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1.1 Introduction 

CHAPTERl 
INTRODUCTION 

The aim of this study is basically to discuss the ARCH processes and to make some concepts 

accessible that are hitherto difficult to assimilate from most texts. It seeks to assess the 

performance of the ARCH process using bootstrap methods on microeconomic and financial 

time series data. 

The concept of Autoregressive conditional Heteroskedasticity (ARCH) was first introduced 

by Bachelier (1900) followed by a period of long silence. The concept was however revived 

by Engle ( 1982) who formally formulated a model to capture all the earlier stylized facts. In 

this research, we focus on providing an account of recent theoretical advances in ARCH 

models and their applications in macroeconomic and financial time series. By ARCH, we 

mean the phenomenon of conditional Heteroskedasticity in general and all models to capture 

this phenomenon, and hence does not refer only to Engle's original model. 

1.2 Survey of the Literature 

In recent years, experience in modeling the conditional mean of macroeconomic and financial 

time series data has emphasized the role of persistence of shocks (volatility) , and a large 

literature has emerged on testing for and estimating unit roots in the Autoregressive 

representations of univariate processes. Other related topics are the advances in the area of 

common stochastic trends and co-integration. 

In their seminal work, Nelson and Plosser (1982) established that most US macroeconomic 

series could be characterized as difference-stationary rather than trend-stationary processes, 

implying that shocks (volatility) were persistent - a characteristic consistent with Real 

Business Cycle (RBC) models, where fluctuations are driven by technology shocks. The issue 

of testing for unit roots boils down to checking whether a series in question should be 

modelled in levels or first differences. A number of tests for a unit root have been proposed, 

with the most popular being the Dickey-Fuller (DF) test, the Augmented Dickey-Fuller 



(ADF) test, and the Phillips-Perron (PP) test. Given the time series {X
1 

: t = 1,2,3, ... , N} , the 

model favoured by Dickey and Fuller (1982) is 

p-1 

M 1 = c + cp-1)x1-1 + Ioj M t-j + s" 
j;I 

where C is a constant, and M 1_j = X 1_j -X1_j_1 for j = 1,2,3, ... , p-1; pis the order of the 

autoregression model that may be applied in the analysis. If the series contains a time trend, 

then the preferred model is 

p-1 

/j){I = (ao + aJ) + (,8-l)XI-I + Ioj /j){t-j + &I' 
j;) 

For both the ADF and PP tests, the presence or otherwise of drift and/or trend assumes that 

the null hypothesis of a unit root, H 0 : ,B = 1, is not rejected using Fuller' s (1976) fr -

distribution of the t-statistic of /J, then it is necessary to proceed to test the joint hypothesis 

H 0 : /3 = 1, a 1 = 0 using the F-statistic, <D 3 given in Dickey and Fuller (1981). Dolado et al 

( 1990) also points out that if the trend is significant under H O , then normality of the t-

statistic of ,B follows, and hence the standardized normal tables should be used. However, if 

the trend is not significant, then H O should be tested with a 1 = 0 using f µ in Fuller ( 1981 ). 

If the constant under H O is significant, then the test for the unit root should be repeated using 

the standardized normal, otherwise Fuller's f should be used instead. 

As lengthy a talk as it seem to be regarding testing for unit roots, not that much can be said 

about co-integration. Many ideas in co-integration can be explained by relating them to 

univariate time series data. It can be shown that co-integration tests are a natural extension of 

the tests for unit roots in single-equation time series models. 

Uncertainty is central in financial markets where markets sometimes appear quite calm and at 

other times highly volatile. An accurate prediction of volatility is of great importance for at 



least two reasons. First, expected future volatility is an important input for all dynamic 

trading and option-pricing models derived along lines first set out by Black and Scholes 

(1973). Second, expected future volatility is also an important input for static 

pricing/hedging, portfolio selection, and margining problems, where volatility is typically 

used as an explicit measure of risk. A large variety of volatility predictors are available in 

literature. Apart from directly being based on historical data (time series), one might use 

observed option prices and an option-pricing model to obtain the volatility forecast that is 

theoretically implied by market prices. Our study will, however, be limited to predictors 

based on time series only. Within the class of predictors, one other approach is to model the 

time series behaviour of volatility explicitly using a two-stage method by first calculating a 

series of say monthly sample volatilities, and then fitting standard ARIMA models for this 

time series of monthly estimates - see Poterba and Summers (1986) and French et al (1987). 

This method assumes implicitly that volatility is constant within a month and becomes 

variable only for longer periods. Moreover, this method essentially reduces the available 

amount of information and thus resulting in an increase in the variability of the ARIMA 

model volatility forecasts. Furthermore, Chou (1988) notes that the parameter estimates are 

extremely sensitive to the sampling frequency for which the time series of volatility estimates 

is calculated. This means that the assumption of constant volatility may not be appropriate in 

some situations. A modification to changing volatility is thus required. 

Thanks to Engle (1982), changing volatility can now be modeled using parameterizations of , 

his linear Autoregressive Conditional Heteroskedasticity (ARCH) models. In the ARCH (p) 

model, the conditional variance is written as a linear function of the first p past squared 

innovations. Some of the parameterizations of Engle's ARCH models are the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) due to Bollerslev (1986) and the 

Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) due to 

Nelson (1991). The issue of proper modeling of the long-run dependencies in the conditional 

mean of macroeconomic and financial time series led to the formulation of the Integrated 

Generalized Autoregressive Conditional Heteroskedasticity (IGARCH) by Engle and 



Bollerslev in 1986. IGARCH models possess many of the features of the unit root processes 

for the mean. 

There are a number of other models where the conditional variance not only depends on the 

past variance but also subject to random noise. For instance, Hull and White (1987) used a 

continuous time stochastic stock return volatility model for the pricing of stock options. 

Using this model, they were able to explain a significant part of the strike price bias that is 

typically found in Standards and Poor (S&P) 500 index option-implied volatilities. In our 

study, however, our discussions on volatility will be based on Engle's ARCH models and 

some of its parameterized models. 

Bootstrap methods have been a powerful tool when it comes assessmg statistics and 

estimators. In this study, it is employed to the distribution of the replicated variances from an 

ARCH process. 

1.3 Importance of the study 

Given the importance of predicting volatility in macroeconomic and financial time series, 

many approaches have been proposed in the literature. Notable among them is the class of 

autoregressive heteroskedasticity (ARCH) processes originally introduced by Engle (1982). 

In many macroeconomic and financial time series data, the general assumption of constant 

variance in the disturbance term is violated. This called for the ARCH concept, where series 

are modeled taking into consideration the changing variances at different time points. As 

many methods have been proposed in the literature, it is equally important to assess the 

performance of these methods. Focusing only on ARCH process, we seek to assess its 

performance by using the Bootstrap methods, where it is assumed that the original data has 

no underlying distribution. It is also of interest to illustrate how these processes work. 

1.4 Research Methodology 

1.4.1 Applied Statistical Methods 



Statistical and econometric methods are used in this study. They include regression, and 

ARCH modelling. 

1.4.2 Data and Source of data 

All data sets to be used in this study are from the Quarterly Bulletin of Reserved Bank of 

South Africa and Statistics South Africa. 

1.4.3 Computer Aids 

Data analyses in this study are carried out using SAS and S-plus. 

1.5 Research Outline 

Chapter 1 provides an introduction to the study and briefly provides the structure of the study. 

In Chapter 2, detailed discussions on the tests for unit roots are given as the concept of 

ARCH now serves as a standard diagnostic tool in the analysis of macroeconomic time series. 

The basic ARCH models which capture various stylized facts and their interpretations are 

described and discussed thoroughly in Chapter 3. In Chapter 4, we show that the basic ARCH 

models are unable to capture all the observed phenomena, for instance, excess kurtosis and 

high degree of non-linearity. Generalizing the basic ARCH models to capture these 

phenomena then becomes a subject matter in this chapter. In Chapter 5, forecasting with 

ARCH models is considered. We also present bootstrapping ARCH processes. Chapter 6 

concludes and gives recommendations. Practical illustrations would be given after every 

chapter to illustrate the methodology. 

1.6 Research Limitations 

Interpretations of all results will apply only to a panel of series being studied. 



CHAPTER2 

REVIEW OF SOME TESTS FOR STATIONARITY 

2.1 Introduction 

Most of the time series used in modeling are non-stationary m nature. By non

stationarity, we mean that the mean, variance, and autocovariances may depend on time t. 

A time series {X1 : t = 1,2,3, ... ,N} is therefore said to be stationary if its mean, variance, 

and autocovariance are independent of time. In Box-Jenkins setting, if the mean of the 

series is less than its corresponding standard deviation, it is representable as 

p q 

x t = L ¢1X c-1 +&t + L0k&t-k ' (2.1.1) 
1=1 k=I 

where { ¢1 : j = 1,2,3, .. . , p } are the autoregressive parameters of order p, and 

{ ¢1 : j = 1,2,3, ... ,q} are the moving average parameters of order q. If, however, the 

mean of the series happens to be greater than the standard deviation, an ad~- stment made u 
to 2.1.1 yields \ l.\BRP.R~ 

p q 

x i = c + L ¢ 1x c-1 +&t - L 0 k&t-k (2. 1.2) 
1=1 k=I 

If the series is driven by a polynomial trend, further adjustments to (2.1 .2) yields the 

representation 

m p q 

x t = La/ + L ¢1X c-1 + &I - L 0k&t-k (2. 1.3) 
i= O 1=1 k=I 

6 



In equation (2 .1.1) to (2.1.3), &1 is a white noise process with mean zero and variance 

u 2
, that is 

(2.1.4) 

X
1 

is non-stationary in levels, but the differenced series 

(2 . 1.5) 

is stationary, thus x
1 

is said to contain a unit root or simply be a differenced-stationary 

(DS) series . Consider the case where p = 1 and q = 0, we obtain the autoregressive 

AR(l), process 

(2 .1. 6) 

If l<I> 1 I< 1, 2.1 .6 is said to be stationary so that 

or (2 .1. 7) 

It follows that 
(2.1.8a) 

(2.1.8b) 

(2 .1.8c) 

X 1 is said to have a unit root if ¢1 = 1. 

7 



In this case, (2 .1. 7) becomes 

assuming that the process starts at t = 0. For the particular case 

var(X1 ) = tu 2 

cov(Xl' X1_J = ✓t~k , k = 1,2, .... , 

(2.1. 9) 

(2 .1.1 Oa) 

(2.1.lOb) 

(2 .1. lOc) 

Formal tests for non-stationarity have now become a standard starting point in applied 

time series analysis. Several test statistics have been proposed to test the need for 

differencing the series before modelling. Notable among these are due to Dickey and 

Fuller (1979), Phillips and Perron (1988), and Hall (1989). 

In this chapter, we review these three unit root test procedures and support these with two 

real data sets. The remainder of this chapter is structured as follows . In section 2.2, we 

review the Augmented Dickey-Fuller ADF test. Section 2.3 outlines the Phillips-Perron 

(PP) test. The Instrumental Variable (IV) test due to Hall is discussed in Section 2.5. 

Section 2.6 and Section 2. 7, respectively, handle the multiple unit root tests and joint unit 

root test. Section 2 . 8 provides illustrations of three unit root tests using two time series 

data sets, Series 1 and Series 2 . Series 1 comprises the rand-dollar exchange rate in cents 

while Series 2 is made up of coin and banknotes in circulation. Section 2 .9 summarizes 

the chapter. 

2.2 The Augmented Dickey-Fuller (ADF) Test 

Consider the AR(l) process with 

(2 .2.1) 

8 



Subtracting X t-1 from both side of (2 .2. 1) yields 

or (2 .2.2) 

If a constant term is included in the model, we obtain 

(2 .2.3) 

Similarly, if X1 is driven by a linear time trend, then the autoregression we consider is 

(2 .2.4) 

It can be shown that if the &
1 

are not i.i.d, then the autoregressions preferred and the 

Augmented Dickey-Fuller (ADF) autoregressions should be 

or 

p - 1 

M l = (¢1 - l)XH + L> j M l - j +&L' 
j = I 

p- 1 

M l = C + (¢1 - l)XH + LY j M l - j +&1, 
j = I 

p- 1 

M 1 = (a0 +aJ)+ (¢1 - l)X t-1 + Z: rjMl - j +&1 • 

j = I 

(2.2.Sa) 

(2.2 .Sb) 

(2 .2.Sc) 

In what fo llows, p is selected to ensure that the &
1 

are uncorrelated. For the AR(l) 

process in 2.2.1, the maximum likelihood estimator of ¢1 the least squares estimator 

N 

z: x1x1-1 
¢ 1 =-l=_IN __ _ 

z: xl~I 
1=1 

9 
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Substituting X t = ¢1 X t-i + &t in (2 .2.6) yields 

⇒ 

or (2 .2.7) 

Under the null hypothesis of a unit root, H O : ¢, = l , and hence (2.2 . 7) becomes 

(2.2.8) 

The resultant likelihood ratio test is a function of 

(2.2 .9) 

where 

It is obvious that under this null hypothesis, a regression of M t on X t-i will give a 

coefficient on X t-i which is an estimate of 0, since ¢-1=1-l=0. However, under the 

alternative hypothesis H O : 1¢1 < 1, ¢ - 1 ~ 0 and hence a regression of M
1 

on X
1
_ 1 is 

appropriate. Similarly, if a constant term is included in the unit root autoregression 

(2 .2.1), a regression of M t on a constant and X t-i is deemed appropriate. Lastly, a 

linear trend indicated in (2 .2.1) suggests regressing M t on a constant, time and Xt-1. 

10 



When ¢1 =l, the process generating x1 is r(1) . This implies that X 1_1 will not satisfy the 

standard assumptions needed for asymptotic analysis . Consequently, Dickey and Fuller 

(1979) employes Monte Carlo methods to compute the non-standard percentiles for the 

distributions under the null hypothesis of the unit root. The null hypothesis is rejected if 

the test statistic is less than the corresponding critical values tabulated by Dickey and 

Fuller. Otherwise, it is accepted. 

If the autoregressive model is of a higher order, the unit root regressions are augmented 

by lagged differences and M 1_J. For example if the sample pacf suggests an AR(2) 

process, then the appropriate unit root regression to consider is 

2- 1 

M l= (¢1 - l)Xt-1 +:~::>}M l-}+ &/ 
} = I 

or 
(2.2.10) 

which suggests a regression of M
1 

on X 1-1 and M 1_ 1 . Where appropriate, a constant 

term or a linear trend is included in (2.2.10) . The inclusion of the terms M 1_ J leaves the 

asymptotic distribution of the parameters of interest unchanged . 

2.3 The Phillips-Perron (PP) Test 

In this section, we review some theoretical background for a unit root test procedure 

proposed by Phillips and Perron (1988) . We shall hereafter refer to this test procedure as 

the PP test. The unit root test regression is any of the AR(l) processes 

(2 .3.1) 

(2.3.2) 

(2.3.3) 

11 



The PP test is non-parametric in nature and has the tendency to correct serial correlation 

that may be present in the error term, &
1

. This test procedure is non-parametric in that 

the correction in &
1 

uses an estimate of the spectrum of &1 at frequency zero that is robust 

to heteroskedasticity and autocorrelation of unknown form . The procedure employs the 

Newey-West (1987) consisting estimate 

(2 .3 .4) 

where (2.3 .5) 

and r is the truncation lag determined by the expression 

(2 .3.6) 

The computed PP test statistic is given by 

(2 .3.7) 

where t <A - I is the t-statistic of (¢1 - 1) , Se(¢1 - 1) is the standard error of (¢1 - 1) , and u 

is the standard error of the test regression The asymptotic distributions of the PP test 

statistics are the same as those of the ADF test statistics. Here again, the null hypothesis 

. of a unit root Ho : ¢1 = 1 is rejected if r PP is less than the appropriate critical value at 

some level of significance. 

2.4. Instrumental Variable (IV) Unit Root Test 

In his Monte Carlo study of the empirical powers of some unit root tests, Schwert (1989) 

observed that the statistics of an earlier version of unit root test proposed by Phillips 

12 



(1987a) do not perform well in finite samples in the presence of negative moving average 

errors . Motivated by the problem, Hall (1989) proposed estimation by instrumental 

variable (IV) as an alternative to the use of non-parametric corrections. For the AR(l ) 

process 

q 

where u1 = & 1 + L & 1_ k 

k=I 

(2.4.1) 

It is shown that under the null hypothesis of a unit root H O : ¢1 = 1 the instrumental 

variable Jiw) of ¢1 has the standard Dickey-Fuller distribution. For example, let our 

date generating process ( dgp) be 

(2.4.2) 

where u1 = & 1 -01& 1_ 1 and &1 ~i.i.d.N(O, a-; ). Then the instrumental variable estimator, 

Jiw) of ¢1 using X 1_ 2 as an instrument for X 1_ 1 when ¢1 = 1 is given by 

N 

L x1x1-2 
J 1v =-1_=1'----
'f'1 N 

L x1_1x1-2 
1=1 

The corresponding test statistic proposed by Hall (1989) is given by 

~ 2 where 
a-

(2.4.3) 

(2.4.4) 

has the ADF t-dimensional, and hence the usual ADF critical values are applicable. The 

null hypothesis of a unit root is rejected if fw is less than its corresponding critical value. 

13 



2.5 The Generalized-Least-Squares (GLS) Unit Root Test 

Let's on a series {X
1 

: t = 1,2,3, ... ,N} assuming the representation 

(2 .5.1) 

(2 .5.2) 

where &
1 

~ i.i.d.N(O, CY } ) . Concentrating on the t-statistic form of the test for (2.5.1), the 

t-statistic for ¢1 = 1 is obtained by estimating by ordinary least squares (OLS), the 

autoregression 

(2 .5.3) 

Then to order N -1 
, this is equivalent to computing the ADF test statistic r df from the 

reparameterized autoregression 

(2.5.4) 

where J( = X 1 - µ , and µ. = I::
0 
X 1 /(N + 1) is the OLS estimator of µ . Next, denote 

the generalised-least-squares (GLS) test statistic by f gts . Then f gts is obtained simply by 

calculating the ADF test statistic using the autoregression in (2.5.4), replacing X 1 by a 

de-meaned series using a psuedo-GLS estimator of the mean (µ gts ) , rather than the OLS 

etimator, µ. . Based on the testing the hypotheses 

VS . 

H o : ¢1 = 1 , 

H , :1¢ 1< 1, 

(2 .5.5a) 

(2.5.5b) 

the f gts statistic 1s defined as the regression t-statistic on the coefficient of x;_1 in the 

OLS autoregression 

14 
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(2.5.6) 

where (2.5.7) 

The corresponding test statistic becomes 

(2 .5.8) 

where Se(¢: - 1) is the standard deviation of (¢1• - 1) . The same critical values used in 

the case of the ADF and PP tests apply. H O is rejected if the test statistic is less than the 

corresponding critical value. 

2.6 Multiple Unit Roots Test 

Much as we have considered testing for the presence of a unit root in a given time series, 

we must also admit that not all time series processes can well be u esen,ed by any of 

the autoregressions t LI BRAR \ 
(2.6.1) 

(2.6.2) 

(2.6.3) 

and their respective higher-order autoregressions 

(2.6.4) 

(2.6.5) 

(2.6 .6) 
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In rare instances, one might suspect more than one unit root. For such cases, Dickey and 

Pantula (1987) have proposed a simple extension of the ADF methodology capable of 

handling multiple unit roots . This is essentially nothing but more than performing the 

ADF tests on successive differences of the series, X
1

. For instance, if two unit roots are 

suspected, the appropriate autoregression to consider is any of the following: 

m 

p- 1 

112 x l = (¢1.2 - 1)x,_1 + LY ; 112 x ,_j +&,, 
J= I 

p- 1 

11
2 
x l = c1 .2 + (¢1.2 - 1)x1-1 + LY ; 11

2 
x l- j +&;, 

} = I 

i = I } = I 

(2.6.7) 

(2.6.8) 

(2 .6.9) 

where La;• t is a polynomial time trend of order m. Employing the test statistic 
i = I 

(2.6.10) 

and the same critical values used in the case of the ADF and PP tests, the null hypothesis 

(2.6.11) 

is rejected if the test statistic is less than the corresponding critical value. 

2. 7 Joint Unit Root Test: A Multivariate Setting 

Here, we outline a simple joint unit root test developed in the multivariate setting and due 

to Fountis and Dickey (1989) . This methodology requires the examination of the 

eigenvalue and eigenvector. Steps involved are as follows : 

16 



Step 1: 

⇒ 

Step 2: 

Step 3: 

Step 4: 

Fit the linear multivariate time series. That is 

(2.7 .1) 

Obtain the largest eigenvalue, A max, based on the characteristic 

equation 

0, 

where I is the p x p identity matrix. 

Test the following hypotheses 

H O : X1 has a unit root, 

vs. H 1 : X1 does not have a unit root, 

based on the following test statistic 

where A max is the largest eigenvalue based on Step 2. 

(2 .7.2) 

(2.7.3a) 

(2 .7.3b) 

(2.7.4) 

For some nominal level, a , obtain the critical value from the usual 

Dickey-Fuller table. H O is rejected if 

I i mfd I> Critical Value. (2.7.5) 
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2.8 Practical Examples 

In this section, we illustrate the concept of the unit root tests using two real data sets . The 

illustrations will be done using three tests, namely, the ADF, PP, and IV unit root tests. 

The data consists of monthly exchange rates of the South African Rand to the U.S. dollar, 

and monthly coin and banknotes in circulation . We shall, hitherto, refer to these datasets 

as Series 1 and Series 2, respectively. The data are reported in the official Bulletin of the 

Reserve Bank of South Africa. 

Series 1: Rand/Dollar Exchange Rate in cents (Jan 1986 - April 2000), 

Series 2: Coin and Banknotes in Circulation (Jan 1990 - June 2000). 

2.8.1 Application of Unit Root Tests to Series 1 

Fig. 2.1 is a graphical representation of Series 1. Fig 2.2 and Fig 2.3 are, respectively, the 

sample autocorrelation function (ACF 's) and the partial autocorrelation functions 

(PACF' s) for Series 1. 

JAN86 JANB7 J ANBB J AN8 9 JAN90 JAN91 JAN92 JAN93 JAN94 JAN95 JAN96 J AN97 JAN98 JAN99 JANOO J ANOl 

DATE 

Fig. 2.1: Series 1 (January 1986 - May 2000) 

18 



Na me of variable 
Mean of wo rkin g series 
Standard deviation 
Numb er of observations 

X 

574.4195 
206 . 9606 

172 

Autoco rrelations 
Lag Cova rian ce Corre l ation 1 9 8 7 6 5 4 3 2 1 o 1 2 3 4 5 6 7 8 9 1 

1 41830 . 807 
2 40739.394 
3 39685.947 
4 38703.339 
5 37849.686 
6 37011 .924 
7 36131. 855 
8 35302.349 
9 34323 . 370 

10 33387.499 
11 32438. 746 
12 31 450 .460 
13 30489.099 
14 29418 .597 
15 28371.011 
16 27310.380 
17 26287 . 662 
18 25422.765 
19 24435.210 
20 23285.365 
21 22048 . 696 
22 20756.084 
23 19840.291 
24 19052.070 

0. 97661 
0.9511 3 
0.92653 
0 . 90359 
0 . 88366 
0 . 86410 
0.84356 
0.82419 
0 . 80134 
0 . 77949 
0.75734 
0.73426 
0.71182 
0.68683 
0.66237 
0.63761 
0 . 61373 
0.59354 
0 . 57048 
0 . 54364 
0.51476 
0 . 48459 
0 . 46320 
0 . 44480 

marks two standard e rror s 

Fig. 2.2: Sample ACF 's for Series 1 (January 1986 - May 2000) 

Lag Corre lation 
1 0.97661 
2 - 0.05704 
3 0.00815 
4 0.02133 
5 0 . 05055 
6 - 0.00696 
7 - 0.02914 
8 0.02059 
9 -0. 08562 

10 0.01680 
11 - 0 . 02466 
12 -0.03237 
13 - 0.00467 
14 - 0.07079 
15 0.00488 
16 - 0 . 03293 
17 0.01119 
18 0 . 05495 
19 - 0 . 08282 
20 -0. 08285 
21 - 0.05829 
22 -0. 03189 
23 0 . 16125 
24 0. 02310 

Partial Autoco rrelations 
1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

*I 
I 

*I 
I 
I* 

. ** I 

. ** I 
*I 
*I 

I*** 

Fig. 2.3: Sample PACF's for Series 1 (January 1986 - May 2000) 
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Std 
0.076249 
0. 130016 
0. 165600 
0. 193405 
0.216563 
0.236599 
0.254286 
0.270066 
0.284314 
0.297155 
0.308815 
0.319430 
0.329097 
0.337930 
0. 345951 
0.353247 
0.359876 
0. 365910 
0 . 371466 
0.376525 
0 . 381061 
0.385083 
0.388612 
0.391809 



The sample PACF 's in Fig 2.3 suggest an AR process of order p= l , since only the first 

PACF falls outside the range 

2 2 +- - +-- - +0 1525 -✓N -_ ✓172 --. 

Hence the unit root autoregression that we consider is 

From Fig 2.2, the working mean of the series is 574.4195 which its standard deviation is 

206 .9606. Since the mean is greater than the standard deviation the AR(l) unit root 

autoregression that we consider is 

For the IV test procedure, we shall use X 1_ 2 as an instrument for X 1_1 . Table 2.1 

summarizes results from the three tests. In all cases, the null hypothesis of a unit root is 

accepted since the test statistics are greater than the critical values . 

Table 2.1: Unit Root Tests Results 

Critical Value 

Test Statistic 1% 5% 10% Comment 

ADF 1.5862 -3.4673 -2. 8773 -2 .5751 Accept Ho of Unit root 
pp 1.3293 -3.6473 -2.8773 -2.5751 Accept Ho of Unit root 
IV 2.9813 -3.6473 -2.8773 -2.5751 Accept H0 of Unit root 

2.8.2 Application of Unit Root Tests to Series 2 

A graph of Series 2 is as shown in Fig. 2.4. Fig 2.5 and Fig 2.6 are, respectively, the 

sample autocorrelation function (ACF ' s) and the partial autocorrelation functions 

(PACF's) for Series 2. 
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Fig. 2.4 : Series 2 (January 1990 - June 2000) 

Name of va riable 
Mean of wo rkin g series 
Standard deviation 
Numb er of observations 

X 

13234 . 75 

4265.457 

126 

Autocorrelations 
Lag Covaria nce Corre lation 1 9 8 7 6 5 4 3 2 0 1 2 3 4 5 6 7 8 9 1 

1 17564800 0.96541 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

13 

14 

15 

16 

17 

18 
19 

20 

21 

22 
23 

24 

17158948 

16714370 

16206961 
15822419 

15415191 

14773115 

14379496 

13945287 

13466298 

13171558 
12763785 

12335084 

12009878 

11587873 

11202127 

10866547 

10445588 
10003610 

9689234 

9252936 
8925458 

8687140 

8254380 

0.94310 

0.91867 

0.89078 
0.86964 

0.84726 

0.81197 

0.79034 

0 . 76647 

0 . 7401 5 

0.72395 
0.70153 

0.67797 

0 . 66010 

0.63690 

0.61570 

0 . 59726 

0.57412 
0 . 54983 
0.53255 

0.50857 

0.49057 

0.47747 

0.45368 

I******************* 

I******************* 

****************** 

ma rks two standard errors 

Fig. 2.5: Sample ACF's for Series 2 (January 1990 - June 2000) 
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Std 
0 . 089087 

0. 150766 

0.191960 

0.2241 53 
0.250679 

0.273577 

0.293664 
0.310972 

0.326525 

0.340505 

0 . 353043 

0.364634 

0.375193 

0.384793 

0 . 393678 

0 . 401772 
0 . 409192 

0 . 416054 
0 . 422294 

0.427938 
0 .433166 

0.437879 

0.442220 

0 . 446292 
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Part ial Autoco rre lations 
Lag Co rrelation - 1 9 8 7 6 5 4 3 2 1 o 1 2 3 4 5 6 7 8 9 1 

1 o . 96541 I ******************* I 
2 0 . 16307 I I 
3 - 0.011 66 I I 
4 - o. 07035 I * I 
5 0 . 06061 I I 
6 0.00374 I 
7 - 0.21099 I 
8 0 . 11060 I 
9 0 . 03139 I 

1 o - o . 05225 I 
11 o. 08836 * * I 
12 - 0 .02013 I 
13 - o. 03009 * I I 
14 0.00204 I I 
15 - o . 02796 * I I 
16 - o. 00007 I I 
17 - 0.01591 I I 
10 - 0.01307 I I 
19 - 0.05409 * I I 
20 o. 064 97 I• I 
21 - o. 03090 • I I 
22 0.01757 I I 
23 o . 00333 I * * I 
24 - o . 1 2092 I * * I I 

Fig. 2.6: Sample PACF 's for Series 2 (January 1990- June 2000) 

The sample PACF 's in Fig 2.6 suggest an AR process of order p= l , since only the first 

P ACF falls outside the range 

2 2 
± ✓N = ± ✓126 = ±0.1782 

Hence the unit root autoregression that we consider is 

From Fig 2.5, the working mean of the series is 13234.75 which its standard deviation is 

4265.457. Since the mean is greater than the standard deviation the AR(l ) unit root 

autoregression that we consider is 
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For the IV test procedure, we shall use X 1_ 2 as an instrument for X H . Table 2.2 reports 

the results from the three tests. Here again, the null hypothesis of a unit root is accepted 

in all three cases, since the test statistics are greater than the critical values. 

Table 2.2: Unit Root Tests Results 

Critical Value 

Test Statistic 1% 5% 10% Comment 

ADF -0.2217 -3.4835 -2.8845 -2.5789 Accept Ho of Unit root 
pp 0.6395 -3.4835 -2.8845 -2.5789 Accept H0 of Unit root 
IV 2.2807 -3.4835 -2.8845 -2.5789 Accept H0 of Unit root 

2.9 Conclusion 

In this chapter, we have discussed some unit root tests without considering rigorous 

derivations. We have considered some applications of three of these unit root tests. In all 

the three cases, even though the test statistics were different (but do not differ much), 

conclusions were the same. 
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CHAPTER3 

TRENDS IN MACROECONOMIC TIME SERIES 

3.1 Introduction 

It has become common practice m macroeconomic time senes analysis to test for 

stationarity. The two commonly applied tests are the Augmented Dickey-Fuller (ADF) 

and Phillips-Perron (PP) tests (these methodologies have been discussed thoroughly in 

Chapter 2). Non-stationarity due to a time-dependent mean and/or variance is another 

common feature of macroeconomic time series. A trend in a time series may be 

deterministic or stochastic, or both. While de-trending can remove a deterministic trend, 

differencing can also remove a stochastic trend. It is, however, inappropriate to de-trend a 

series having a stochastic trend or difference a series driven by a deterministic trend. In 

practice, however, the consensus view is that most macroeconomic time series are driven 

by a stochastic time trend. For instance, the decomposition of real Gross National Product 

(GNP) series into its permanent and transitory components revealed that innovations in 

the stochastic trend account for quite a sizeable proportion of the period-to-period 

movements . (Beveridge and Nelson, 1981 ). This brings into focus the concept of 

decomposition of time series into various components. With regards to modelling 

seasonal data, the traditional approach is to decompose the series into three components: 

trend, seasonal, and random components. 

In Section 3 .2, the two types of trends m most macroeconomic time sen es, namely, 

deterministic and stochastic trends are discussed. Section 3.3 discusses the Beveridge

Nelson decomposition method and the traditional additive-multiplicative decomposition 

method. In Section 3.4, we focus on giving illustrations on what is entailed in this chapter 

using real-life data. Section 3 .5 concludes. 
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3.2 Trends in Macroeconomic Time Series 

A time series, {X
1 

: t = 1,2, ... ,N} , can generally be represented as consisting of three 

parts: 

X
1 
= f(t) + Seasonal + &1 , (3 .2.1) 

where f(t) is a function of time and &1 , the disturbance term. 

3.2.1 Deterministic Trends Models 

A non-stationary time series that appears to be dependent on the time origin is said to be 

deterministic. The models for such data therefore need to include functions that depend 

on the time origin. In macroeconomics, many of such non-stationary time series can be 

modelled as polynomial, exponential, or sinusoidal functions, dependent on the time 

origin, to represent the mean of the series. A representation of such a series is 

(3 .2.2) 

where .f(t) is a function of time and &c, the disturbance term. For instance, if the series is 

driven by a linear time trend, then the deterministic trend model becomes 

(3.2.3) 

where a and b are constants. The key feature of a time trend is that it has a permanent 

effect on a time series and hence trending elements will remain in long-term forecasts. In 

practice, series driven by deterministic trends are usually de-trended in order to induce 

stationarity. Differencing becomes inappropriate in this case. Consider, for instance, the 

process : 

(3 .2.4) 

where a 0 and a 1 are constants and &1 , the disturbance term. 
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Then at time t - 1, the modified equation is 

(3.2.5) 

Subtracting (3 .2.5) from (3 .2.4) and simplifying further yields 

(3 .2.6) 

where M 1 = X 1 - X 1_ , and fl.& 1 = &1 - &1-1. Equation (3 .2.6) is the differenced 

equation. It is seen that M 1 is non-invertible since it cannot be expressed in the form of 

an autoregressive (AR) process. De-trending can be achieved by regressing X 1 on the 

appropriate polynomial time trend. The determination of the appropriate degree of the 

polynomial can be done by using the Akaike Information Criterion (AIC) or the Schwartz 

Bayesian Criterion (SBC) . On the other hand, if the series is modelled as sinusoidal 

functions, then the appropriate representation is 

m 

X 1 = µ + ~:{ak. cos[wk (t - 1)] + p k. sin[ wk (t - 1)]} + &1. (3.2.7) 
k= 

The fitted model becomes 

xl =µ+ f ~ k. cos[wk(t - 1)]+,Bk.sin[wk(t - l)] , (3 .2.8) 
k= 

where 

wk = 21r¼ is the k-th frequency, 

k = 1,2, ... ,m 

k = 1,2, ... ,m 

and m = (N - 1)/2. 
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3.2.2 Stochastic Trend Models 

Consider the general autoregressive integrated moving average ARIMA(p,d,q) process 

(3 .2.9) 

where d > 0 and B , the back-shift operator defined by 

k = 0,1,2,3, ... (3 .2.10) 

Then a stochastic trend in a given time series arises when the roots z = (z1,z2, ... ,zP ) of 

the characteristic equation 

(3 .2.11) 

are real. For such a series, taking a suitable difference of the original series can induce 

stationarity. That is to say, the series {X
1 

: t = l,2,3, ... ,N} is non-stationary but its d-th 

differenced series, (1 - B/ X 1 , is stationary for some integer d 2'. 1. Consider, for 

instance, the random walk process given by 

⇒ (3 .2.12) 

Thus, given the past information X
1
_ 1,X1

_ 2 , X
1
_ 3 , ... , the level of the series at any time t 

is subject to the stochastic disturbance at time t - l . Hence, the process is described as 

having a stochastic trend . In their findings, Nelson and Plosser (1982) suggest that many 

macroeconomic time series have a stochastic trend as well as a disturbance term. The 

question we ask is " having observed a series, but not the individual components, is there 

a way of decomposing the series into the constituent parts? We address this issue in the 

next section. 
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3.3 Decomposition of Time Series 

Numerous macroeconomic theories emphasise the importance to distinguish between 

permanent and transitory movements in a macroeconomic time series. For instance, the 

modern theories of the consumption function that classify a person's income into 

permanent and transitory components highlight the importance of such decomposition. 

While it is quite easy handling the case of deterministic trends, it is rather a difficult issue 

if the trend is stochastic. 

3.3.1 The Beveridge-Nelson Decomposition Method 

Consider the first-differenced ARIMA(p, l ,q) process having the finite-order movmg 

average representation 

Let 

Then, updating by s periods, we obtain 

We note that 

or 

s 

x l+s = xi + hos+ Lat+i . 
i =I 

s s 

Lat+i = L C6 1+ i + 016 1+i-l + 026 1+i-2 + ... ) 
i= I i = I 

s s s s 

Lat+i = L 6 1+i + 01 L 6 t+i-1 + 02 L 6 t+i-2 + .... 
i= I i =I i =I i=I 

(3 .3.1) 

(3 .3.2) 

(3 .3.3) 

(3 .3 .4) 

Now, since E(&1+;) = 0 , it follows immediately then the forecast function becomes 

s 

E(X1+J=E(X1 +b0 s+ La1+;) 
i =I 
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which simplifies to give 

⇒ (3 .3.5) 

The stochastic trend is obtained by taking the limiting value of the forecast expression 

(3 .3.6) 

as s ➔ oo . That is 

Stochastic Trend = (~[E(X,., - b, s)] = X , +(te,}, +(t,0},-, +(t,0},-, + 

(3.3.7) 

To operationalized the decomposition, we have employed the fact that 

so that 

⇒ (3 .3. 8) 

Hence 

(3 .3.9) 

With a given time series data, we can employ the Box-Jenkins method to calculate each 

value of E(X
1
+.) in (3 .3.9). All that we do is that for each observation in the data, we 

find alls-step ahead forecast and construct the sum given by (3 .3.9). 
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Now, since the random component 1s X 1 minus the sum of the deterministic and 

stochastic trends, we have 

(3.3 .10) 

Thus, the steps invo lved in the Beveridge-Nelson decomposition are: 

Step 1: Obtain the first-difference series M 1 = X
1 

- X
1
_

1 
. 

Step 2: Fit the best ARMA process of the first-differenced series, M 1 . 

Step 3: Using the best-fitting ARMA process, for each time point t = l ,2, .. . ,N , obtain 

the I-step, 2-step, .. . , s-step ahead forecasts. That is, for each value of t and 

s, obtain E(Xl+,) . 

Step 4: For each t, and by setting s to a certain value (say s = 100) , use the 

forecasts to construct the sums 

Step 5: At every time period t, form the random component by subtracting the 

stochastic portion of the trend from the value of X
1 

• This mean that, for 

each observation, and at every time period t, the random component is 

Enders (1995) recommends a small value for s if the ARMA process estimated in Step 1 

has fast decaying autoregressive components, for instance s = 2 for the ARIMA(O, 1,2) 

process. For slowly decaying autoregressive components, Enders (1995) recommends a 

large value for s. 
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3.3.2 Decomposition of Seasonal Time Series 

Time series data that contain seasonal components are quite common m practice, 

especially in macroeconomics and natural sciences. In macroeconomic time series, the 

seasonal pattern is frequently stochastic and changes with time. It is of the view that the 

stochastic nature of seasonality are due to the fact that the series are influenced by many 

economic factors that do not repeat themselves exactly every season. 

The traditional way of modelling seasonal time series data is to decompose the series into 

three components, viz. , a trend, a seasonal component, and an error term. The two 

traditional decomposition methods are the additive and multiplicative decomposition 

methods. We refer to the representation given in (3 .2.1) 

X, = f(t) + Seasonal + & , 

as the additive decomposition method. The multiplicative decomposition method 

specifies the following representation 

X , = f (t) x Seasonal x &1 • (3 .3.11) 

This is readily transformed into an additive model as 

In X , = Inf (t) + ln(Seasonal) + In &1 . (3.3 .12) 

In other instances, it becomes appropriate to model the seasonal component as a linear 

combination of trigonometric functions . In this characterization 

(3 .3.13) 

where m = ½, and l is the seasonal length. 
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For such a series, the appropriate representation becomes 

(3.3.14) 

In the absence of any clear trend, the preferred representation is 

(3 .3.15) 

where C is a constant term. This means, in essence, that modelling a non-stationary 

(seasonal) time series is equivalent to decomposing the series into sums of trigonometric 

functions . 

3.3.3 Decomposition of Series into Deterministic and Stochastic Parts 

Lastly, we consider some cases where the series may appear to be scattered around a time 

trend f(t) , where f(t) may be linear or quadratic. When the data are independent, then the 

method usually employed consists of decomposing the series into two parts -

deterministic and stochastic. The method essentially removes the linear(quadratic) 

deterministic part that causes the non-stationarity in the series, and modelling the 

remaining stochastic part using the Box-Jenkins methodology. 

3.4 Practical Examples 

In this section, we illustrate the concepts discussed so far in this chapter with two real-life 

data sets, Series 3 and Series 4. Series 3 consists of monthly data on Consumer Price 

Index (CPI) for South Africa from January 1994 to Jan 2000. The base year is 1995=100. 

Series 4 is made up of monthly rand/pound exchange rate in cents. It stretches from 

January 1986 to July 2000. 
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3.4.1 Example 1: Decomposition of Series 3 

Fig. 3 .1 below is a graphical representation of Series 3. The plot of the series shows a 

strong linear trend, suggesting the presence of a linear deterministic trend . 
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Fig. 3 .1: Series 3 (January 1995 - January 2000) 

The data points seem to have long drifts indicating a high positive correlation. This 

means that the series appear to be dependent. The removal of the linear deterministic 

trend involves fitting the model 

(3.4 .1) 

where a 0 and a 1 are constants and &1 - i.i.d.N(0,u : ) . Table 3.1 reports the results 

obtained from fitting this model. 

Now, since we want a precise fit and want to characterise the noise in the series, we need 

to include the stochastic part. Analysing the residuals using the Box-Jenkins methodology 

does this. The residuals i 1 from the model (3 .4 .1 ), after using the estimated values, are 

pictorially given in Fig. 3 .2. Table 3 .2 contains the unit root test results with the estimated 

residuals as the variable. 
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Table 3 .1: Regression Results for Removing the Deterministic Component from Series 3 

Dependent Var i able : X 

r 
e 
s 

2 

1 

i 0 
d 
u 
a 
I 

-1 

0 

Va r iabl e 

Inte r ce pt 
T 

10 

CP I 

Ordina ry Leas t Squares Es timat es 

SSE 64.47944 DFE 71 
MS E 0 . 908161 Root MSE 0 . 952975 
SBC 206 . 6857 AIC 202 . 1048 
Reg Rs q 0 . 9962 Total Rsq 0 . 9962 
Normal Tes t 4. 1086 Pro b>Chi-Sq 0 . 1282 
Durb in -Wat so n 0.0777 

DF B Value Std Error t Ratio Appro x Pro b 

20 

-2 14. 348300 
0 . 023595 

30 40 

T 

2 . 41 60 -88 . 720 
0 . 00017 4 1 35 . 692 

60 

0 . 0001 
0 . 0001 

70 

Fig. 3 .2: Series 3 Residuals 
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Table 3.2: ADF Unit Root Test Residuals 

ADF Test Statistic -0.637847 

*MacKinnon critical values for rejection of hypothesis of a unit root . 

Augmented Dickey-Fuller Test Equation 
Dependent Variable : L'>(residua l) 
Method: Least Squares 
Sample(adjusted) : 1994:02 - 2000:01 
Included observations: 72 after adjusting endpoints 

Variable Coefficient 

(residual) 1_ 1 -0.021580 

R-squared 0.003563 
Adjusted R-squared 0.003563 
S.E. of regression 0.264881 
Sum squared resid 4.981481 
Log likelihood -6 009769 

Std. Error 

0.033833 

1 % Critical Value* 
5% Critical Value 
10% Critical Value 

I-Statistic 

-0.637847 

Mean dependent va r 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 

Table 3 .3 : Results of Modelling Series 3 Residual (Stochastic Part) 

ARMA(p+d,q) Tentative Order Selection Tests for the Residual Series 

( 5% Significance Leve l) 

Par ameter 

MA1 ,1 

MA1 ,2 
AR1 , 1 

Variance 

Std Error 

AIC 

SBC 

ESACF p+d q 
2 1 
1 2 

4 2 
5 

0 4 

Maximum Likelihood Estimation 

App rox. 
Estimate Std Error T Ratio 

-0 . 33936 0. 11 740 -2.89 

-0.32123 0.1 1920 -2.69 

0.93093 0.049 14 18.94 

Estimate 0.05741082 

Estimate = 0 . 23960556 
4.7361 3677 

= 11 . 6075 151 

Lag 

1 

2 

-2.5950 
-1.9448 
-1.6181 

Prob. 

0.5256 

0.012208 
0.265354 
0.19471 6 
0.226336 
1.168102 

The ADF unit root test results in Table 3 .2 reveal that the estimated residual senes are 

stationary and hence no differencing is required. Next, we model the residual series using 

the Box-Jenkins methodology. Table 3 .3 shows the five competing models. 
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Out of these competing models, the ARMA(l,2) proves to be adequate. Combining the 

deterministic and stochastic parts, the complete model for Series 3 becomes 

xt = -214.3483 + 0.023601 + ~ . (3.4 .2) 

In (3.4.2), ~ represents the stationary stochastic part that follows an AR(l) process 

~ = 0.9309Wt-i + at + 0.32 l2at-i + 0.3394a1_2 , (3 .4.3) 

where a1 ~ i .i.d.N(0,0.2396 2
) 

3.4.2 Example 2: Decomposition of Series 4 

In this sub-section, we illustrate the Beveridge-Nelson decomposition method usmg 

Series 4: A plot of Series 4 is shown in Fig. 3. 3. The plot of the series clearly shows that 

the series is non-stationary. Fig. 3 .4 is a plot of the first-differenced senes, 

M t = X t - X t-1. 
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Fig. 3 .3 : Series 4 (January 1986 - July 2000) 
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Fig. 3 .4: First-Differenced Series 4 

Table 3.4: 

Depe ndent Variable X 

Variable 

Interce pt 
DATE 

rand /po und rate 

Ordinary Least Squares Estimates 

SSE 1085325 DFE 173 

MSE 6273.554 Roo t MSE 79.20577 

SBC 2035 .164 AIC 2028.834 

Reg Rsq 0.8648 Total Rsq 0 . 8648 

Normal Tes t 3 . 2837 Prob>Chi -Sq 0. 1936 

Durbin-Watson 0.0566 

OF B Value Std Error t Ratio Approx Prob 

-990.445977 

0 .1 2952 4 

47.6665 - 20.779 

0.00389 33 .263 

0 . 0001 

0.0001 

First, we may like to ascertain the truth or falsity of the economic theory that suggests the 

rand/pound should have a stochastic trend rather than a deterministic one. We consider 

the consequences of detrending instead of differencing the series. Table 3 .4 reports the 

results from regressing the series, X 1 , on time t. 
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Table 3.5: ADF Unit Root Test on Series 4 Residuals (Detrended) 

ADF Test Statistic -1 .495360 1 % Critical Value* 
5% Critical Value 
10% Critical Value 

*MacKinnon critical values for rejection of hypothesis of a unit root. 

Augmented Dickey-Fuller Test Equation 
Dependent Variable : L'l(residual) 
Method: Least Squares 
Sample(adjusted) : 1986:02 - 2000:07 
Included observations: 174 after adjusting endpoints 

Variable Coefficient Std . Error t-Statistic 

(residual) 1-1 -0 .027021 0.018070 -1.495360 

R-squared 0.012736 Mean dependent var 
Adjusted R-squared 0.012736 S.D. dependentvar 
S.E. of regression 18.71590 Akaike info criterion 
Sum squared resid 60599.27 Schwarz criterion 
Log likelihood -756 .1048 Durbin-Watson stat 

-2 .5774 
-1.9416 
-1.6166 

Prob. 
0.1366 

0.094230 
18.83623 
8.702354 
8.720510 
1.427651 

The large absolute t-ratios indicate that the coefficients are highly significant. The 

residuals from the regression form the de-trended series of the rand/pound exchange rate. 

Results from the ADF unit test on the de-trended series (see Table 3. 5) shows that even 

the de-trended series is non-stationary, suggesting that de-trending the series is 

inappropriate. This means that using the differenced series will vastly be superior to a 

model of the de-trended rand/pound exchange rate. 

Let's shift our attention to the natural logarithm of Series 4. For this transformed series, 

the competing models and their results are given in Table 3.6. Here, both the AIC and 

SBC criteria select the ARIMA(O, 1,4) process as the best model. Thus, in the Beveridge

Nelson decomposition method, Step 1 and Step 2 produce the process 

(3.4.4) 
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Table 3.6: Bevridge-Nelson Decomposition Method (Step 1 and Step 2) 

ARMA (p+d, q) Tentative Order Selection Tests 
(5 % Significance Level) 

ESACF p+d q 
2 1 
3 1 
1 4 

Maximum Likelihood Estimation 

1. Approx . 
Parameter Estimate Std Error T Ratio Lag 
MU 0 . 0062211 0 . 0030451 2 . 04 0 
MAl , l - 0 . 42230 0 . 17691 - 2 . 39 1 
ARl , l - 0 . 03393 0 . 19506 - 0 . 17 1 

Constant Estimate 0 . 00643217 

Variance Estimate 0 . 00085597 AIC - 732 . 07656 
Std Error Estimate 0 . 02925698 SBC - 722 . 59939 

2. Approx . 
Parameter Estimate Std Error T Ratio Lag 
MU 0 . 0061973 0 . 0031566 1. 96 0 
MAl , l - 0 . 79758 0 . 17929 - 4 . 45 1 
ARl , l - 0 . 41584 0 . 20075 - 2 . 07 1 
ARl , 2 0 . 15451 0 . 11988 1. 29 2 

Constant Estimate 0 . 0078168 

Variance Estimate 0 . 00085815 AIC - 730 . 61039 
Std Error Estimate 0 . 02929427 SBC - 717 . 97417 

3. Approx . 
Parameter Estimate Std Error T Ratio Lag 
MU 0 . 0065500 0 . 0017367 3 . 77 0 
MAl , 1 - 0 . 35668 0 . 07466 - 4 . 78 1 
MAl , 2 0 . 07877 0 . 07927 0 . 99 2 
MAl , 3 0 . 20300 0 . 07749 2 . 62 3 
MAl , 4 0 . 27463 0 . 07450 3 . 69 4 

Constant Estimate 0 . 00654997 

Variance Estimate 0 . 00080349 AIC - 740 . 81456 
Std Error Estimate 0 . 02834585 SBC - 725 . 01928 

In this case, we have a0 = 0.006 , and 

1-step ahead forecast : 

2-step ahead forecast: 

3-step ahead forecast: 

4-step ahead forecast: 

E(Ml+I) = 0.006 + (0.357 - 0.079B - 0.203B 2 
- 0.275B3 )&1, 

E(M1+J = 0.006 + (- 0.079 - 0.203B - 0.275B 2 )&1 , 

E(M
1
+3 ) = 0.006 + (- 0.203 - 0.275B)&1, 

and all other s-step ahead forecasts are 0.006. 
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If we set s = 50 , then at each time point t, the summation 

(3.4.5) 

is given by 

50(0 .006) + (0.357 - 0.079B - 0.203B2 
- 0.275B 3 )&l . (3.4.6) 

This means that for the first usable observation in the sample, the stochastic portion and 

the temporary portion of the trend are, respectively, given by 

and 

6 . 95 

5 . 95 

4 . 95 
p 
e 
r 3 . 95 
m 
a 
n 
e 2 . 95 

n 
t 

1.95 

0 . 95 

- 0 . 05 

X 1 + 50(0 .006) + (0.357 - 0.079B- 0.203B 2 - 0.275B3 )&1 (3 .4. 7) 

- (0 .357 - 0.079B - 0.203B 2 
- 0.275B 3 )&

1
. (3.4 .8) 
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Fig. 3. 5: Decomposition of the rand/pound exchange rate. 
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Using the estimated residuals in Appendix B, (3.4.7), and (3.4.8), the permanent and 

temporary series are included in the results in Appendix B. Fig. 3. 5 portray the temporary 

and permanent portions of the series. Fig. 3.5 clearly shows that the trend dominates the 

movements in the temporary portion of the series. Hence, almost all changes in the rand 

are temporary. 

3.5 Conclusion 

In practice, most macroeconomic time series are non-stationary. It has become so clear 

the importance to decompose a macroeconomic time series into its permanent and 

temporary components. This chapter has discussed the types of trends usually found in 

macroeconomic time series data. It has also dealt thoroughly with some of the 

decomposition methods and other important representations of such series. In our 

empirical example of the exchange of the South African rand to the British pound, we 

established that movements in the rand are essentially temporary. 
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CHAPTER4 

VOLATILITY MODELLING IN MACROECONOMIC TIME SERIES 

4.1 Introduction 

In the analysis of a time series data, the variance of the disturbance term is more often 

than not assumed to be constant. However, researchers engaged in forecasting 

macroeconomic and financial time series have revealed that their ability to forecast such 

variables differs considerably from one time period to another. While the forecast errors 

are relatively small for some time periods, other time periods have relatively large 

forecast errors . Such a phenomenon is due to volatility in such macroeconomic variables. 

The variability in the variance change in the disturbances from period to period may 

suggest that the variance of the forecast errors is not constant but rather varies from 

period to period - some kind of autocorrelation in the variance of the forecast errors. In 

essence, we can argue that the behaviour of the forecast errors is dependent on the 

behaviour of the disturbances in the series. We can therefore make a case for 

autocorrelation in the variance of the disturbance term. To handle such a problem, Engle 

(1982) developed the Autoregressive Conditional Heteroskedasticity (ARCH) process. 

In recent years, volatility modelling has become a very active area of research. In this 

chapter, we present most of the available methods for modelling volatility. Section 4.2 

briefly di scusses the Autoregressive Moving Average (ARMA) processes and their 

limitations for modelling volatility. Section 4.3 considers the ARCH process, while 

Section 4.4 discusses some of its extensions. The extensions to be discussed include 

ARCH-in-Mean (ARCH-Mean), the Generalised ARCH (GARCH) process, the 

Integrated GARCH (IGARCH) process, and Exponential GARCH (EGARCH) process. 

Section 4.4 considers other formulations of the ARCH process, namely, Threshold 

ARCH (T ARCH) process, Component ARCH (CAR CH) process, and Asymmetric 

CARCH (ACARCH) process. A practical illustration is given in Section 4.5. We use 

monthly data on percentage dividend yield on financial stock traded on the Johannesburg 

Stock Exchange (JSE). Section 4.6 concludes. 
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4.2 The Autoregressive Moving Average (ARMA) Process 

The general representation of the autoregressive moving average process, ARMA(p,q), is 

given by 

p q 

x i = c + L¢ix t-i + 6 1 - L016 1-1 , (4.2 .1) 
i =I j = I 

In his paper, Tong (1990) outlined several advantages and limitations of the ARMA(p,q) 

process. For instance, the availability of several statistical packages in this modern era 

has made the modelling of time series data with ARMA structure very simple. Again, in 

the literature, the ARMA process is frequently used to model macroeconomic and 

financial time series data. Poterba and Summers (1986) employed the AR(l) process to 

model volatility of Standard and Poor' s S&P 500 composite index. 

A few mentions have been made with regards to the advantage of the ARMA process in 

modelling macroeconomic and financial time series. However, one important 

shortcoming of the ARMA process is the homoskedasticity assumption. This assumption 

does not allow changes in volatility in macroeconomic and financial time series data to be 

captured. 

4.3 Autoregressive Conditional Heteroskedasticity (ARCH) Processes 

The underlying property of the Autoregressive Conditional Heteroskedasticity (ARCH) 

process is its ability to capture the tendency for volati lity in macroeconomic and financial 

time series. In a dynamic linear regression model, the series {X
1 

: t = 1,2, ... ,N} takes the 

form 

(4.3.1) 

where &1 = cr1w 1 , w1 - i.i .d .(0,1) . Y/ is an m x 1 vector of independent variables, which 

may be lagged values of the dependent variable, X 1 , and /J is an m x 1 vector of 

regression parameters. 
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In the basic ARCH process, the square of the disturbance term, &1 , is described as itself 

following an AR(q) process: 

or 

q 

&/ =Ao+ LAh6 1
2
-h +Vt, 

h=I 

(4. 3.2) 

where vt ~ i.i.d .(0,8 2
) . The conditions A0 > 0 and A; ~ O for i = l ,2, ... ,q ensure that the 

conditional variance is always positive. In ( 4 .3.2), the distribution of &
1 

conditional ~
1

_ 1 

IS 

where 

4.3.1 Estimation of the ARCH Processes 

In a more convenient way, the ARCH process is represented as 

or 

where 

q 

CY1
2 = Ao + L A k &t~k 

k=I 

If u 1
2 evolves according to (4.3.5), then 
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wt ~ i.i.d.(0,1) 

(4 .3.3) 

(4.3.4) 

(4 .3.5) 

(4 .3.6) 

(4 .3.7) 



and hence 

(4.3 .8) 

Now, squaring (4.3.6) yields 

(4.3.9) 

Then, by substituting (4.3.9) and (4.3.5) in (4.3 .2) and simplifying yields 

or (4.3.10) 

⇒ (4.3.11) 

The expectation of (4.3.11) is 

(4.3 .12) 

Equation (4.3.12) implies that the second moment (or the variance) of v1 does not exist 

for all stationary ARCH processes. For the simple case where the series X 1 assumes the 

AR(l) representation 

Then, we have 

and 
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& I - i.i.d .N(O, a-; ) . (4 .3.13) 

(4.3 .14) 

(4.3 .15) 



Squaring both sides of(4.3.15) yields 

[o-1
2J2 = [Ao + A16 1~1 ]

2 
= A~ + 2AoA16 ?-1 + A~&1~1 · 

Hence 

E [(o-1
2 )2] = A~ + 2A0A.iE[&;_1] + ~ E[&: 1] . 

ow, 

var[&;_1 ] = E[&: 1 ] - [E[&c~1 J2] 

⇒ £[&1~1 ] = [E[&;_1 ]2 ]+ var[&;_1 ] . 

Thus, ( 4. 3. 17) becomes 

E[(o-; )2] = A~ + 2A0A1E[&;_1] + A;{var[&1
2_1 ] + [ E[ &1~1 ]]2 

By (4.3.14), since E[&1] = E[&t-1 ], we have 

E[&n = Ao+ A.i E[&l~I ] + E[vl ] 

E [&n = Ao+ A1E[&l2 ] + 0 or 
Ao 

£(&12 ) = 1-A.i . 

Similarly, we have 

var[ & ; ] = 0 + A~ var[ & ;_1 ] + var[ v1 ] . 

or (1-A~)- var[&n = var[v1], 

smce var(&; ) = var(&;_1) . 
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(4.3.16) 

(4.3.17) 

(4.3.18) 

(4.3.19) 

(4.3.20) 

(4.3.21) 



Since v1 - i.i .d .(0,8 2
) , (4.3 .21) simplifies to give 

[ 
2 ] _ var[ v1 ] _ ~ 

var &1 - 2 - 2 . 
l-.-1 l - .-1 I I 

(4.3.22) 

Substituting (4.3.20) and (4.3.22) in (4.3.19) and simplifying further yields 

⇒ ( 4.3.23) 

Also, by (4.3.12) we have 

(4.3.24) 

Now, since w1 - i.i.d(0,1) , implies 

Hence, (4.3.24) becomes 

(4.3 .26) 

Equation (4.3.26) shows that if 3.-1~ < 1, then the 4th moment of &1 (or the kurtosis) is 

greater than 3 for positive -1, , and so the ARCH process yields observations with heavier 

tails than those of a normal distribution. If .-11 < 1, &1 follows a white noise process 

while &1
2 follows an AR(q) process, yielding volatility clustering (Shepard, 1996). 
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4.3.2 Testing for ARCH 

We have stated that the series X
1 

follows an ARCH(q) process if it satisfies the mean 

equation specification: 

(4 .3.1) 

where &1 = u 1 w1 , w 1 ~ i.i.d .(O,I) . Y/ is an m x 1 vector of independent variables, which 

may be lagged values of the dependent variable, X1 , and /J is an m x 1 vector of 

regression parameters. Then 

( 4.3 .27) 

If ilt
1 

is a vector of observations obtained through date t, then the conditional distribution 

of X 1 is normal with mean Y//J and variance u 1

2 (i .e. by ( 4.3 .27)) : 

or (4 .3.28) 

smce &
1 

= X
1 

- Yi /J . Denoting the parameters which index the model by 0 , the 

conditional likelihood and the log conditional likelihood are, respectively, given by 

(4.3.29) 

N I ~ 2 1 ~ '/3) 2 lnL =-- ln(2n') --L..ln(u1 ) - -
2 

L..i(X1 - Y1 . 

2 2 t= I 20'1 t= I 

(4 .3.30) 
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The log likelihood function (4.3 .30) can then be maximised with respect to the unknown 

parameters A= (10 , Ai ,A2 , ... ,Ar)' and /3 . Consider the simplest ARCH(l) process 

where (4.3.31) 

The log conditional likelihood is 

(4.3.32) 

where 0 = (10 , Ai)' . The null hypothesis that there is no volatility clustering in the series, 

(4 .3.33) 

turns out to be the usual analogue of the Box-Pierce Portmanteau test for the AR(l) 

process or the MA(l) process, but in squares. With no specific alternative to the test, 

Engle (1982) recommends a Lagrangian Multiplier (LM) test of the alternative hypothesis 

of ARCH(q) disturbances since such a test can be computed from running the auxiliary 

regression 

(4.3.34) 

Under the null hypothesis of no volatility 

(4.3.35) 

The appropriate test statistic, 

TS= NR 2
, (4.3.36) 

where R 2 is the coefficient of determination from the auxiliary regression (4.3.34), is 

tested as x 2 
( q) . 
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The hypothesis of no serial correlation (no volatility) is rejected if test statistic is greater 

than the corresponding chi-square value. Alternatively, we reject the null if the 

probability of obtaining such a chi-square value is much less than a certain nominal 

value, say 0.05 . 

4.3.3 Forecasting with an ARCH Process 

In time series analysis, one important aim is to be able to model the series and also to be 

able to forecast. The relation (4.3.2) 

where v1 - i.i.d .(0,8 2
) implies that &1

2 follows an AR(q) process. Thus, the 

unconditional variance of &
1 

is 

⇒ (4.3.37) 

(4.3.38) 

or (4.3.39) 
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The s-period-ahead linear forecast is 

(4.3.40) 

From (4.3 .39), we have 

(4.3.41) 

Substituting (4.3.41) in (4 .3.2) and simplifying the results gives 

and hence 

(4.3.42) 

The s-period-ahead forecast can be calculated from 

(4.3.43) 

for k = l,2, ... ,s , with i;11 = &,; for u ~ t . 

4.4 Extensions of the ARCH Process: A Review 

The ARCH concept has been extended in several ways since its introduction. The most 

important of these extensions is the Generalised ARCH (GARCH) process due to 

Bollerslev (1986). In this section, we briefly discuss some of these extensions. 

4.4.1 The ARCH-in-Mean (ARCH-M) Process 

The ARCH-Mean process due to Engle, Lilien and Robins (1987) is an extension of the 

basic ARCH concept to allow the mean of a series to depend on its own conditional 

vanance. 
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The motivation has been derived from the fact the mean and the variance of a return are 

expected to move in the same direction. The process is therefore suitable to the study of 

the relationship between risky asset and level of volatility. Denote the mean by A, where 

(4.4.1) 

A time series {X
1 

: t = 1,2, .. . ,N} follows an ARCH-in-Mean process if it satisfies the 

mean equation 

(4.4.2) 

where 

j(<Y1
2) is a function of <Y1

2
, with /(10 ) = 0 . In finance, b.j(<Y; ) represents the 

expected rate of return due to an increase in the variance of the return (i .e. the risk 

premium). For the simple ARCH-M process where &
1 

~ ARCH (1) 

X 1 = b.j(<Y; ) +&1. ( 4.4.3) 

Then 

j(<Y12 ) =Ao+ Ail)' ( 4.4.4) 

A = /30 + b.[10 + A16) ], (4.4.5) 

and xi = b[Ao + A1&L1] + &I 

or xi =hAo +bA1&1~1 +&I. (4.4.6) 
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Then using the fact that 

(4.3.20) 

it follows immediately that 

(4.4.7) 

Equation ( 4.4. 7) is viewed as the unconditional expected return of holding a risky asset. 

In a similar fashion, it can be shown that 

(4.4.8) 

In the absence ofa risk premium, b.j(CY1
2

) = b.A 1= 0 , and so (4.4.8) becomes 

(4.4.9) 

Other statistical properties of the ARCH-M process have been considered m Hong 

(1991). In most applications, using 

(4.4.10) 

has been found to work better in the estimation of time-varying risk premiums (Engle et 

al, 1987). The use of the ARCH-M process for measuring risk has been criticised in the 

literature, for instance Backus, Gregory and Zin (1989) and Backus and Gregory (1993). 

It is argued that there does not necessary exist any relationship between risk premium and 

conditional variances. 
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4.4.2 The Generalised ARCH (GARCH) Process 

A time series {X1 : t = 1,2, .. . ,N} follows the Generalised ARCH or GARCH(p,q) process 

if it satisfies the mean equation specification 

(4.3.1) 

where &1 = CY1 w1 , w1 ~ i.i.d.(0,1) . Y/ is an m x 1 vector of independent variables, which 

may be lagged values of the dependent variable, X 1 , and /J is an m x 1 vector of 

regression parameters. The specified conditional variance equation is representable as 

q p 

CY1
2 

=Ao+ LA;&L; + La;CY1~;, 
i =I i = I 

where 

A; ~ O for i = l,2, .. . ,q , 

a ; ~ 0 for i = 1,2, ... ,p , 

and 

The disturbance term is weakly stationary if 

{"' q X + °" p a)< 1. 
\l.., i=] I .L..;: ] I 

Writing (4.4.11) as 

where ,-1,(B) = A.iB + A2 B 2 + ... + AqB q, 

backshift operator, ( 4.4.13) becomes 

54 

(4.4.11) 

(4.4.12) 

(4.4.13) 



⇒ 

or (4.4.14) 

Iftheroots z = (z1, z2, ... ,z P) of 1- a(B) lieoutsidetheunitcircle, (4.4.14)becomes 

u; = A0 + A(B) 6 2 

1- a(l) 1- a(B) 1 or 
00 

u 1
2 

=A~ + 'f_hi&;_i, (4.4.15) 
i = I 

where A~ = Ao and hi is the coefficient of B i in the expansion of a(B) 
1-a(l) 1- a(B) 

Equation (4.4.15) is simply a GARCH(p,q) process with an infinite order ARCH process. 

Nelson and Cao (1992) have shown that even though the conditions under (4.4.1) are 

sufficient to ensure a strictly positive conditional variance, setting 

(4.4.16) 

where i = 1,2,3 ... ,oo will equally ensure a strictly positive conditional variance. Consider, 

for instance, the GARCH(l ,2) process 

(4.4.17) 

Nelson and Cao were able to show that the conditional variance is strictly positive if 

based on the following conditions: 

(4.4.18) 
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As in the case of ARCH(l) process, in the most commonly used GARCH(l , 1) process, 

2 1 1 2 2 
CJ" t = /l,o + /l,1 6 t-1 + alut-1, (4.4.19) 

Hwang and Satchell have shown in Knight and Satchell (1998) that the logarithmic 

likelihood function is 

1 1 N [ X
2 7 

lnL(;L0 , ;L1, a 1) = -- ln(2n-) --L ln(u1
2 )+ -f- . 

2 2 t=I CJ"t 

(4.4.20) 

Hwang and Satchell further showed that the s-step-ahead forecast from the GARCH(l , 1) 

process is given by 

s- 1 

E(X/t-s )=A0 L(Ai +a1Y +(Ai +a1)'-
1;L1u ; +(Ai + a 1)'-

1a 1X 1
2 for s > l (4.4.21a) 

i= O 

and 

s- 1 

E(X1~ ,) = A0 L (Ai + a, Y + (Ai + a, y-' 0"1
2
+1 for s > 2 . (4.4.21b) 

i= O 

Thus, for large s and ,1,1 + a, < l , we have 

s - l ,1, 
E(X1~s )=AoL(,1,, +a,Y = 0 as s ➔ oo . 

i=o l -,1,1 - a, 
(4.4.22) 

Lastly, from the GARCH(l , 1) process, the condition 

3;/,~ + 2;/,1a 1 + a 1
2 < 1 (4.4.23) 

means the 4th moment (or the kurtosis) of &1 is greater than that of a normal random 

variable. Consequently, the GARCH process is capable of producing outliers. 

56 



One important feature of GARCH(q,p) processes is that the conditional variance of the 

disturbances of the series X 1 follows an ARMA(r,q) process. That is if we let 

(4.4.24) 

then 

r q 

6 12 = Ao + L(A; +a;)6L; +u1 - La;(612-i - 0'12_;) , 
i= I i=I 

r q 

or 6 1
2 = A0 + L(A; +a;)6L +u1 - La;u1_;, (4.4.25) 

i = I i =I 

where r = max(q, p) , A;= 0 for i > p , a ;= 0 for i > q . We see from (4.4.25) that 

6 1
2 has an ARMA(r,q) representation. Therefore, it is expected that the residuals from the 

fitted ARMA process follow a white noise process. The autocorrelation function of the 

squared residuals, i /, aid in determining the order of the GARCH process. In fact, 

McLeod and Li (1983) suggest estimating the best-fitting ARIMA model (or regression 

model) and calculating the sample autocorrelation (acf) of the squared residuals, 6 1
2

: 

N 
"""' ( A 2 _ A 2 )( A 2 _ A 2 ) 
L,. 6 1 CJ' 6 1- k CJ' 

Pk (6) = -'-1= __ k+--1 _N _____ _ where (4.4.26) 

LCi/ - a-2) 
1= 1 

The Box-Pierce Portmanteau statistic 

(4.4.27) 

which is asymptotically distributed as x 2 (m) , where m is the number of autocorrelations 

used in the test, can then be used to test for groups of significant coefficients. 
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Rejecting the null hypothesis 

H 0 : i 1
2 are uncorrelated, (4.4.28) 

is equivalent to rejecting null hypothesis of no ARCH or GARCH errors. Equivalently, 

the LM test proposed by Engle (1982) and discussed in Section 4.3 .3 can be used. 

Researches have revealed that a process greater than GARCH(l ,2) or GARCH(2, l) are 

very uncommon. 

4.4.3 Integrated GARCH (IGARCH) Process 

A time series X
1 

following a standard GARCH(l , l) process takes the following mean 

equation specification and conditional variance equation : 

and (4.4.29) 

Now, 

or 

or (4.4.30) 

or 
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or (4.4.31) 

Using the relation &1 = a-1w1 , we have 

and (4.4.32) 

Hence, (4.4.31) becomes 

(4.4.33) 

Equation (4.4 .33) implies that the GARCH process can be written as an ARMA process. 

If A, + a 1 < 1, then the original series {X1 : t = 1,2, .. . ,N} is covariance stationary. If 

A-1 + a 1 = 1, ( 4.4.33) becomes 

⇒ (4.4.34) 

where Bis the backshift operator. Equation (4.4.34) can compactly be written as 

(4.4.35) 

Equation (4.4 .35) leads to an analogy with an ARIMA(0,1,1) process with an intercept in 

terms of defining an autocorrelation function of squared observations. Equation ( 4.3 .35) 

is called Integrated GARCH or IGARCH since the squared observations are stationary in 

first differences, but does not follow that &/ will behave like an integrated process. For 

many empirical studies using high-frequency data, A, + a 1 is estimated to be close to 1, 

suggesting that volatility has quite persistent shocks. 
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That is, the null hypothesis of a unit root in variance 

(4.4.36) 

1s mostly accept usmg high-frequency data. For example, French, Schwert and 

Stambaugh (1987), Chou (1988), Pagan and Schwert (1990) do not reject the null 

hypothesis of unit root in variance (Ai + a, + A2 + a 2 + ... + Aq + a P = 1) when the 

IGARCH process was applied to different stock market data. 

4.4.4 Exponential GARCH (EGARCH) Process 

A possible limitation of the GARCH process is that the conditional variance u/ responds 

to positive and negative residuals &
1
_ ; in the same manner, i.e. u 1

2 may be symmetric in 

&
1
_ ;. Nelson (1991) argued that a symmetric conditional variance function may be 

inappropriate for modelling volatility of returns on stocks since it cannot represent the 

leverage effect which is negative correlation between volatility and past returns. Nelson 

(1991) therefore proposed concept of Exponential GARCH or EGARCH. The EGARCH 

process enables the conditional variance to respond to positive and negative residuals 

asymmetrically. A time series {X1 : t = 1,2, ... ,N} follows an EGARCH(p,q) process if it 

satisfies the following specifications: 

(4.4.37a) 

q p 

ln u/ = A0 + LA;.j(w1_ ;) + La;_ ln CY1~;, (4.4.37b) 
i= I i=I 

where (4.4.37c) 

The function, (4.4.37c), is independent of with mean zero and a constant variance. Thus, 

( 4.4.37b) is a linear ARMA process for In u
1

2 with innovation f (w1 ) . 
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4.4.5 Threshold ARCH (TARCH) Process 

The application of the EGARCH process to represent asymmetric responses m the 

conditional variance to positive and negative errors has motivated to the proposal of the 

Threshold ARCH or the T ARCH(p,q) process. Proposed independently by Zakoian 

(199 1) and Glosten, Jaganathan, and Runkle (1 993), the specification for the conditional 

vanance 1s 

q p 

u? =Ao+ L A;&L; +c1 6 1
2
- 1d 1- 1 + La;uL;, (4.4.38a) 

i =q i = I 

where (4.4.38b) 

In this specification, news has differential impacts on the conditional vanance, u 1
2

. 

Consider the simple T ARCH(l , 1) process 

(4.4.3 9) 

where 

For good news, &
1 
~ 0 and so d

1 
= 0 . Hence, (4.4 .39) becomes 

(4.4.40) 

Similarly, for bad news, &
1 

> 0 and so d
1 
= l . The specification equation (4.4 .39) is 

(4.4.41) 
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Equation (4.4.40) and (4.4.41) show that the impact of good news is Ai , while bad news 

has an impact of Ai + c1 • Leverage effects exist if c1 > 0 . News impact is asymmetric if 

4.4.6 The Component ARCH (CARCH) Process 

In the simple GARCH(l , l) process 

( 4.4.42) 

the mean reversion to µ is constant at all times. The Component ARCH or the CARCH 

concept, on the contrary, allows the mean reversion to a varying level, /1 . In this simple 

case the specification equations are 

(4.4.43a) 

(4.4.43b) 

In (4.4.43), u 1 represents the volatility, while /1 represents the time varying long run 

volati lity. Equation (4.4.43a) describes the transitory component, u; -/0 while (4.4.43b) 

describes the long-run component, ( . The constant c1 is typically between 0.99 and 

1.00. Combining (4.4.43a) and (4.4.43b) gives the restricted GARCH(2,2) process 

where 1~ = (1 - Ai - a 1 )(1 - ci) , 

u; = -[11c1 - c2 (11 +a1) ] . 
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4.4. 7 Asymmetric CARCH (ACARCH) Process 

The Asymmetric CARCH or the ACARCH process combines the CARCH process with 

the asymmetric TARCH process. A time series {X1 : t = 1,2, ... ,N} follows an 

ACARCH(l,1) process if it satisfies the following specifications: 

(4.4.45a) 

(4.4.45b) 

(4.4.45c) 

where c, c1, c2 , a1 and a2 are all constants . Y/ is an m x 1 vector of independent variables, 

which may be lagged values of the dependent variable, X
1

, and /3 is an m x 1 vector of 

regression parameters. In (4.4.45b) and (4.4.45c), z11 and z21 are exogenous variables, 
, , 

while d 1 is the dummy variable indicating negatives shocks. Transitory leverage effects 

in the conditional variance is revealed if c > 0 . 

4.5 Practical Example 

In this example, we illustrate the ARCH concept by estimating an ARCH process using 

monthly percentage dividend yield on financial shares traded on Johannesburg Stock 

Exchange (JSE), South Africa. The series is from January 1991 to October 2000. There 

are 118 observations. The series is plotted in Fig. 4 .1. Plots of the sample autocorrelation 

(ACF) and partial autocorrelation (PACF) functions are given in Fig. 4.2 and Fig. 4.3, 

respectively. The plot of the sample PACF ' s cuts off after lag 1, suggesting that the series 

can be represented by an AR(l) process in a unit root test. Results from the Phillips

Perron unit root test on the series given in Table 4.1 suggest that it is non-stationary. 

Hence, differencing the series will induce stationarity. Out of the tentative models given 

in Table 4 .2, the AIC and SBC criteria select the ARIMA(0, 1,0) process. 
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Fig. 4.1: Percentage Dividend Yields on Financial Shares, January 1991 - October 2000) 

Name of variable X. 
Mean of wo rking series 2 . 566949 
St andard deviat ion 0.528805 
Numbe r of observations 118 

Autocorre lations 
Lag Cova rian ce Cor relat io n -1 9 876543 2 0 1 23456789 Std 

0.255587 0.91400 I ****************** 0 .092057 
2 0.231249 0.82697 I ***************** 0. 150446 
3 0.2 12133 0. 75861 I *************** 0. 185000 
4 0 . 192885 0.68977 I ************** 0.209712 
5 0. 179180 0.64076 I ************* 0 . 228130 
6 0 . 168467 0.60245 I ************ 0.242904 
7 0 . 157967 0. 56491 I *********** 0 . 255253 
8 0 . 148225 0.53006 I *********** 0.265636 
9 0 . 137828 0.49288 I ********** 0.274454 

10 0 . 128473 0.45943 I ********* 0.281855 
11 0. 123136 0.44035 I ********* 0 .2881 32 
12 0. 11 5300 0.41232 I ******** 0.293780 
13 0. 107480 0 . 38436 I ******** 0.298644 
14 0 . 099107 0 . 35442 I 0 . 302807 
15 0.090651 0 . 32418 I ****** 0.306302 
16 0 .083075 0.29708 I ****** 0 .309196 
17 0 .083544 0 . 29876 I ****** 0.31 1606 
18 0 . 085929 0.30729 I ****** 0 . 314024 
19 0.082728 0.29584 I ****** 0.316562 
20 0 . 075269 0. 26917 I 0 .318896 
21 0.066458 0.23766 I I***** 0 . 320816 
22 0.055819 0.19962 I I**** 0 . 322305 
23 0 .041 326 0.14778 I I*** 0.323351 
24 0.032294 0.11548 I I** 0 . 323922 

" . marks two standard e rrors 

J AN Ol 

Fig. 4.2: Sample ACF 's (% Dividend Yields on Financial Shares, January 1991 - October 2000) 
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Partial Autocorrelations 
Lag Co rrelation 1 9 8 765432 1 0 1 2 3 4 5 6 7 8 9 1 

1 0.91400 I****************** 

2 - 0.05126 * 
3 0 . 06617 * 
4 - 0.04419 * 
5 0.09215 ** 
6 0 . 03007 * 
7 0.00370 
8 0. 00264 
9 - 0.02203 

10 0.01672 
11 0.07018 * 
12 - 0.05994 * 
13 0.00174 
14 -0.03832 * 
15 0 . 00381 
16 - 0.00638 
17 0 . 16109 *** 
18 0.03430 * 
19 - 0 . 09163 ** 
20 - 0. 09081 ** 
21 - 0.02367 
22 -0.05439 * 
23 - 0. 12388 ** 
24 0 . 05791 * 

Fig. 4.3: Sample PACF 's (% Dividend Yields on Financial Shares, January 199 1 - October 2000) 

Table 4.1: Phi ll ips-Perron Unit Root Test on Percentage Dividend Yields on Financial Shares 

PP Test Statistic -3 . 076917 1% Critical Value* -3 . 4870 
*MacKinnon critical values for rejection of hypothesis of a unit root . 

Lag truncation for Bartlett ker nel : 4 
Residual variance with no correc t ion 
Residual variance with correction 

Phillips-Perron Test Equation 
Dependent Variable : M, = X, - X,_

1 

Method: Least Squares 
Sample(adjusted): 1991 :02 - 2000 : 10 

Newey-West suggests: 4 
0.025620 
0.029134 

Included observations : 117 after adjusting endpoints 

Variable Coeff icient Std . Error t-Statistic Prob. 

x t-1 -0.085938 0 .028107 -3 . 057559 0. 0028 

C 0.207740 0.073664 2 .820097 0 . 0057 

A-squared 0.075181 Mean dependent var -0.012821 
Adjusted A-squared 0 . 067139 S . D. dependent var 0.167156 
S.E. of regression 0.161447 Akaike info criterion -0.792332 
Sum squared resid 2.997495 Schwartz criterion -0.745115 
Log likelihood 48 .35143 F-statistic 9.348664 
Durbin-Watson stat 1 . 641891 Prob( F-statistic) 0 .002776 
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Table 4.2: Tentative Model Selection and Parameter Estimation 

To 
Lag 

6 
12 
18 
24 

ARMA(p+d,q) Te ntative Orde r Selection Tes t s 
(5% Significance Le ve l) 

ESACF p+d q 
1 0 
5 3 

Maximum Like lihood Es timation 

Approx. 
Paramet e r Estimat e 
MU -0.01 282 

Std Error T Ratio Lag 
0.01545 -0.83 0 

Con s t ant Estimat e = -0.0128205 

Variance Estimate = 0.02794111 
Std Error Estimate 0.1671 5596 
AIC -85. 558439 
SBC -82.796265 
Number of Re s iduals= 117 

Autocorre l ation Chec k of Re s iduals 

Chi Autoco rre l ations 
Square DF Prob 

5.36 6 0.499 0 .148 -0.110 0.004 -0.086 -0.052 
8.22 12 0.767 -0 . 049 0.027 -0.042 -0.107 0.049 

17 .64 18 0.480 0 . 02 1 -0.035 -0.089 -0.188 -0.084 
22.72 24 0.536 0.024 0.038 -0.010 0.152 -0.087 

The estimated process is 

-0.01 0 
0.056 
0.127 

- 0.041 

(E4.l ) 

From the results in Table 4.3, the probability values at all the lags, namely, 0.499, 0.767, 

0.480, and 0.536 are all greater the 0.05 level of significant. Hence, we cannot reject the 

null hypothesis that the residuals s1 follow a white noise process. We therefore conclude 

that an appropriate model has been fitted to the series. The plot of the residuals in Fig. 4.4 

can verify this. A plot of original series and predicted values using (E 1) in Fig. 4. 5 further 

confirms how appropriate the process fits the series. 
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Fig. 4.4: Residual Plot(% Dividend Yields on Financial Shares, January 199 1 - October 2000) 
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The plot of the sample ACF' s and PACF ' s of the squared residuals from the fitted 

ARJMA(0,1 ,0) preocess are shown in Fig. 4.6 and Fig. 4.7, respectively. Based on the 

117 residuals, the only significant autocorreation ( except that at lag 18, which is 

considered impractical) is found at lag 1. That is, only the autocorrealtion at lag 1 falls 

outside the interval (-2/✓117,2/✓117) = (-0.1849,0.1849) . Hence, our ARCH test 

should be based on the ARCH(l) process. However, the fact two auotcorrelations fall 

outside this range suggests the presence of nonlinear dependence. An ARCH(l) process 

fit to the original series yields the results in Table 4.3. 

Name of variable = (resid)**2 
Mean of working series= 0.027702 
Standard deviation 
Number of observations 

Autoco rre lation s 

0.085352 
117 

Lag Covar iance Corre lation 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 
1 0 .001 5775 0.21654 **** 
2 0.0010687 0 .14670 *** 
3 0 .00085065 0.11677 ** 
4 0 . 00001095 0.00150 
5 -0 .0003765 -0 .05168 * 
6 -0.000272 -0.03733 * 
7 0 .0001 3615 0.01869 
8 -0 .0003732 -0.05123 * 
9 -0.0003336 -0.04579 * 

10 -0.0003493 -0.04795 * 
11 -0.0001974 -0.02709 * 
12 -0.000305 -0.04186 * 
13 -0.000212 -0.029 11 * 
14 -0.0001542 -0. 02117 
15 0.00025498 0.03500 * 
16 0.000395 0.05422 • 
17 0 .00005989 0.00822 
18 0.0019668 0.26999 ***** 
19 0.00007745 0.01063 
20 -0 .000448 -0.06150 * 
21 -0.0002841 -0.03899 * 
22 -0.000201 2 -0.02762 * 
23 ~0.0003225 -0.04427 * 
24 -0.0003173 -0.04355 * 

" " marks two standard e rrors 

1 

I 
I 
I 
I 
I 
I 
I 

Fig. 4.6: Sample ACF's of Squared Residuals (January 1991 - October 2000) 
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Std 
0.092450 
0.096688 
0 . 098572 
0.099747 
0 .099747 
0.099976 
0 .100095 
0 .100125 
0 .100349 
0. 100527 
0 . 100722 
0. 100785 
0 . 100933 
0. 101005 
0. 101043 
0.101146 
0 . 101395 
0.101400 
0 .107369 
0 .107378 
0 .107678 
0 .107799 
0 .107859 
0. 10801 5 



Partial Autocorre lation s 
Lag cor relation 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1 0 . 21654 .... 
2 0 . 10472 
3 0 . 06965 . 
4 - 0.05196 . 
5 - 0.06794 . 
6 - 0.01871 
7 0.052 12 . 
8 - 0 . 04861 . 
9 - 0 . 03532 . 

10 - 0 . 03732 . 
11 0 . 00515 
12 - 0.01984 
13 - 0.01287 
14 - 0 . 01 691 
15 0 . 05214 . 
16 0.04665 . 
17 - 0.02273 
18 0 . 26454 ***** 
19 - 0.11306 .. 
20 - 0 . 11294 .. 
21 - 0 . 04732 . 
22 0 . 02844 . 
23 0.01289 
24 - 0.01943 

Fig. 4.7: Sample PACF ' s of Squared Residuals (January 1991 - October 2000) 

Table 4.3: ARCH Results 

Dependent Variable= X % dividend yield on fi nancial s hare s 

Ordinary Least Squares Estimates 

SSE 32.9969 DFE 117 
MSE 0.282025 Root MSE 0.53106 
SBC 189 .2762 AIC 186.5055 
Reg Rs q 0 .0000 Total Rs q 0 .0000 
Durbin -Watson 0.0988 

Variable OF B Value Std Error t Ratio Approx Prob 

Inte rcept 2.566949 0 . 0489 52.507 0 . 0001 

Stationary GARCH Estimates 

SSE 44.78633 OBS 118 
MSE 0 .379545 UVAR 3.548903 
Log L -32.621 Total Rsq -0 . 3573 
SBC 79.55415 AIC 71 . 2421 
Normality Test 11. 9314 Prob>Chi -Sq 0 . 0026 

variable OF B Valu e Std Error t Ratio Appro x Prob 

Intercept 2 .250863 0.01560 144.095 0.0001 
ARCHO 0.00990 5 0.00302 3.277 0.0011 
ARC H1 0. 997209 0.15600 6.393 0 . 0001 
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Fig. 4.8: Estimated ARCH volatility for the Percentage Dividend Yield on Financial Shares Data 

The fitted ARCH(l) process is 

a) = 0.0099 + 0.9972sL, . (E4.2) 

The ARCH parameter A, = 0.9972 is highly significant. Since 3A1 = 2.9916 is slightly 

less than 3 implies that the kurtosis is slightly greater than 3. This means that the 

unconditional di stribution of the series has slightly heavier tails than the normal 

distribution. Since non-linear dependence and heavy-tailed unconditional distribution are 

characteristic of conditionally heteroskedastic data implies the series is conditionally 

heteroskedastic. Lastly, the fact that A1 = 0.9972 is close to 1 is an indication that 

volatility shocks are quite persistent in the series. 

Fig. 4.8 gives the path of the percentage dividend yield on financial shares volatility, 

estimated with an ARCH process. 
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4.6 Conclusion 

In this chapter, we have discussed thoroughly the concept of autoregressive conditional 

heteroskedasticity (ARCH) and some of its extensions discussed in the literature. We 

have been able to use data on the percentage dividend yield on financial shares traded on 

the Johannesburg Stock Exchange. Results revealed volatility clustering. 
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5.1 Introduction 

CHAPTERS 

BOOTSTRAPPING ARCH PROCESSES 

In statistical data analysis, the researcher is usually interested not only the point 

estimation of a parameter, but also the variation of the estimator and the confidence 

interval of that parameter. It is procedural, traditionally, to employ the central limit theory 

to obtain some statistical inferences. However, the application of this theory and hence 

the inferences may be invalid if the sampling distribution of the estimator is not available 

exactly or approximately. For instance, if the normality assumption does not hold, the 

application of the central limit theory may not be appropriate to construct the confidence 

intervals. 

Resampling techniques such as the bootstrap and jack:nife provide not only the standard 

errors and confidence intervals of the estimators, but also the distribution of any statistic. 

The bootstrap technique is a process of repeatedly sampling, with replacement, from data 

at hand. From the data of size N, B bootstrap samples of size N are drawn to obtain B 

new estimates. Their distribution then forms a basis for standard errors or confidence 

intervals (Efron and Tibshirani, 1986). The fundamental assumption of bootstrapping is 

that the observed data are representative of the original data. 

The remainder of the chapter is organised as follows . In Section 5 .2, we discuss some 

basic bootstrap concepts. Section 5.3 gives a brief discussion on Jacknifing. In Section 

5.4, we investigate the distribution of replicated variances of an ARCH process using 

bootstrap methods. Here, we simulate a simple ARCH process using the Monte Carlo 

simulation method. Section 5.5 concludes. 

5.2 Basic Bootstrap Concepts 

Let {x
1 

: t = 1,2, .. , N} be realizations of the random variable {X1 : t = 1,2, ... , N} , all 

having the same unknown distribution function F. 
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Then the empirical distribution function (EDF) is the cumulative distribution function 

where 

{

1, if X
1 

S X 

I(X
1 
sx)= 

0, if X 1 > X. 

(5. la) 

(5.lb) 

Equation (5.1) means that F is step function, the height being 1/ N. By ordering the 

realizations X
1 

by ascending size, the width of F is equal to the difference between two 

successive values of the ordered realizations x;. If two or more observations are 

identical, there may be steps that have height k(l/ N), where k is an integer. 

5.2.1 Properties of EDF 

If {X
1 

: t = 1,2, ... , N} is a random sample from a population with unknown EDF, F , then 

P[I(X1 s x) = 1] = P(X1 s x) 

⇒ P[I(X1 s x) = 1] = F(x), (5.2.1) 

and hence, 

P[I(X
1 
s x)] = O] = 1-F(x). (5 .2.2) 

We note that 

l(X, s x) , l(X2 s x) , .... , l(X N s x) (5.2 .3) 

are independent Bernoulli random variables, hence N .F N is a Binomial random variable. 
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Thus, 

E[N.FN (x)] = N.F(x) 

or E[.FN (x)] = .F(x), (5.2.4) 

showing that FN is a point-wise unbiased estimate of F. Furthermore, 

var[N.FN (x)] = N.F(x)[l- F(x)] 

or var[.FN (x)] = F(x)[l - F(x)] . (5.2.5) 

5.2.2 Drawing Bootstrap Samples 

Denote the j1h observation of the k th bootstrap sample by x; (k) , where k = 1,2, ... , L. 

Obtaining x; (k) involves the following steps: 

1. Generate a pseudo-random number from the uniform distribution, U(0,1); 

11. Use these pseudo-random number to generate a random integer 

r = 1,2, ... , N with equal probability; 

m . Set x; (k) to X,; 

1v. Repeat this process N times to obtain a complete bootstrap sample. Store 

this bootstrap sample. 

v. Repeat the whole process for k = 1,2, ... , L bootstrap samples to obtain L 

of such statistics required. 

v1. Use these L statistics to obtain whatever features of the distribution of 

interest. 

I uBR'jtRv J 
5.2.3 Parametric Bootstrap 

In parametric bootstrap, we assume that the form of the distribution of the random 

variable, {X
1 

: t = 1,2, ... , N} in known in priori. 
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5.3 Jacknife-after-Bootstrap and Confidence Intervals 

Jacknife-after-bootstrap is a method for obtaining estimate of the variation of such 

functionals of bootstrap distribution as bias and standard error of a statistic, without 

necessarily performing second level of bootstrapping, when the need arises. Moreover, it 

provides information on the influence of each observation on the functionals. 

5.3.1 Bootstrap and Jacknife Confidence Intervals 

Denote a point estimator for 0 by 0 . Let us assume that 

Then at some level of significance, a , we have 

Hence, the interval 

(5 .3.1 ) 

(5 .3.2) 

(5 .3.3) 

1s a (1- a)100% confidence interval for 0. In practice, however, the distribution of 

(0-0) is unknown. A fairly good approximation is to let (0-0) ~ N(0,a ~) , where 

a ~ is unknown. An estimate of a ~ can be obtained using bootstrap or jacknife. In the 

case of bootstrap estimate, an approximate (1- a)l 00% bootstrap confidence interval is 

(5 .3.4) 

where c5- boot is the bootstrap estimate of a 0 . 
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Similarly, ajacknife estimate of CT~ will yield 

(0 - Z'½ .O"jack, 0 + Z'½ .O"jack) , (5.3 .5) 

where a-jack is the jacknife estimate of CT 0 . 

5.4 Evaluating the Bootstrapped ARCH Process 

In this section, our interest is to investigate the distribution of the replicated variances 

from the ARCH process. Let the time series {X1 : t = 1,2, ... ,N} be generated by 

(5.4.1 ) 

where 

w1 ~ i.i.d.N(0,1) , (5.4.2) 

(5.4.3) 

Then by the step given in Section 5.2.2, the following SAS statements in Prog. 5.1 will be 

used to obtain the ARCH process. The size of the data is N = 200. Bootstrapping on the 

simulated series will be done using the S-plus statistical software. Since the number of 

replications recommended for accurate estimation of percentiles is 1000, we will set B to 

be 1000. 

Prog. I : Simulating ARCH Process of Size 200 

data; 
do sam p=1 to 200 ; 
sig2 = ran uni (0); 

w = sqrt(1 )*rannor (0 ); 
e = sqrt(sig2)*w; 
t = _n_; 
X = 10 + 0 . 5*t + e; 
put x; 
output ; 
keep x; 

end ; 
run; 
proc print noobs; 
run; 
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In the program, we have a= 10 and /J = 0.5. Using S-plus, the following results in 

Table 5 .1 were obtained. The results in Table 5 .1 shows that the 95% confidence interval 

for the distribution of the replicated variance has endpoints 0.3596 and 0.5718. The 

histogram of the replicated variance along with a smooth density estimate is shown in 

Fig. 5 .1. The solid line is the value of the observed parameter, while the mean of the 

replicates is indicated by the dotted line. The bootstrap estimate of bias of - 0.003346 is 

the difference between these two values. 

Table 5 .1: Distribution of the Replicated Variances 

Number of Replications: 1000 

Summary Stat istics: 
Observed Bias Mean SE 

var 0.4419 -0.003346 0.4386 0 . 05226 

Empirical Percentiles: 
2.5% 5% 95% 97.5% 

var 0.3437 0.3587 0 . 5286 0.5492 

BCa Confidence Limits: 
2.5% 5% 95% 97.5% 

var 0.3596 0. 3 714 0.549 5 0. 5718 

V1.V1 

0.3 0.4 0.5 0.6 

Value 

Fig. 5 .1: Histogram of Replicated Variances 
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Fig. 5.2: Normal Quantile-Quantile Plot of the Replicated Variances 

Fig. 5.1 shows that the distribution of the replicated variances is slightly skewed, but not 

normal. The normal quantile-quantile plot in Fig. 5.2 confirms the fact that the 

distribution of the replicated residuals deviates slightly from the normal distribution. 

Table 5.2: Jacknife-after-Bootstrap 

Functional Under Consideration: mean 

Functional of Bootstrap Distribution of Parameters: 
Fune SE.Fune 

Param 0.4386 0.06047 

Observations with Large Influence on Functional : $Param: 
Param Param Param 

20 3.086 76 2.248 188 2.575 
25 2 .266 83 2.857 . 
38 2 .867 97 2.277 
42 3.528 120 2.442 
59 4.663 145 2.972 
73 4.101 173 2.232 
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Fig. 5 .3: Influence plot of Observations on Mean of the Distribution 

Next, we consider the results in Table 5.2. Here, the functional of the bootstrap 

distribution we consider is the standard error of the mean, and the influence measure of 

each observation of the mean. In all, we have 13 observations having substantial 

influence on the mean of the distribution of the replicated variances. A graphical 

representation of the influence of each observation on the mean of the distribution is 

shown in Fig. 5.3. In particular, observations with absolute influence greater than 2 is 

considered to be influential. 

5.5 Conclusion 

In this chapter, we have considered bootstrapping the ARCH process with particular 

reference to the distribution of the replicated variances, and the measure of influence of 

each observation on the mean of the distribution of the replicated variances. We also 

obtained a negative bias which according to Christodoulakis and Satchell (in Knight and 

Satcell, 1998) will result in larger discrepancy between an observed and true forecast 

error statistic. In conclusion, the bootstrap on the ARCH process may provide worthwhile 

information about the process. We recommend that it is always better to check on the 

normality assumption before one assumes it when applying the ARCH processes. 
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CHAPTER6 

CONCLUSIONS AND RECOMMENDED RESEARCH AREA 

6.1 Summary and Findings 

This study has focused on an aspect time series, namely, macroeconomic time series with 

particular emphasis on modeling trends and volatility. Chapter 1 gave an overview and 

the structure of the whole dissertation. In Chapter 2, we reviewed some commonly used 

unit root tests discussed in the literature. A particular attention was paid to the 

Augmented Dickey-Fuller (ADF) and Phillips-Perron unit root tests. Applications of 

three of the unit roots using monthly data on the exchange rate of the South African rand 

to the U.S. dollar and coin and banknotes in circulation gave the same conclusion. 

In Chapter 3, our discussions were based on decomposing a macroeconomic time series 

into its permanent and temporary components. The chapter considered the types of trends 

usually found in macroeconomic time series data. Some decomposition methods were 

discussed. The application of decomposition methods using data on the exchange rate of 

the South African rand to the British pound revealed that movements in the rand/pound 

exchange rate are essentially temporary. Chapter 4 dealt with the concept of 

autoregressive conditional heteroskedasticity (ARCH) and most of its extensions 

discussed in the literature. The extensions include the Generalised ARCH (GARCH) 

process, ARCH-in-Mean (ARCH-M) Process, Exponential GARCH (EGARCH) process, 

Integrated GARCH (IGARCH) process, Threshold ARCH (TARCH) process, and 

Asymmetric Component ARCH (ACARCH) Process. An application of the methodology 

using monthly data on the percentage dividend yield on financial shares traded on the 

Johannesburg Stock Exchange was done. Results revealed volatility clustering. 

In the final chapter, an empirical study of the distribution of the replicated variances of 

the bootstrapped ARCH process was conducted. A series of size 200 that follows a 

simple ARCH process using the SAS statistical software was simulated. The simulated 

series was bootstrapped 1000 times using the S-plus statistical software. In this study, our 

interest was to investigate the distribution of the replicated variances. The study showed 
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that the distribution of the replicated variances is slightly skewed, but not always normal. 

This is something we would not have established if we had used the traditional approach. 

The negative biasedness of the distribution of the replicated variances is also an 

indication of the larger discrepancy that may exist between an observed and true forecast 

error statistics. The study also revealed 13 observations having substantial influence on 

the mean of the distribution of the replicated variances. 

6.2 Recommended Research Area 

Further research can be conducted using the same ARCH process but with the Monte 

Carlo method. It should be of great interest to establish whether the distribution of 

replicated variances using the Monte Carlo simulation will deviate from the normality 

assumption. 
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Testing for a Unit Root Using the ADF, PP, and IV Methods 

input x @@; 

date= intnx ( ' month' , ' 31dec1989 ' d , n ) ; 
format date monyy .; 
x1 lag(x) ; 
x2 = lag(x1); 
x3 = x1*x2; 

cards; 
6779 6949 7320 7209 7421 7523 
7412 7880 8119 7553 8446 8064 
7972 8121 8588 8309 8562 8410 
8151 8612 8453 8381 9280 8834 
8893 9104 8645 9249 9415 8733 
9336 8976 9126 9522 9851 9535 
9939 10022 9561 10037 10331 10016 

10337 10244 10038 10429 10550 10482 
10516 10721 11858 11688 11627 11359 
11997 11270 12135 11759 12458 12237 
12005 12241 12473 13099 12351 12989 
12821 13064 13725 12977 13846 14331 
13546 13992 14594 14183 14818 15111 
14326 15010 14762 14815 16101 15938 
15552 15943 16392 15764 15979 15535 
15641 16793 15983 16804 18017 17308 
17660 17939 16784 17754 17978 17114 
17666 17356 16882 17912 18409 18505 
18642 18985 18258 19195 18758 18545 
19856 19382 19730 20917 20943 22660 
20830 20486 20945 21874 2071 4 21726 

proc gplot; 
plot x *date= 1 / haxis= ' 1jan1990 ' d to ' 1j an2001 ' d by year; 
symbol1 i=join; 

run; 

proc arima; 
identify var=x stationari ty=(adf =0 ); 
identify var=x stationa r ity= (pp=0 ); 

run; 

proc model; 
parms c1; 
x = c1*x1; 
fit x / 2sls; 
instruments x2; 

ru ,1; 

proc means sum; 
run; 

NOTE: Same program is used for the Rand/Pound Series 
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Decomposition of Series into Deterministic and Stochastic Parts 

data a; /* CPI */ 
input X @@; 

date =_n_; 
cards; 
88.2 88.7 89.3 89.7 90.4 
96.8 97.7 98 .5 99 . 5 100 . 1 

103.5 104.0 104.6 105. 1 105.9 
112. 7 113. 6 114. 2 115. 1 115. 7 
120.8 121. 5 122 . 1 123 .2 124. 1 
130.2 130.9 131 .9 132 .7 133. 8 
140.8 

proc reg data=a; 
model x =date/ p noprint; 
output out=b residual=r; 

run; 

proc forecast out =c lead=6; 
id date; 
var x; 
where date>= 1; 

run; 

proc print data=c; 
run; 

data d; 
set b; 

_type_= 'r' ; 
output; 

run; 

proc arima data=d; 

91 .3 
100 . 4 
107.0 
116. 2 
124.8 
134.7 

identify var=r stationarity=(adf=O ) ; 
run; 

proc arima data=d; 
identify var=r esacf; 

run; 

proc arima data=d ; 
identify var=r(1); 
estimate q=2 noconstant method=ml; 
estimate p=1 q=2 noconstant method=ml; 
estimate p=2 q=2 noconstant method=ml; 
estimate p=3 q=2 noconstant method=ml; 
estimate p=4 q=1 noconstant method =ml; 

run; 

proc arima data=d; 
identify var=r(1); 
estimate q=2 noconstant method=ml; 
forecast lead=6; 

run; 

92 . 4 93 .6 94 . 6 95.0 95.4 96 . 0 
100.5 100 .5 100.6 101 . 1 101 . 7 102.7 
107.5 108. 1 109.3 110. 3 111 . 2 112. 4 
117 . 1 117.7 118. 4 119. 0 119. 7 120.3 
125.5 126.6 127 .5 128.2 129.0 129.6 
135.8 136.6 137.6 138.4 139.4 139.9 
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