., 
Guerrero‐Bote, V.P., Vargas‐
Quesada, B. and Moya‐Anegón, 
F. 

2008 A quick MST‐based algorithm to obtain Pathfinder 
networks  

Sudhakar, T.D. and Srinivas, 
K.N. 

2011 Power system restoration based on Kruskal's algorithm  

  

The principle of randomised Prim’s and Kruskal’s algorithms is essentially the same, which is 

to create a perfect maze, based on a minimum spanning tree algorithm. The difference is 

that the former algorithm functions by adding nodes or cells while the latter algorithm 
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focuses on adding and removing edges or walls. Since both the algorithms are two of the 

most popular algorithms used in maze generation, they will be considered in the generation 

of a maze for this study. However, to gain a better understanding of how different mazes are 

generated, two additional algorithms will be discussed briefly. They are the recursive 

backtracking and hunt-and-kill algorithms. 

2.3.3. Recursive backtracking algorithm 

The recursive backtracking algorithm used to generate a maze is based on a depth-first 

search algorithm. The depth-first search algorithm searches through a grid by selecting (if 

possible) the child node of a previously visited node and continues until there are no 

available child nodes left (Foltin, 2011). At this point, the algorithm backtracks to the most 

recently visited node and repeats the process by selecting a new child node or backtracking 

even further. The depth-first search algorithm stops when all the nodes are visited.   

Randomisation is introduced to influence how the next child node is chosen. The first 

randomization in the recursive backtracking algorithm occurs when the starting cell is 

chosen. From the entire grid, a random cell will be selected and set as the starting cell 

whereafter the second randomisation occurs. A random neighbouring cell from the current 

cell is then selected to be explored next. As soon as there are no more available 

neighbouring cells that were not yet visited, the algorithm backtracks to the previously 

explored cell and continues the process of selecting a random cell. The algorithm will stop as 

soon as the starting cell is reached again through the backtracking process.  

The recursive backtracking algorithm accomplishes its task by means of three main 

processes. It randomly selects a starting cell, randomly selects a neighbouring cell and 

backtracks if no neighbours are left. This will be graphically illustrated in the following six 

steps. 

 

Start

Step 1 – Select starting cell 

Start by randomly selecting a cell from the entire grid and 

set it as the starting cell. 
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Neighbour

Start Selected

Neighbour

Selected

Neighbour

Neighbour

Maze path

Dead 

end

Previous 

cell
Neighbour

Start

Dead 

end

Step 2 – Select neighbouring cell 

Randomly select one of the neighbouring cells that will be 

explored next.  

 

Step 3 – Maze path progression 

The wall separating the previous cell and the newly 

selected neighbouring cell is removed, connecting the cells 

and forming part of the maze. Next, step 2 is repeated to 

select a new neighbouring cell. 

 

Step 4 – Dead end reached 

Steps 2 and 3 are repeated until the currently selected cell 

has no neighbouring cells available from which to select. 

 

Step 5 – Backtracking 

Backtrack to the previously selected cell and repeat Steps 

2 and 3. 

 

Step 6 – Algorithm completion 

Steps 2 to 5 are repeated until all the cells are visited and 

the backtracking process reaches the initial starting cell 

again whereafter the recursive backtracking algorithm 

completes.  
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Since the structure of the recursive backtracking algorithm is based on the depth-first search 

algorithm, it will deliver a perfect maze when completed. The following pseudocode 

demonstrates the recursive backtracking algorithm. 

Algorithm 2.3: Recursive backtracking algorithm (Foltin, 2011) 

Input:  S - Set of cells  
             E - Set of edges  
Output: M – Maze is generated 
Process: Generating a perfect maze from a set of cells by the recursive backtracking algorithm 

1. declare c1, c2: cell and e: edge 
2. Select a randomly chosen cell c1 ∈ S. 
3. while c1 != starting c  //executes until algorithm backtracks to starting position  
4.  If current cell c1 has at least one unvisited neighbour 
5.   choose neighbouring cell c2 at random  
6.   e = {c1, c2}  
7.   remove e from E  
8.   c1 = c2 
9.  else If c has no unvisited neighbours  
10.   c1 = parent cell of c1 //Backtrack to the previously used cell 
11. end while  

 

The recursive backtracking algorithm is often associated with search algorithms that are 

widely implemented in many fields where it is necessary to search through large volumes of 

data. It is also frequently used in maze generation studies and examples of such studies 

include Sukumar and Santha (2012) and Alsegård (2017). The former applied the algorithm 

in the field of steganography while the latter study employed the algorithm in an artificial 

intelligence application.  

2.3.4. Hunt-and-kill algorithm 

The hunt-and-kill algorithm may sound inappropriate when associating it with a task like 

maze generation, but in reality, the algorithm is quite adequate. The main idea behind the 

hunt-and-kill algorithm is that it generates a maze by going on a random walk through a grid, 

“killing” the walls it passes through, creating the maze path along its journey. When a dead 

end appears along the walk, the “hunt” part begins by scanning the grid for any cells not yet 

visited and continuing the journey (Lee et al., 2010). By its nature, the algorithm forms a 

spanning tree of the different possible paths followed during the walk. This means that the 

algorithm will always produce a perfect maze, since any two nodes in a tree have one and 

only one path which matches the property of a perfect maze. 

The hunt-and-kill algorithm is highly focused on randomisation to accomplish its tasks of 

walking through the maze and selecting a new position from which to continue when a dead 
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end is encountered. The process of the hunt-and-kill algorithm is graphically illustrated in the 

following six steps as described by Lee et al. (2010). 

        

      Start 

        

 

        

    Select Start 

        

 

Step 3 – Algorithm progression 

        
 

      
Dead 
end 

      Path 
 

      Path 

        
 

        

Next, the algorithm continues to walk through the grid by repeating Step 2 until a dead end 

occurs or all the cells are visited.  

        

      Path 

        

 

 

 

Step 1 – Randomly select a starting cell 

A starting cell is selected at random. 

Step 2 – Randomly select a neighbouring cell 

Randomly select a neighbouring cell (orange cell) that 

was not previously visited yet and “kill” (remove) the 

wall to add the new cell as part of the maze path. 

 

Step 4 – Select new neighbouring cell 

When a dead end is reached, the “hunt” (search) 

process begins. The algorithm starts to search for the 

first available cell (row by row) that is a neighbour of a 

previously visited cell. 
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Step 5 – Algorithm progression 

  Next     
 

Dead 
end 

      

     Path   
 

     Path   

        
 

        

Again Step 2 is repeated until a dead end occurs or all the cells are visited. In the case of a 

dead end, Step 4 is repeated.  

Step 6 – Final progression of algorithm 

 

Dead 
end 

      
 

       
 

       

        
 

  
  

    
 

        

        
 

    Next   
 

      End 

                                                             

Steps 4 and 5 are repeated until all the cells in the grid are visited and the maze is complete. 

These steps are explained using pseudocode of the algorithm as shown in Algorithm 2.4. 

Algorithm 2.4: Hunt-and-kill algorithm (Foltin, 2011) 

Input:  S1 - Set of unvisited cells  
             S2 - Set of visited cells  
             E - Set of edges  
Output: M: Maze is generated  
Process: Generating a perfect maze from a set of cells by the hunt-and-kill algorithm 

1. declare c1, c2: cell and e: edge 
2. Select a randomly chosen cell c1 ∈ S1 
3. S2 ← S2 ∪ c1 
4. while S2 does not contain all of S1 
5.  If the current cell c1 has at least one unvisited neighbour  
6.   choose neighbouring cell c2 at random  
7.   e = {c1, c2}  
8.   remove e from E  
9.   c1 = c2 
10.   S2 ← S2 ∪ c1 
11.  else randomly select cell from S2 with available neighbours 
12. end while 

The hunt-and-kill maze generation algorithm is less popular than the other algorithms 

discussed. However, its usability and relatively low processing time make it suitable in many 
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studies. An example of the application of the hunt-and-kill algorithm can be found in 

Zehetmeier et al. (2019).  

2.4. Summary  

In Chapter 2, comprehensive background knowledge of maze generation algorithms was 

provided. Four well-known maze generation algorithms were reviewed and explained. The 

concepts of a maze and grid-based structures were also defined and examples from the 

literature were quoted where the algorithms were applied and implemented in other studies. 

While the focus of this chapter was on the generation of a maze, in the next chapter, the 

focus will be on maze-solving strategies.  
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Chapter 3 Solution strategies for grid-based mazes 

3.1. Introduction 

In the previous chapter, some background knowledge was gathered on various maze 

generation algorithms to gain a proper understanding of how mazes function and how they 

are generated. In order to assist the relief efforts of humanitarian logistics, a path must be 

found that can navigate response teams from a start point to a point of interest in the fastest 

way available. When viewing the disaster-stricken area as a maze (as discussed in Chapter 

2), it is important to be able to solve this maze in an efficient way that will ensure each point 

of interest is reached within an acceptable time. Since a wide variety of maze-solving 

algorithms exists, it is important to gain proper knowledge of some of the most influential 

maze-solving algorithms.  

The goal of this chapter is to present background knowledge of maze-solving algorithms. 

Four well-known maze-solving algorithms were chosen for this review. These algorithms are 

the Lee algorithm (Lee, 1961), the A-star algorithm (Hart et al., 1968), the flood-fill algorithm 

(Law, 2013) and finally, the recursive backtracking algorithm (Walker, 1960). The choice of 

algorithms was based mainly on the popularity and versatility of the maze-solving technique. 

In addition, the selection of algorithms also attempts to show the wide variety of applications 

in different fields of study and emphasises the range of possibilities offered by different 

maze-solving strategies. Firstly, humanitarian logistics will be discussed whereafter the 

different maze-solving algorithms will be explained. Brief literature reviews of how the 

algorithms were applied and implemented in different studies will also be provided. 

3.2. Humanitarian logistics  

The term logistics is widely used in many fields involving the procurement and distribution of 

products or services. Christopher (2016) formally defines logistics as a strategic process of 

managing the procurement, transportation and storage of materials, parts, and finished 

products through an organisation and all its marketing channels. This has to be done in an 

efficient way to ensure that the current and future profitability are maximised in a cost-

effective manner that will guarantee the completion of orders. 

Humanitarian logistics entails all the steps of the logistics process, but implemented in such 

a way as to promote the welfare of all humans. Apte (2010) defines humanitarian logistics as 

a special branch of logistics that manages the response supply chain of critical supplies and 

services within a challenging environment (particularly in disaster situations). These 
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environments may include areas with large demand surges, areas requiring uncertain 

supplies, areas with a critical time window given infrastructure vulnerabilities and operations 

of a vast scope and size.  

Duran et al. (2013) classify humanitarian logistics as a bridge between disaster 

preparedness and response. It involves being prepared for the procurement of supplies and 

their distribution between headquarters and the field when the situation arises. Humanitarian 

logistics is responsible for ensuring that all the correct relief supplies are gathered and 

delivered to the correct locations. Furthermore, efficient delivery of all these related relief 

items must be maintained during operations. The possible relief items (Figure 3.1) are 

categorised as follows.  

• Consumable items – those items that need to be provided to affected individuals on a 

continuous basis; 

• Essential items - this forms part of the consumable items and include items, such as 

water, food, hygiene and sanitation; 

• Non-consumable items – any items that only need to be delivered to the affected 

environment once, after which the items are classified as operational or non-operational; 

• Operational items – includes all the equipment required by relief personnel to accomplish 

their tasks and communicate efficiently; and 

• Non-operational items - all the different supplies delivered to affected people that when 

received, can be used until the disaster has been cleared. These supplies include tents, 

blankets, utensils and other supplies that can ease their living situation. 

 

Figure 3.1 Relief item categorisation 

One of the major tasks in humanitarian logistics, especially in disaster situations, is to 

determine appropriate locations where various facilities can be established to ensure that all 

resources are accessible. The placement of suitable facilities will not only provide safe and 

secure storage, but may give relief teams a strategic advantage in the timeous distribution of 

needed resources and relief items. Boonmee et al. (2017) discuss a possible solution to this 

problem by introducing the use of a facility location optimisation model. Using this model 

Relief Items

Consumable Non-Consumable

Operational Non-Operational
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alongside data gathered about pre- and post-disaster situations, appropriate locations can 

be determined for various facilities, including distribution centres, warehouses, shelters, 

debris removal sites and medical centres. Facility location models will also be used in this 

study and these models will be elaborated on further in Chapter 4.  

Humanitarian logistics plays a significant and important role in the welfare of humans and is 

of particular importance in disaster and relief operations. Many studies have been conducted 

on this subject and a few examples from the literature are listed in the following paragraphs. 

Griffith et al. (2017) proposed a decision support tool to address the problem of critical time 

management, i.e. the time taken to gather information before humanitarian logistics activities 

can be activated. The proposed tool is based on the use of analytical techniques, embedded 

within an open source platform, and allows decision makers to employ more complete 

techniques in analysing a disaster situation while maintaining efficient time constraints.  

In a study by Shao et al. (2020), the deprivation cost (qualification of human suffering) is 

reviewed. Key issues and the development of deprivation cost are highlighted while the 

usefulness and contribution of using this cost in humanitarian logistics are pointed out. 

The importance of simulation capabilities of games in the context of humanitarian logistics 

was emphasised in a study performed by Lukosch and Comes (2019). In this study, a 

framework was developed that can assist with the design of games to simulate specific 

environments and conditions in humanitarian logistics.  

Sigala and Wakolbinger (2019) explained the potential of outsourcing in humanitarian 

logistics. They have shown that outsourcing may be a viable option and presented a set of 

criteria that can be used in the selection of appropriate outsourcing partners.  

Humanitarian logistics is a dynamic field of study and many research studies on different 

topics related to the subject can be found in the literature. Further examples of such studies 

(which will not be elaborated on here) include Jahre et al. (2007), Rodríguez-Espíndola et al. 

(2018), and Widera et al. (2017). 

3.3. Maze-solving algorithms 

Solving a grid-based maze is of particular importance in this study as a maze will be used to 

represent a disaster-stricken area. An optimal route through the maze that can be used for 

disaster relief activities will be determined. There are many strategies, heuristics and 

algorithms to find a solution to a maze, however, some of these do not guarantee a solution 
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while others may find only sub-optimal solutions. One example of such a basic technique to 

solve a maze is called the wall follower method, also known as either the left-hand rule or 

right-hand rule. By simply keeping the left-hand side in contact with the wall of the maze, one 

is guaranteed to find an exit if it exists (Hendrawan, 2020). 

In this section, four selected algorithms to solve a maze will be discussed. The algorithms 

are the Lee algorithm (Lee, 1961), the A-star algorithm (Hart et al., 1968), the flood-fill 

algorithm (Law, 2013) and the recursive backtracking algorithm (Walker, 1960). The choice 

of algorithms was based on their versatility and popularity and they should provide an 

adequate overview of existing algorithms. Furthermore, the Lee and A-star algorithms will be 

applied in subsequent chapters to a real-life disaster scenario to illustrate the practical 

usefulness of maze-solving algorithms. 

Each of the discussions will conclude with a few example studies from the literature.  

3.3.1. Lee algorithm 

The Lee algorithm was first formulated in 1961 as a way to allow computers to efficiently 

solve path-connection and optimal route-finding problems. The proposed method can solve 

several problems, including finding a path between two points while crossing the least 

number of paths, finding a path between two points while avoiding as many obstacles (walls) 

as possible, and finding a path between two points so that the path is optimal (e.g. shortest 

path) (Lee, 1961).  

Gupta and Sehgal (2014) describe the Lee algorithm as a two-stage technique, i.e. a filling 

stage in which each cell is visited until the goal is reached, and a retrace stage where the 

path followed to the goal is traced back to the starting cell to construct the final path. 

The algorithm works as follows: 

                

                

    S           

                

                

                

        G       

                

 

Step 1 – Random grid 

The algorithm starts with an empty grid with the 

starting (S) and goal (G) cells selected. 
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Step 3 – Continue adding cells 

Step 2 is repeated by continuously adding an increased value to neighbouring cells until the 

goal cell (G) is reached. In this scenario, the goal cell is reached with a value of 7.  
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Step 2 – Add adjacent cells 

The starting cell (S) is filled with a 1 and the adjacent 

cells each with a 2. These values represent the 

distance from the starting cell. 

Step 4 – Backtracking 

When the goal cell (G) is reached, the retrace stage 

starts by backtracking from (G) back to the starting 

cell (S). The backtracking is accomplished by 

selecting an adjacent cell to the currently selected 

cell (G) with a value of i-1, where i is the value of the 

currently selected cell. 
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The above five steps illustrate the Lee algorithm in a grid. However, a grid is normally only 

the underlying element of a maze with limitations of edges (walls) that restrict movement. 

The following five steps illustrate graphically how a maze is solved using the Lee algorithm 

(the process is based on the steps of the above grid illustration).   

 

 

Step 3 – Explore neighbouring cells 

With each iteration, only one of the neighbouring cells is expanded. Neighbouring cells are 

explored in a manner of first-in-first-out, which means that the oldest expanded cells will be 

explored first before moving on to each of their respective neighbouring cells.  

Step 5 – Final path 

The final path is now generated by the algorithm, 

giving the path with the shortest distance from the 

starting cell (S) to the goal cell (G).  

 

Step 1 – Initial maze 

Given a maze, the initial state is set by selecting a 

valid start (red) and goal (green) cell. Valid cells 

will include all cells that are not set as an edge 

(wall) cell and have at least one neighbouring cell 

that can be explored.  

Step 2 – Cell expansion  

Using the starting cell to initiate the algorithm, 

direct neighbouring cells are selected to be 

explored next.  
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The pseudocode of the Lee algorithm is presented in Algorithm 3.1. 

Even though Algorithm 3.1 does not always yield the fastest execution times or the lowest 

memory usage, it remains one of the most used algorithms due to its low complexity. 

Furthermore, the algorithm also guarantees a solution if one exists. A brief discussion of a 

few example case studies that were conducted using the Lee algorithm will be given in the 

following paragraphs.  

 

Step 4 – Reaching goal cell 

The algorithm continues to iteratively expand each 

cell until the goal cell is reached; whereafter the 

algorithm stops and starts a backtracking phase to 

determine the generated route. 

Step 5 – Backtracking phase 

Backtracking is done by using the goal cell as the 

current cell and adding its parent cell to the path. 

The parent cell is then set as the new current cell 

and the step is repeated until the initial starting cell 

is reached. The path generated with this 

backtracking phase will be the path from the start 

to goal with the least number of expanded cells.  
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Algorithm 3.1: The Lee Algorithm  

Input: start_node - the source node to start from  
             goal_node - the goal node to reach 
Output: PATH - list from start_node to goal_node 
lists: OPEN, CLOSE and PATH 

1. push start_node to OPEN 
2. while OPEN is not empty 
3.  current_node ← first element of OPEN 
4.  If current_node = goal_node 
5.   break to line 15 
6.  end if 
7.  for each neighbour of current_node  
8.   If neighbour is not a wall 
9.    push neighbour to OPEN 
10.   end if 
11.  end for 
12.  push current_node to CLOSED 
13.  pop current_node from OPEN 
14. end while 
15. while current_node != start_node //backtracking phase 
16.  push current_node to PATH 
17.  current_node ← parent of current_node 
18. end while 
19. return PATH 

Gupta and Sehgal (2014) discuss the use of different techniques and algorithms, including 

the Lee algorithm, used by autonomous robots to solve mazes. They concluded that despite 

certain shortcomings of the Lee algorithm (i.e. being slow with high memory requirements), 

the algorithm remains one of the best options, as it guarantees to deliver an optimal, shortest 

path from a starting position to a goal position.  

Polanczyk et al. (2012), propose the use of the Lee algorithm instead of the heuristic A-star 

search algorithm in situations where dynamic environments exist (e.g. changes to the 

locations of obstacles). They recommend that a custom version of the Lee algorithm be 

implemented to take changes to obstacles into consideration and dynamically reassign path 

values to accommodate these types of change. They also concluded that their proposed 

version of the Lee algorithm proved to be considerably faster than the original Lee algorithm, 

as well as the A-star algorithm.  

The Lee algorithm can also be implemented in industrial work environments to ensure that 

robots move optimally, with precision and in a safe manner (Daneshjo et al., 2019). Based 

on the assumption that every obstacle within the work environment should be programmed 

to be avoided by the robots, their study concluded that the Lee algorithm provides a simple 

solution for ensuring that robots can move freely within the environment, avoiding any 

collisions with obstacles.   
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Due to the efficiency and low complexity of the Lee algorithm, the algorithm is often 

implemented and regularly forms the topic of many studies. Table 3.1 lists more examples of 

such studies.  

Table 3.1 Additional literature examples for the Lee algorithm 

Authors Year Title 

Bejarano, N.C., Ambrosini, E., Pedrocchi, 
A., Ferrigno, G., Monticone, M. and 
Ferrante, S. 

2014 A novel adaptive, real-time algorithm to detect gait 
events from wearable sensors 

Chi, H.Y., Tseng, H.Y., Liu, C.N.J. and 
Chen, H.M. 

2018 Performance-preserved analogue routing methodology 
via wire load reduction 

Adamatzky, A., Chiolerio, A. and 
Szaciłowski, K. 

2020 Liquid metal droplet solves maze 

Jiang, Y. and Yang, M. 2017 Hardware design of parallel switch setting algorithm for 
Benes networks 

Lee, M.C., Jan, G.E. and Luo, C.C. 2020 An efficient rectilinear and octilinear steiner minimal 
tree algorithm for multidimensional environments 

Nestor, J.A. 2002 A new look at hardware maze routing 

Quislant, R., Gutierrez, E., Zapata, E.L. 
and Plata, O. 

2018 Privatising transactions for Lee’s algorithm in 
commercial hardware transactional memory 
  

Reddy, A.V., Vinoth, G. and Chiranjeevi, 
G.N. 

2018 Implementation of Lee's algorithm for different routing 
constraints 

Wu, Y.R., Tsai, M.C. and Wang, T.C. 2005 Maze routing with OPC consideration 

Zhang, Y. 2018 Deep reinforcement learning on 1-layer circuit routing 
problem 

3.3.2. A-star algorithm 

The A-star algorithm was first published in 1968 by Hart et al. (1968) and was initially 

created as part of a project that aimed at building a mobile robot that could plan its own 

actions. Although this can be perceived as an extension of Dijkstra’s algorithm, it manages 

to achieve better performance by adding heuristics to direct the search for a path. This 

algorithm uses combinations of heuristic search and shortest path searching techniques to 

determine an optimal path (Duchoň et al., 2014) and is defined as a best-first algorithm, 

since each cell in a grid-based environment gets evaluated with the following function:  

     𝑓(𝑣) = ℎ(𝑣) + 𝑔(𝑣)               (3.1) 

where 𝑓(𝑣) denotes the value assigned to each adjacent cell (used to determine the next 

expansion of the path), ℎ(𝑣) is the heuristic distance from the initial state to the goal state, 

and 𝑔(𝑣) is the path length from the initial state to the goal state. 

The function in (3.1) is applied to each adjacent cell of a currently expanded cell. The 

neighbouring cell with the lowest value for 𝑓(𝑣) is selected as the next cell to expand in the 

sequence. The selected cell is expanded and a 𝑓(𝑣) value is calculated and assigned to 

each of the neighbouring cells. This iterative process continues until the goal state is 

reached, whereafter a backtracking algorithm returns the optimal path. A significant 
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advantage of the algorithm is that the distance that is used as a criterion for the function can 

be adapted, changed or another distance measure (like time or energy consumption) can be 

added which extends the range at which the algorithm can be modified to fit specific needs. 

Maze traversal with the A-star algorithm happens in the same manner as described above 

but with limited expandable cells at each iteration. The following four steps, with graphical 

examples, illustrate how the A-star algorithm can be used to solve a maze.   

 

 

Step 3 – Continues cell expansion 

Step 2 is repeated iteratively by evaluating and expanding each valid (not separated by a 

wall) cell until the goal cell is reached. The algorithm will then stop the search process and 

start to apply a backtracking algorithm to determine the optimal path. 

Step 1 – Initial maze 

Given a maze, the initial state is set by 

selecting a valid start (red) and goal (green) 

cell. A valid cell is any cell that is not set as an 

edge (wall) and which has at least one 

neighbouring cell that can be explored.  

 

Step 2 – Initial cell expansion 

The starting cell is set as the current cell. The 

current cell is then expanded by adding its 

neighbouring cells and calculating a 𝑓(𝑣) 

value for each of them. The maze used in this 

example depicts limited movement as the wall 

cells only allow one neighbouring cell to be 

expanded.  
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The pseudocode of the A-star algorithm is presented in Algorithm 3.2. 

The A-star algorithm is generally more complex to implement and also uses more memory to 

execute than, for example, the Lee algorithm. However, the faster execution time is a major 

advantage and entices a significant number of researchers to use the A-star algorithm in 

their research. Some examples of such studies are presented in the following paragraphs. 

Frey et al. (2011) discuss the use of a modified version of the A-star algorithm to aid in the 

design of electrical harness wiring and pipe layouts within aircrafts. An additional value is 

added to the original function, which is then used to modify the total cost, based on their 

proximity to given obstacle types. This allows designers to avoid certain obstacles during 

route planning while simultaneously permitting the path to favour certain obstacles and 

manoeuvre closer to them. This means that the harness can be routed closer to certain 

structures while avoiding areas that might damage the harness, i.e. areas with high heat.  

 

Step 4 – Backtracking phase 

Backtracking is done by setting the goal as 

the current cell and adding its parent cell to 

the path. The parent cell is then set as the 

new current cell and the step is repeated until 

the initial starting cell is reached.  
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In a study by Barnouti et al. (2016), the A-star algorithm is used to improve the core 

movement of artificial intelligence agents in computer games. Using an image that 

represents a map or a maze, the algorithm seeks to find the shortest path between an 

identified source and identified destination, so that certain obstacles on the map (i.e. 

mountains or bodies of water) are avoided. 

A method to determine travel time to and from campus for students was proposed by Siregar 

et al. (2018). In this study the A-star algorithm was employed to determine optimal (time) 

routes from various boarding home locations to the learning facility thereby enabling 

students to make informed decisions when confronted with different housing options. 

Algorithm 3.2: A-star Algorithm  

Input: start_node - the source node to start from 
             goal_node - the goal node to reach 
Output: PATH list from start_node to goal_node 
lists: OPEN, CLOSE and PATH 

1. push start_node to OPEN with f(start_node) = h(start_node) + g(start_node) 
2. while OPEN is not empty 
3.  current_node ← pop from OPEN with the lowest f(current_node) value 
4.  if current_node = node_goal 
5.   break to line 27 
6.  end if 
7.  for each neighbour of current_node  
8.   neighbour_current_cost ← g(current_node) + w(current_node, neighbour) 
9.   if neighbour is in OPEN  
10.    if g(neighbour) ≤ neighbour_current_cost  
11.     continue to line 7 
12.    end if 
13.   else if neighbour is in CLOSED 
14.    if g(neighbour) ≤ neighbour_current_cost 
15.     continue to line 7 
16.    end if 
17.    move neighbour from CLOSED to OPEN 
18.   else  
19.    push neighbour to OPEN 
20.   end 
21.   h(neighbour) ← heuristic distance to goal_node 
22.   g(neighbour) ← neighbour_current_cost 
23.   parent of neighbour ← current_node 
24.  end for 
25.  push current_node to CLOSED 
26. end while 
27. while current_node != start_node //backtracking phase 
28.  push current_node to PATH 
29.  current_node ← parent of current_node 
30. end while 
31. return PATH 
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The popularity of the A-star algorithm has increased greatly over the past years due to its 

faster execution time and adaptability to specific needs. Table 3.2 lists additional examples 

of studies where the A-star algorithm was implemented. 

Table 3.2 Additional literature examples for the A-star algorithm 

Authors Year Title 

Cai, Y. and Ji, X. 2018 ASA-routing: A-Star adaptive routing algorithm for 
network-on-chips 

Elgaroui, L., Chamberland, S. and Pierre, 
S. 

2019 A new routing metric for real-time applications in smart 
cities 

Febliama, A.B., Fitria, N.D. and 
Handayani, A.N. 

2019 The application of A-star (A*) algorithm on the Android-
based Pacman adaptation educational game as a 
learning media for SMK 

Kurosawa, K., Uchiyama, Y. and Kosako, 
T. 

2020 Development of a numerical marine weather routing 
system for coastal and marginal seas using regional 
oceanic and atmospheric simulations 

Lu, D.N., Nguyen, T.H., Nguyen, D.N. 
and Nguyen, H.N. 

2017 A novel traffic routing method using hybrid ant colony 
system, based on genetic algorithm 

Nanda, A. and Rath, A.K. 2018 Fuzzy A-star, based cost effective routing (FACER) in 
WSNs 

Reeves, M.C. 2019 An analysis of path planning algorithms focusing on A* 
and D* 

Sun, D. and Li, M. 2016 Evaluation function optimisation of A-star algorithm in 
optimal path selection 

Wu, C.M., Liaw, D.C. and Lee, H.T. 2018 A method for finding the routes of mazes 

Zheng, C., Liu, H., Ge, M. and Liu, Y. 2019 A novel maze representation approach for finding filled 
path of a mobile robot 

3.3.3. Flood-fill algorithm 

Micro-mouse competitions (an event where small robot mice solve a 16×16 maze) have 

been held for decades and can be traced back to the year 1972. According to Law (2013), 

the flood-fill algorithm became one of the most commonly used algorithms in these 

competitions since contestants would use a modified version of flood-fill to reduce the 

number of cells visited before the maze is completed. In modern times, the flood-fill 

algorithm is one of the more popular algorithms used to solve a maze in robot maze 

problems because of its balance between finding the shortest path and discovering walls 

along the path. Each cell in a grid is assigned a value that indicates its distance from a target 

cell. The algorithm can then traverse the maze by moving to a neighbouring cell that is 

closer to the target than the current cell. This is indicated by the cell value which will be one 

less than the current cell. With each movement, the algorithm will check if any walls are 

present at the current cell and recalculate each cell’s value (flooding), based on the currently 

discovered walls. This will prevent any movements to cells that are separated by a wall 

(Jabbar, 2016). 

To illustrate the flood-fill algorithm, the following graphical explanation is given (Tjiharjadi & 

Setiawan, 2016). 
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Step 2 – Cell value assignment 

The goal cell is set as the source cell and the algorithm assigns a value to each cell that 

represents the total distance from this new source cell. This cell is assigned a value of 0 and 

its neighbouring cell a value just one higher (a 1 in this scenario). In an iterative manner, the 

algorithm continues to assign each neighbouring cell a higher cell value than the previous 

cell until the entire grid is populated.  

                          2      4 3 2 3 4 

               1        2 1 2    3 2 1 2 3 

    0        1 0 1    2 1 0 1 2  2 1 0 1 2 

               1        2 1 2    3 2 1 2 3 

                          2      4 3 2 3 4 

 

4 3 2 3 4 

3 2 1 2 3 

2 1 0 1 2 

3 2 1 2 3 

4 3 2 3 4 

 

 

Step 4 – Maze traversal 

Step 3 is repeated until a new wall is identified. When this new wall appears, the algorithm 

assigns new values to each cell (flooding the grid) while taking the new walls into account. 

The cell separated by this wall will not be selected as a neighbouring cell when assigning 

values.  

Step 1 – Initial maze 

The algorithm starts with an initial maze and a predetermined 

starting cell (red) and goal cell (green). Notice the walls of the 

maze are faded out. This is because their locations are initially 

unknown to the search algorithm.  

 

Step 3 – Initial movement 

When the algorithm starts to explore the maze, it checks to see if 

any walls are prohibiting its movements. In this scenario, the 

starting cell is blocked in three directions (the right wall, as well 

as the left and lower bounds of the maze), allowing the first 

movement only to be made upwards. For each movement (dark 

blue square), a cell can only be chosen if its assigned value is 

smaller than that of the current cell. 
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4 3 2 3 4  4 3 2 3 4 

3 2 1 2 3  5 2 1 2 3 

4 1 0 1 2  4 1 0 1 2 

3 2 1 2 3  3 2 1 2 3 

4 3 2 3 4  4 3 2 3 4 

In this scenario, a dead end is reached. When this occurs, previously visited cells can be 

visited again, since the newly flooded values are less than that of the current cell (value of 

5). In this example, a dead end is reached at a value of 5. Selecting a neighbour cell with a 

smaller value will be the cell with value 4 and then 3 until an unvisited neighbour is reached 

with a smaller value of 2. 

4 3 2 3 4  4 3 2 3 4  4 3 2 3 4 

5 2 1 2 3  5 2 1 2 3  5 2 1 2 3 

4 1 0 1 2  4 1 0 1 2  4 1 0 1 2 

3 2 1 2 3  3 2 1 2 3  3 2 1 2 3 

4 3 2 3 4  4 3 2 3 4  4 3 2 3 4 

Step 5 – Path completion 

Steps 3 and 4 are repeated until the goal cell is reached, indicated by a cell value of 0. 

4 3 2 3 4  4 3 2 3 4  4 3 2 3 4  6 5 4 3 4 

7 2 1 2 3  7 2 1 2 3  7 2 1 2 3  7 4 3 2 3 

6 1 0 1 2  6 1 0 1 2  6 1 0 1 4  6 5 0 1 4 

5 4 3 2 3  5 4 3 2 3  5 4 3 2 5  5 4 3 2 5 

6 5 4 3 4  6 5 6 5 4  6 5 6 7 6  6 5 6 7 6 

 

          

          

          

          

          

 

The pseudocode of the flood-fill algorithm is presented in Algorithm 3.3. 

Step 6– Maze path 

The algorithm completes by backtracking from the goal cell to the 

starting cell. Backtracking is done by setting the goal as the 

current cell and adding its parent cell to the path. The parent cell 

is then set as the new current cell and the step is repeated until 

the initial starting cell is reached.  
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Algorithm 3.3: Flood-fill algorithm  

Input: start_node - the source node to start from 
             goal_node - the goal node to reach 
Output: PATH - list from start_node to goal_node 
lists: OPEN, FLOOD, WALLS and PATH 
Process: Generate a maze using the Flood-fill algorithm 

1. set WALLS as empty 
2. current_node ← start_node 
3. while PATH is empty 
4.  i ← 1 // counter to increment cell values 
5.  while current_node != goal_node //flooding phase 
6.   for each neighbour of current_node 
7.    If neighbour is not in WALLS 
8.     push neighbour to OPEN with cell(i) 
9.    end if 
10.   end for 
11.   i++ //increase counter 
12.   push current_node to FLOOD with cell(i-1) 
13.   current_node ← pop from OPEN 
14.  end while 
15.  current_node ← pop goal_node from FLOOD 
16.  while current_node != start_node 
17.   for each neighbour of current_node 
18.    if neighbour is a wall 
19.     push neighbour to WALLS 
20.     continue to line 3 
21.    else if neighbour(cell) < current_node(cell) //cell value 
22.     current_node ← neighbour 
23.    else 
24.     continue to line 3 //dead-end reached 
25.    end 
26.   end for 
27.  end while 
28.  while current_node != goal_node //backtracking phase 
29.   push current_node to PATH 
30.   current_node ← parent of current_node 
31.  end while 
32. end while 
33. return PATH 

The ability of the flood-fill algorithm to discover walls in a maze and to adapt the path as 

required makes this algorithm a popular choice for many researchers. The algorithm is of 

particular importance to solve robot maze problems in which the objective is to enable a 

robot to traverse a maze. Examples of how the algorithm is used can be found in studies 

performed by Benavides et al. (2018) and Ranade and Manicannan (2019). The former 

study entails robotic path planning in a maze and the latter uses the algorithm to avoid 

obstacles in an unmanned air vehicle. 
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3.3.4. Recursive backtracking algorithm 

As the name implies, the recursive backtracking algorithm makes use of recursion (repeated 

application of a procedure) to traverse a maze until a certain goal is reached. The process 

starts by selecting a neighbouring cell of the starting cell that is not separated by a wall. Any 

direction can be set to be expanded first and is usually set in the direction of the goal (if 

known). The technique continues to expand the neighbouring cell of each selected cell at the 

current iteration until there is no valid neighbouring cell left for the currently explored cell. 

When this occurs, the algorithm will traverse back the way it came until a cell is reached that 

has unvisited neighbours. It will then continue to adapt its path whenever dead ends occur 

until the goal cell is reached. Reaching the goal cell will start a backtracking process to 

determine the path used to reach the goal (Niemczyk and Zawislak, 2020). This recursive 

backtracking method produces the first path that leads to the goal and does not guarantee a 

shortest path.  A graphical explanation of the algorithm is presented below. 

 

 

Step 3 – Traversal/Dead end 

Step 2 is repeated until the goal is reached or until a dead-end occurs along the path. In the 

case of a dead end (as in this scenario), the algorithm will backtrack until a cell is reached 

that has a valid neighbouring cell that was not previously visited. This newly selected 

neighbouring cell will then be further explored.  

Step 1 – Initialisation 

The recursive backtracking algorithm starts with an initial 

maze and a predetermined starting cell (red) and goal 

cell (green). Since the goal cell is known in this example, 

the upward movement will be used, as it is also known 

that the goal cell is at the top of the maze. 

 

Step 2 – First traversal 

Continue to determine all available neighbouring cells 

that were not already visited, and which are not 

separated by a wall. A neighbouring cell will be chosen 

and set as the new current cell which will be explored 

next. 
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There is a technical drawback attached to the use of the recursive backtracking method. To 

avoid stack overflow problems and excessive memory usage, most programming 

environments limit the recursion depth which may impede the efficient use of the algorithm. 

However, the recursive backtracking approach remains a useful technique and may be 

found in many research studies. Some examples of the use of the algorithm include Gupta et 

al. (2019) who apply the recursive backtracking method to fix possible distortions in QR 

codes, Karlsson (2018) who uses the technique in a comparative study of different maze-

solving algorithms, and Silva et al. (2017) who employ the algorithm to program a maze-

solving robot. 

 

 

G Step 4 – Complete traversal 

Steps 2 and 3 are repeated until the goal cell is reached. 

When this occurs, a backtracking process is initiated to 

determine the path. 

 

Step 5 – Backtracking path 

The algorithm completes by backtracking from the goal 

cell to the starting cell. Backtracking is done by setting 

the goal as the current cell and adding its parent cell to 

the path. The parent cell is then set as the new current 

cell and the step is repeated until the initial starting cell is 

reached.  
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The pseudocode of the recursive backtracking algorithm is presented in Algorithm 3.4. 

Algorithm 3.4: Recursive backtracking algorithm  

Input: start_node - the source node to start from 
             goal_node - the goal node to reach 
Output: PATH - list from start_node to goal_node  
lists: OPEN and CLOSE 
Process: Generate a maze using the Recursive backtracking algorithm 

1. push start_node to OPEN; 
2. while OPEN is not empty 
3.  current_node ← pop from OPEN; 
4.  if current_node = goal_node 
5.   break to line 22; 
6.  end if 
7.  if neighbour_up != wall & not in CLOSED // tests each neighbour, starting with upwards 
8.   push neighbour_up to OPEN;  
9.  else if neighbour_right != wall & not in CLOSED 
10.   push neighbour_right to OPEN;   
11.  else if neighbour_down != wall & not in CLOSED 
12.   push neighbour_down to OPEN;  
13.  else if neighbour_left != wall & not in CLOSED 
14.   push neighbour_left to OPEN; 
15.  else 
16.   current_node ← pop last value of CLOSED; // backtracks to previous value 
17.   push current_node to OPEN; 
18.   continue to line 2; 
19.  end 
20.  push current_node to CLOSED; 
21. end while 
22. while current_node != start_node //backtracking phase 
23.  push current_node to PATH; 
24.  Current_node ← parent of current_node; 
25. end while 
26. return PATH; 

3.4. Summary  

In Chapter 3, the focus was on solution strategies for grid-based mazes which play an 

important role in humanitarian logistics. The chapter started with a brief introduction to 

humanitarian logistics which was followed by a discussion of four grid-based maze-solving 

algorithms. These algorithms were selected, based on their popularity and versatility and 

were graphically explained. The discussions were further elaborated on by including the 

pseudocode for each algorithm, as well as presenting examples from the literature of 

relevant applications.  
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Chapter 4 Discrete facility location models 

4.1. Introduction 

Facility location decisions are critical in the design of adequate systems to provide 

healthcare and relief supplies in disaster-stricken areas. Wrong decisions may have a 

serious impact on disaster victims and hard-to-access medical and food supplies are likely to 

increase mortality rates during a disaster. While the focus in previous chapters concentrated 

on the development of grid-based mazes that can be used to represent traversable routes in 

a disaster-stricken area, in this chapter, the focus will be on facility location problems. The 

aim in the chapter is to provide a background to facility location models and the formulation 

of mathematical models that will assist with decision making and which will help to maximise 

the relief effort at the lowest cost possible. A set covering model, as well as a maximal 

covering model will be developed in this study to determine the optimal placement of rescue 

facilities and the brief introduction of these types of model in this chapter will support the 

objective of formulating such models. Firstly, brief comments on the importance of 

healthcare and relief supply facilities (Section 4.2) are made. The core of the chapter is then 

presented in Section 4.3 in which various models for discrete location problems are 

described in detail. Aspects, such as a taxonomy and classification of the different models, 

as well as model descriptions and formulations are presented. Discussions are also backed 

up by relevant literature resources.   

4.2. Facilities in disaster-stricken areas 

Although facility location models will be introduced in section 4.3, it is important to first 

present a brief additional background section on the importance of healthcare and relief 

supply facilities in the event of a major disaster. Due to the serious and life-threatening 

situations that often occur during a disaster, logistics play a central role in any response 

activities. A humanitarian relief chain is normally established during disaster events with the 

objective to provide relief in the form of medicine, shelter, emergency food and water and 

other supplies to affected areas. To be able to comply with the requirements of a 

humanitarian relief chain, it is important to determine optimal locations for healthcare 

facilities, as well as supply facilities. In this section, a brief motivation from the literature on 

the importance of healthcare and supply facilities is presented. 
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4.2.1. Healthcare facilities in disaster-stricken areas 

During a natural disaster, the scale of the damage caused to the surrounding environment, 

as well as to the well-being of people caught in its path is a great unknown. This means that 

a rapid response is required to ensure that no lives are unnecessarily lost. Organisations 

that provide health care support during disaster situations include military health care 

services, national rescue bodies, international organisations (i.e. the United Nations), 

coordination centres, international government organisations, non-governmental 

organisations, and any private groups that may be able to provide medical assistance and 

support (Bitterman and Zimmer, 2018). The support provided may vary from the acquisition 

and distribution of medical supplies to the establishment of medical and healthcare facilities. 

The types of healthcare facility (i.e. portable, temporary or permanent) are dictated by the 

disaster situation. Permanent portable healthcare facilities can function continuously and can 

be transported to different areas as the need arises. These types of facility contain complete 

medical equipment and are ready to use as soon as they arrive, since they require no 

construction. The facilities are classified according to land, air and water facilities and are 

depicted in Figure 4.1 

 

 

 

 

Temporary healthcare facilities, as opposed to permanent facilities, comprise different non-

functional components that can be transported to a desired area in various configurations. 

Examples of equipment may include foldable or collapsible flat components that are 

packaged together, and which are immediately ready for assembly. These components may 

consist of rigid type construction types, inflatable tent types, and regular framed tents. See 

Figure 4.2 for examples of such assembled temporary facilities. 

 

 

 

 

 

Figure 4.1 Examples of an earth-bound mobile hospital, flying hospital and floating hospital ship 

 

Figure 4.2 Examples of temporary facilities: Rigid-type building, inflatable tent-type and framed tent 
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It is obvious that each of the different types of facility would play a crucial role during relief 

efforts in a natural disaster and choosing the most appropriate facility is therefore vital. Of 

equal importance is the number of facilities required and the identification of acceptable 

locations where they can be established.  

A large number of research studies has been performed on facility location models in 

general and in healthcare facility location in particular (Ahmadi-Javid et al., 2017). The 

importance of healthcare facility location models is evidenced by the large range of studies 

covering this and related problems. Studies range from the location of temporary blood 

banks (Sharma et al., 2019) to facilities located to cater for the humanitarian need of 

refugees (Günay et al., 2019) to the placement of field hospitals (Naor and Bernardes, 

2016). Other examples of studies related to the location of healthcare facilities can be found 

in Gümüş and Celik (2017), Dascioglu et al. (2019) and Güneş et al. (2019). There is also a 

large number of studies that pertain to the mathematical and computational aspects of 

healthcare facility modelling and examples of such studies include Boonmee et al. (2017), 

Zokaee et al. (2016) and Babaei and Shahanaghi (2018), Finally, a large body of knowledge 

on this topic also exists in earlier work of researchers, such as Balcik and Beamon (2008), 

Jahre et al. (2007) and Ittmann (2005). 

4.2.2. Relief supply facilities in disaster-stricken areas 

Relief supply facilities and healthcare facilities are, to a certain extent, almost the same 

types of facility. However, natural disasters do not only put lives at risk in a way that can be 

solved with medical supplies, but also impact negatively on all survivors. Prior to a disaster, 

people have shelter and food security, normally for the foreseeable future. Following a 

disaster, people suddenly find themselves without a home, food to eat and clothes to wear. 

To assist these victims and to improve their survivability, humanitarian logistics is tasked 

with providing disaster victims with relief supplies to sustain them. Figures 4.3 and 4.4 

provide some insight into what relief supplies are and how they are utilised. 
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Figure 4.3 Example of a typical disaster relief supply kit 

 

Figure 4.4 Modular cardboard beds, use of drones and temporary shelters 

There are many studies and strategies for the management and distribution of relief supplies 

during a disaster situation which also include pre- and post-disaster activities. One such 

strategy is to procure relief supplies ahead of time and pre-position them at facilities that are 

close to disaster-prone areas (Richter, 2016). However, pre-positioning relief supplies may 

not always be an adequate solution, as disasters can occur at any location at any given time. 

To overcome this problem, Richter (2016) proposes the use of large supply-holding ships, 

accompanied by smaller ships and/or helicopters to distribute the relief supplies to the 

affected area. Continuous relocation of supplies to facilities at different locations may also 

mitigate the problem, i.e. areas that are known to suffer from hurricanes may be prioritised 

for storing relief supplies. 

Other examples of relief supply research include studies on the number and allocation of 

facilities during a natural disaster (Cavdur et al., 2016). The study by Cavdur et al. (2016) is 

also an example of the use of mathematical modelling techniques to determine supply 

facilities, based on factors, such as walking distances, demand satisfaction and the 

utilisation of facilities, studies pertaining to specific needs, i.e. See et al. (2017) performed a 

study to highlight challenges specific to fresh water supply that are linked to problems, such 
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as portable (bottled) water, the treating (cleaning) of water and the restoration of water 

supplies, studies on the sustainability of relief efforts (Sebatli et al., 2017) that involve the 

determination of the demand for relief supplies, and finally, studies on the pre- and post-

management of disaster relief supplies, for example, the use of drones to determine 

appropriate sites for relief and recharge facilities, based on travel distances and coverage of 

large areas (Shavarani, 2019).       

In Section 4.2, the aim was to provide a brief introduction to the concepts and importance of 

healthcare and relief supply facilities. In the next section, the mathematical and 

computational techniques that are used to perform discrete facility location modelling will be 

presented. 

4.3. Models for discrete facility location problems 

A typical facility location problem deals with selecting the best placement of a facility in order 

to meet, in an optimal manner, the demands at several service points. The problem often lies 

in selecting a site that minimises total weighted distances from facilities and customers. 

Facility location problems form part of an important field of study and are applied in a wide 

variety of applications areas. Applications range from supply chain problems (e.g. location of 

plants, warehouses and retail outlets), government agencies (e.g. location of schools, police 

stations, fire stations and ambulance or healthcare facilities), telecommunications (e.g. 

placement of cell towers in a network), etc. 

The optimisation of the placement of facilities is a well-known and widely studied subject and 

numerous examples of research conducted in this area exist. Due to this large body of 

knowledge it would be appropriate to only list a few examples, as opposed to describing the 

studies in detail. Table 4.1 lists some of the recent studies on facility location problems found 

in the literature. 

Table 4.1 Recent literature examples of facility location problems 

Authors Year Title 

An, H.C., Singh, M. & Svensson, 
O. 

2017 LP-based algorithms for capacitated facility location 

Amin, S.H. & Baki, F. 2017 A facility location model for global closed-loop supply chain 
network design 

Correia, I. & Saldanha-da-Gama, 
F. 

2019 Facility location under uncertainty 

Fallah Nezhad, M.S., Zarrinpoor, 
N. & Pishvaee, M.S. 

2017 Design of a reliable facility location model for health service 
networks 

Farahani, R.Z., Fallah, S., Ruiz, 
R., Hosseini, S. & Asgari, N. 

2019 OR models in urban service facility location: a critical review 
of applications and future developments 

Fong, C.K.K., Li, M., Lu, P., Todo, 
T. & Yokoo, M. 

2018 Facility location games with fractional preferences 

Gendron, B., Khuong, P.V. & 
Semet, F. 

2017 Comparison of formulations for the two-level uncapacitated 
facility location problem with single assignment constraints 
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Table 4.1 Continued 

Authors Year Title 

Karatas, M. & Yakıcı, E. 2018 An iterative solution approach to a multi-objective facility 
location problem 

Lynskey, J., Thar, K., Oo, T.Z. & 
Hong, C.S. 

2019 Facility location problem approach for distributed drones 

Ortiz-Astorquiza, C., Contreras, I. 
& Laporte, G. 

2018 Multi-level facility location problems 

Raghavan, S., Sahin, M. & 
Salman, F.S. 

2019 The capacitated mobile facility location problem 

Seker, S. & Aydin, N. 2020 Hydrogen production facility location selection for Black Sea 
using entropy based TOPSIS under IVPF environment 

Shavarani, S.M., Nejad, M.G., 
Rismanchian, F. & Izbirak, G. 

2018 Application of hierarchical facility location problem for 
optimization of a drone delivery system: a case study of 
Amazon prime air in the city of San Francisco 

Turkoglu, D.C. & Genevois, M.E. 2019 A comparative survey of service facility location problems 

Wichapa, N. & Khokhajaikiat, P. 2017 Solving multi-objective facility location problems using the 
fuzzy analytical hierarchy process and goal programming: a 
case study on infectious waste disposal centers 

Yadav, V., Bhurjee, A.K., 
Karmakar, S. & Dikshit, A.K. 

2017 A facility location model for municipal solid waste 
management system under uncertain environment 

Yu, G., Haskell, W.B. & Liu, Y. 2017 Resilient facility location against the risk of disruptions 

 

The focus of the facility location problem in this study is on healthcare and relief supply 

facilities in a disaster-stricken area. Sections 4.2.1 and 4.2.2 described examples of relevant 

literature resources and to conclude the background discussion on existing literature, Table 

4.2 presents some additional resources. 

Table 4.2 Additional examples of facility location studies related to disaster-stricken areas 

Authors Year Title 

Acar, M. & Kaya, O. 2019 A healthcare network design model with mobile hospitals for 
disaster preparedness: a case study for Istanbul earthquake 

Ahmadi-Javid, A., Seyedi, P. & 
Syam, S.S. 

2017 A survey of healthcare facility location 

Boonmee, C., Arimura, M. & 
Asada, T. 

2017 Facility location optimization model for emergency 
humanitarian logistics 

Golabi, M., Shavarani, S.M. & 
Izbirak, G. 

2017 An edge-based stochastic facility location problem in UAV-
supported humanitarian relief logistics: a case study of Tehran 
earthquake  

Güneş, E.D., Melo, T. & Nickel, S. 2019 Location problems in health care 

Hashim, N.M., Shariff, S. & Deni, 
S.M. 

2017 Capacitated maximal covering location allocation problem 
during flood disaster 

Liu, Y., Cui, N. & Zhang, J. 2019 Integrated temporary facility location and casualty allocation 
planning for post-disaster humanitarian medical service 

Shavarani, S.M. 2019 Multi-level facility location-allocation problem for post-disaster 
humanitarian relief distribution 

Trivedi, A. & Singh, A. 2018 Facility location in humanitarian relief: A review 

4.3.1. A taxonomy of facility location problems 

Daskin (2011) presents a taxonomy of facility location models which is largely based on 

assumptions pertaining to the service of demand points and the facilities providing the 

service. Four main categories are identified. 
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- Analytic location models. In this type of model, facilities can be located anywhere in a 

predefined service region and demands are distributed in some manner or another 

(e.g. uniformly) over the region. 

- Continuous location models. In continuous location models, demands are known a 

priori and occur at discrete sites while candidate facilities can be located anywhere in 

the region. 

- Network location models. When demand points and facilities are located on the 

nodes and links (as opposed to anywhere in a region) of a network, the model is 

referred to as a network location model. 

- Discrete location models. In discrete location models, no particular assumptions are 

made about the demands and facilities and modelling is based on the locations and 

some arbitrary distance metric. These types of model are mostly formulated as 

integer programming models. 

Figure 4.5 shows a graphical representation of Daskin’s taxonomy. 

 

Figure 4.5 Taxonomy of facility location models as proposed by Daskin (2011) 

Facility location problems are also characterised by capacitated versus uncapacitated 

problems. If the capacity of each facility is known (e.g. the capacity of a factory to 

manufacture a certain number of commodities), the problem is referred to as a capacitated 

problem – this means that a facility may or may not be able to fully serve the demand at a 

specific node. If, however, a facility can produce unlimited quantities of a commodity then the 

problem is known as an uncapacitated problem. In this study, it will be assumed that the 

healthcare and relief facilities can be supplied from another source and would therefore be 

treated as uncapacitated. 

In addition to the capacity property of facilities, location problems are also generally 

classified as either discrete (i.e. facilities can only be located at specific candidate sites) or 

continuous (i.e. facilities can be established anywhere in a region). In this study, the focus 

will be on discrete facility locations. 
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Discrete facility location problems are further classified into three broad categories, namely 

covering-based problems, median-based problems and other problems (Ahmadi-Javid et al., 

2017). The model developed in this study is a covering-based model and more specifically, a 

set covering location model. Figure 4.6 shows the three broad classes of discrete location 

problems. 

 
Figure 4.6 Classification of discrete facility location models (Ahmadi-Javid et al., 2017) 

The formulations of the five types of covering-based and median-based models depicted in 

Figure 4.6 will be given in the next section. 

4.3.2. Model formulations 

Facility locations models, especially discrete models, are mainly formulated as integer linear 

programming models. These formulations will be provided in the subsequent subsections 

and will be based on the work and models presented in Ahmadi-Javid et al. (2017). 

4.3.2.1. Covering-based problems 

To ensure that demand points are serviced by facilities (or supply points), the demand 

locations should be within a specific distance or time from the facilities, i.e. they need to be 

within a certain coverage distance. According to the classification scheme presented in 

Figure 4.6, there are three basic types of set covering problem. To formulate these three 

covering-based models, let ℐ represent a set of demand points and 𝒥 a set of candidate 

locations. 𝒩𝑖 is the set of all candidate locations which can cover demand point 𝑖 ∈ ℐ and 

𝒩𝑖 = {𝑗 ∈ 𝒥: 𝑑𝑖𝑗 ≤ 𝐷𝑖} with 𝑑𝑖𝑗 as the travel distance (or time) from demand point  𝑖 ∈ ℐ to 

candidate location 𝑗 ∈ 𝒥 and 𝐷𝑖 is the maximum acceptable travel distance (or time) from 

demand point  𝑖 ∈ ℐ (this is the covering distance or time). 
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(a) Set covering location problems 

The aim of a set covering location problem is to minimise the number of facilities (i.e. 

minimise the total cost of establishing facilities), while satisfying a pre-specified level of 

demand coverage.   

The input parameter 𝑓𝑗 is defined as the fixed cost to establish a facility at candidate location 

𝑗 ∈ 𝒥. 

Define the binary decision variable 𝑥𝑗 as follows: 

𝑥𝑗 = {

 
1 
0 
 
 

if a facility is located at candidate site 𝑗 ∈ 𝒥 
otherwise 

 

The model formulation is then given by 

Minimise 
 

∑ 𝑓𝑗𝑥𝑗
𝑗∈𝒥

 

 

 
(4.1) 

 

subject to 
 

∑ 𝑥𝑗
𝑗∈𝑁𝑖

≥ 1 

 

𝑖 ∈ ℐ, 
 

(4.2) 
 

 𝑥𝑗 ∈ {0,1} 𝑗 ∈ 𝒥. (4.3) 

 

The objective function (4.1) minimises the cost of facilities established. Constraint set (4.2) 

guarantees that each demand point is covered while constraint set (4.3) ensures the binary 

nature of the decision variables 𝑥𝑗. 

(b) Maximal covering location problems 

A maximal covering location problem aims at locating 𝑝 facilities in order to maximise 

demand covered within a predetermined maximum coverage distance. Due to the maximum 

of 𝑝 facilities, some demand points may not be covered, as the model differentiates between 

small and large demand at different demand points. 

Two additional input parameters are defined, 𝑤𝑖 (demand at point 𝑖 ∈ ℐ) and 𝑝 (number of 

candidate locations to be established). 

Define two binary decision variables 𝑥𝑗 and 𝑧𝑖 as follows: 

𝑥𝑗 = {

 
1 
0 
 
 

if a facility is located at candidate site 𝑗 ∈ 𝒥 
otherwise 

 

 



61 
 

𝑧𝑖 = {

 
1 
0 
 
 

if demand point 𝑖 ∈ ℐ is covered 
otherwise 

 

The model formulation is then given by 

Maximise 
 

∑ 𝑤𝑖𝑧𝑖
𝑖∈ℐ

 

 
 

(4.4) 
 

subject to 
 

∑ 𝑥𝑗
𝑗∈𝒥

= 𝑝, 

 

 
(4.5) 

 

 
𝑧𝑖 ≤ ∑ 𝑥𝑗

𝑗∈𝑁𝑖

 

 

𝑖 ∈ ℐ, 
 

(4.6) 
 

 
𝑧𝑖 ∈ {0,1} 
 

𝑖 ∈ ℐ, 
 

(4.7) 
 

 𝑥𝑗 ∈ {0,1} 𝑗 ∈ 𝒥. (4.8) 

 

In the above model, the objective function (4.4) maximises the total covered demand. The 

constraint (4.5) ensures that 𝑝 facilities are established while constraint set (4.6) guarantees 

that a demand point is covered by an open facility. The two constraint sets (4.7) and (4.8) 

define the binary decision variables. 

(c) P-centre location problems 

The p-centre location problem is also called a minimax location problem, as it aims to 

minimise the maximum distance between a demand point and the nearest facility. Daskin 

(2011) defines it as “to minimise the coverage distance such that each demand node is 

covered within the endogenously determined distance by one of the facilities”. 

As with the maximal covering problem, two additional input parameters are defined; 𝑤𝑖 

(demand at point 𝑖 ∈ ℐ) and 𝑝 (number of candidate locations to be established). 

Define two binary decision variables 𝑥𝑗 and 𝑦𝑖𝑗 as follows: 

𝑥𝑗 = {

 
1 
0 
 
 

if a facility is located at candidate site 𝑗 ∈ 𝒥 
otherwise 

 

 

𝑦𝑖𝑗 = {

 
1 
0 
 
 

if demand point 𝑖 ∈ ℐ is assigned to facility 𝑗 ∈ 𝑁𝑖 
otherwise 
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The model formulation is then given by 

Minimise 
 

𝑀 
 

 
(4.9) 

 

subject to 
 

∑ 𝑦𝑖𝑗
𝑗∈𝒥

= 1 

 

𝑖 ∈ ℐ, 
 

(4.10) 
 

 
∑ 𝑥𝑗

𝑗∈𝒥
= 𝑝, 

 

 (4.11) 

 
∑ 𝑑𝑖𝑗𝑦𝑖𝑗

𝑗∈𝒥
≤ 𝑀 

 

𝑖 ∈ ℐ, 
 

(4.12) 
 

 
𝑦𝑖𝑗 ≤ 𝑥𝑗 

 

𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, 
 

(4.13) 
 

 
𝑦𝑖𝑗 ∈ {0,1} 

 

𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, 
 

(4.14) 
 

 𝑥𝑗 ∈ {0,1} 

 

𝑗 ∈ 𝒥, (4.15) 
 

 𝑀 ≥ 0.  (4.16) 

The objective function (4.9) minimises the maximum distance between a demand point and 

the nearest facility to that demand point. Constraint set (4.10) ensures that each demand 

point is covered by only one facility, i.e. demand at node 𝑖 must be assigned to facility at 

node 𝑗 while constraint (4.11) ensures that 𝑝 facilities are established. Constraints (4.12) 

specify the maximum demand-weighted distance (or time) and constraints (4.13) guarantee 

that a demand node cannot be assigned to a facility that is not open. Finally, the constraints 

(4.14) – (4.16) are the integrality and non-negativity constraints. 

4.3.2.2. Median-based problems 

In order to minimise the weighted average distance costs between demand points and 

facilities to which demand points are assigned, median-based problems establish facilities at 

predetermined candidate sites. In this section, and according to the classification scheme in 

Figure 4.6, two of the popular median-based problems will be presented. As in the previous 

sections, let ℐ represent a set of demand points and 𝒥 a set of candidate locations. Let 𝑑𝑖𝑗 be 

the distance (or time) to travel from demand point 𝑖 ∈ ℐ to candidate location 𝑗 ∈ 𝒥 and let 𝑤𝑖 

represents the demand at point 𝑖 ∈ ℐ. 

(a) P-median location problems 

In a p-median problem, the objective is to find the location of 𝑝 facilities in a network so that 

the total cost is minimised. The cost to serve a demand point is given as the product of the 

demand (𝑤𝑖) and the distance (𝑑𝑖𝑗) between the demand point and the closest facility to that 

demand point.     
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An additional input parameter 𝑝 is defined as the number of candidate locations to be 

established. 

Define two binary decision variables 𝑥𝑗 and 𝑦𝑖𝑗 as follows: 

𝑥𝑗 = {

 
1 
0 
 
 

if a facility is located at candidate site 𝑗 ∈ 𝒥 
otherwise 

 

 

𝑦𝑖𝑗 = {

 
1 
0 
 
 

if demand point 𝑖 ∈ ℐ is assigned to facility 𝑗 ∈ 𝒥 
otherwise 

 

The model formulation is then given by 

Minimise 
 

∑ ∑ 𝑤𝑖𝑑𝑖𝑗𝑦𝑖𝑗
𝑗∈𝒥𝑖∈ℐ

 

 

 
(4.17) 

 

subject to 
 

∑ 𝑦𝑖𝑗
𝑗∈𝒥

= 1 

 

𝑖 ∈ ℐ, 
 

(4.18) 
 

 
∑ 𝑥𝑗

𝑗∈𝒥
= 𝑝, 

 

 (4.19) 

 
𝑦𝑖𝑗 ≤ 𝑥𝑗 

 

𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, 
 

(4.20) 
 

 
𝑦𝑖𝑗 ∈ {0,1} 

 

𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, 
 

(4.21) 
 

 𝑥𝑗 ∈ {0,1} 

 

𝑗 ∈ 𝒥. (4.22) 
 

The objective function (4.17) of the p-median model minimises the total demand-weighted 

travel distance (or time) between each demand point and the nearest facility. Constraint set 

(4.18) ensures that each demand point is covered by only one facility, i.e. demand at node 𝑖 

must be assigned to facility at node 𝑗 while constraint (4.19) ensures that 𝑝 facilities are 

established. Constraints (4.20) specify that a demand node cannot be assigned to a facility 

that is not open. The constraint sets (4.21) and (4.22) are the integrality constraints for the 

decision variables 𝑥𝑗 and 𝑦𝑖𝑗. 

(b) Fixed charge facility location problems 

The final model in median-based problems is called a fixed charge facility location problem. 

In these types of problem, an explicit cost of locating a facility at a candidate site is added 

and the model then aims to minimise the total cost of travelling and opening a facility. A 

basic uncapacitated fixed charge facility location problem is described in this paragraph. 
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Two additional input parameters are defined: 𝑓𝑗 as the fixed cost (charge) to locate a facility 

at candidate site 𝑗 ∈ 𝒥, and 𝑣 as the (variable) transportation cost per item per distance unit. 

Define two binary decision variables 𝑥𝑗 and 𝑦𝑖𝑗 as follows: 

𝑥𝑗 = {

 
1 
0 
 
 

if a facility is located at candidate site 𝑗 ∈ 𝒥 
otherwise 

 

 

𝑦𝑖𝑗 = {

 
1 
0 
 
 

if demand point 𝑖 ∈ ℐ is assigned to facility 𝑗 ∈ 𝒥 
otherwise 

 

 

The model formulation is then given by 

Minimise 
 

∑ 𝑓𝑗𝑥𝑗
𝑗∈𝒥

+ 𝑣 ∑ ∑ 𝑤𝑖𝑑𝑖𝑗𝑦𝑖𝑗
𝑗∈𝒥𝑖∈ℐ

 

 

 
(4.23) 

 

subject to 
 

∑ 𝑦𝑖𝑗
𝑗∈𝒥

= 1 

 

𝑖 ∈ ℐ, 
 

(4.24) 
 

 
𝑦𝑖𝑗 ≤ 𝑥𝑗 

 

𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, 
 

(4.25) 
 

 
𝑦𝑖𝑗 ∈ {0,1} 

 

𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, 
 

(4.26) 
 

 𝑥𝑗 ∈ {0,1} 

 

𝑗 ∈ 𝒥. (4.27) 
 

The objective function (4.23) minimises the total cost (cost to open a facility and 

transportation costs). Constraint set (4.24) ensures that each demand point is covered by 

only one facility while constraint set (4.25) specifies that a demand node cannot be assigned 

to a facility that is not open. Constraints (4.26) and (4.27) are the integrality constraints that 

define the binary nature of decision variables 𝑥𝑗 and 𝑦𝑖𝑗. 

In the event of a capacitated fixed charge facility location problem, an additional parameter 

𝐶𝑗 to define the maximum capacity of each facility 𝑗 ∈ 𝒥 is needed. The following additional 

capacity constraint is then added to model (4.23) – (4.27). 

∑ 𝑤𝑖𝑦𝑖𝑗
𝑖∈ℐ

≤ 𝐶𝑗,   𝑗 ∈ 𝒥 (4.28) 

   

Sections 4.3.2.1 and 4.3.2.2 present the model formulations for the most popular and basic 

models found in the covering-based and median-based facility location problem categories 

(see Figure 4.6). There is a large number of variants of these models which will not be 

covered here. Interested readers are referred to the authoritative work by Daskin (2011) on 

network and discrete location models for an in-depth discussion of the different facility 
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location models and all their extensions. For facility location problems that are focussed 

specifically on healthcare related problems, the work of Ahmadi-Javid et al. (2017) offers an 

excellent overview.  

4.3 Summary  

The aim of this chapter was to introduce facility location problems which are necessary for 

the development of a rescue facility location model in a disaster-stricken area that will be 

developed and discussed in subsequent chapters. Brief background information on the 

importance of healthcare and relief supply facilities was presented, followed by a discussion 

on facility location models in general. This discussion included a taxonomy and classification 

of facility location models, as well as detailed formulations for the basic models. Discussions 

were backed up with examples from the literature. 
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Chapter 5 Grid-based maze model development: a real-

world case study 

5.1. Introduction 

The main objective of this research study is to design a grid-based maze generator that can 

be used to represent traversable routes in a disaster-stricken area. Background information 

on how to generate a grid-based maze (Chapter 2) and solution strategies to solve a grid-

based maze (Chapter 3) were presented earlier. In this chapter, a computerised 

demonstrator is developed to illustrate how the various algorithms can assist humanitarian 

logistics in relief efforts by determining optimal paths for rescue efforts. A real-world disaster 

will be used to illustrate the computerised demonstrator and the software developed. In the 

chapter, a description of the real-world disaster and the data used to generate a grid-based 

maze will be presented. This will be followed by a description of a matrix-based maze that 

was constructed in combination with Kruskal’s maze generation algorithm. Finally, the 

implementation of two solution strategies (Lee algorithm and A-star algorithm) will be 

presented and the results discussed. 

5.2. The real-world disaster 

The real-world disaster that will be used in this study is Hurricane Katrina that hit New 

Orleans in late August 2005. New Orleans is a city with approximately 494 000 residents and 

is situated along the Mississippi River in the state of Louisiana in the United States of 

America (DeWaard et al., 2016). Figure 5.1 presents a map of New Orleans. 

 

Figure 5.1 New Orleans Image credit: Google Maps 
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Hurricane Katrina was a category 5 cyclone that originated on 23 August 2005 over the 

Bahamas. On 29 August 2005, the hurricane hit New Orleans, costing 1 388 residents their 

lives and amassing $108 million in property damage (Sydnor et al., 2017). Figure 5.2 depicts 

a weather photo of the storm, while Figure 5.3 shows part of the damage that was caused by 

the hurricane. 

 

Figure 5.2 Hurricane Katrina (Image: © GOES Project 

Science Office) 

 

Figure 5.3 Hurricane Katrina damage (Image credit: 

NWS/Lieut. Commander Mark Moran, NOAA Corps, 
NMAO/AOC) 

A large variety of data, facts and other information was gathered by different organisations 

and institutions.  To be able to use the real data in a maze, it was necessary to find data that 

accurately depicted the damage caused to the area, especially with regard to location and 

severity. The data used in this study was gathered and interpreted by the LSU Katrina 

Survey Team Department of Sociology1, and consists of post-damage data that accurately 

shows the severity of the damage in the different areas of the city. This data, which is shown 

in Figure 5.4, is especially useful for this study, as it enables the generation of a matrix 

maze. The different coloured dots in Figure 5.4 indicate the severity of the destruction at 

each area. Green dots indicate that there is no damage at all, while the yellow dots indicate 

signs of damage, but not complete destruction. Areas marked with orange and red dots are 

the areas where major damage to structures occurred. This damage varies from partially 

destroyed buildings to completely demolished buildings and roads. In the context of road or 

path selection, the green and yellow dots represent accessible areas (possible paths in a 

maze) while the orange and red dots represent inaccessible areas (walls in a maze). 

 
1 https://www.lsu.edu/faculty/fweil/KatrinaMaps/index.htm. 
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Figure 5.4 Residential damage to Greater New Orleans 

In the next section, the data, as depicted in Figure 5.4, will be utilised to develop a maze that 

will ultimately be used to determine optimal paths in the area. 

5.3. Greater New Orleans maze generation 

In this section, a maze will be generated to fit a map of the residential damage to the Greater 

New Orleans region, as shown in Figure 5.4 in the previous section. This maze will then 

ultimately be used to determine the best possible traversable routes that may be used by 

humanitarian relief personnel. The maze must accurately depict the inaccessible areas in the 

disaster region by “constructing walls” according to one of the maze generation algorithms 

presented in Chapter 2. These maze generation algorithms are based on walls that are 

randomly constructed; however, in the New Orleans real-world situation walls cannot be 

erected at random, but should be placed according to the limited possibilities, as dictated by 

the damage in the area. To provide for this limitation, a matrix is built, based on the available 

data of the damaged areas. The matrix is then utilised by one of the maze generation 

algorithms to generate a final maze structure representing the total disaster-stricken area 

under consideration. The steps (which are described in the remainder of this section) can be 

summarised as follows: 
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− Grid placement; 

− Develop a matrix to represent the data; 

− Generate a maze from the matrix; 

− Use a maze generation algorithm (Kruskal’s algorithm) to complete the maze; and 

− Fit the final maze over the disaster-stricken area under consideration. 

5.3.1. Grid placement according to the Hurricane Katrina damage data 

In order to generate the required matrix from the data, a grid was placed over the map 

(presented in Figure 5.4) of New Orleans that contains the residential damage data. The grid 

size was chosen through experimenting with different sizes. It was decided to use a grid size 

of 70x70 – this grid size provides for enough detail in each cell to construct a maze and to 

produce a representative matrix of the disaster region. The map, together with the grid, are 

presented in Figure 5.5. It should be noted that the grid size in Figure 5.5. is not 70x70, but 

has been adjusted for visual and presentation purposes. 

 

Figure 5.5 Residential damage to Greater New Orleans with grid overlay 

The grid developed in this step will be used (in the next section) to construct a matrix to 

represent the data of the damage in the New Orleans area.  
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5.3.2. Matrix development to represent the data 

To automatically develop a matrix, using the grid map in Figure 5.5, requires image 

recognition software that can identify the different colour-coded damage points on the map. 

For this study, the use of such specialised software is not considered, and the matrix is 

developed manually. The matrix is constructed as follows: Different values are assigned to 

different combinations of walls per cell, e.g. a 1 in the matrix would indicate the existence of 

a wall to the left of a cell. The value assignment system used is detailed in Table 5.1. 

Table 5.1 Matrix value assignment 

Matrix value Description 
Graphical representation 

Matrix Wall 

0 No walls in the cell {0} 
             

1 Wall to the left of the cell {1} 
 

2 Wall at the top of the cell {2} 

 

3 Wall to the left and the top of the cell {3} 

 

4 Inaccessible area {4} 

   

5 Relief facilities {5} 

   

It should be noted that the values 0 – 3 in Table 5.1 cater for all combinations of walls. For 

example, should a wall be required to the right of a cell, a value of 1 (wall to the left) can be 

inserted in the next adjacent cell. Similarly, other combinations can also be addressed by the 

existing numbers.  

Figure 5.6 shows an extract of the development of the matrix. The grid map of the disaster-

stricken area (on the left of Figure 5.6) is used to construct the matrix which in turn is used to 

develop a maze of the area (on the right of Figure 5.6). The maze development will be 

elaborated on in the next sub-section.  

In Figure 5.6, each matrix entry corresponds to a cell in the grid map on the left of the figure. 

The complete matrix for the 70x70 grid is presented in Annexure A. 
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Figure 5.6 Example of the matrix maze generation process 

In the next section, a discussion on how the matrix is used to generate a maze is presented. 

5.3.3. Generating a maze from the matrix 

Most of the discussion in the previous section has already explained how walls for a maze 

are generated from the matrix that represents the data of the disaster-stricken area. Figure 

5.6 (also in the previous section) graphically illustrates the process. 

The 70x70 matrix that was constructed is now used to generate a maze structure that 

represents the entire New Orleans disaster region. A software solution to perform the maze 

generation from the matrix was created, using Visual Studio and the C# programming 

language. The algorithm to produce the grid-based maze is detailed in Algorithm 5.1, while 

the main functional code can be found in Annexure B. The result is a grid-based maze 

structure that represents the possible traversable routes and the damage caused by 

Hurricane Katrina in the New Orleans region. Figure 5.7 shows the final result; the grid-

based maze for the New Orleans disaster-stricken area that was generated from the 70x70 

matrix.  

The green squares and numbered blue blocks were inserted for illustrative purposes and are 

used in the final optimal path generation. The green squares were chosen randomly and 

represent locations where disaster victims are trapped, i.e. starting points for the maze-

solving algorithms that are discussed in the subsequent sections. Similarly, the blue 

numbered blocks represent medical or relief stations, i.e. possible end points for the maze 

solving algorithms. In this example (Figure 5.7), five starting locations and six medical or 

relief stations were given. 

 

 

0 0 1 2 0

2 1 2 0 0

1 0 0 2 3

2 1 2 0 1

1 3 1 0 2

1 0 1 0 0

0 0 3 1 1

0 1 0 0 2

{ }
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Figure 5.7 Maze structure generated from New Orleans matrix 

Algorithm 5.1: Matrix maze generation  

Input:    MAZE - 2D array of maze matrix 
   gridPen - used to draw the maze walls 

  gridBrush - fills inaccessible areas of the map (e.g. river and sea) 
  HospitalBrush - used to indicate locations of hospitals 

Output: g - graphics of completely generated maze  
Process:  Generating a maze using a matrix 

1. For each value in MAZE 
2.  if value = 1 
3.   g.draw left wall using gridPen 
4.   else if value = 2 
5.   g.draw top wall using gridPen 
6.   else if value = 3 
7.   g.draw left wall using gridPen 
8.   g.draw top wall using gridPen 
9.   else if value = 4 
10.   g.fill cell with gridBrush //inaccessible area 
11.   else if value = 5 
12.   g.fill cell with hospitalBrush //relief facility 
13.  end if 
14. end for 
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The generated maze in Figure 5.7 shows the maze walls associated with the 70x70 matrix 

entries. In the next section, a maze generation algorithm will be employed to complete and 

fill the gaps in the maze. 

5.3.4. Kruskal’s maze generation algorithm to complete the maze 

The maze structure generated in the previous section (Figure 5.7) contains a large number 

of empty cells that were not catered for by the matrix wall generation approach. To complete 

the maze and to eliminate the empty cells, any one of the maze generation algorithms 

discussed in Chapter 2 can be used to generate a complete maze. It may be argued that it is 

unnecessary to complete the maze, as the open cells may already indicate areas that are 

traversable. However, the aim is to ultimately show how maze-solving algorithms can be 

employed in disaster situations and for these algorithms complete mazes are required. It 

was decided to use Kruskal’s algorithm to generate the complete maze. The algorithm was 

detailed in Chapter 2 (see Algorithm 2.2). Although this algorithm ensures that a complete 

maze is generated, it cannot guarantee, in this specific case, that an optimal path through 

the maze exists. This is due to the fact that the walls already generated from the disaster 

matrix are fixed and cannot be changed. To avoid dead ends in the maze, the algorithm was 

adapted to keep the neighbouring cells (of the matrix generated maze) empty. This ensures 

that there are open paths between the matrix generated maze and the maze generated by 

Kruskal’s algorithm.  The pseudocode of the modified Kruskal algorithm is detailed in 

Algorithm 5.2, while the code used to implement the algorithm is presented in Annexure B.  

Algorithm 5.2: Modified Kruskal maze generation algorithm  

Input:     S - Set of a collection of sets containing cells to explore 
 X - Set of cells in Matrix Maze 
Output: M – Maze is generated   
Process: Generating a perfect maze from a set of cells by Kruskal's algorithm  

1. declare e : edge and c1, c2 : cells 
2. Select a random edge e = (c1, c2) ∈ S  
3. M ← {( c1, c2)}  
4. while number of sets in S >1 do  //all cells do not belong to the same set 
5.          Select a random edge e = (c1, c2) ∈ S with c1 and c2 in different sets  
6.  If e ∈ X //modified statement 
7.   M ← M ∪{empty cell} //ensure no dead-ends occur 
8.  esle 
9.             M ← M ∪{( c1, c2)}  
10.  end if 
11.           unify c1 and c2 in S into a single set  

12. end while 

 

The final and complete maze is shown in Figure 5.8 which is the final maze for the disaster-

stricken area that can now be utilised to find optimal paths to relief centres. 
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Figure 5.8 Complete maze of the New Orleans disaster-stricken area 

5.4. Humanitarian logistics solutions – a software implementation 

A software solution was developed to illustrate the use of maze-solving algorithms and to 

show how humanitarian logistics can benefit from a system that is capable of finding the best 

traversable path in a disaster-stricken area. In this section, the software implementation will 

be introduced, and two algorithms (Lee algorithm and A-star algorithm) will be used to solve 

the New Orleans disaster-stricken area maze generated in the previous sections. 

5.4.1. The software solution 

The software solution was created using Visual Studio and the C# programming language. 

Once the maze for the disaster-stricken area has been constructed, as detailed in all the 

previous sections, the maze is displayed. Several options are then available to the user and 

when the appropriate options are selected, the maze will be solved, using either the Lee 

algorithm or the A-star algorithm, depending on the options selected. The final route is then 

mapped out on the grid-based maze and can then be used by relief workers. 



75 
 

Figure 5.9 shows the user interface and all the options that have to be selected (the options 

are discussed below the figure). 

 

Figure 5.9 Maze solver user interface 

On the right-hand side of the user interface in Figure 5.9, the grid-based maze is displayed. 

For illustration purposes, the five green blocks (labelled A to E) indicate where disaster 

victims are located (starting points) and the six numbered blue blocks represent relief 

stations (e.g. medical and supplies) or end points to where victims can be evacuated. These 

starting and end points can be changed as necessary or as the situation requires. On the left 

of the user interface are the options that the user must select. 

The following options are available: 

• Choose algorithm – the user is presented with two maze-solving algorithms, namely 

the Lee algorithm and the A-star algorithm. Both these algorithms will solve the maze 

and produce an optimal traversable path and it does not really matter which one is 

chosen. The choice is for illustrative purposes and to show that both algorithms are 

applicable. 
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• Choose starting location – These are the possible starting points (green blocks) for 

the algorithm to solve the maze and in practice represent potential locations where 

victims are positioned. In Figure 5.9, five possible locations are listed. This list of 

options will change depending on where the victims are. The user must select a 

starting point.   

• Choose hospital locations – The hospital locations represent hospitals or relief 

stations and are the possible end points for solving the maze. Selecting hospitals 

indicates that the hospitals are operational and can be considered as an end point by 

the maze-solving algorithm. If left unchecked, the algorithm will ignore the hospital 

(assuming that it is inaccessible) and attempt to reach a different operational 

hospital. The hospitals are indicated by the numbered blue squares and may also 

change, depending on where hospitals are or where temporary hospitals or relief 

stations are established. 

• Solve button – Pressing this button will execute the selected algorithm to solve and 

determine the optimal route from the selected starting point to the closest operational 

hospital.  

• Results – Indicates the execution time of the algorithm and the distance of the 

optimal path in terms of the total movements through the maze. 

• Reset – Resets the program to its original state. 

• Exit – Closes the program.  

The following two sections (5.4.2 and 5.4.3), solving the maze by using the two different 

algorithms will be presented. 

5.4.2. The Lee algorithm 

The Lee algorithm is the first algorithm illustrated with the real-world data. The algorithm was 

detailed in Chapter 3 and the pseudocode was presented in Algorithm 3.1 in the same 

chapter. The main code to implement the algorithm is presented in Annexure B.  In this 

example, the starting point was selected as the location at the top right-hand side (B) of the 

maze. All six hospitals or relief stations were selected, indicating that anyone of them can be 

used as an end or evacuation point.  Figure 5.10 shows the result of the Lee algorithm. The 

blue area indicates how the search evolved, as the algorithm explores neighbouring cells. 

The final path, indicated in red and obtained through a backtracking technique, shows the 

route to the nearest hospital (number 6).     
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Figure 5.10 Optimal path generated using the Lee algorithm 

Figure 5.10 also indicates the execution time and the number of moves necessary to reach 

the destination. The algorithm solved the maze in 31 405 milliseconds and required 66 

moves. 

5.4.3. The A-star algorithm 

To demonstrate the versatility of maze-solving algorithms, the A-star algorithm is also 

included as an option in the software. The A-star algorithm selects each cell to explore, 

based on a heuristic distance from the goal. This means that the algorithm does not blindly 

search until the goal is reached, but rather directs its search efforts in the direction of the 

goal, reducing the search space. The pseudocode (Algorithm 3.2), as well as a detailed 

explanation of the A-Star algorithm were presented in Chapter 3. 

Figure 5.11 is a representation of the A-star algorithm applied to the New Orleans disaster-

stricken area grid-based maze. In this example, the starting point is again selected as the 

location at the top right-hand side of the maze. Only one relief station (hospital) is being 

indicated as active (hospital 1) which will force the algorithm to find the optimal path from the 
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starting point to this specific hospital. The blue cells indicate the search space, based on 

how each cell is explored, using a heuristic distance (see Chapter 3 for an explanation of 

how the cells are selected) and the red path is then the final optimal path generated by the 

algorithm.  

 

Figure 5.11 Optimal path generated using the A-star algorithm 

The execution time and number of moves necessary to reach the destination are shown on 

the left-hand side of Figure 5.11. The A-star algorithm solved the maze in 9 700 milliseconds 

and required 98 moves. The code to generate the final solution is presented in Annexure B. 

In the following section, a more detailed discussion of the results of the two maze-solving 

algorithms will be presented. 

5.5. Discussion of results 

In this section, a general discussion of the results of the grid-based maze software solution 

applied to the real-world case study is presented. The discussion focusses on aspects, such 
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as the choice of algorithms (for both generating and solving a maze) as well as technical 

algorithmic and software development challenges. 

5.5.1. Choice of algorithms 

There are a number of algorithms that can be utilised to generate and solve a maze. Some 

of the more popular algorithms are presented and explained in Chapter 2 (to generate a 

maze) and Chapter 3 (to solve a maze). In this study, specific algorithms are selected to 

demonstrate how a grid-based maze structure and the associated algorithms can be used to 

assist in humanitarian logistics. 

The maze-generator algorithm 

The Kruskal algorithm was the preferred choice of a maze-generator algorithm in this study. 

This choice is motivated as follows. 

As described in Section 5.3, a matrix approach for the disaster-stricken areas was used to 

generate a maze. However, this maze contains a large number of empty cells that were not 

catered for and to complete the maze it was necessary to employ one of the available maze 

generation algorithms. The Prim and Kruskal algorithms were the two top choices for 

generating a maze that can be used, together with the matrix generated maze, to construct 

the final grid-based maze. As explained in Chapter 2, Prim’s algorithm starts with a single 

randomly selected cell and then explores in different directions to place the walls. This 

implies that the process of generating the maze has one randomly selected cell as a starting 

point and that the maze will be generated and completed with this one cell as starting point. 

Combining Prim’s algorithm with the matrix generated maze is unfeasible, as the walls 

already constructed by the matrix approach (which may not be changed) block the 

algorithm’s path and leave a number of cells unexplored. As opposed to this, the 

randomisation of a starting location with each iteration in Kruskal’s algorithm provides for a 

method to explore each cell, regardless of the positioning of walls generated by the matrix 

approach. This suggests that the matrix generated maze and the result of Kruskal’s 

algorithm can be combined to form one complete maze with no empty and unexplored cells. 

To avoid dead ends, the Kruskal algorithm was adapted to keep neighbouring cells (of the 

matrix generated maze) open. 

The maze-solving algorithm 

To illustrate how the maze can be solved to find an optimal path that may be used by relief 

teams in a disaster-stricken area, two algorithms were implemented in the software solution, 



80 
 

i.e. the Lee algorithm and the A-star algorithm. The intention of this discussion is not to 

choose between the two algorithms, but rather to demonstrate the working of each and then, 

based on the actual situation, leave it to the user to decide which algorithm to employ to find 

an optimum path. The discussion focuses on two aspects (path length and execution time) 

and then concludes with some general remarks regarding the two algorithms. 

In disaster situations, the length of a path plays a critical role in reaching or evacuating 

victims or transporting relief items, such as medical supplies and food to the victims. It is 

important to determine the shortest traversable path in these situations. To determine if there 

is a significant difference in path lengths between the two algorithms, all possible optimum 

traversable paths from all starting points (A-E) to all end points (1-6) were generated. This 

resulted in 30 paths for each algorithm. Path lengths are measured in the number of moves 

that an algorithm has to perform to reach an end point from a specific starting point. The 

results are summarised in Table 5.2 and graphically displayed in Figure 5.12. It is clear from 

both the table and the graph that there are no significant differences in path lengths between 

the algorithms. The two algorithms also identified the same facility (end point) as the closest 

facility to each starting point, i.e. A to 1, B to 6, C to 3, D to 6 and E to 4. 

Table 5.2 Path lengths generated by the Lee and A-star algorithms 

 LEE Algorithm 

From Starting 
Point 

To Hospital 

To the closest Hospital 1 2 3 4 5 6 

A 55 87 73 80 60 64 55 

B 98 114 97 99 70 66 66 

C 31 29 13 26 22 29 13 

D 68 72 55 57 30 22 22 

E 42 17 8 4 27 31 4 
        

 A-STAR Algorithm 

From Starting 
Point 

To Hospital 

To the closest Hospital 1 2 3 4 5 6 

A 54 87 72 77 60 64 54 

B 98 114 97 96 69 66 66 

C 31 29 12 26 22 29 12 

D 68 72 55 54 30 22 22 

E 42 17 8 4 27 31 4 
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Figure 5.12 Graphic analysis of the path length for the Lee and A-star algorithms 

An important consideration in decision support systems, such as the software solution 

developed in this study, is computational complexity. It is often necessary to find an 

acceptable trade-off level between computational time and performance. If an algorithm is 

too complicated or involves too many variables, it may take a considerable amount of time to 

solve the problem and may render any solution useless if it is not timely. In this study, the 

model and algorithms are applied to a small problem and computational complexity does not 

present a problem. However, for larger problem instances, the time to solve the maze may 

become excessive and in disaster situations where decisions are time dependent, this may 

present a problem. To highlight the computational aspects of the two algorithms, the 

execution time (in milliseconds) was recorded for each of the solutions in Table 5.2. The 

execution times are summarised in Table 5.3 and graphically represented in Figure 5.13.  

Table 5.3 Execution time of the Lee and A-star algorithms 

 LEE Algorithm 

From Starting 
Point 

To Hospital 

To the closest Hospital 1 2 3 4 5 6 

A 27316 55055 41799 49091 31006 34477 27316 

B 50093 58080 50132 51543 31519 31405 31405 

C 15624 13753 1681 10623 6479 13661 1681 

D 47919 52072 35597 37726 11319 6327 6327 

E 19667 5463 1096 356 10934 13449 356 
        

 A-STAR Algorithm 

From Starting 
Point 

To Hospital 

To the closest Hospital 1 2 3 4 5 6 

A 3072 9197 7391 5879 4198 5465 3072 

B 9700 16018 13902 11229 6285 5972 5972 

C 1034 1049 183 719 400 1075 183 

D 3654 5953 4200 3241 1187 490 490 

E 2721 468 126 97 1231 1699 97 
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Figure 5.13 Graphical analysis of the execution time for the Lee and A-star algorithms 

It can be seen from Table 5.3 that there is a significant difference between the execution 

time of the two algorithms. The A-star algorithm is clearly much faster than the Lee 

algorithm. Figure 5.14 shows the difference in the average completion time of the two 

algorithms. Although there is a significant difference in execution times, it should be noted 

that the longer times recorded for the Lee algorithm would still be acceptable, as the 

milliseconds translated into seconds means that all solutions are obtained within less than 

one minute. 

 

Figure 5.14 Average execution time of the Lee and A-star algorithms 
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5.5.2. Software development and methodological challenges 

The software artefact that was developed performed very well and was able to deliver 

reliable and accurate results. It displayed a number of advantages and is flexible in respect 

of the dynamic capability to change starting and end points to determine different optimal 

paths. A detailed discussion of the contributions will be presented in Chapter 7 and the aim 

of this section is to highlight some of the challenges that relate particularly to the 

development of the software solution.  

The first methodological challenge was the choice and development of a grid that could be 

fitted over a map of the disaster-stricken area. Normally, when a grid needs to be placed on 

a map, the use of geographic information systems (GIS) functions can be employed. A GIS 

has specialised functions to discretise a map and to place a grid over the map. In this study, 

a GIS was not available and the size of the grid had to be determined by trial and error.  

The matrix used to construct the initial grid for the damaged areas was constructed 

manually. This may have been done more accurately (and easier) if image processing 

software was available to determine where walls and paths in the grid should be established. 

Due to the combination of the matrix generated maze and the maze generated by Kruskal’s 

algorithm, a number of dead ends occurred and it was necessary to adapt Kruskal’s 

algorithm to provide for these dead ends. 

Closely link to the challenge of dead ends is the problem of a valid maze with no path that 

exists between a starting and an end point. For example, if one of the starting points (one of 

the green blocks) is situated in an area where there is no path out of the immediate vicinity, 

the algorithms would not be able to solve the optimum path problem. In this case, the user 

would have to move the starting point to an open position as close as possible to the original 

starting point in an effort to guide relief workers to get as close as possible to the victims.         

5.5.3. Final remarks 

The software solution proved to be successful and delivered the expected results. Positive 

results were obtained from the process of generating a suitable maze, using a matrix 

approach together with Kruskal’s algorithm. From the discussions above, it is clear that the 

use of the Lee and A-star algorithms to solve the maze and determine an optimal path was 

also successful. The choice of algorithm to solve the maze will depend on the real-world 

situation and the needs of disaster victims and humanitarian logistics personnel. To 

conclude the discussion on the choice between the Lee and the A-star algorithms, some 
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final thoughts on the characteristics of the two algorithms are summarised in Table 5.4 

below. 

Table 5.4 Characteristics of the Lee and A-star algorithms 

Lee algorithm A-star algorithm 

- Generally slower execution time 
- Memory intensive 
- Low complexity 

- Guarantees to find a solution if one exists 

- Generally faster execution time 
- Memory intensive 
- Higher complexity 

- Guarantees to find a solution if one exists 

 

This concludes the general discussion. Further discussion on specific contributions and 

other advantages will be presented in the final chapter of this study. 

5.6. Summary 

In Chapter 5, details in respect of a real-world case study in humanitarian logistics based on 

the techniques and algorithms presented in Chapters 2 and 3 were provided. The focus was 

on the development of a software solution that implements specific algorithms and 

demonstrates how these may be used in humanitarian relief efforts. In the next chapter, a 

solution strategy for the placement of relief facilities will be presented. This strategy will be 

based on mathematical programming models.   
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Chapter 6 Relief facility location 

6.1. Introduction 

In the previous chapter, a real-world case study of the damage caused to New Orleans by 

Hurricane Katrina was presented and showed how the use of a grid-based maze may be 

utilised to determine optimal paths to disaster victims. The identified routes can be used 

either to provide victims with relief supplies or for evacuation to the nearest hospital or relief 

facility. As alluded to in Section 4.2 (Chapter 4), it is also important to determine optimal 

locations for additional or temporary healthcare and supply facilities. This is necessary to 

maintain a humanitarian relief supply chain that can provide the required shelter, medicine, 

food and other emergency items. The establishment of relief facilities and the determination 

of optimal traversable routes in a disaster-stricken area are therefore closely linked and often 

needs to be addressed simultaneously. In this chapter, the application of two general facility 

location models in the New Orleans area will be demonstrated. Firstly, a discussion of the 

real-world data on which the facility locations models are based will be given. The two 

models are then presented, followed by a discussion of the results. Finally, the chapter is 

concluded with a brief chapter summary. 

6.2. The New Orleans data set 

The data set used is a real-world New Orleans data set. This data set is the obvious choice 

to illustrate the facility location models, as it was also used in the grid-based maze solutions 

presented in Chapter 5. Data required to formulate the facility location models include the 

demarcation of different districts in the New Orleans area (to determine where to locate 

facilities), as well as the population figures for each district and neighbourhood within a 

district (to ensure that the maximum number of people, or possible disaster victims, are 

covered).  The New Orleans data used was obtained from a research centre and is available 

from the Internet2.  Population data of 2013-2017 was used, as these were the most correct 

and complete data sets available. 

It is important to note that certain assumptions are made about the data and the model 

formulation process. These assumptions include 

- The facility location models are formulated on a high level and independently from the 

maze structure used in Chapter 5 – i.e. facilities are located in neighbourhoods and not 

 
2 https://www.datacenterresearch.org/data-resources/neighborhood-data/ 
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on specific coordinates where they may or may not be located in an inaccessible area 

according to the maze.  

- It is assumed that a facility in a specific neighbourhood will have the capacity to serve 

that neighbourhood as well as all the immediate adjacent neighbourhoods (this is called 

the coverage area of a facility). 

- The population of a neighbourhood will be treated as an importance weight to ensure 

that the maximum number of people is covered. 

- The cost of establishing a facility is not taken into account and it is assumed that 

sufficient financial and other resources are available for this. Cost can easily be 

incorporated into the models (see Chapter 4); however, accurate cost figures are not 

available and hence the assumption. 

The data set consists of a geographical map of the New Orleans area. This geographical 

area is divided into seven main districts with each district consisting of a number of 

neighbourhoods. Figure 6.1 shows the area and the seven districts numbered from A to G. 

There is a total of 52 neighbourhoods in the seven districts. Details of these 

neighbourhoods, as well as the population sizes of each neighbourhood are presented in 

Annexure C.   

 

Figure 6.1 The seven districts of the New Orleans area 
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As mentioned under the assumptions, the coverage area is defined as the selected 

neighbourhood plus the adjacent neighbourhoods. Consider for example the Gentilly district 

(District B in Figure 6.1). If a facility is to be located in the neighbourhood Milneburg, then the 

coverage area is defined as Milneburg, as well as the adjacent neighbourhoods Lake 

Terrace and Lake Oaks, St Anthony, Pontchartain Park, Gentilly Terrace and Gentilly 

Woods. This coverage area is illustrated in Figure 6.2. 

 

Figure 6.2 Illustration of a coverage area within the Gentilly district 

It should be noted that coverage areas are not limited to a specific district. A neighbourhood 

in one district (e.g. District A) may be adjacent to a neighbourhood in another district (e.g. 

District B) in which case they will form part of the same coverage area. For modelling 

purposes, a number assignment scheme is introduced to keep track of different 

neighbourhoods in different districts. This also provides for conditions of coverage areas that 

overlap more than one district. The numbering scheme works as follows: 

- Assign a value from A to G to each of the seven districts. 

- Assign a numeric value to each of the neighbourhoods in each of the districts, starting at 

one for each district. For example, A3 would indicate District A and neighbourhood 3. 
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As an example, the Glentilly district in Figure 6.1 was assigned a value of B. Table 6.1 

shows the coverage area for each neighbourhood in the district, i.e. the adjacent 

neighbourhood. Note that not all the adjacent neighbourhoods fall in District B. 

Table 6.1 Coverage area and neighbourhood assignment for District B 

Value Neighbourhood Adjacent neighbourhoods 

B1 Lake Terrace & Lake Oaks B2, B3, B4, B5, A1, A4 

B2 Filmore B1, B3, B6, A1, A4, C1 

B3 St. Anthony B1, B2, B4, B6, B7 

B4 Milneburg B1, B3, B5, B7, B8 

B5 Pontchartain Park B1, B4, B7, B8,  

B6 Dillard B2, B3, B7, C1, D2 

B7 Gentilly Terrace B3, B4, B5, B6, B8, D2, D1 

B8 Gentilly Woods B4, B5, B7, D1 

The final data requirement, before the facility models can be formulated, is to create an 

incidence matrix that shows the relationship between neighbourhoods; in this case, the 

relationship of being an adjacent neighbour or not. The incidence matrix contains either a 

value of 0 or 1. A value of 1 indicates that the neighbourhoods are adjacent and a 0 

indicates that they are not adjacent. Table 6.2 shows an extract of the incidence matrix. The 

complete incidence matrix with all 52 neighbours is presented in Annexure C.  

Table 6.2 Extraction of the neighbourhood incidence matrix 

 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 B7 B8 

A1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 

A2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 

A3 1 1 0 1 1 1 0 0 0 0 0 0 0 0 

A4 1 0 1 0 0 1 1 1 0 0 0 0 0 0 

A5 0 1 1 0 0 1 0 0 0 0 0 0 0 0 

A6 0 0 1 1 1 0 0 0 0 0 0 0 0 0 

B1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 

B2 1 0 0 1 0 0 1 0 1 0 0 1 0 0 

B3 0 0 0 0 0 0 1 1 0 1 0 1 1 0 

B4 0 0 0 0 0 0 1 0 1 0 1 0 1 1 

B5 0 0 0 0 0 0 1 0 0 1 0 0 1 1 

B6 0 0 0 0 0 0 0 1 1 0 0 0 1 0 

B7 0 0 0 0 0 0 0 0 1 1 1 1 0 1 

B8 0 0 0 0 0 0 0 0 0 1 1 0 1 0 

The incidence matrix and the population figures for each neighbourhood are the complete 

data set required for the formulation of the facility location models. These models will be 

presented in the next section. 
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6.3. The relief facility location models 

In Chapter 4, a comprehensive overview of discrete facility location models that may be 

employed to determine sites for establishing relief facilities was presented. Two facility 

location problems will be formulated in this section, using the real-world data set discussed 

in the preceding section. The two models are a set covering model and a maximal covering 

model. Both models are solved, using the Solver optimisation add-in facility in Microsoft 

Excel. 

6.3.1. A set covering facility location model 

In a disaster-stricken area, the aim is to assist all victims. This means that a sufficient 

number of relief and supply facilities should be located to ensure that all regions within the 

disaster area are covered in a timely manner. A set covering facility location model provides 

a method to minimise the number of facilities while ensuring that each region is covered. 

Minimising the number of facilities also implies that the cost is minimised; less facilities 

suggest less cost. 

In the context of this study, the objective is to determine the minimum number of 

neighbourhoods, as well as which neighbourhoods, in the New Orleans area where a relief 

facility should be established so that all 52 neighbourhoods are covered (based on the 

adjacency of neighbours). To achieve this, a standard set covering model, as formulated in 

Section 4.3.2.1 in Chapter 4, can be employed. For the sake of completeness, the model 

formulation is repeated here. 

Let 𝒥 represent a set of candidate locations (neighbourhoods) with 𝒩 the set of all adjacent 

neighbourhoods covered by a neighbourhood. 

Define the binary decision variable 𝑥𝑗 as follows 

𝑥𝑗 = {

 
1 
0 
 
 

if a facility is located at candidate neighbourhood 𝑗 ∈ 𝒥 
otherwise 

 

The model formulation is then given by 

Minimise 

 

∑ 𝑥𝑗
𝑗∈𝒥

 

 

 
(6.1) 

 

subject to 

 

∑ 𝑥𝑗
𝑗∈𝒩

≥ 1, 

 

 

 

(6.2) 

 

 𝑥𝑗 ∈ {0,1} 𝑗 ∈ 𝒥. (6.3) 
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The objective function (6.1) will minimise the number of facilities required. Constraint set 

(6.2) guarantees that each neighbourhood is covered while constraint set (6.3) ensures the 

binary nature of the decision variables 𝑥𝑗. In this model 𝑗 = 1, … . , 52 as there are 52 

neighbourhoods in the New Orleans area. 

Solving the above set covering model (6.1) – (6.3) results in a minimum of ten facilities 

required to cover all neighbourhoods, based on the adjacency assumption. The ten facilities 

should be located in the neighbourhoods indicated in Table 6.3. See also Figure 6.3 where 

the facility locations and neighbourhoods covered by each facility are graphically displayed. 

Table 6.3 Minimum number of facility locations in the New Orleans area 

Facility number Neighbourhood 

1 Lakeshore/LakeVista 

2 Lake Terrace and Oaks 

3 Desire 

4 St Roch 

5 Mid-City 

6 Gert Town 

7 Central Business District 

8 Audubon 

9 Uptown 

10 Lower Garden District 

 

Figure 6.3 Set covering location model result indicating ten facilities 

Note that the neighbourhoods on the right-hand side, as well as at the bottom-right of Figure 

6.3 do not form part of the area that is studied. Refer to Figure 6.1 to see the boundaries of 

the area under study.  
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The set covering model can also be extended to make provision for a large number of 

special needs or situations. Some of these extensions are as follows. 

- Exclude or include specific neighbourhoods as possible facility location sites 

There may be situations where it is decided to establish a relief facility in a specific 

neighbourhood due to practical or other reasons. Consider the neighbourhood Fair Grounds 

which has been identified as a neighbourhood that must have a relief facility. Assume that 

Fair Grounds is neighbourhood number 𝑧. To achieve this requirement an additional 

constraint is added to the model (6.1) – (6.3) that is formulated as follows 

 𝑥𝑧 = 1 (6.4) 

Setting the decision variable 𝑥𝑧 that corresponds to neighbourhood 𝑧 (Fair Grounds), to 1 will 

force the model to select neighbourhood 𝑧 as a facility location site.  Similarly, adding 

constraint (6.5) will exclude neighbourhood 𝑧 as a possible site for locating a facility.   

 𝑥𝑧 = 0 (6.5) 

These types of constraint are useful in situations where neighbourhoods are inaccessible or 

when neighbourhoods already have infrastructure available to establish a relief facility. 

- Conditional selections 

A conditional constraint refers to the selection of a specific neighbourhood on the condition 

that another specified neighbourhood has already been selected. Suppose neighbourhood 1 

can only be selected to build a relief station if neighbourhood 2 has already been selected (if 

neighbourhood 2 is not selected then neighbourhood 1 may not be selected). The following 

constraint will achieve this.  

 𝑥1 ≤ 𝑥2 (6.6) 

- Mutually exclusive selection 

A mutually exclusive selection reflects the contingency that either neighbourhood 1 or 

neighbourhood 2, but not both, can be selected as a relief facility site. The following 

constraint may be added to the model to enable a mutually exclusive selection between 

neighbourhoods 1 and 2. 

 𝑥1 + 𝑥2 ≤ 1 (6.7) 

Constraints (6.4) – (6.7) are examples of logical decision-making constraints and are 

extremely useful to decision makers, as it enables a modeller to provide for a large variety of 

practical situations. Additional logical constraints and further detailed discussions on these 

types of constraint can be found in Taylor (2019).  
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6.3.2. A maximal covering facility location problem 

As opposed to the set covering model which aims to find a minimum number of facilities to 

cover all neighbourhoods, the maximal covering model aims at finding an optimal number of 

facilities that would cover the highest percentage of the total population. This optimum 

number of facilities has to satisfy certain limitations such as the availability of resources. 

Depending on resources, and therefore the number of facilities allowed, not all 

neighbourhoods may be covered, as the model differentiates between small and large 

populations in the different neighbourhoods. For example, if the available resources allow for 

the establishment of only one relief facility, it is clear from the adjacent neighbourhood 

assumption that not all neighbourhoods can be covered. In this case, the model will select a 

neighbourhood that will ensure that the highest possible population is covered. The maximal 

covering model therefore aims at locating 𝑝 facilities in order to maximise the percentage of 

population covered, using the adjacent neighbourhood assumption as predetermined 

measure. The model is formulated and discussed in Section 4.3.2.1 in Chapter 4 and the 

formulation is repeated here for the sake of completeness. 

Let 𝒥 represent a set of candidate locations (neighbourhoods) with 𝒩 the set of all adjacent 

neighbourhoods covered by a neighbourhood. Two additional input parameters are defined, 

𝑤𝑖 (the population of neighbourhood 𝑖) and 𝑝 (the number of candidate neighbourhood 

locations to be established). 

Define two binary decision variables 𝑥𝑗 and 𝑧𝑖 as follows: 

𝑥𝑗 = {

 
1 
0 
 
 

if a facility is located at candidate neighbourhood 𝑗 ∈ 𝒥 
otherwise 

 

 

𝑧𝑖 = {

 
1 
0 
 
 

if neighbourhood 𝑖 is covered 
otherwise. 

 

The model formulation is then given by 

Maximise 

 

∑ 𝑤𝑖𝑧𝑖
∀ 𝑖

 

 
 

(6.8) 

 

subject to 

 

∑ 𝑥𝑗
𝑗∈𝒥

= 𝑝, 

 

 
(6.9) 

 

 
𝑧𝑖 ≤ ∑ 𝑥𝑗

𝑗∈𝒩
 

 

∀ 𝑖, 
 

(6.10) 

 

 
𝑧𝑖 ∈ {0,1} 
 

∀ 𝑖, 
 

(6.11) 

 

 𝑥𝑗 ∈ {0,1} 𝑗 ∈ 𝒥. (6.12) 
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In the above model, the objective function (6.8) maximises the total covered population. The 

constraint (6.9) ensures that 𝑝 facilities are established, while constraint set (6.10) 

guarantees that a neighbourhood is covered by an open facility. The two constraint sets 

(6.11) and (6.12) define the binary decision variables. 

The value of 𝑝 is determined in practice by the resources available to establish facilities. 

Another way of determining a “good” value for 𝑝 is to experiment with different values and 

then select the 𝑝-value that covers the highest acceptable population.  

In this study, a predetermined 𝑝-value was not available and to illustrate the model, a range 

of 𝑝-values from 1 to 10 is used. The model is therefore solved ten times, starting with a 𝑝-

value of 1 and then incrementing the 𝑝-value with 1 to a maximum value of 10. The results 

for each of the 10 solutions indicate the total population covered (which can be used as an 

acceptance or rejection factor), the neighbourhood where the facility should be located and 

the neighbourhoods covered by each facility. Table 6.4 shows the results of the 10 solutions 

which can also be graphically viewed in Figures 6.4 to 6.8. 

Table 6.4 Maximal coverage results 

Number of facilities 
(𝒑-value) 

Total population 
covered 

Neighbourhood(s) where 
facilities are located 

Number of 
neighbourhoods 
covered 

1 60901 Gert Town 10 

2 113460 Gert Town; St Roch 21 

3 147653 Gert Town; St Roch; Uptown 28 

4 174245 Gert Town; St Roch; Uptown; City 
Park 

35 

5 196674 City Park; Gentilly Terrace; Gert 
Town; St. Roch; Uptown 

39 

6 214370 City Park; Gentilly Terrace; St. 
Roch; East Carrollton; Central 
City; Touro 

42 

7 231450 Lakewood; Lake Terrace & Oaks; 
St. Roch; 7th Ward; East 
Carrollton; Central City; Touro 

47 

8 237217 Lakewood; Lake Terrace & Oaks; 
St. Roch; 7th Ward; Leonidas; 
Marlyville Fontainebleau; Central 
City; Touro 

48 

9 242835 Lakeview; City Park; Gentilly 
Terrace; St. Roch; 7th Ward; 
Leonidas; Marlyville 
Fontainebleau; Central City; 
Touro  

48 

10 248238 Lakeshore Lake Vista; Lake 
Terrace & Oaks; Mid-City; St. 
Roch; Desire dev & 
neighbourhood; Gert Town; 
Audubon; Uptown; Lower Garden 
District 

52 
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Figure 6.5 Locations of three and four facilities 
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Figure 6.7 Locations of seven and eight facilities 
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The same extensions, discussed under the set covering model, are applicable here and may 

be incorporated into the maximal coverage model, based on prior knowledge that the 

decision maker may have. 

6.4. Discussion 

Facility location models play an important role in humanitarian logistics, as they provide a 

means for locating relief facilities in such a way that people or victims can be reached and 

supported in a timely manner. In the preceding section, two standard facility location models 

(set covering and maximal covering) were applied to a real-world case study of the New 

Orleans region. 

The aim of this section is not to compare the two models, but rather to illustrate how different 

types of facility models can complement each other, as well as to show the powerful and 

appropriate solutions that standard models can provide. Two scenarios were selected to 

demonstrate this; firstly, to determine the minimum number of facilities required to cover a 

region (set covering model) and secondly, to maximise the number of people that can be 

covered by a selected number of facilities (maximal covering model). Both models form part 

of a class of discrete facility location models and both are formulated as binary (0-1) integer 

linear programming models. 

Figure 6.8 Locations of nine and ten facilities 
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The set covering model, which determines a minimum number of facilities required to cover 

a region, offers a number of advantages to modellers and decision makers and some of 

these advantages are illustrated in the application of the model in the New Orleans region. 

- The standard set covering model is easy to use and requires only a limited number of 

features as a data set. In this application, the only requirement is a list of 

neighbourhoods that are adjacent to each other. Only a basic understanding of linear 

programming models is needed to understand the mathematical concepts of the model 

and to be able to define the decision variables. 

- Depending on the size of the problem, the model can be solved in a very short time 

(measured in minutes and seconds), using the Solver add-in of Excel. For larger problem 

instances, specialised optimisation software such as CPLEX3 is available to solve the 

models. 

- The use of logical constraints will enhance the capabilities of the set covering models. If 

prior knowledge exists (e.g. neighbourhoods that are completely inaccessible), the set 

covering model can easily be adapted to make provision for this limitation. Other types of 

model adaption or extension are listed in Section 6.3.1. 

- In the application described in this chapter, an adjacent neighbourhood measurement is 

used to determine the coverage area. This measurement can easily be adapted to a 

distance measurement (all neighbourhoods within a specific distance from the facility are 

covered, as opposed to only the adjacent neighbours) or a time measurement (all 

neighbourhoods that can be reached within a pre-specified time period are covered as 

opposed to only the adjacent neighbours).  

- A cost factor can effortlessly be incorporated into the model. By changing the objective 

function in (6.1) to the objective function in (6.13) where 𝑓𝑖 represents the cost of 

establishing facility 𝑖 the cost will be minimised in the search for the minimum number of 

facilities.  

Minimise ∑ 𝑓𝑖𝑥𝑗
𝑗∈𝒥

 ∀ 𝑖 (6.13) 

The above arguments confirm that the set covering model offers a number of unique 

features that can be used in a disaster-stricken area to decide on the minimum number of 

relief facilities and where to locate them. 

The maximal covering model, which determines a maximum population covered given a pre-

specified number of facilities required, also suggests that a number of advantages can be 

achieved by modellers and decision makers. Some of these advantages overlap with the 

 
3 https://www.ibm.com/za-en/analytics/cplex-optimizer 
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benefits gained from a set covering model, but will be briefly mentioned again for 

completeness’ sake. 

- The main advantage of the maximal coverage model (which does not form part of the set 

covering model) is that experiments can be conducted to determine the best number of 

facilities, given that a pre-specified percentage or proportion of the total population must 

be covered. Even if a pre-specified population size is not available, the model can be 

solved repeatedly with different numbers of facilities (as was described in section 6.3.2). 

This gives decision makers an opportunity to make an informed decision on the number 

of facilities (and the cost) and the proportion of the total population that will be covered.  

The following benefits are the same as for the set covering model and are only briefly 

referred to here. 

- The maximal covering model is easy to use. In addition to a list of neighbourhoods that 

are adjacent to each other, the populations of each neighbourhood are also required. A 

basic understanding of mathematical models is needed to be able to define the decision 

variables and formulate the model. 

- Small and medium-sized models can be solved in Excel with the Solver add-in, but larger 

problems may require specialised software. 

- Logical constraints may be used to cater for prior knowledge. 

- Other coverage measurements, such as time and distance may be used instead of 

adjacency of neighbourhoods.  

The two types of facility location model applied in this study have highlighted the important 

role of these types of mathematical model in humanitarian logistics. The models may be 

used to locate relief and rescue facilities in disaster situations and provides for a range of 

options, based on prior knowledge about the disaster and damage caused. The models go 

hand in hand with determining optimal traversable routes, but may also be applied in other 

contexts that do not necessarily include disaster scenarios.   

6.5. Summary 

In Chapter 6, the real-world case study presented in Chapter 5 was expanded by presenting 

two mathematical models that can be used to locate relief facilities in a disaster-stricken 

area. The models were applied to the same New Orleans disaster region used in Chapter 5 

and illustrate how the optimal minimum number of facilities can be determined, as well as 

the relationship between the number of facilities and the proportion of the population that is 
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covered by the facilities. In the next chapter, the final concluding remarks of the study are 

presented.  
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Chapter 7 Conclusion 

7.1. Introduction 

The primary objective of this research was to determine to what extent mathematical 

modelling techniques can assist and support the activities of a humanitarian logistics chain in 

a natural disaster scenario. The research question, as formulated in Chapter 1, Section 1.2, 

is repeated here: 

To what extent can a grid-based maze approach, linked with a facility location problem, 

support the activities of a humanitarian logistics chain in a disaster-stricken area? 

To answer the overarching research question, the use of discrete grid-generating algorithms 

was proposed to construct a grid-based maze that could be used in a real-world disaster 

scenario to represent accessible and inaccessible areas. Two different algorithmic solutions 

were then evaluated to solve the maze and thereby assist with the determination of optimum 

traversable routes that could be used by relief and rescue workers to reach disaster victims. 

A software solution (system) was built to demonstrate the proposed techniques and 

algorithms. In addition to this, two different facility location models were also formulated and 

solved to assist with the establishment of relief facilities. The facility location models 

provided valuable information with regard to the number of facilities to be established, as 

well as the specific regions where these facilities should be established. The maximum 

population covered by established facilities was also determined. The proposed techniques 

and models were applied in a real-world disaster situation and data obtained from Hurricane 

Katrina that occurred in 2005 in New Orleans in the United States of America was used. 

Results obtained from the application of the models and algorithms suggest that the 

proposed methodology does indeed produce valuable and useful results that are typically 

required in a humanitarian logistics scenario.  

The objective of this chapter is to conclude the study by evaluating the achievement of goals 

set in Chapter 1. This evaluation is presented in Section 7.2, followed by a summary of the 

contributions made by the study and problems encountered during the study. Possible 

opportunities for future research are also highlighted. The chapter is then concluded with 

some final remarks. 

7.2. Evaluation of research goals 

The study was guided by the research question formulated in Chapter 1 and repeated above 

in Section 7.1. To achieve the overall objective and to answer the research question, four 
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secondary objectives were set. In this section, a brief overview of how the four secondary 

objectives were achieved is presented. 

1. Conduct a literature review on maze generation algorithms, solving strategies and 

facility location modelling problems 

A comprehensive literature review was conducted on each of the topics mentioned in the 

first secondary objective. Concepts were defined and explained based on the literature and 

related studies were quoted to support the ideas, models and algorithms proposed in this 

study. Chapter 2 was devoted to grid-based maze structures and the existing algorithms that 

may be used to generate the said maze structures. Four of the most well-known and popular 

maze generating algorithms were discussed and explained, i.e. Prim’s algorithm, Kruskal’s 

algorithm, a recursive backtracking algorithm, and the hunt-and-kill algorithm. Appropriate 

literature references to related studies were also provided. The focus of Chapter 3 was on 

literature review studies concerned with humanitarian logistics and possible solving 

strategies and models that could be used to solve maze structures. Four maze solving 

algorithms were reviewed and explained in detail, i.e. the Lee algorithm, A-star algorithm, 

flood-fill algorithm and a recursive backtracking algorithm. Finally, in Chapter 4, a literature 

review of facility location models and the mathematical formulation of such models that can 

be used to maximise relief efforts in a disaster-stricken area was presented. A brief 

introduction to healthcare and relief supply facilities was provided, followed by a more 

comprehensive discussion on discrete facility location models and formulations. Related 

studies in the literature were also presented.  

Three chapters were dedicated to produce a comprehensive literature review of related 

studies and to explain all modelling techniques and concepts used in the study. The first 

sub-objective was fully achieved.  

2. Design and develop a grid-based maze generator to represent traversable routes 

in a real-world disaster-stricken area 

To ensure that the proposed methodology was applicable, and could be applied to real-world 

situations, data obtained from Hurricane Katrina that hit New Orleans in the United States of 

America in 2005 was used. This data set was described in Chapter 5, Section 5.2. To 

develop a grid-based maze for the New Orleans disaster region, the following five steps had 

to be completed: 

− Grid placement; 

− Develop a matrix to represent the data; 
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− Generate a maze from the matrix; 

− Use a maze generation algorithm (Kruskal’s algorithm) to complete the maze; and 

− Fit the final maze over the disaster-stricken area under consideration. 

A software solution (using the C# programming language) was developed to generate the 

maze that could represent the actual damage caused by Hurricane Katrina in New Orleans. 

The abovementioned five steps to generate the real-world maze were described in Chapter 

5, Sections 5.3.1-5.3.4, while the software implementation of the maze generation was 

detailed in Chapter 5, Section 5.4.1.  

The successful development of a methodology to generate a maze structure that could 

represent the damage in the real-world disaster area, as well the effective software 

implementation of the process indicate that the second sub-objective was met.   

3. Evaluate and apply two different optimum path-finding algorithms to the grid-

based maze in the real-world disaster-stricken area 

To illustrate the need, importance and usefulness of the grid-based structure developed in 

sub-objective two, appropriate maze-solving algorithms were also implemented in the 

software solution. These algorithms produced optimal traversable routes from a starting 

point (where victims are located) to and end point (the nearest, or specified, medical facility). 

Two algorithms were selected for implementation, the Lee algorithm and the A-star 

algorithm. In Chapter 5, Sections 5.4.2 and 5.4.3, details of the implementation of the two 

selected algorithms in the software solution were given. In Section 5.5, a full discussion and 

evaluation of the results of the two algorithms in the software solution were presented. 

A successful software solution was created that utilised two different algorithms to find 

optimal routes in a real-world natural disaster area. The results were meaningful and will be 

of value to decision makers in humanitarian logistics where optimal traversable routes need 

to be determined in a short period of time. The third sub-objective was therefore fully 

achieved.     

4. Formulate and implement appropriate facility location models to address relief and 

rescue station location problems in the real-world scenario 

In disaster situations, it is important to determine optimal locations for additional or 

temporary healthcare and supply facilities. This is necessary to maintain a humanitarian 

relief supply chain that can provide the required shelter, medicine, food and other 

emergency items. The establishment of relief facilities and the determination of optimal 
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traversable routes in a disaster-stricken area are therefore closely linked and often need to 

be addressed simultaneously. To address the problem of relief facility locations, two 

standard facility location models were formulated and solved. The same real-world New 

Orleans data set was used to solve the models. The data set for the facility location models 

was described in Chapter 6, Section 6.2. The first model formulated and solved was a set 

covering model. This type of model determines a minimum number of facilities required to 

cover all people (the complete population) in the disaster-stricken area in a timely manner. 

The set covering model and results were presented in Chapter 6, Section 6.3.1. The second 

model is called a maximal covering facility location model and aims to cover the highest 

percentage of the total population depending on the number of facilities that can be 

established. The maximal covering model and results were presented in Chapter 6, Section 

6.3.2. A discussion of the results and the characteristics of the two models was presented in 

Chapter 6, Section 6.4. 

The models were formulated and solved successfully. Based on the assumption that a 

facility can cover all adjacent neighbourhoods, it was possible to determine that 10 relief 

facilities (and the neighbourhoods where they should be established) are needed to cover 

the entire New Orleans disaster area. The total area consists of 52 neighbourhoods with a 

total population of 248 238. The maximal coverage model was solved for a range of facilities 

(i.e. 1 facility, 2 facilities, 3 facilities, …, 10 facilities). The results indicated where (in which 

neighbourhood) facilities should be established and the maximum population covered for 

each number of facilities. The fourth sub-objective is deemed to have been fully achieved. 

To summarise, the primary research objective (formulated as the research question) and all 

the sub-objectives set in Chapter 1 were successfully achieved. The final conclusions can 

therefore be summarised as follows: 

• A grid-based maze generator can be developed successfully by combining existing 

algorithms with a new adapted matrix maze approach. This maze can accurately 

represent a real-world natural disaster area or region; 

• An efficient and accurate software solution can be developed to implement maze 

solving strategies that can determine optimal traversable routes in a real-world 

disaster-stricken area; and 

• The problem of establishing relief or medical facilities in a real-world disaster region 

can be solved rapidly and efficiently by formulating and solving standard 

mathematical programming facility location models.  

The contributions that this study has made will be discussed in the next section.  
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7.3. Contributions 

This study has made a number of contributions in both humanitarian logistics and 

mathematical modelling techniques. These contributions include the following: 

- The literature study completed during the research project provided a framework of 

relevant literature that is organised according to the different themes of the study. This 

may serve as a central source for other studies that are conducted in the same research 

area. 

- A novel grid-based structure that can represent damage caused by natural disasters was 

developed. The technique used was novel in the sense that existing grid-generating 

algorithms do not fully provide for the unique requirements of a disaster area. A matrix 

grid approach was developed to overcome these problems. To prevent large open 

spaces in the grid, the matrix grid approach was combined with an existing grid-

generating algorithm. This combination of techniques produces a perfect grid that could 

be utilised for solving other problems. 

- A software application was developed that allows users to firstly, specify starting points 

(where victims are located) and end points (relief or medical facilities) and secondly, to 

determine an optimal traversable route through the maze in a user-friendly manner. 

These routes can then be used for evacuation purposes or to send relief supplies to 

disaster victims. 

- Experiments with two facility location models were conducted. The first model was used 

to determine a minimum number of facilities required to cover the complete disaster 

area. The second model was employed to demonstrate the maximum number of people 

covered, as the number of facilities to be established was varied. This provided useful 

information to decision makers in determining where, and how many relief facilities 

should be established. 

- An extensive explanation was provided on how the facility location models can be 

extended to deliver even more insightful results, e.g. the use of logical constraints when 

prior knowledge about the situation is available; and the incorporation of cost into the 

models. 

- All the above contributions were demonstrated, using a real-world natural disaster 

scenario. This indicates that the techniques, algorithms, models and the results obtained 

are not simply theoretical results, but that a material contribution to practical situations 

was made. 
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7.4. Limitations 

The availability of a Geographic Information Systems (GIS) facility that accurately depicts all 

the damage on a map would have made the construction of a matrix (to develop a grid) 

much easier. This was done manually and took a considerable amount of time. This manual 

process also means that the matrix construction was subjective and based on the judgement 

of the researcher. 

It was not possible to obtain additional data, such as cost to establish a relief facility or 

damage to specific neighbourhoods (i.e. a completely inaccessible neighbourhood cannot be 

treated as a candidate site for establishing a relief facility). This limitation had an influence 

on the different types of models and parameters that could be used. 

7.5. Future work 

In this study, an assumption was made that a relief facility in a specific neighbourhood could 

cover all adjacent neighbourhoods. Other rules for covering neighbourhoods can be 

investigated, e.g. a relief facility in a neighbourhood may be able to cover neighbourhoods 

that can be reached in a predetermined time; or that are within a predetermined distance. 

Using, and comparing, these different rules would be interesting. 

Depending on the availability of appropriate data, the facility location models may 

incorporate other aspects, such as costs and prior knowledge (hard exclusions or inclusions 

of neighbourhoods, or minimum thresholds for the maximum number of people that must be 

covered). 

The automation of the matrix grid construction can be achieved by using a GIS or making 

use of image recognition software.  

7.6. Summary 

This is the final chapter and concludes the study. A summary of how the research objectives 

set in Chapter 1 were achieved was presented. This was followed by the contributions of the 

study and some of the challenges experienced during the study. Finally, opportunities for 

future research were highlighted. 
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Annexure A: New Orleans Matrix 

In Section 5.3.2, details of the development of a matrix to represent the damage caused by 

Hurricane Katrina are presented. In Table 5.1 in Section 5.3.2, the matrix value assignment 

is explained. The complete 70x70 matrix representing the damage to the New Orleans area 

is presented in this Annexure. The matrix is used to generate a maze for the New Orleans 

area. See Algorithm 5.1 in Section 5.3.3. 

{4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,0,0,0,0,0,0}, 
{4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,3,0}, 
{4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
{4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,4,4,4,4,4,0,0,0,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1}, 
{4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0}, 
{4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,1,0,0,0,0,0,1,2,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,3,1,0,0,0,0,0,0}, 
{4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,2,0,0,3,1,0,1,0,0,0,0,3,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,1,0,2,3,1,0,3,0,0,0,2,3,1,0,0,0,0,0,0}, 
{4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,1,0,0,0,1,2,2,0,0,2,0,0,3,2,0,0,0,0,0,3,0,0,1,0,0,0,1,0,0,3,1,2,0,0,2,0,0,1,1,3,0,1,0,0,0,0,0,3,0,0,0,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,2,1,0,2,3,1,0,0,1,3,1,0,1,0,0,3,2,0,0,0,0,0,0,1,0,0,2,0,0,3,0,0,0,3,0,0,0,2,0,2,0,3,3,0,0,0,0,3,0,0,0,0,0,0}, 
{0,0,0,0,0,0,0,3,3,1,2,0,0,0,1,2,2,0,3,3,3,1,3,2,3,3,0,2,0,0,0,2,1,0,0,0,0,0,0,1,0,3,3,3,1,3,1,2,0,0,0,0,0,3,0,0,1,2,3,1,0,0,0,2,1,0,0,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,2,3,2,3,3,2,0,3,0,0,0,0,0,0,0,0,0,0,0,0,2,0,3,2,2,2,1,3,3,1,0,2,0,0,0,2,0,2,1,3,3,3,0,0,3,1,1,0,0,0,0,0}, 
{1,0,0,1,0,0,0,1,0,3,1,1,0,0,3,1,2,1,3,3,3,2,1,0,2,2,1,0,0,0,0,0,0,0,0,0,3,1,0,2,2,0,3,1,0,3,2,1,0,0,1,3,1,0,0,3,0,1,2,3,1,0,2,3,1,0,0,0,0,0}, 
{2,0,0,0,0,2,0,0,2,2,3,3,1,0,0,0,1,0,1,3,3,2,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,2,0,0,3,3,0,2,2,2,0,1,0,3,2,0,2,3,2,2,3,3,0,0,0,0,0}, 
{0,0,3,0,0,0,1,1,0,3,1,2,0,0,3,3,1,2,3,3,1,1,2,2,2,3,1,0,0,0,0,0,0,0,0,0,1,2,0,3,3,1,0,2,1,0,2,0,0,0,0,0,0,0,2,0,2,0,0,2,2,1,2,3,1,1,0,0,0,0}, 
{0,0,0,0,0,0,2,2,0,3,0,1,1,0,2,0,3,0,2,3,1,2,3,0,3,1,0,0,0,0,0,0,0,0,0,0,2,0,0,3,3,2,1,0,0,2,1,2,0,0,0,0,0,0,3,1,2,0,0,2,3,3,3,3,3,3,0,0,0,0}, 
{0,0,0,0,0,0,0,0,3,3,0,2,1,3,3,2,1,0,1,2,2,2,0,3,3,1,0,0,0,0,0,0,0,0,0,0,2,2,0,1,3,1,0,0,0,1,0,3,1,0,1,1,3,2,2,0,0,0,0,3,2,3,3,3,3,2,3,1,0,0}, 
{0,0,0,0,0,0,0,2,0,0,2,1,1,2,2,0,2,0,1,0,3,1,1,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,0,0,0,1,0,2,0,3,1,0,2,1,0,2,3,1,0,2,3,3,2,2,0,0,0,0,0,0}, 
{3,0,0,0,0,0,0,0,0,2,0,2,0,3,3,3,3,1,0,3,3,3,1,0,2,2,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,2,0,0,2,0,1,0,2,0,0,0,2,2,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0}, 
{0,0,0,0,0,1,0,0,0,1,2,0,0,2,2,3,3,0,1,2,3,3,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,3,3,3,3,2,3,3,3,1,0,0,0,0,0,0,0,0,0,1,2,1,0,3,0,0,0,0,0,0,0,0,0,0,3,1,0,2,0,1,0,0,0,2,1,0,0,0,0,0,0,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,2,3,3,3,0,3,2,3,3,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,1,3,2,1,3,0,3,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
{0,0,0,0,2,0,2,0,0,0,0,0,2,2,2,2,0,0,3,3,3,2,3,1,3,2,0,0,0,0,0,0,0,0,0,0,0,3,1,2,1,0,3,3,1,0,0,0,0,0,2,0,0,0,0,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,2,1,1,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,2,0,0,2,0,0,0,0,0,0,0,3,1,0,3,3,0,0,0,2,1,0,0,0,0,0,0,0,0,0}, 
{0,0,0,0,0,0,0,0,1,0,0,0,2,1,2,1,0,3,1,2,2,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,3,0,3,2,0,2,2,2,0,3,0,0,0,0,0,0,0,2,0,0,0,0}, 
{0,0,0,2,0,2,0,0,0,0,0,0,0,3,3,1,0,2,2,0,3,3,3,3,3,1,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,3,0,2,1,0,1,0,0,0,0,0,0,0}, 
{0,0,0,0,0,0,3,0,0,0,0,0,2,2,0,0,2,2,0,2,3,3,2,2,2,0,0,0,0,0,0,0,0,0,2,0,0,2,2,0,0,1,0,0,0,1,0,0,2,1,0,0,0,0,0,0,0,2,0,0,0,1,0,0,1,0,1,0,0,0}, 
{0,0,0,0,0,0,2,0,1,0,0,0,2,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,3,0,0,0,2,2,0,3,1,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,1,1,2,0,0,0,0}, 
{0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,2,0,0,2,0,0,3,3,3,1,0,0,0,0,0,1,0,0,0,1,0,0,2,0,2,0,0,0,0,0,0}, 
{0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,1,0,0,0,3,1,1,0,0,0,0,2,0,0,2,0,0,1,0,0,0,0,1,0,0,0,0}, 
{0,1,2,2,0,3,3,1,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0,2,0,1,0,0,3,2,0,0,0,0,0,0,0,0,0,0,3,0,0,2,2,1,0,3,0,1,0,0,3,1,3,1,0,0,0,0,2,0,0,0,2,3,0,0,0,0}, 
{3,0,0,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,1,0,0,1,0,0,3,1,3,0,0,0,2,1,3,1,0,1,0,0,0,0,0,0,2,2,3,0,0,0,3,0,1,0,3,2,1,0,0,0,1,0,0,0,1,0,0,0}, 
{0,1,2,0,0,0,0,3,0,0,2,0,0,0,0,0,0,0,0,0,0,3,1,3,1,0,0,0,2,0,1,1,0,2,0,0,3,1,2,1,3,1,1,2,3,2,0,0,2,0,3,2,0,2,1,1,2,0,0,0,0,1,0,0,0,2,0,0,0,0}, 
{3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,3,1,0,0,0,0,3,0,1,0,0,2,3,2,0,1,0,2,0,1,0,2,0,0,0,0,3,0,0,2,2,1,0,0,0,0,2,2,0,1,0,0,3,1,0,0,0}, 
{2,2,0,0,0,0,0,2,0,0,0,3,0,0,0,0,0,0,0,0,2,0,1,2,0,2,0,0,0,0,0,0,1,3,3,2,0,2,1,0,0,0,3,3,0,0,1,2,2,2,3,3,3,3,2,2,2,0,0,0,3,3,2,0,0,2,0,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,2,2,3,1,0,0,3,0,0,0,0,2,0,0,1,0,2,0,2,0,0,0,0,2,3,2,0,0,3,3,2,2,3,0,0,1,0,0,0,1,3,2,1,0,0,0,1,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,2,0,3,1,0,1,2,0,0,0,1,0,1,0,0,0,0,2,3,0,3,0,1,2,3,2,3,3,2,0,1,0,1,0,2,1,0,0,0,1,2,2,0,0,2,2,0,0,0,3,0,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,0,3,1,1,3,3,1,2,0,0,0,0,0,0,0,3,1,2,0,0,0,0,0,0,2,0,1,2,0,3,3,2,3,0,1,3,3,3,1,3,1,0,2,0,2,0,0,0,0,0,0,0,0,2,3,2,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,1,2,3,2,3,2,2,1,1,0,0,0,0,0,3,2,2,0,0,0,2,0,2,1,0,0,0,0,0,0,3,1,2,0,2,3,3,2,2,2,0,0,0,2,1,0,0,2,0,0,0,0,0,0,2,0,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,2,0,0,0,3,3,0,3,1,1,0,0,0,0,0,0,3,1,3,3,0,0,0,2,0,3,1,0,1,0,0,0,2,1,0,3,2,2,0,3,1,0,1,3,0,3,1,0,0,0,1,0,0,0,2,0,3,3,1,0}, 
{0,0,0,3,1,0,0,0,2,3,3,1,2,1,2,0,0,2,0,2,0,0,0,0,0,0,2,0,2,2,0,0,1,0,0,2,0,2,0,2,2,0,3,3,0,3,0,0,3,0,0,2,2,3,1,1,0,3,1,0,0,0,3,1,0,0,2,2,0,0}, 
{0,0,0,2,0,0,0,0,0,2,2,2,3,0,1,2,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,2,0,0,1,0,2,0,0,0,0,2,3,1,0,3,0,0,2,0,3,1,3,0,1,0,0,2,0,0,0,2,2,2,0,0,2,0,0,1}, 
{5,5,0,0,0,0,0,0,0,0,2,0,2,3,2,1,0,0,3,1,0,0,0,3,1,3,0,0,1,0,0,0,0,3,3,0,1,3,0,2,0,0,0,0,0,2,3,1,0,0,0,1,0,0,2,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0}, 
{5,5,0,0,0,0,0,0,0,0,0,2,1,2,2,3,3,3,2,2,1,3,1,2,0,2,0,2,0,0,0,0,0,2,2,0,0,2,0,0,1,0,0,0,0,3,3,3,1,2,0,0,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,2,1}, 
{0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,2,2,2,3,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,2,2,0,0,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,2,0}, 
{4,0,0,0,0,0,1,0,0,0,3,3,1,0,0,2,0,3,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,2,2,0,0,0,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0}, 
{4,4,0,0,0,1,2,2,2,0,1,2,1,0,3,0,0,2,2,0,2,2,1,0,0,1,0,0,0,0,0,0,2,0,5,5,0,0,5,5,0,0,0,0,0,0,0,0,4,4,4,0,0,1,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,4}, 
{4,4,4,0,0,3,3,1,0,3,3,1,1,0,2,1,3,1,0,3,2,2,0,0,1,2,0,0,0,3,1,0,0,0,5,5,0,0,5,5,0,0,2,0,0,0,0,0,4,4,0,0,2,2,0,0,0,2,0,0,2,0,0,0,4,4,4,4,4,4}, 
{4,4,4,0,0,2,2,0,0,2,2,2,3,3,0,1,2,0,0,1,3,0,1,2,1,0,0,3,1,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,4,4,4}, 
{4,4,4,4,0,0,0,0,0,0,0,0,3,1,2,0,1,3,1,0,2,2,3,3,3,3,1,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,4,4,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,4}, 
{4,4,4,4,0,0,0,0,0,0,0,0,3,2,0,3,1,2,2,3,0,3,2,3,1,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
{4,4,4,4,0,0,0,1,0,2,0,3,1,0,0,3,1,0,2,0,2,3,3,3,3,3,0,0,0,2,0,0,2,1,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0}, 
{4,4,4,4,0,0,0,0,1,0,0,3,1,1,0,2,0,0,2,0,3,2,3,3,2,3,3,0,1,0,2,1,2,0,1,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
{4,4,4,4,4,0,0,1,2,0,2,2,0,3,2,0,2,1,0,2,2,3,2,2,3,3,2,2,1,0,0,0,0,2,0,3,1,2,0,0,0,0,0,0,0,0,0,2,1,4,4,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
{4,4,4,4,4,0,1,2,0,0,0,0,0,0,0,0,2,1,0,0,0,2,1,2,0,1,2,3,0,0,2,2,2,3,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0}, 
{4,4,4,4,4,0,2,1,0,2,0,2,0,0,0,0,0,0,2,1,3,5,5,0,1,0,0,3,1,0,2,0,2,2,2,1,0,2,0,0,0,0,0,0,0,0,0,0,0,4,4,4,0,0,0,0,0,1,0,0,0,0,0,3,1,0,0,0,0,0}, 
{4,4,4,4,4,0,0,2,1,0,0,0,0,0,0,0,1,0,0,1,2,5,5,0,0,3,3,1,1,0,0,1,1,2,1,2,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,1}, 
{4,4,4,4,4,0,0,2,3,0,0,0,1,0,0,2,0,2,1,2,0,2,1,0,2,0,2,3,1,3,1,2,0,3,3,0,1,0,0,2,2,0,1,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0}, 
{4,4,4,4,4,0,2,0,1,0,0,0,0,0,0,0,0,0,3,1,0,0,0,3,0,2,3,3,1,2,2,0,0,2,1,2,2,0,0,0,0,2,0,0,0,1,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
{4,4,4,4,4,0,0,2,0,2,1,0,0,1,0,0,0,0,1,0,0,1,1,2,0,0,2,2,0,2,0,3,3,3,3,0,2,0,0,0,1,1,0,3,1,2,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0}, 
{4,4,4,4,4,0,0,0,3,1,0,0,0,1,0,2,1,0,2,0,2,0,0,0,1,0,1,3,1,0,0,3,3,1,3,1,0,0,0,2,2,0,1,2,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0}, 
{4,4,4,4,4,0,0,2,2,0,0,0,0,2,0,0,2,0,0,2,0,0,1,0,3,2,0,2,0,2,2,0,2,0,2,0,0,0,0,1,1,0,0,0,0,0,0,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0}, 
{4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,2,0,3,1,2,0,0,0,0,2,0,0,0,0,1,0,0,2,0,0,0,0,0,0,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
{4,4,4,4,4,0,2,0,0,0,0,0,0,0,2,1,1,0,0,0,3,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0}, 
{4,4,4,4,4,0,0,0,0,0,0,0,3,1,3,1,2,3,0,1,2,0,0,0,0,0,0,0,0,1,2,0,0,0,0,2,2,0,2,0,1,0,0,0,4,4,4,4,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
{4,4,4,4,4,0,0,0,0,0,0,0,2,0,2,0,3,3,3,3,2,0,0,1,1,5,5,3,1,2,0,0,0,2,0,0,3,1,0,2,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0}, 
{4,4,4,4,4,0,0,0,0,0,0,0,2,2,0,2,2,2,0,2,0,1,2,1,2,5,5,3,1,0,0,0,1,0,0,0,2,0,0,0,4,4,4,0,0,4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0}, 
{4,4,4,4,4,0,0,0,0,5,5,0,0,0,0,2,0,0,0,0,0,2,0,0,1,3,2,3,1,0,0,0,1,0,0,0,0,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0}, 
{4,4,4,4,4,4,0,0,0,5,5,0,2,1,0,0,0,0,1,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0}, 
{4,4,4,4,4,4,4,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0}. 
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Annexure B: C# code used in software solution 

In Chapter 5, a software application that was developed to illustrate how various algorithms 

may be implemented to assist humanitarian relief activities is presented. The C# software 

code to implement the different algorithms is presented in this Annexure. 

 

Code to develop a maze based on a matrix – see Algorithm 5.1 in Section 5.3.3 

 

private Graphics g; 

int[,] emptyList = new int[70,70]; 

public Coordinate temp = new Coordinate(35, 39, 0);  //2d array [row(y), colummm(x)] 

public int row, column, mazeValue = 0; 

List<List<Coordinate>> aStarHospitalPaths = new List<List<Coordinate>>(); 

private int[,] tempMaze = new int[70, 70]; 

 
private void DrawMaze() 

{ 

 pictureBox1.Image = new Bitmap(680, 680);//684 

 g = Graphics.FromImage(this.pictureBox1.Image); 

 Pen gridPen = new Pen(Color.Black, 2); 

 SolidBrush gridBrush = new SolidBrush(Color.Black); 

 SolidBrush hospitalBrush = new SolidBrush(Color.Blue); 

 SolidBrush startingBrush = new SolidBrush(Color.Green); 

 float multiplierWidth = (float)pictureBox1.Image.Width / 70; 

 float multiplierHeight = (float)pictureBox1.Image.Height / 70; 

 int mazeL = maze.GetLength(0); 

 // iterate through all i,j locations in the maze 

 for (int j = 0; j < maze.GetLength(0); j++) 

 {                      

  for (int i = 0; i < mazeL; i++) 

  { 

   if (maze[j, i] == 2) 

 { 

    g.DrawLine(gridPen, i * multiplierWidth, j * multiplierHeight, (i + 1) * 

multiplierWidth, j * multiplierHeight); 

   }                                                                         

   else if (maze[j, i] == 3) 

   { 

   g.DrawLine(gridPen, (i) * multiplierWidth, j * multiplierHeight, (i) * 

multiplierWidth, (j + 1) * multiplierHeight); 

   g.DrawLine(gridPen, (i) * multiplierWidth, j * multiplierHeight, (i + 1) * 

multiplierWidth, (j) * multiplierHeight); 

   } 

   else if (maze[j, i] == 1) g.DrawLine(gridPen, i * multiplierWidth, j * 

multiplierHeight, (i) * multiplierWidth, (j + 1) * multiplierHeight); 

   else if (maze[j, i] == 4) g.FillRectangle(gridBrush, i * multiplierWidth, j * 

multiplierHeight, multiplierWidth, multiplierHeight); 

   else if (maze[j, i] == 5) 

   { 

    g.FillRectangle(hospitalBrush, i * multiplierWidth, j * multiplierHeight, 

multiplierWidth, multiplierHeight); 

   } 
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  } 

 } 

} 

 

Code to develop a maze using modified Kruskal’s algorithm – see Algorithm 5.2 in Section 

5.3.4 

 

private void DrawKruskalMaze() 

{ 

 Array.Copy(maze, tempMaze,4900); 

 int row = 0; 

 int column = 0; 

 Random randomNumber = new Random(); 

 int[,] wallArray = new int[70, 70]; 

 int direction = 0; 

 List<List<string>> sets = new List<List<string>>(); 

 List<string> tempList = new List<string>(); 

 List<string> tempList2 = new List<string>(); 

 row = randomNumber.Next(70);//start row 

 column = randomNumber.Next(70);//start column 

 List<int[]> transitions = new List<int[]>(); 

 

 for (int i = 0; i < 70; i++)// Firstly create an array full of walls 

 { 

  for (int j = 0; j < 70; j++) 

  {       

   wallArray[i, j] = 3; 

   sets.Add(new List<string> {i+","+j});                    

  } 

 } 

 

 while (sets.Count>1) 

 { 

  while (column != 80) //will always run untill break 

  { 

   direction = randomNumber.Next(4); 

   //Test if wall was already removed 

   if (transitions.Contains(new int[] { row, column, direction })) 

   {         

    row = randomNumber.Next(70);//start row 

    column = randomNumber.Next(70);//start column 

    break;   

   } 

   //up 

   if ((direction == 0) && ((row - 1) > -1)) 

   { 

    foreach (List<string> set in sets) 

    {               

     if (set.Contains(row + "," + column) == true) 

     { 

      tempList = set; 

     } 
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     if (set.Contains((row - 1) + "," + column) == true) 

     { 

      tempList2 = set; 

     } 

    } 

    if (tempList != tempList2) 

    { 

     sets.Remove(tempList); 

     sets.Remove(tempList2); 

       sets.Add(tempList.Concat(tempList2).ToList()); 

     if (wallArray[row, column] == 3) 

      wallArray[row, column] = 1; 

     else if (wallArray[row, column] == 2) 

      wallArray[row, column] = 0;    

    } 

    transitions.Add(new int[] { row, column, 0 }); 

    transitions.Add(new int[] { row-1, column, 2 }); 

    row = randomNumber.Next(70);//start row 

    column = randomNumber.Next(70);//start column 

    break; 

   } 

   else if ((direction == 1) && (column + 1 < 70)) 

   {//right 

//The same process is followed for the remaining directions: Left, right, down. 

   } 

  } 

 } 

 tempList = sets.First(); 

 //Combines matrix maze and Kruskal maze 

 for (int i = 0; i < 70; i++) 

 { 

  for (int j = 0; j < 70; j++) 

  { 

   if (maze[i, j] == 0) 

   { 

    if ((i - 1 >= 0) && (j - 1 >= 0) && (j + 1 <= 69) && (i + 1 <= 69)) 

    { 

     if((maze[i,j-1] == 0) && (maze[i-1, j] == 0) && (maze[i, j+1] == 0) && 

(maze[i+1, j] == 0)) 

     { 

      tempMaze[i, j] = wallArray[i, j]; 

     }   

    } 

   } 

  } 

 } 

 Array.Copy(tempMaze, maze, 4900); 

 DrawMaze(); 

} 
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Code to solve a maze using the A-star algorithm – see Algorithm 3.2 in Section 3.3.2. 

 

public List<Coordinate> Solve(Coordinate startTemp) 

{ 

 List<Coordinate> nextToVisit = new List<Coordinate>(); 

 int mazeSize = 70; 

 int valUp, valLeft, valRight, valDown; 

 float multiplierWidth = (float)pictureBox1.Image.Width / mazeSize; 

 float multiplierHeight = (float)pictureBox1.Image.Height / mazeSize; 

 bool validLeft, validRight, validUp, validDown = false; 

 mazeSize = 69; 

 Coordinate cur; 

 List<Coordinate> visited = new List<Coordinate>(); 

 SolidBrush movement = new SolidBrush(Color.LightSteelBlue); 

 SolidBrush movementVisited = new SolidBrush(Color.Blue); 

  

//A-star algorithm start 

 int startRow = startTemp.getRow(), startColumn = startTemp.getColumn(); 

 float curgValue = 0, successorgCost, curfValue = 0;  

 Coordinate smallest = new Coordinate(); 

 //nextToVisit : open list 

 //visited     : closed list 

 if (radioButtonAstar.Checked) 

 { 

  int[,] activeH = ActiveHospitals(); //gets all the active hospials 

  Coordinate startCoordinate = startTemp; 

  startRow = startCoordinate.getRow(); 

  startColumn = startCoordinate.getColumn(); 

          

  for (int h = 0; h < activeH.Length/2; h++)//runs for each hospital selected 

  { 

   int goalRow = activeH[h,0]; 

   int goalColumn = activeH[ h,1]; 

   nextToVisit.Clear(); 

   visited.Clear(); 

   nextToVisit.Add(startCoordinate); 

   nextToVisit.First().setfValue(H(goalRow, goalColumn, 

nextToVisit.First().getRow(), nextToVisit.First().getColumn())); 

   nextToVisit.First().setgValue(0); 

 

   while (nextToVisit.Count != 0) 

   { 

    List<Coordinate> tempNextToVisit = nextToVisit; 

    cur = SmallestfValue(tempNextToVisit); 

    nextToVisit.RemoveAt(getNodeIndex(nextToVisit, cur)); 

    row = cur.getRow(); 

    column = cur.getColumn(); 

    mazeValue = cur.getMazeValue(); //value of maze in maze array 

    curfValue = cur.getfValue(); 

    //test bounds 

    validUp = (row - 1 >= 0); 

    validLeft = (column - 1 >= 0); 

    validRight = (column + 1 <= mazeSize); 
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    validDown = (row + 1 <= mazeSize); 

    g.FillRectangle(movementVisited, ((column) * multiplierWidth) + 1, (row * 

multiplierHeight) + 1, multiplierWidth - 2, multiplierHeight - 2); 

 

    if (validUp) 

    { 

     valUp = maze[row - 1, column]; 

     if (new int[] { 0, 1, }.Contains(mazeValue) && valUp != 4) 

     { 

      successorgCost = cur.getgValue() + 1;//Nature of maze: distance 

between neighbor nodes = 1 

      curfValue = H(goalRow, goalColumn, row - 1, column) + successorgCost; 

      startTemp = new Coordinate(row - 1, column, valUp, cur, 

successorgCost, curfValue); 

 

      if (ContainsNode(nextToVisit, startTemp)) 

      { 

       if ((G(startTemp) <= successorgCost))  

       { 

        nextToVisit[getNodeIndex(nextToVisit, 

startTemp)].setgValue(G(startTemp)); 

        nextToVisit[getNodeIndex(nextToVisit, 

startTemp)].setfValue(H(goalRow, goalColumn, row - 1, column) + G(startTemp)); 

        nextToVisit[getNodeIndex(nextToVisit, 

startTemp)].setParent(cur); 

       } 

      } 

      else if (ContainsNode(visited, startTemp)) 

      { 

       if ((G(startTemp) < visited[getNodeIndex(visited, 

startTemp)].getgValue())) 

       { 

        startTemp.setgValue(G(startTemp)); 

        startTemp.setfValue(G(startTemp) + H(goalRow, goalColumn, 

startTemp.getRow(), startTemp.getColumn())); 

        startTemp.setParent(cur); 

        nextToVisit.Add(startTemp); 

        visited.RemoveAt(getNodeIndex(visited, startTemp)); 

       } 

      } 

      else 

      { 

       nextToVisit.Add(startTemp); 

       g.FillRectangle(movement, (startTemp.getColumn() * multiplierWidth) 

+ 1, (startTemp.getRow() * multiplierHeight) + 1, multiplierWidth - 2, 

multiplierHeight - 2); 

       pictureBox1.Refresh(); 

      } 

      if ((valUp == 5) && (ValidHospital(row - 1, column))) 

      { 

       aStarHospitalPaths.Add(BacktrackPath(cur)); 

       break; 

      }  

    } 
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    //Left 

    if (validLeft) 

    { 

     valLeft = maze[row, column - 1]; 

     if (new int[] { 0, 2 }.Contains(mazeValue) && valLeft != 4) 

     { 

//The same process is followed for the remaining directions: Left,right,down. 

     } 

    } 

   visited.Add(cur); 

   }  

  List<Coordinate> smallestList = aStarHospitalPaths.First(); 

 

  foreach (List<Coordinate> test in aStarHospitalPaths) 

  { 

   if (smallestList.Count() > test.Count()) 

   { 

    smallestList = test; 

   } 

  } 

  return smallestList; 

 } 

 

 Code to solve a maze using the Lee algorithm – see Algorithm 3.1 in Section 3.3.1. 

 

 //Lee algorithm start 

 else if (radioButtonLee.Checked) 

 { 

  int[,] activeH = ActiveHospitals(); //gets all active hospials 

  Coordinate startCoordinate = startTemp; 

  startRow = startCoordinate.getRow(); 

  startColumn = startCoordinate.getColumn(); 

                 

  for (int h = 0; h < activeH.Length / 2; h++)//runs for each hospital selected 

  { 

  int goalRow = activeH[h, 0]; 

  int goalColumn = activeH[h, 1]; 

  nextToVisit.Clear(); 

  visited.Clear(); 

  nextToVisit.Add(startCoordinate); 

 

  while (nextToVisit.First() != null) 

  { 

   cur = nextToVisit.First();                    

   row = cur.getRow(); 

   column = cur.getColumn(); 

   mazeValue = cur.getMazeValue();  

   nextToVisit.RemoveAt(0); 
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   validUp = (row - 1 >= 0); 

   validLeft = (column - 1 >= 0); 

   validRight = (column + 1 <= mazeSize); 

   validDown = (row + 1 <= mazeSize); 

 

   if (!ContainsNode(visited, cur)) 

   { 

    //up 

    if (validUp) 

    { 

     valUp = maze[row - 1, column]; 

     if (new int[] { 0, 1, }.Contains(mazeValue) && valUp != 4) 

     { 

      nextToVisit.Add(new Coordinate(row - 1, column, valUp, cur)); 

      g.FillRectangle(movement, (column * multiplierWidth) + 1, (row * 

multiplierHeight) + 1, multiplierWidth - 2, multiplierHeight - 2); 

      pictureBox1.Refresh(); 

      } 

     if (valUp == 5 && ValidHospital(row - 1, column)) 

     { 

      return BacktrackPath(cur); 

     } 

    } 

    //Left 

    if (validLeft) 

    { 

//The same process is followed for the remaining directions: Left, right, down. 

    } 

    visited.Add(cur);//add current node to list of visited nodes 

   } 

 } 

 } 

} 

 

Code to generate an optimal path through backtracking 

 

private List<Coordinate> BacktrackPath(Coordinate cur) 

{ 

 List<Coordinate> path = new List<Coordinate>(); 

 Coordinate iter = cur;          

 

 while (iter != null) 

 { 

  path.Add(iter); 

  iter = iter.getParent();            

 } 

return path; 

} 
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Code to identify each cell in a maze 

 

public class Coordinate 

{ 

 int row; 

 int column; 

 int mazeValue; 

 float gValue, fValue; 

 Coordinate parent; 

 

 public Coordinate() 

 { 

  this.row = 0; 

  this.column = 0; 

  this.gValue = 0; 

  this.fValue = 0; 

 } 

 

 public Coordinate(int row, int column) 

 { 

  this.row = row; 

  this.column = column; 

 } 

 

 public Coordinate(int row, int column, int mazeValue) 

 { 

  this.row = row; 

  this.column = column; 

  this.mazeValue = mazeValue; 

  this.parent = null; 

 } 

 

 public Coordinate(int row, int column, int mazeValue, Coordinate parent) 

 { 

  this.row = row; 

  this.column = column; 

  this.mazeValue = mazeValue; 

  this.parent = parent; 

 } 

 

 public Coordinate(int row, int column, int mazeValue, Coordinate parent, float 

gValue, float fValue)  

 { 

  this.row = row; 

  this.column = column; 

  this.mazeValue = mazeValue; 

  this.parent = parent; 

  this.gValue = gValue; 

  this.fValue = fValue; 

 } 

 

 public void setParent(Coordinate parent) 

 { 
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  this.parent = parent; 

 } 

 

 public void setgValue(float gValue) 

 { 

  this.gValue = gValue; 

 } 

 

 public void setfValue(float fValue) 

 { 

  this.fValue = fValue; 

 } 

 

 public int getRow() 

 { 

  return row; 

 } 

 

 public int getMazeValue() 

 { 

  return mazeValue; 

 } 

 

 public int getColumn() 

 { 

  return column; 

 } 

 

 public Coordinate getParent() 

 { 

  return parent; 

 } 

 

 public float getgValue() 

 { 

  return gValue; 

 } 

 

 public float getfValue() 

 { 

  return fValue; 

 } 

} 
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Annexure C: Facility location data 

The data set used in the formulation of the facility location models (Chapter 6) consists of 

seven districts of the New Orleans area. Each of the seven districts is divided into a number 

of neighbourhoods – 52 neighbourhoods in total. Table C.1 shows the 52 neighbourhoods in 

each of the seven districts (numbered A to G). The neighbourhoods adjacent to each 

neighbourhood are also shown, as well as the population of each neighbourhood. 

Table C.1 Adjacent neighbourhood assignments and populations used in the facility location model 
formulations 

Neighbourhood Adjacent neighbourhoods Population 

A1 Lakeshore/ Lake Vista A2, A3, A4, B1, B2 3699 

A2 West End A1, A3, A5 4090 

A3 Lakeview A1, A2, A4, A5, A6 8154 

A4 City Park A1, A3, A6, B1, B2, C1, C2, C3, C5 2809 

A5 Lakewood A2, A3, A6, C5, E1, E2 1852 

A6 Navarre A3, A4, A5, C5 2778 

B1 Lake Terrace & Lake Oaks B2, B3, B4, B5, A1, A4 2143 

B2 Filmore B1, B3, B6, A1, A4, C1 5520 

B3 St. Anthony B1, B2, B4, B6, B7 4929 

B4 Milneburg B1, B3, B5, B7, B8 4682 

B5 Pontchartain Park B1, B4, B7, B8,  2243 

B6 Dillard B2, B3, B7, C1, D2 4943 

B7 Gentilly Terrace B3, B4, B5, B6, B8, D2, D1 10564 

B8 Gentilly Woods B4, B5, B7, D1 3270 

C1 St. Bernard Area C2, A4, B2, B6, D2 2707 

C2 Fairgrounds C1, C3, C4, C6, A4, D2 5544 

C3 Bayou St. John C2, C4, C5, C6, C8, A4 4298 

C4 Seventh Ward C2, C3, C6, D2, D6, F1 11062 

C5 Mid-City C3, C6, C7, C8, C10, A4, A5, A6, E2 14333 

C6 Treme` /Lafitte C2, C3, C4, C5, C8, C9, D6, F1 4682 

C7 Gert Town C5, C8, C10, E1, E2, E3, E4, E6, G1 4579 

C8 Tulane/ Gravier C3, C5, C6, C7, C9, C10, G1, F2 3692 

C9 Iberville C6, C8, F1, F2 140 

C10 B.W. Cooper Apts. C5, C7, C8, F2, G1 874 

D1 Desire Dev & Neighborhood D2, D3, D4, D7, B7, B8 2713 

D2 St. Roch D1, D3, D5, D6, D7, B6, B7, C1, C2, C4 7305 

D3 Florida Area D1, D2, D4, D5, D7 1406 

D4 Florida Dev D1, D3, D7 1604 

D5 St. Claude D2, D3, D6, D7 6835 

D6 Marigny D2, D5, D7, C4, C6, F1 3085 

D7 Bywater D1, D2, D3, D4, D5, D6 3700 
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Table C.1 Continued 

E1 Hollygrove A5, E2, E3, C7 6148 

E2 Dixon A5, C5, C7, E1 1647 

E3 Leonidas E1, E4, E5, E7, C7 6988 

E4 Marlyville/ Fontainebleau E3, E5, E6, E8, E9, C7 6172 

E5 East Carrollton E3, E4, E7, E8 3923 

E6 Broadmoor E4, E8, E9, C7, G1, G2 6982 

E7 Black Pearl E3, E5, E8 1777 

E8 Audubon E4, E5, E6, E7, E9, E10, E11 16516 

E9 Freret E4, E6, E8, E10, G2 1844 

E10 Uptown E8, E9, E11, G2, G3, G6 6255 

E11 West Riverside E8, E10, G3, G6, G7 5114 

F1 French Quarter F2, C4, C6, C9, D6 3117 

F2 Central Business District F1, C8, C9, C10, G1, G5 2970 

G1 Central City G2, G3, G4, G5, E6, C7, C8, C10, F2 14065 

G2 Milan G1, G3, G4, E6, E9, E10 5093 

G3 Touro G1, G2, G4, G6, G7, E10, E11 2870 

G4 Garden District G1, G2, G3, G5, G6, G7 2074 

G5 Lower Garden District G1, G4, G7, G8, F2 6092 

G6 East Riverside G3, G4, G7, E11, E10 2756 

G7 Irish Channel G3, G4, G5, G6, G8, E11 3588 

G8 St. Thomas Development G5, G7 2012 

Table C.2 on the next page is an incidence matrix that shows the relationship (adjacency) 

among all 52 neighbourhoods. A value of one indicates that neighbourhoods are adjacent 

and a zero indicates that they are not adjacent. The incidence matrix was derived from Table 

C.1 and is a requirement for both the set covering and maximal coverage facility location 

models formulated and solved in Chapter 6, Sections 6.3.1 and 6.3.2. 
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Table C.2 New Orleans adjacency incidence matrix 
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Table C.3 presents the results of the set covering model formulated and solved in Chapter 6, 

Section 6.3.1. The table indicates that a minimum of 10 facilities is required to cover the 

complete New Orleans area. A value of one in the coverage row indicates that a facility 

should be established in that neighbourhood, e.g. in neighbourhoods A1, B1, etc. Note that a 

relief facility in a neighbourhood also covers all the adjacent neighbourhoods which means 

that the total New Orleans population of 248 238 is covered by the ten facilities. 

Table C.3 Set covering location problem results 

 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 

Population 3699 4090 8154 2809 1852 2778 2143 5520 4929 4682 

Coverage 1 0 0 0 0 0 1 0 0 0 
           

 B5 B6 B7 B8 C1 C2 C3 C4 C5 C6 

 2243 4943 10564 3270 2707 5544 4298 11062 14333 4682 

 0 0 0 0 0 0 0 0 1 0 
           

 C7 C8 C9 C10 D1 D2 D3 D4 D5 D6 

 4579 3692 140 874 2713 7305 1406 1604 6835 3085 

 1 0 0 0 1 1 0 0 0 0 
           

 D7 E1 E2 E3 E4 E5 E6 E7 E8 E9 

 3700 6148 1647 6988 6172 3923 6982 1777 16516 1844 

 0 0 0 0 0 0 0 0 1 0 
           

 E10 E11 F1 F2 G1 G2 G3 G4 G5 G6 

 6255 5114 3117 2970 14065 5093 2870 2074 6092 2756 

 1 0 0 1 0 0 0 0 1 0 
           

 G7 G8 Minimum required 
facilities 

     

 3588 2012 Population serviced: 248238 

 0 0 10 Population total: 248238 

Table C.4 presents the results of the maximal coverage facility location model formulated 

and solved in Chapter 6, Section 6.3.2. The table is organised as follows: The first column 

indicates the number of facilities that will be established; the second column shows the 

population that will be covered by that number of facilities; and the remainder of the columns 

indicates in which neighbourhood the facilities should be established (an entry of 1 indicates 

a facility location). For example, the first row indicates that one facility will be established, 

This one facility will cover 60 901 people, and the facility must be located in neighbourhood 

C7. The second row indicates that two facilities will be established. These two facilities will 

cover 113 460 people, and the facilities need to be established in neighbourhoods C7 and 

D2. 
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Table C.4 Maximal covering location problem results 
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Annexure D: Confirmation of language editing 

 


