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ABSTRACT 

'vVe study the approximate group classification of a family of non-linear 

wave equations with a small perturbation. An essential part in this 

classification is the use of approximate equivalence transformations. We 

use these transformations to determine functions which extend the 

approximate principal Lie algebra. Furthermore we construct some invariant 

solutions. 
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Chapter 1 

Introduction 

The problem of group classification of partial differential equations according to their 

symmetries, was first considered by Sophus Lie [12]. The algorithm for finding the 

symmetry group of a differential equation or systems of differential equations can be 

found in the literature, for example [7], [13], [15] . 

In the past two decades several papers, which are closely related to the present 

work, were published. To name a few, Ames et al [1] investigated the group properties 

of quasilinear hyperbolic equations of the form 

(1.1) 

The investigation was later generalized by Torrisi et al [16], [17] to equations of the 

form 

and further to the nonlinear wave equations of the form 

1 



2 

by Ibragimov, Torrisi and Valenti [10]. 

The method of classical group analysis of differential equations enables one to 

distinguish among all the equations· of mathematical physics, the equations that are 

remarkable with respect to their symmetry properties. However , any perturbation 

of an equation destroys the group admitted and this in general reduces the practical 

values of these refined equations of group theoretic method [3]. 

This evoked the necessity for the development of approximate methods of group 

analysis suitable for the construction of symmetries which are stable with respect to a 

small perturbation of the equation. Various authors have done work in this area. To 

illustrate this point , we cite a few papers. Baikov, Gazizov and Ibragimov examined 

the approximate group properties of the second order ordinary differential equations 

of the form 

u" + u = EF (u), 

d2 -mf(l) 
Here u = u ( 0) , u" = dB~ and F ( u) = L2u2u , where L is angular momentum of a 

particle, m is the mass of the particle and u is the inverse of the distance from the 

center of a force, see Vol. 3 chapter 9 in [8]. They considered wave equations with a 

small dissipation, In particular they examined the sequence 

which is connected by Backlund transformations. Here f = F'. These equations were 

generalized [6] to the equations of the form 
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Furthermore they [5] considered a class of evolution equations of the form 

where H is an arbitrary element of the space of differential functions. In one of their 

paper [6], they constructed approximate invariant solutions for the equation 

In chapter two, we will consider the group classification of the equations 

This was done by Baikov and Gazizov [5] . We do not claim originality of the work 

in this chapter but we merely provide the details of the classification result of the 

equations (1.1), in order to give a clear picture of the classification procedure for the 

subsequent sections. In fact we give a review of construction of exact symmetries of 

the unperturbed part of the nonlinear wave equation I Nwu / LIBFIAfly_ 

given in the papers by Oran and Rosenau [14], Baikov and Gazizov [5]. In particular, 

we construct the principal Lie algebra, the equivalence transformations for the equa

tion (1. 1) and determine the functions for which the principal Lie algebra extends. 

In chapter three we construct the principal Lie algebra and approximate equiva-

lence transformations for the equations 

(1.3) 
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and hence attempt to classify them. 

In chapter four we construct the adjoint group for the 10-dimensional approximate 

principal Lie algebra £ 10 , we consider some linear combinations of their symmetries 

and we further construct some approximate invariant solutions for the equation 

(1.4) 

Finally, in appendices, we will give the prolongation formulae, definitions of the op

erators X, E and Da (a is a variable) and we prove that the approximate point 

symmetries obtained in section (3.2) leave the equations (3 .7) invariant. 



Chapter 2 

Group classification of the 

equations Vtt 

2.1 The Principal Lie Algebra 

In this section we wish to determine the pointwise principal Lie algebra symmetries 

which are admitted by the family of equations (1.1). We shall denote this algebra by 

LP. The local vector field on the (t, x, v) - space represented by 

1 a 2 a a 
X = ~ ( t, X, V) at + ~ ( t, X, V) ax + 1J ( t, X, V) av , (2. 1) 

generates the elements of LP. Our aim is to determine the functions e, e and 77 in 

(2.1 ). 

In the extended space with variables (t, x, v, Vx, Vt, Vxx, Vtt, Vxt), the prolonged op-

5 
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erator becomes 

where1 

(1 = Dt (77) - Vt Dt (e) - Vx Dt (e), 

(2 = Dx (77) - Vt D x (e) - Vx D x (e) , 

(22 = Dx ((2) :_ Vxt Dx (e) - VxxDx (e), 

(12 = Dx ((1) - Vxt D x (e) - VxxDx (e) 

and the total derivatives Dt and D x are given by 

a a a a 
Dt =~+ Vt~ +vu-;::;-- +Vtx~ + ... 

ui UV UVt UVx 

The invariance condition on the equation ( 1.1) 

yields the following determining equation 

(2.3) 

(2.4) 

(2.5 ) 

In solving the equations ( 2. 5), Vtt is replaced by f ( Vx) Vxx and Vt, Vx , Vxx and Vxt are 

considered as free variables. The decomposition of the equations (2.5) with respect 

to the free variables Vt, Vxx and Vxt leads to the equations 

(2.6) 

1 The explicit prolongation formulae are given in appendix A 



~; + f' ( ~; + ~; Vx) = 0, 

e + f ( ~; + ~;vx) = 0, 

(27Jvt - ~it)+ f (~;x + ~;vvx + ~;vv;) = 0, 

7/tt - ~it --f [ 7/xx + ( 27Jxv - ~;x) Vx + 7/vv v;] = 0 -

For an arbitrary function f ( Vx) , all the coefficients should vanish , that is 

Solving the equations (2.13) we obtain 

7 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2. 11) 

(2.12) 

(2.13) 

(2. 14) 
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where c1 , ... , c5 are constants. Thus we obtain a 5-dimensional principal Lie algebra 

with basis 

a a a 
X1 =t-+x-+v-ot ax &v ' 

fJ 
X3 = ox ' 

2.2 The equivalence transformations 

In this section we wish to find all pointwise equivalence transformations of the equa-

tion (1.1). 

Definition 1 An equivalence transformation is a nondegen erate change of variables 

t , x and v , which takes any equation of the form (1 .1} to an equation of the same 

form, generally with different coefficient f ( vx) (3). 

We apply the Lie infinitesimal method to calculate the subgroup Ee of continuous 

transformations of the group of equivalence transformations £ of the system 
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We shall determine the operator 

1 8 2 8 [) [) 
E=~ (t,x,v) at+~ (t,x ,v) ax +TJ(t,x,v) av +µ(t,x,v,vx ,Vt, f) of (2 .15) 

which generates the elements of the subgroup Ee, where t, x, v, Vx and Vt are indepen-

dent variables and f is the only dependent variable. 

Along with the operators 

we introduce the following differential operators 

[) [) [) [) [) fJ 
D1 - Dt =at+ ft of+ ftt 8ft + fxt ofx + f tv afv + ftvi afvi + ... , 

- - [) [) [) [) [) [) 
D2 - Dx =ax+ f x of+ fxx afx + fxt 8ft + !xv afv + ! xvi afvi + ... , 
- - [) [) [) fJ [) [) 
D3 - Dv = av+ fv of+ fvv afv + !xv afx + f tv 8ft + fvvt afvi + ... , 
- - [) [) [) fJ [) fJ 
D4 Dvt = OVt + f vt of+ f vtVt afvt + !xvt fJfx + !tvt 8ft + ! vvt afv + .... 

In the extended space the operator (2.15) is given by 

where 

j,k = 1,2 

are given in (2.3) and 

wi =Di(µ) - ftDi (e)- fxDi (e) - fvDi (TJ) - fviDi ((1) - f v,, Di ((2), i = 1, ... ,4. 

(2. 16) 
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The infinitesimal criterion for invariance of the system 

f t = 0, f x = 0, f v = 0, f vt = 0, (2 .17) 

which is written in the form 

(2. 18) 

Subject to equat ion (2.17) being satisfied we have 

(2. 19) 

The equations (2.18) and (2.19) yield the following determining equations 

(2.20) 

W i = 0, i = 1, .. . , 4. (2. 21) 

Since 

then t ogether with (2.17) we have 

That is 

(2.22) 



similarly 
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(2.23) 

(2 .24) 

(2.25) 

Since f is a differential variable which is algebraically independent from f vx then the 

equations (2.22) , (2.23) , (2.24), (2 ,25) decompose with respect to f vx, hence we have 

(2.26) 

(2.27) 

Since 

(2.28) 

then we have 

Equation (2.29) splits into the following equations 

(2.30) 

Similarly 

splits into 

(2.32) 

and 
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splits into 

(2.34) 

Finally 

(2.35) 

The equations (2 .30), (2.32), (2 .34) and (2.35) further split and are solved as follows 

and so 

From 

we have 

Furthermore 

'r/vv = 'r/vx = 'r/xx = 'r/xt = Q, 

implies 

where k1 and k2 are constants. From the invariance condition (2.18) we have the 

equation 

splitting into the following equations 

(2.36) 



27Jtv - ~it = 0, 

These equations are solved as follows : 

from 

and 

we have 

13 

(2.37) 

(2.38) 

Since µ and f are independent of the variable t, differentiating equation (2.38) with 

respect to t we obtain 

hence 

Also 

and 

T/vt = T/tt = 0 

implies 
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Finally 

where c1 , ... , cs are constants. Thus we obtain an 8-dimensional equivalence algebra 

spanned by 

8 8 
E1 = X ox + 2 f 8 f , 

e a 
E2 = tat - 2f Of' 

8 
E3 = ox ' 

(2. 39) 

Solving the Lie equations for (2.39) we obtain the equivalence transformations 

(2.40) 

where /31 , . .. , /38 are constants. We notice that the equation 

(2.41 ) 
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is equivalent to the relation 

2f (a - b) = f' [c + (d - a) vx] (2.42) 

with constant coefficients a, b , c and d. Since f depends only on Vx it is only possible for 

equation (2.41) to hold when all its coefficients vanish identically or are proportional 

to some function >-.(t, x, v) =J. 0. We observe that if all the coefficients in (2 .41 ) 

are simultaneously equal to zero, then this corresponds _to the case of an arbitrary 

function f . The extension of the principal Lie algebra is only possible for functions 

f satisfying an equat ion of the form (2.42) with constant coefficients a, b , c and d 

such that (a - b) and c + (d - a)vx are not zero. vVe obtain a classifying relation 

f' 2 (a-b) 
f C + (d - a) Vx · 

(2.43) 

2.3 Results of the classification 

We shall now analyze the classifying relation (2.43). An equivalence relation of equa

tions (1.1) can be carried out on (2 .43). After equivalence transformations (2.40) , 

equation (2.43) assumes the form 

f' 2 (a - b) 
f c + (ct - a) vx · 

(2.44) 

We have 

(2.45) 

Where 
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and 

We have 

Therefore 

and 

Now 

implies 

_ Dx (v) /35 + /3sVx 
Vx = Dx (x) = 

Dvx (vx) = :: , 

Dvx (f) = /3~/322 J'. 

f' 13d' 
1 /35 f 

f' = 
/3f /3i 2 !' 

/35 

/31 

f' 2 (/3s7i - /3sb) 

f f31c + (d - a) /35 + (d - a) f3svx · 

(2.46) 

(2.47) 

(2 .48) 

(2.49) 

(2.50) 

(2 .51) 

(2 .52) 

We observe that the coefficients a, b, c and d relate to the coefficients a, b, c and 

d by the formulae 

a = af3s, b = b/3s , d = df3s, c = f31c + (d - a) /35. (2.53) 

We now use the above relation to obtain the non-equivalent forms of f . Three 

cases an se. 



CASE 1 c =J 0, d - a = 0. 

Subcase 1.1 If a =J 0, let b = 0. 

The equation (2.43) has th e form 

hence 

f' 2a 

f C 

Subcase 1.2 If b =J 0, let a = 0. 

The equation (2.43) has the form 

f' 2b 

f C 

hence 

Subcase 1.3 We let a =JO and b =J 0. 

The equation (2.43) has the form 

f' 2(a - b) 

f C 

and so 

2(a - b) V 

f = ae c "', a E ~ -

CASE 2 We let d - a =J O and c = 0. 

Subcase 2.1 If a - b =JO and a =J 0. 

The equation (2.43) has the form 

f' 2 (a - b) 

f (d - a) Vx' 

17 
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thus 

2(a - b) 

f = O:Vx d-a ' Ct: E ~ -

Subcase 2.2 If a-=/= 0, let d = 0 ·and b = 0. 

The equation (2.43) has the form 

!' 2 
f Vx 

thus 

f == o:v; 2
, o: E ~-

Subcase 2.3 If a -=/= 0, let d-=/= 0 and b = 0. 

The equation (2.43) has the form 

hence 

2a 

f = o:v:-a , o: E ?R. 

Subcase 2.4 If a -=/= 0, let d = 0 and b -=/= 0. 

The equation (2.43) has the form 

f' 

f 
2(a-b) 

hence 

_ 2(a - b) 

f = O:Vx a 

CASE 3 Let d - a -=/= 0 and c -=/= 0. 

The equation (2.43) has the form 

o: E ~-

f' 2 (a - b) 
f c+(d- a)vx ' 
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thus 

, . 
Substituting each of the f 's obtained above in (2.42) and then solving, we find 

those f 's for which the principal Lie algebra extends. For instance, in subcase 1.3 

where a =J 0, b =J 0 , d - a = 0 and c =J 0, 

we have 

If we let 

then 

We have 

hence 

For f3 = 1 we have 

f' 2 (a - b) 
f C 

(3 = 2(a-_b)' (3 E SR, 
C 

(Jc 
a= -+b. 

2 

TJ = ex+ (~c + b) v + c4t + c5 , 

e - (~c +b) x + c,, / L1Un":t%;J 
e = bt + c2, 

a a 
X6=x-+(2x+v)~-

8x UV 
(2.54) 

In other words for f = aev'" , the principal Lie algebra is extended by the generator 

(2.54). 
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Similarly in subcase 2.1, we let 

2 (a - b) 
17=---
. d-a ' 

then 

17d 2b 
a= -- + --, 17 =I- -2,0. 

17+2 17+2 

That is for f = av~ we obtain the generator 

for O" = -4, that is f = av;4 , we have 

a a 
X6 = 2x-+v-

8x ov 

4 

and for 17 = -!, that is f = av; 3
, we obtain 

a a x6 =2x- -v-. 
ox ov 

These results are given in [8], Volume 3, section 9:2. Some other method other than 

4 

the equivalence is needed to find X7 in the case off= av;4 and f = av; 3 . Moreover 

quasilocal symmetries with the nonlocal variable w defined by the equation Wx = v, 

1 

Wtt = -3c5v; 3 are listed. 



Chapter 3 

Group classification of t he 

equations Vtt 

Differential equations that models some phenomena in nature, often involve unde

termined parameters and /or arbitrary functions of certain variables. In most cases 

these arbitrary functions or parameters are ~etermined experimentally or chosen from 

a simple or trivial criteria. Lie group theory provides a regular procedure to deter

mine these arbitrary functions or parameters from symmetry point of view. This 

study is commonly known as Lie group classification of differential equations. An es

sential part of the group classification is the utilization of equivalence transformations, 

which allow us to divide the set of all differential equations of the family into disjoint 

classes of equivalent equations. We shall start by introducing approximate symmetry 

groups and construct approximate equivalence transformations for the equations 

(3.1) 

21 
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3.1 The approximate symmetry groups 

We wish to introduce the one-parameter approximate symmetry group for equations 

with small parameter. We consider the function f (x, u, ... , c) of the form 

f (x, u, ... , c) Jo (x, u, ... ) + cfi (x, u , ... ) = 0, (3.2 ) 

where Jo (x, u , .. . ) = 0 is the unperturbed equation. For more details on this section 

see [9]. 

Consider the transformations of the variables (x, u) into (x, u). 

?i = cp~ (x, u) + ccpi (x , u) , uk = 'l/Jt (x, u) + i.'l/Jt (x , u), i = 1, ... , n.k = 1, ... , m. 

Definition 2 The class of transformations of the fo rm 

- i i ( ) -k . 1,k ( ) . 1 k l x =cp x,u,E ,u ='f' x,u,E ,i= , ... ,n. = , ... , m. (3.3) 

with functions 

. . . k · k k 
cpi (x, u, c) ~ cp~ (x , u) + ccp~ (x, u); 'l/J (x , u, c) ~ '!/Jo (x, u) + E'!p1 (x, u) 

is called an approximate transformation. 

Definition 3 An approximate transformation of the variables (x, u) of the form (3.3) 

is said to be an approximate symmetry transformation of the equation (3.2) if it 

preserves the corresponding approximate equation up to order E. 

Consider a one parameter family of invertible approximate transformations of the 

variables x, u given by 

-i i ( ) -k . 1,k ( ) . 1 k l x = cp x,u,a,E ,u = 'f' x,u,a,E , i = , ... ,n. = , ... ,m (3.4) 
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such that 

(3.5) 

Definition 4 The approximate transformations (3.4) satisfying the condition (3.5) 

form approximate one parameter transformation group G if 

'l, 1, ... , n, k = 1, ... , m. 

If the transformations (3.4) of the group G are approximate symmetry transfor

mations of the equation (3.2) then G is called the approximate symmetry group . 

For approximate transformation groups, the operators are given by 

i O k O 
X=~ (x,u,c) &xi +77 (x,u,c) auk' 

where 

hence 

(
i i ) O (k k ) O X = ~o (x, u) + c~1 (x, u) &xi + 770 (x, u) + 1:771 (x, u) auk. 

One can write 

(3.6) 

The operator X 0 is called the stable symmetry if it is admitted by the unperturbed 

equation. The corresponding approximate symmetry generator X for the perturbed 

equation is called a deformation of the operator Xo. 
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3.2 The approximate equivalence transformations 

We wish to calculate the approximate equivalence transformations for the equations 

(3.7) 

In this case, a natural modification of equivalence transformation that involves ap

proximate transformations is used. 

Definition 5 An approximate equivalence transformation is a nondegerate ( at E = 0) 

change of variables of the form 

x <p6 (x, t, v) + E<pi (x, t, v), t =·cp6 (x, t, v) + Ecpf (x, t, v) 

V = 'I/Jo ( X, t, V) + E'!p1 ( X, t, V) , 

such that, in the precision indicated, the equation ( 1. 3) is written as 

That is the form of the equation (1.3) is not changed. 

The algorithm for finding the approximate equivalence transformations is similar 

to that used in the case of exact equivalence transformation groups [5]. We consider 

the system of equations 

(3.8) 

and seek the operator 
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where ev, Tl/, 'T}I/ ( v = 0, 1) are functions of t, x and v, but µ depends on the variables 

t, x, v, Vx, Vt and g. In the extended space we have 

E E + ((g + c(f) f/3 + ((5 + c(i) 88 + ((gx + c(tx) 8 8 + 
Vx Vt Vxx 

( tt tt) 8 8 8 fJ 8 (o +c(1 8 +wv8 +wt8 +wx8 +wvt 8 + ... 
Vtt 9v 9t 9x 9vt 

(3.9) 

where 

Wa Da (µ) - 9tDa (T0 + ET1) - 9xDa (e0 + ce1) - 9vDa (rJ0 + cr,1) 

-gvtDa ( (6 + c(i) - 9vxDa ((g + c(f) (3.10) 

and 

Da 
8 8 8 8 8 {) 

- a+ 9aa + 9ata + 9ax& + 9av& + 9avta + ... , 
a g 9t 9x 9v 9vt 

a E { X, t , V, Vt}. 

The formulae for the functions (o , G, (6 , (i, (ox, Gx , (6t and (it are given in appendix 

A. Since 

9a = 0, Va E {x,t,v,vt}, 

then 

The infinitesimal approximate invariance criterion for the system (3.8) is written as 

(3.11) 

and subject to the satisfaction of equation (3.8) we have 

(3.12) 



26 

3.2.1 The zero order terms 

In the zero-order of precision, equation (3.11) becomes 

(3.13) 

Together with (3.12) we obtain 

(3.14) 

(3.15) 

From equations (3.15) we have 

(3.16) 

Since g is a differential variable which is algebraically independent from 9v,, then the 

equatioµs (3. 16) decompose with respect to 9v,,, hence we have 

µa = 0 and ( (o t = 0, V -a E { x, t , v, vt}. (3.17) 

Thus µ is a function of Vx and g only. Since 

(3.18) 

then we have 

(3.19) 

Equation (3.19) splits into the following equations 

(3.20) 
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Similarly 

(3.21) 

splits into 

_ 0 o _ 0 o _ 0 o cO _ 0 cO _ 0 'T/xt - , 7 xt - , 7 tv - , 'T/tv - ',xt - , ',tv - , (3.22) 

also 

(3.23) 

splits into 

(3.24) 

Finally 

splits into 

(3.25) 

From equations (3.20), (3.22) , (3.24) and (3.25) we have 

(3.26) 

where a1 and a2 are constant coefficients. Equations (3.14) decompose into the equa-

tions 

0 0 0 0 0 0 
'T/xt = 'T/tv = 'T/xv = 'T/vv = 'T/xx = , 
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(3.27) 

From equations (3.27) we obtain 

(3.28) 

with constant coefficients c1 , ... , c6 . Thus we obtain 6 stable symmetries given by 

f) 

X3 = fJv, 

3.2.2 The first order terms 

In the first-order of precision, the invariance condition on the equation (3.7) 

(3.29) 

(3.30) 



yields the determining equation 

Substituting 

we obtain the determining equation 

(
710 _ 27 0 _ 37 0 _ cOV ) g + ;-tt _ aev"'V ;-x _ aev,,;-xx _ µ = Q 
'IV t v '::.v -X '::.1 xx<,,1 '::.1 · 

Equations (3 .31) split into the equations 

Solving the equations (3.32) we obtain 

29 

(3.31) 

(3.32) 

(3.33) 
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with constant coefficients a 1 , ... , a7 . Thus we obtain a 13-dimensional approximate 

equivalence Lie algebra spanned by the generators 

8 8 8 8 
Es= t- +x- +v- -g-

ot EJx EJv 8g' 

8 8 8 
E6 = x EJx + ( v + 2x) EJv + gag, (3.34) 

8 
E7 = E EJt' 

8 
E10 = Et EJv' 

Eu = E ( t :t - 2x :v) , 
E 12 = E ( x :x + ( v + 2x) :v) , 

Equation (3.7) admits a 13-dimensional Lie algebra of infinitesimal generators of a 

13-parameter group of approximate equivalence transformations. The three nontrivial 

generators are 

a a a a 
Es= t-+x- +v- - g-, 

EJt ax av ag 
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(3.35) 

It is sufficient, for group classification, to consider the point approximate equivalence 

transformations corresponding to (3.35). These transformations are given by 

v (3. 36) 

3.3 Results of the classification 

In this section we wish to find the principal Lie algebra for the equations (3.7), 

furthermore we find those functions g for which the principal Lie algebra is extended. 

We seek the admitted operator in the form 

X = (~0 (t,x,v) + ce (t,x,v)) :x + (T0 (t,x,v) + ET
1 (t,x,v)) :t 

+(11°(t,x,v)+c1/(t,x ,v )) :v. 

The prolonged operator is given by 

The invariance condition on equation (3.7) 

yields the determining equation 

rtt rtt (rx rx) v,, (rxx + rxx) v,, , (rx + rx ) _ 0 ':.O + c..,, 1 - a ':.O + c..,,1 e Vxx - a ..,,0 c..,,1 e - cg ..,,0 c..,,1 - . 
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In the zero order of precision we obtain similar results as in (3.28) whereas in the 

first order of precision we have the determining equation 

(3.37) 

Substituting Vtt = aev"Vxx and considering arbitrary g , the equations (3.37) split into 

(3.38) 

Since 

we then have that c5 = 0. Thus we obtain 

where c1 , ... , c4 are constants, also from equation (3.37) we obtain 



33 

where a1 , ... , a6 are constants. Thus the principal Lie algebra1 is 10-dimensional and 

its basis is 

If we consider the function g not arbitrary, then equation (3.37) reduces to 

( 0 2 0) 1 ' 0 0 "lv - 7 t g + "ltt - g "lx = · 

The equation (3.40) is equivalent to the relation 

where c5 , c6 and I are constant coefficients. 

1 We prove that these symmetries are admitted by equations (3. 7) in appendix B 

(3.39) 

(3.40) 

(3.41) 
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3.3.1 Analysis of the classifying relation 

We use the relation (3.41) to obtain non-equivalent forms of g. Two cases arise. 

CASE 1 If 1 = 0 then (3.41) becomes 

thus 

~ 
g = Ae 2c5 V :,;' 

where A is a constant . Let 

then 

(1 - 2/3) C5 = C5 , 

hence , 

(3.42) 

So we obtain the eleventh symmetry, namely 

8 8 8 
Xu = 2 (1 - /3) x ox + (l - 2/3) tot + [2x + 2 (1 - /3) v] ov , V/3 E ~- (3.43) 
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In other words the equation 

A> 0, (3 E ~ ,a= ±1. 

admits 11-dimensional Lie algebra. 

In particular for (3 = 1, the generator (3.43) takes the form 

fJ fJ 
X 11 = -t-+2x-

fJt fJv 

and for (3 = ½ we obtain 

fJ fJ 
X11 = x fJx + (2x + v) fJv. 

CASE 2 If 1 =I= 0 then (3.41) becomes 

thus 

where B is a constant. Let 

8 =/= 0, 

and 

(3 =I= 0, 

then 

and 

Thus 
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~O = 2 (1 - ,8) C5X + C2, 

TO= (1 - 2,8) C5t + C1. 

Thus we obtain the eleventh generator 

X11 = 2 (1 - ,8) x :x + (1 - 2,8) t :t + [2x + 2 (1 - ,8) v - 2b,Bt2
] :v, 

which is admitted by the equation 

We observe that the principal Lie algebra does not extend if g is a constant. 



Chapter 4 

The adjoint group and Invariant 
solutions 

4.1 The adjoint group for the algebra L10 

In this section we shall construct the adjoint group of L10 . We start by giving some 

definitions and explanation of some terms. See Vol.2 in [8] for more details. 

Definition 6 Lie algebra 
A Lie algebra is a vector space L , such that f or X1 , X2 , X 3 E L, the bilinear product 

[X1 , X2], called commutator of X1 and X2 , is an element in L. Moreover 

and the Jacobi identity 

is satisfied. 

We consider vector spaces over the field of real numbers . The dimension of the 

Lie algebra Lis the dimension of the vector space. We shall denote an r-dimensional 

Lie algebra by Lr. 

Definition 7 The structure constants 
Let X 1 , X 2 , . . . , Xr be the basis of the vector space Lr. Then Lr is closed under the 

commutator if 
[Xµ, Xv] = c;11 X>. 

where constant coefficients c;
11 

are known as the structure constants. 

37 
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Definition 8 Isomorphism and Automorphism 
Let L and K be two algebras that are isomorphic. The linear one-to-one and onto 

map 

. f:L---+K 

is said to be an isomorphism if 

where the indexes L and K are used to denote the commutator in the corresponding 
algebra. 

Two algebras are isomorphic if they have the same structure constants in an ap-

propriately chosen basis. An isomorphism of L onto itself is called an automorphism. 

Definition 9 Inner automorphism 
Let X 1 , X2, ... , Xr be the selected basis of the vector space Lr. Accordingly, the 

structure constants c~
11 

are known and any X E L is written as 

Hence, the elements of Lr are represented by vectors e = (e1, ... , er) . Let L~ be a Lie 
algebra spanned by the follo wing operators 

µ = l , ... , r. 

with the commutator defined by the formula 

The algebra L~ generates the group GA of linear transformations of { eµ}. These 

transformations determine the automorphisms of the algebra Lr known as inner au

tomorphisms. The group GA is called group of automorphisms of Lr , or the adjoint 

group of Lr, 

We now consider the commutators of L10 given in the table below 
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We wish to determine the transformations that give rise to the adjoint group of 

£ 10 . The generators of the adjoint algebra Lf0 are in the form 

( 4.1) 

and 

We wish to determine the generator E 1 as an example and the rest follow in a 

similar manner. 

Let 

We write the bracket as 

For v = 2 we have 

and so we obtain 

For v = 5 we obtain 

for v = 6 we obtain 

for v = 7 we obtain 

µ = 1 and \ v = 1, ... , 10. 

6 - 2 C17- -
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for v = 9 we obtain 

and finally for v = 10 we have 

C~10 = 1. 

The generator ( 4. 1) has the form 

and similarly 

2 8 4 8 7 8 8 8 9 8 
E3 = -Ee (Je6 + Ee 8 e4 - 2e (Je6 + e 8 e4 - e (Je5 ' 

3 8 5 8 9 8 
E4 = ce 8e4 - Ee (Je6 - e (Je6 ' 

18 4 0 8 8 
Es = - Ee (Je5 + Ee (Je6 + e (Je6' 

1 8 
E5 = -Ee a e6 , (4 .2) 

18 18 3 0 
E1 = 2e (Je6 - e 8 e2 + 2e 8 e6 ' 

3 8 5 8 9 8 
Es = - e 8 e4 - e (Je6 + e (JelO ' 

10 30 4 0 8 8 
Eg = - e (Je5 + e (Je5 + e (Je6 + e a elO) 

1 8 
E10 = - e a e6 . 

From the operators ( 4.2) we solve the Lie equations to obtain the following adjoint 

transformations 
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e3 = e3 
' 

(4.3) 

e8 = es 
' 

These transformations give rise to the adjoint group elements of the algebra L10 

4.2 Some approximate invariant solut ions 

In this section we wish to construct some regular invariant approximate solutions for 

the equation (1.4). The algorithm for constructing the approximate invariant solution 

of differential equations with small perturbation can be found in [3] , [9]. 

The equation (3.2) is said to be approximately invariant under the approximate 

group G if and only if 

(4 .4) 
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where the generator (3.6) of the group G is extended to · the necessary derivatives. We 

say that the equation f admits the approximate generator X if ( 4.4) holds. 

The approximate invariants for the operator (3.6) given by 

J (t , x , v, E) = 10 (t , x , v ) + EJ1 (t , x, v) 

are determined by the equation 

or equivalently 

Equation ( 4.5) splits into two equations 

Among other generators the equation (1.4) admits the generators 

Yi1 = E (t~ -2x~) 
at av ' 

(4.6) 

( 4.7) 

(4.8) 

The operators (4.6), (4.7) and (4.8) are linear combination of the generators X2 , 

X 3 , X 7 , X s and X 9 given in (3.39). 

1. The operator 
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has the following functionally independent invariants 

and the corresponding approximate invariant solution is given by 

where r.p satisfies the equation 

- 2x .!L e 'f' // 2 / (r.p')2 
<p + -r.p - --

c:Ar.p 
---+--. 

2ax x <p <p 

2. The generator 

has the following functionally independent invariants 

Assuming that ¢1 and ¢2 are equal to zero, the corresponding approximate invariant 

solution is given by 

t2 
V ~ 2 - cp (x) , 

where ¢ satisfies the equation 
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3. Using the generator 

we obtain the following functionally independent invariants 

>.2 = (xt - v) + t((xt - v + 2x) + g (t , xt - v)). 

Assuming the functions f and g to be zero, the corresponding approximate invariant 

solution is given by 

where A and care constants. 
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Concluding Remarks 

In this study a deeper understanding of the construction of the principal Lie 

algebra, the equivalence transformations, the approximate principal Lie algebra, the 

approximate equivalence transformations and the approximate invariant solutions has 

been gained. We have determined the function g for which the approximate princi-

pal Lie algebra extends by one and also we constructed some approximate invariant 

solutions for the equation (1.4). 

Although not covered in this exercise, it would be interesting in the near future 

to extend this analysis to the equations 

4 

Vtt = av;3Vxx + Eg (vx) . 

In section 4.1 the adjoint group for the L io has been constructed, it could be 

interesting to find the optimal system of one-dimensional subalgebras of Lio and the 

invariant solutions. 

The problem of finding the Lagrangians and conservation laws for the equations 

(1.4) is still to be solved. Moreover we wish to find some physical meaning or appli-

cations of these equations. 
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Appendix A Prolongation formulae 

(a) We give explicit formulae for the prolongations (2.3) and (2. 16). In the ex-

tended space with variables (t, x, v, Vx, Vt, Vxx, Vxt, vtt) the prolonged operator is given 

by 

X (2) 1 ( ) 8 t2 ( ) 8 ( ) 8 I" 8 I" 8 
( t,x,v -a+.,, t,x ,v -a +77 t , x ,v -a +.,,1-a + .,,2-a 

t X V Vt Vx 

a a a 
+(n -a + (22 -a + (12 -a, 

Vtt Vxx Vxt 

where 

(b) The extended generator of the equivalence transformations 

~ a a a a a a a a 
E = E + (1-a + (2 -a + (n-8 + (22 -8 + W18f + W28 f + W38f + W48 f ' 

Vt Vx Vtt Vxx t x v Vt 

where 
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The operators Da , a E { t , x, v.vt} are given in p 9. 

( c) The prolonged generator of approximate point transformations is given by 

E 

where 

v = 0, 1, 

v = 0, 1, 

v = 0, 1, 



6v 
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Appendix B 

We show that the approximate symmetries obtained in (3.39) leave the equation 

(3.7) invariant. Consider the generators 

X 9 = E (t~ -2x.3_) ot av and X 10 = E ( x :x + (2x + v) :v) . 
We have 

(4.9) 

where X~2
) is the second prolongation of X 9, but 

;-tt 
'>l = Vtt, G =2, ;-xx 

'>l = - Vxx, 

hence the right hand side of equation ( 4. 9) becomes 

Thus the equation (3.7) admits the generator X 9 . 

Similarly 

X (2) ( _ V:,: + ( )) I _ ;-tt V:,:/'X V:,; ,XX I 
10 Vtt - ae Vxx Eg Vx Vtt=oeVxv:,::,:- '>l - ae '>l Vxx - ae 1 _ v-Vtt-Oe ... vxx 

(4.10) 

hence the right hand side of equation ( 4.10) becomes 

Thus the generator X 10 leaves the equation (3.7) invariant. 
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