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Abstract 

In this work, we study the applications of Lie symmetry analysis to certain nonlinear 

wave equations. Exact solutions and conservation laws are obtained for such equa­

tions. The equations which are considered in this thesis are the generalized ( 2+ 1 )­

dimensional Klein-Gordon equation, the generalized double sinh-Gordon equation, 

the generalized double combined sinh-cosh-Gordon equation, the (2+ 1 )-dimensional 

nonlinear sinh-Gordon equation, the (3+ 1 )-dimensional nonlinear sinh-Gordon equa­

t ion, the Boussinesq-double sine-Gordon equation, the Boussinesq-double sinh-Gordon 

equation, the Boussinesq-Liouville type I equation and the Boussinesq-Liouville type 

II equation. 

The generalized (2+ 1 )-dimensional Klein-Gordon equation is investigated from the 

point of view of Lie group classification. We show that this equation admits a nine­

dimensional equivalence Lie algebra. It is also shown that the principal Lie algebra 

consists of six symmetries. Several possible extensions of the principal Lie algebra 

are computed and the group-invariant solutions-of the generalized (2+ 1 )-dimensional 

Klein-Gordon equation are presented for power law and exponential function cases. 

Thereafter, we illustrate that the generalized (2+ 1 )-dimensional Klein-Gordon equa­

tion is nonlinearly self-adjoint. In addition, we derive conservation laws for the 

nonlinearly self-adjoint subclasses by using the new Ibragimov t heorem. 

Lie symmetry method is performed on a generalized double sinh-Gordon equation. 

Exact solutions of a generalized double sinh-Gordon equation are obtained by using 

the Lie symmetry method in conjunction with the simplest equation method and 

the exponential function method. In addition to exact solutions we also present 

conservation laws which are derived using four different methods, namely the direct 

method , the Noether t heorem, the new conservation theorem due to Ibragimov and 

the mult iplier method. 

The generalized double combined sinh-cosh-Gordon equation is investigated using Lie 

group analysis. Exact solutions are obtained using the Lie group method together 

with the simplest equation method. Conservation laws are also obtained by using 
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four different approaches, namely the direct method , the Noether theorem, the new 

conservation theorem due to Ibragimov and the multiplier method for the underlying 

equation. 

The (2+ 1 )-dimensional nonlinear sinh-Gordon equation and the (3+ 1 )-dimensional 

nonlinear sinh-Gordon equation are investigated by using Lie symmetry analysis . 

The similarity reductions and exact solutions with the aid of simplest equat ion 

method and ( G' / G)-expansion methods are computed. In addition to exact solu­

tions, the conservation laws are derived as well for both the equations. 

Finally, the four Boussinesq-type equations, namely, the Boussinesq-double sine­

Gordon equation, t he Boussinesq-double sinh-Gordon equation, the Boussinesq-Liouville 

type I equation and the Boussinesq-Liouville type II equation are analysed using Lie 

group analysis. Exact solut ions for these equations are obtained using the Lie sym­

metry method in conjunction with the simplest equation. Conservation laws are 

also obtained for these equations by employing two methods, namely, the Noether 

theorem and the multiplier method. 
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Introduction 

It is well known that finding exact travelling wave solutions of nonlinear partial 

differential equations (NLPDEs) is important in many scientific areas such as fluid 

mechanics , plasma physics and quant um field theory. Due to these applications 

many researchers are investigating exact solut ions of NLPDEs, since t hey play a vital 

role in t he study of nonlinear physical phenomena. Finding exact solut ions of such 

NLPDEs provides us wit h a bet ter understanding of the physical phenomena that 

these NLPDEs describe. Several techniques have been presented in the literature to 

find. exact solutions of the NLPDEs. These include: the inverse scattering transform 

method [l ], the variable separated ODE method [2], the Darboux t ransformation 

method [3], the homogeneous balance method [4], the Vleierstrass ellipt ic function 

expansion method [5], t he F -expansion method [6], the ( G' / G)-expansion method 

[7, 8], t he exponent ial function method [9, 10], the tanh function method [11- 13], 

the extended tanh function method [14], the sine-cosine method [15], t he bifurcation 

method [16] and t he Lie symmetry method [17]. 

The Lie symmetry method is based on symmetry and invariance principles and is a 

systematic method for solving differential equations analytically. There is no doubt 

t hat Lie symmetry method is one of the most powerful methods to determine so­

lutions of LPDEs. It was first developed by Sophus Lie (1842-1899) in the late 

nineteent h cent ury. In recent years, this method has become an essent ial tool for 

anyone investigating mathematical models of physical, engineering and natural prob­

lems. Several good books are available on this subject. See for example, [17- 24]. 

Many different ial equations of physical interest involve parameters, arbitrary ele-
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ments or functions, which need to be determined. The construction of different forms 

of these parameters is one of the most essent ial tasks in nonlinear science. Usually 

the various forms of these parameters are determined from experiments. However, 

the Lie symmetry approach through t he method of group classification [22-31] has 

proven to be a versatile tool in specifying different forms of these parameters system­

atically. The first group classification problem was investigated by Sophus Lie [25] 

in 1881 fo r a linear second-order partial differential equations with two independent 

variables. The main concept of group classification of a differential equation involving 

arbitrary element, say, for example, p(n), consists of finding the Lie point symme­

tries of the differential equation with arbitrary function p(u), and then computing 

systematically all possible forms of p( u) which extend the principal Lie algebra. 

The notion of conservation laws plays an important role in the solution process and 

reduction of differential equations. Conservation laws are mathematical expressions 

of t he physical laws, such as conservation of energy, mass, momentum and so on. 

In the literature, conservation laws have been extensively used in various aspects 

(see for example [32-40]). For example exact solutions of some partial differential 

equations have been obtained using conserved vectors associated with the Lie point 

symmetries [37, 38, 40]. The celebrated Noether theorem [41] provides an elegant 

and constructive way of obtaining conserved vectors. In fact, it provides an explicit 

formula for determining a conservation law once a Ioether symmetry corresponding 

to the Lagrangian is known for an Euler-Lagrange equation. Also conservation laws 

were used in the numerical integration of partial differential equations [42], for in­

stance, to control numerical errors. Comparison of different approaches to construct 

conservation la,;i.rs of partial differential equations can be found in [43] . 

In this thesis we explore t he application of symmetry analysis [22-24] by studying 

nine NLPDEs. The nine NLPDEs that will be studied are the generalized (2+1 )- · 

dimensional Klein-Gordon equation, t he generalized double sinh-Gordon equation , 

the generalized double combined sinh-cosh-Gordon equation, the (2+ 1 )-dimensional 

nonlinear sinh-Gordon equation, the (3+1)-dimensional nonlinear sinh-Gordon equa­

tion, the Boussinesq-double sine-Gordon equation, the Boussinesq-double sinh-Gordon 
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equation , t he Boussinesq-Liouville type I equation and t he Boussinesq-Liouville type 

II equation. 

Firstly, this t hesis considers a generalized (2+ 1)-dimensional Klein-Gordon equation, 

given by 

Utt - 'l.Lxx - 'U,yy + p(u) = 0, (1) 

where p(1t) is an arbitrary function u. Equation (1) is one of the equations which 

describes nonlinear wave motion and has many scient ific applications in solid state 

physics, nonlinear opt ics , plasma physics and fluid dynamics. 

Secondly, we study t he generalized double sinh-Gordon equation [13, 16, 44] given by 

Utt - kuxx + 2asinh(nu) + ,Bsinh(2nu) = 0, (2) 

where k, a and ,8 are non-zero real constants and n is a posit ive integer. Here u is 

a real scalar function of t he two independent variables x and t. This equation arises 

in a wide range of scientific applications that range from chemical reactions to water 

surface gravity waves. 

Thirdly, the equation t hat is studied in t his t hesis is a generalized form of the double 

combined sinh-cosh-Gordon equation [2, 7, 45] given by 

Utt - hLxx + a sinh(nu) + a cosh(nu) + (3 sinh(2nu) + (3 cosh(2nu) = 0, n?. l , (3) 

where k, a and ,8 are non-zero constants. Here u(t, x) is a function of space x and time 

variable t . Equation (3) is well known NLPDE which admits geometric interpretation 

as t he different ial equ ation which determines time-like surfaces of constant positive 

curvature in the same spaces and it also combines the effect of sine and cosine 

hyperbolic terms. 

The ( 1 + 1 )-dimensional sinh-Gordon equation [46] 

Utt - Uxx + sinh u = 0, (4) 

which is widely used in mathematical physics and engineering sciences is a nonlinear 

hyperbolic part ial differential equation. Equation ( 4) usually describes water waves, 
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the vibration of a string or a membrane, the propagation of electromagnetic and 

sound waves or the transmission of electric signals in a cable. The sinh-Gordon 

equation first appeared in the propagation of fluxons in Josephson junctions [47] 

between two superconductors and it started to attract lot of attention in the 1970s 

due to the presence of soliton solutions. The sinh-Gordon equation appears also in 

(2+1) dimensions and (3+1) dimensions. 

The (2+ 1 )-dimensional sinh-Gordon [46] 

Utt - Uxx - Uyy + sinh u = 0, (5) 

which plays an important role in nonlinear science such as solid state physics, fluid 

dynamics, integrable field t heory and nonlinear optics will be the fourth equation 

that will be studied in this t hesis. Here u(t, x, y) is a function of space x, y and time 

variable t . 

Next we study the (3+1)-dimensional sinh-Gordon [46] 

Utt - 'llxx - Uyy - Uzz + sinh u = 0, (6) 

where 'u(t , x , y, z) is a function of space variables x, y, z and time variable t. This 

equation also appears in solid state physics, fluid dynamics, integrable field theory, 

nonlinear optics and it has applications in many areas of physics. 

Lastly, the Boussinesq-double sine-Gordon equation, the Boussinesq-double sinh­

Gordon equation, the Boussinesq-Liouville type I equation and the Boussinesq­

Liouville type II equation [48], given by 

and 

. 3 . ") 
'l.ltt - 0 '.'ll xx + Uxxxx = Sll1 U + 2 Sln ~ u, 

'lltt - O'.Uxx + 'Ux xxx = sinh u + ~ sinh 2u, 

u 3 . l 2u 
Utt - O'.Uxx + Uxxxx = e + 4 sin 1 e 

-t, 3 -2u 
Utt - O'.Uxx + Uxxxx = e + 4e , 

4 
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which appear in a diverse range of areas of physics will be investigated. These 

equations have applications in scientific fields such as solid state physics , non-linear 

optics and fluid motion. 

The outline of this thesis is as follows. 

In Chapter one, the basic definitions and theorems concerning the one-parameter 

groups of transformations and conservation laws are presented. 

Chapter two deals with the generalized (2+ 1 )-dimensional Klein-Gordon equation 

(1). 

Chapters three and four discuss the solutions and conservation laws of a generalized 

double sinh-Gordon equation (2) and t he generalized double combined sinh-cosh­

Gordon equation (3), respectively. 

Chapters five and six deal with the solutions and conservation laws of a (2+1)­

dimensional nonlinear sinh-Gordon equation (5) and the (3+ 1 )-dimensional nonlinear 

sinh-Gordon equation (6), respectively. 

Chapter seven discusses t he solutions and conservation laws of the Boussinesq­

dou ble sine-Gordon equation (7), the Boussinesq-double sinh-Gordon equation (8), 

the Boussinesq-Liouville type I equat ion (9) and t he Boussinesq-Liouville type II 

equation (10), respectively. 

Finally, in Chapter eight, a summary of t he results of the thesis is presented and 

future work is discussed. 

Bibliography is given at the end. 
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Chapter 1 

Preliminaries 

In this chapter we give some basic methods of Lie symmetry analysis and conservation 

laws of partial differential equations (PDEs). 

1.1 Int roduct ion 

In the late nineteenth cent ury an outstanding mathematician Sophus Lie (1842-1899) 

developed a new method , known as Lie group analysis, for solving differenti al equa­

tions ancl showed that the majority of adhoc methods of integration of differential 

equations could be explained and deduced simply by means of his theory. Recently, 

many good books have appeared in the literature in this field. We mention a few 

here, Ovsiannikov [17], Stephani [18], Ibragimov [19, 20], Cantwell [21], Bluman and 

Kumei [22], and Olver [23]. Definitions and results given in this Chapter are taken 

from the books mentioned above. 

Conservation laws for PDEs are constructed here using four different approaches; the 

direct method [39], the Noether theorem [41], the new conservation t heorem due to 

Ibragimov [49], and the multiplier method [50] .. First we present some preliminaries 

which we will need later in the t hesis. For details t he reader is referred to [24, 39, 41, 

49,50]. 
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1.2 Continuous one-parameter groups 

Let x = (x1, ... , xn) be the independent variables with coordinates xi and u = 

(u1, ... ,um) be t he dependent variables with coordinates 'llor. (n and m finite) . Con­

sider a change of the variables x and u involving a real parameter a: 

where a continuously ranges in values from a neighborhood 'D' C 'D C JR of a = 0, 

and Ji and ¢P are differentiable functions. 

D efinition 1.1 A set G of transformations (1.1) is called a continuous one-parameter 

(local) Lie group of transformations in the space of variables x and ·11, if 

(i) For Ta , n E G where a,b E 'D' C 'D then nTa = Tc E G, c = cp(a,b) E 'D 

(Closure) 

(ii ) T0 E G if and only if a= 0 such that T0 Ta = Ta T0 = Ta (Identity) 

(iii) For Ta E G, a E 'D' C 'D , Ta- 1 = Ta-1 E G, a-1 E 'D such t hat 

Ta Ta-1 = Ta-1 Ta = To (Inverse) 

\!\Te note that the associativity property follows from (i). The group property (i) can 

be written as 

xi t(x, ·u, b) = t(x , ·a, </> (a, b)), 

cpor.(x, ii., b) = cpor.(x , u, ¢(a, b) ) (1.2) 

and t he function ¢ is called the group composition law. A group parameter a is called 

canonical if ¢( a, b) = a + b. 

Theorem 1.1 For any ¢( a, b), there exists the canonical parameter a defined by 

_ l ads 8¢(s, b)I a= - ( -), where w(s) = 
0 

. 
0 w s b b=O 
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1.3 Prolongation of point transformations and group 

generator 

The derivatives of 'u v,,ith respect to x are defined as 

(1.3) 

where 

(1.4) 

is the operator of total differentiation. The collection of all first derivatives ui is 

denoted by U(i ), i.e., 

'U(i ) = {1Lf} a= l , ... ,m, 'i = l , ... ,n. 

Similarly 

11.(2) = {u0} a = l, ... ,m, i,j = l , ... ,n 

and 1L(3) = { u0k} and likewise u (4) etc. Since u0 = uji, u (2) contains only u0 for 

i ~ j. In the same manner 11,(3) has only terms for i ~ j ~ k . There is natural 

ordering in U(4), U(5) · · · . 

In group analysis all variables x, u, U(i) · · · are considered functionally independent 

variables connected only by the differential rela.tions (1.3). Thus the u~ are called 

differential variables [24] . 

We now consider a pth-order PDE(s), namely 

(1.5) 

P rolonged or extended groups 

If z = (x, u), one-parameter group of transformations G is 

8 



(1.6) 

According to the Lie's theory, the construction of the symmetry group G is equivalent 

to the determination of the corresponding infinitesimal transformations : 

(1.7) 

obtained from (1.1) by expanding t he functions Ji and </P into Taylor series in a 

about a = 0 and also taking into account the initial conditions 

! ii - xi 
a=O - ' 

Thus, ,ve have 

. arl C(x, u) = aa , 
a=O 

,1..0:1 - ' 0: 
'I' a=O - U · 

0: 8¢0: I rJ (x,u) = -a . 
a a=O 

(1.8) 

One can now introduce the symbol of the infinitesimal transformations by writing 

(1.7) as 

xi ~ (1 + aX)x, 1"i°°' ~ (1 + a X )u, 

where 

(1.9) 

This differential operator X is known as the infinitesimal operc1,tor or generator of 

the group G. If the group G is admitted by (1.5), we say that X is an admitted 

operator of (1.5) or X is an infinitesimal symmetry of equation (1.5) . 

Vle now see how the derivatives are transformed. 

The Di transforms as 

(1. 10) 

where Di is the total differentiations in transformed variables xi. So 
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Now let us apply (1.10) and (1.6) 

(1.11) 

This 

( 
fJJJ [)jJ ) f)/4C> [)/40. /3 -a 'f' /3 'f' 
~ + ui ,~ a 1lJ· = -D. + 'Ll i ~, a . 
uxi U 'll ,_, xi u'Ll,_, 

(1. 12) 

The quantities fi/J can be represented as functions of x, u, U(i), a for small a, ie., (1.12) 

is locally invertible: 

(1.13) 

The transformations in x, ·u, ·uc i ) space given by (1.6) and (1.13) form a one-parameter 

group ( one can prove this but we do not consider the proof) called t he first prolon­

gation or just extension of t he group G and denoted by Q[1l. 

Vve let 

(1.14) 

be the infinitesimal transformation of the first derivatives so that t he infinitesimal 

transformation of the group Q[l] is (1. 7) and (1.14). 

Higher-order prolongations of G, viz., Gl2l, Q[3I can be obtained by derivatives of 

(1.11). 

P rolonged generat ors 

Using (1.11) together with (1.7) and (1.14) we get 

Di(J1)(ilJ) 

Di(xj + ae)(u1 + a(l) 

(t5f + aD;e )(n1 + a(J') 
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This is called the first prolongation formula. Like,,,ise, one can obtain the second 

prolongation, viz., 

(1.16) 

By induction (recursively) 

The first and higher prolongations of the group G form a group denoted by Q[l], · · · , Q[Pl. 

The corresponding prolonged generators are 

where 

x[pJ 

X + (a:~ (sum on i, a), 
t aua: 

t 

X i( ) 8 a:( ) 8 = ~ x,u-;:_;-:- +r, x,u ~-uxt uua: 

1.4 Group admitted by a partial differential equa­

tion 

D efinition 1.2 The vector field 

(1.18) 

is a point symmetry of the pth-order PDE (1.5), if 

(1.19) 
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whenever E°' = 0. This can also be written as 

x[pJ EI = o 
a E"'=O ' 

(1.20) 

where the symbol IE"'=O means evaluated on the equation Ea = 0. 

Definition 1.3 Equation (1.19) is called the determining equation of (1.5) because 

it determines all the infinitesimal symmetries of (1.5). 

Definition 1.4 (Symmetry group) A one-parameter group G of transformations 

(1. 1) is called a symmetry group of equation (1.5) if (1.5) is form-invariant (has the 

same form) in the new variables x and ii, i.e., 

(1.21) 

where the function Ea is the same as in equation (1.5). 

1.5 Group invariants 

Definition 1.5 A fun ction F( x, u) is called an invariant of the group of transfor­

mation (1.1) if 

F(x, 'u) = F(F(x , 'LL, a), ¢°'(x, u, a)) = F( x, 1t), (1.22) 

identically in x, u and a. 

Theorem 1.2 (Infinitesimal criterion of invariance) A necessary and sufficient 

condit ion for a function F (x, u) to be an invariant is that 

v F i( ) 8F a( ) 8F .,-\. = ~ X, 'Ll ~ + TJ X, U ~ = 0 . 
uX2 uua 

(1.23) 

It follows from the above t heorem that every one-parameter group of point transfor­

mations (1.1) has n - l functionally independent invariants, which can be taken to 

be the left-hand side of any first integrals 
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of the characteristic equations 

dx 1 

e (.T, , 11.) 
dxn du 1 

~n(x , 11.) 'r]1(x , 11,) 

dun 

17n(~i: , u). 

Theorem 1.3 If the infinitesimal transformation (1.7) or its symbol Xis given, then 

the corresponding one-parameter group G is obtained by solving the Lie equations 

(1.24) 

subject to the initial conditions 

1.6 Lie algebra 

Let us consider two operators X1 and X2 defined by 

and 

D efinition 1.6 The commutator of X1 and X2, written as [X1, X2], is defined by 

[X1,X2] = X1 (X2) - X2(X1) . 

D efinition 1. 7 A Lie algebra is a vector space L ( over the field of real numbers) of 

operators X = e ( X, u) ,::,
8 

. + 'fl°' ( X, 1L) : with the following property. If the operators 
uxi uu 

X ti ( ) 8 °' ( ) [) 1 = <,, 1 X, U 0 :r; i + 'fl1 X , U O'U , X i ( ) 8 °'( ) 8 2=~2 x,u ~+'fl2 x , u ~ 
uxi u'U 

are any elements of L , then their commutator 

is also an element of L. It follows that the commutator is 
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1. Bilinear: for any X , Y, Z E Land a, b E JB, , 

[aX + bY, Z] = a[X, Z] + b[Y, Z], [X, aY + bZ] = a[X, Y] + b[X, Z]; 

2. Skew-symmetric: for any X , YE L, 

[X, Y] = -[Y,X]; 

3. and satisfies the Jacobi identity: for any X, Y, Z E L, 

[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0. 

1. 7 Conservation laws 

1. 7.1 Fundamental operators and their relat ionship 

Let us consider a pth-order system of PDEs 

E0 (x, u, 'l.l(l), .. . , 1l(p)) = 0, a= 1, . . . , m, (1.25) 

of n independent variables x = (x1, x2 , ... , xn) and m dependent variables il = 

(-u 1 , 'U
2

, ... , ·um). Here 'U(i ), ·u(2), . . . , 'U(p) <lenote the collections of all first, second, .. . , 

pth-orcler partial derivatives, that is, uf = Di(u0
), u0 = DjDi(u0

), .. . , respectively, 

with the total derivative operator with respect to xi given by 

Di = ;;:io + ·uf ;;:io + ·uf
1
• ;;:io + ... , ·i = 1, . . . , n, 

uxi u 'u0 u ·u0 

J 

(1.26) 

and the summation convention is used whenever appropriate. 

The Euler-Lagrange operator, for each a, is given by 

a= l , .. . , ni, (1.27) 

and the Lie-Backlund operator is 

X ~
• 0 ~ 0 • ~ .A , . + ~ J> , '11~ E , = ~ TJ ~ ) ', ., 
uxi uu0 

(1.28) 
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where A is the space of differential funct ,ions. The operator (1.28) is an abbreviated 

form of infinite fotmal sum 

(1.29) 

where the additional coefficients are determined uniquely by the prolongation for­

mulae 

s > l , (1.30) 

in which 1¥°' is the Lie characteristic function defined by 

(1.31) 

The Lie-Backlund operator (1.29) in characteristic form can be written as 

(1.32) 

The Noether operators corresponding to t he Lie-Ba.cklund symmetry operator X are 

given by 

i = l , . .. ,n, (1.33) 

where the Euler-Lagrange operators with respect to derivatives of uc, are obtained 

from (1.27) by substituting uc, by the corresponding derivatives. For example, 

and the Euler-Lagrange, Lie-Backlund and oether operators are connected by the 

operator identity 

(1.35) 

The n-tuple vector T = (T1, T 2
, ... , rn), T 1 E A , j = 1, ... , n, is a conserved 

vector of (1.25) if Ti satisfies 

(1.36) 
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The equation (1.36) defines a local conservation law of system (1.25). 

A Lie-Backlund operator X is said to be a Noether symmetry generator associated 

with a Lagrangian L E A if there exists a vector B = (B1 , ... , Bn), Bi E A, such 

that 

(1.37) 

',"!\Te now recall the Noether theorem [41]. 

Noether theorem [41]. For any Noether symmetry generator X associated with 

a given Lagrangian L E A , t here corresponds a vector T = (T1 , .. . , T n), Ti E A , 

given by 

T i = J\Ti( L) - Bi, . 1 i= , . . . ,n, (1.38) 

which is a conserved vector of the Euler-Lagrange equations 8L/ 8u°' = 0, a= 1, ... , m, 

where 8/8urt is the Euler-Lagrange operator given by (1.27) and the Noether oper­

ator associated with X is defined Ly (1.33) in which the Euler-Lagrange operators 

with respect to derivatives of u°' are obtain from (1.27) by substituting u°' by the 

corresponding derivatives. 

1. 7.2 Variational method for a systen1 and its adjoint 

The system of a1j oint equations to the system of pth-order differential equations 

(1.25) is given by [5 1] 

(1.39) 

where 

(1.40) 

and v = ( v 1 , v2 , ... , vm) are new dependent variables. 

We also recalled the fo llowing results as presented in Ibragimov [49]. 
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A system of equations (1.25) is said to be self-a~joint if the substitution of v = 'U 

into the system of adjoint equations (1.39) yields t he same system (1. 25). 

Equation (1.25) is said to be nonlinearly self-adjoint if the equation obtained from 

the adjoint equation (1.39) by the substitution v = h(x, t, 'LL, U(i), ... ), with a certain 

function h(x , t, 'LL, uci), ... ) such that h(x, t, u, u(l ), . .. ) -1- 0, is identical to the original 

equation (1.25). 

Suppose the system of equations (1.25) admits the symmetry operator 

r i O Ci a 
X = ~ -8. + rJ ~-x2 uua 

(1.41) 

Then the system of adjoint equations (1.39) adinits the operator 

(1.42) 

where the operator (1.42) is an extension of (1.41) to t he variable va and the >-13 are 

obtainable from 

(1.43) 

The following theorem is taken from [49]. 

Theorem 1.7 .1 Every Lie point, Lie-Backlund and non local symmetry (1.41) ad­

mitted by the system of equations (1.25) gives rise to a conservation law for the 

system consisting of the equation (1.25) and the adjoint equation (1.39), where the 

components Ti of the conserved vector T = (T1
, ... , Tn) are determined by 

with Lagrangian given by 

(1.45) 
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The multiplier method used to construct conservation lav,rs can be found in [23,50,52]. 

A multiplier Aa(.r, , 11, , U(i ), .. . ) has the property that 

(1.46) 

hold identically. Here we will consider t he first order multipliers , 

viz. , A°' = Aa(t, .1:, u, 1Lt , nx) . The right hand side of (1.46) is a divergence expression. 

The determining equation for the multiplier A°' is 

(1.47) 

Once the multipliers are obtained the conserved vectors are constructed by invoking 

the homotopy formula [50]. 

1.8 Conclusion 

In this chapter we presented a brief introduction to the Lie group analysis and 

conservation laws of PDEs and gave some results which will be used throughout 

this thesis. '\Ne also gave the algorithm to determine the Lie point symmetries and 

conservation laws of PDEs. 
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Chapter 2 

Symmetry analysis, nonlinearly 

self-adjoint and conservation laws 

of a generalized (2+1)-dimensional 

Klein-Gordon equation 

2 .1 In.t rod uct ion 

This chapter aims to study a generalized Klein-Gordon equation in (2+ 1) dimensions, 

given by 

Utt - Uxx - Uyy + p(u) = 0, (2 .1) 

where p( u) is an arbitrary function of u. Firstly, we carry out Lie group classification 

of equation (2.1). Vve then find exact solutions of certain cases of the arbitrary 

element p( u) . Lastly, we construct conservation laws for the nonlinearly self-adjoint 

subclass of the generalized (2+ 1 )-dimensional Klein-Gordon equation. 

This work is new and has been submitted for publication. See [53] . 
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2.2 Equivalence transfor1nations 

An equivalence transformation (see for example [24]) of (2.1) is an invert ible trans­

formation involving the independent variables t , x, y and dependent variable u that 

maps (2.1 ) into itself. The operator 

Y = T(-t , X, y, 'll)Ot + ((t, :c '!J, 11,)Bx + 1/{t, :r, y, 11.)By + 17(t, X, '!) , n)Bu 

+µ(t, x, y, u,p)op (2.2) 

is t he generator of the equivalence group for equation (2 .1 ) provided it is admitted 

by t he extended system 

Utt - Uxx - 'llyy + p(u) = 0, 

Pt = 0, Px = 0, Py = 0. 

The prolonged operator for the extended system (2.3) has the form 

where y [2l is the second-prolongation of (2.2) given by 

The coefficients ('s and w's are defined by the prolongation formulae 

(t Dt(rJ) - UtDt(T) - 'UxDt(~) - UyDt('l/J), 

(x Dx(rJ) - UtDx(T) - UxDx(O - UyDx('l/J), 

(y Dy(17 ) - UtDy(T) - UxDy(() - 'lLyDy('l/; ), 

(tt Dt((x ) - uuDt(T) - Utx Dt(() - Uty Dt('l/J), 

(xx Dx((x) - 'UtxDx(T) - 'UxxDx(() - 'UxyDx('t/1), 

(yy Dy((y) - UtyDy(T) - Uxy Dy(() - 1Lyy Dy('l/J), 

and 
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Wx = Dx(µ) - PtDx(T) - PxDx(O - PyDx('i/J) - PuDx(rJ ), 

Wy = Dy(;1,) - PtDy(T ) - PxDy(~ ) - TiyDy('ljJ) - PuDy('!J) , 

Wi, = Du(µ.) - PtDu(T) - PxDu (O - PyDi,(VJ) - PuDu(rJ ), 

respectively, where 

are the total derivative operators and 

are the total derivative operators for t he extended system. The application of the 

prolongation (2.4) and the invariance conditions of system (2 .3) leads to t he fo llowing 

equivalent generators: 

Thus the nine-parameter equivalence group is given by 

Y1 l = t + a1, x = x, fj = y, ii,= u, p = p , 

Y2 l = t, x = x + a2 , y = y, 'u = 1l , p = p , 

Y4 l = t, x = x, fj = y, u = u + a4, p = p, 

Y6 l = t + a6.'.C , x = x + a6t , fj = y, ii,= u + p = p, 

Y1 l = t + a7y, x = x, y = y + a7t, u = u, p = p, 

'\ /" t- ·t ag - ag - ag - - - 2a9 I g . = .e , x = xe , y = ye , 11, = 11., p = pe . 
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and their composition gives 

t (t + a1 + a.6x + a7y)ea9
, 

x (x + a2 - a5y + a6t)ea9
, 

;V (y + a3 + a5:1: + a7/,)ea9
, 

ii (u+a4)ea8
, 

j5 peas-2ao, 

2.3 Principal Lie algebra 

The symmetry group of equation (2,1) will be generated by the vector field of the 

form 

f = T(t, x , Y, u)Dt + E(t , x, y, u)ax + 'lj;(t, x, y, u)ay + 17(t, x, Y, u)au . (2.5) 

The application of the second prolongation of r to (2.1) yields the following overde­

termined system of linear partial differential equations (PDEs): 

Tu = 0, Eu = 0, '1/Ju = 0, ?)tm = 0, Ty - '1/Jt = 0, ~y + '1/Jx = 0, Et - Tx = 0, 

'1/Jy - Tt = 0, 'tpy - ~x = 0, Ttt - T."Cx - Tyy + 27]tu = 0, 

fo - ~xx - ~yy + 27]xu = 0, 'tptt - '1/Jxx - '1/Jyy + 27]yu = 0, 

p(11,)17u - 2p(1i)'l/Jy - p'(u)77 - 77tt + 77xx + ?Jxx = 0. 

(2.6) 

Solving the above system for arbitrary p, we find that the principal Lie algebra 

consists of six operators, namely 

r 1 = 8t , f 2 = Dx , f 3 = Dy , f 4 = y8t + toy, 

rs= XOt + t8x, r6 = JJOx - .'l:Oy-

2.4 Lie group classification 

Solving system (2.6), we obtain the classifying relation 

(uf3 + , )p'(u) + a.p(u) + ,\ = 0, 
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where /3, ,, a and A are constants. T his classifying relation is invariant under the 

equivalence transformations of Section 2.2 if 

/3- {3 - /3 + -as - , , 2ao-as = , , = a4 ,e , a = i:Y, " = "e . (2.7) 

The above relation leads to the following five cases fo r t he function p. For each case, 

we also provide the associated extended symmetries . 

Case 1 p('u) arbitrary but not of the fo rm in Cases 2 - 5. 

In this case, we obtain the principal Lie algrebra, viz., 

f 1 = 8t, f 2 = ox, f 3 = oy, f 4 = yot + toy, 

f 5 = XOt + tax, r 6 = YOx - XOy -

Case 2 p(1i) =er+ 8u, where er and o are constants. 

Here two subcases arise: 

2 .1 er , o =I= 0. 

The corresponding equation (2. 1) extends the principal Lie algebra by 

where F(t , x, y) is any solution of 

and C1 is a constant. 

2 .2 er =I= 0, 8 = 0. 

T his subcase extends the principal Lie algebra by six symmetries 

f 1 = 'UOu, r 8 = (t2 + x2 + y 2 )ot + 2txox + tyoy - tuou, 

fg = lDt + xDx + yDy, f 10 = 2ly8t + 2yxDx + (t2 
- x2 + y2 )oy - Y'UOu , 

r ll = 2tx8t + (t2 + x2 
- y2)fJx + 2xy8y - xnou, r 12 = F (t, .T,, y) Ou, 

where F(t , x, y) is any solut ion of 
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and C1 , C4 , C6 , C7 , C11 are arbitrary constants. 

Case 3 p('ll) = CJ+ bun, where CJ is a constant, 8 is non-zero constant and n =J 0, l. 

Three subcases arise. These are 

3.1 O" =J 0. 

In this subcase we have no additional Lie point symmetry. 

3.2 CJ = 0, n =J 5. 

Here the principal Lie algebra is extended by one symmetry 

f 1 = (n - l )t8t + (n - l )x8x + (n - l )y8y - 2u8u. 

3.3 CJ= 0, n = 5. 

In this subcase, the Lie point symmetries that extend the principal Lie algebra are 

f 7 = (t2 + x2 + y2)8t + 2tx8x + ty8y - tu8u, 

r 8 = 2ty8t + 2yxax + (t2 
- x2 + y2 )8y - yuau, 

f g = 2tx8t + (t2 + x 2 
- y2 )8x + 2xy8y - XUOu, 

r 10 = 2t8t + 2x8x + 2y8y - UOu . 

Case 4 p(u) =CJ+ 5enu , where CJ is a constant, 5 and n are non-zero constants. 

Here two subcases arise. 

4. 1 CJ =J 0. 

There is no extension of the principal Lie algebra in this subcase. 

4.2 O" = 0. 

The extra Lie point symmetry is 

f 7 = nWt + nx8x + ny8y - 2811 • 

Remark. In subcases 4.2 we retrieve two special equations, namely, the Liouville 

equation in (2+1) dimensions [54] uu-Uxx -Uyy+5em' = 0 and the generalized (2+ 1)­

dimensional combined sinh-cosh-Gordon [55] uu-Uxx-Uyy+5[sinh(nu )+cosh(nu)] = 

0. 
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Case 5 p('LL) = a+ 8 lmt, where a is a constant and o is nonzero constant. 

This case reduces to Case 1. 

2.5 Travelling wave solutions of two cases 

In order to obtain exact solutions, one has to solve the associated Lagrange's equa­

tions 

dt dx dy du 

T(t,x,y,tt) ((t, x, y, u) 't/;(t, x, y, u) ry(t, x, y, u)" 

Vle consider two nonlinear cases, namely, Case 3.2 and Case 4.2. 

2.5.1 Group-invariant solution of Case 3.2 

In this case the equation (2. 1) takes the form 

Utt - Uxx - Uyy +Oun= 0, n =I= 0, 1. (2.9) 

We use the Lie point symmetry r = r 1 + r 2 + f 3 to reduce equation (2.9) into a 

PDE with two new independent variables z, w and v as the new dependent variable. 

The symmetry r yields the invariants 11, = 11(z, w), z = x - t and w = y - t which 

t ransform (2.9) into the nonlinear second-order PDE 

(2.10) 

Equation (2.10) admits the four symmetries 

X 
f) 

2=~, 
u'W 

f) f) 
X3 = (n - I )z- + v -

f)z fJv' 

f) f) 
X4 = (n- I )w - +v- . 

fJw fJv 

The symmetry X 1 + cX2 gives rise to the group-invariant solution v = J(s), where 

s = w - cz and J(s) satisfies the second-order nonlinear ODE 

2c/' (s) - 8J(st = 0. 

Multiplying (2. 11) by f'(s) and integrating, we obtain 

of(st+l - cf'2(s) = C1, 
n+l 
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where C1 is an arbitrary constant of integration. Equation (2 .12) is a variables 

separable equation, which on integration yields 

cf(s)j8f(s)n+l - C1(n + 1) F ( 1 1 1 of(s)n+l) C 
---------;::===---- 2 '1 1 -+--·1+ --·--- =±,+ 2 

C1 jc(n + 1) '2 n + l ' n + l ' nC1 + C1 ' ' 

where C2 is an arbitrary constant of integration and 2Fi is the generalized hypergeo­

metric function [56]. Reverting back to our original variables we obtain the solution 

of (2.9) in the form 

cuj8un+l - C1(n + 1) 

C1Jc(n+l) 
2Fi 1 -+--·1+ --·---( 

1 1 1 8un+l ) 
' 2 n + l ' n + l ' nC1 + C1 

= ±{(c - l)t - ex+ y} + C2. 

A special solution of (2.9) can be obtained by taking C1 = 0 in (2 .12). Then the 

integration of (2. 12) with C1 = 0, yields 

( 

') ) _2 [~ l l~n u(t,x,y)= -=- n - i ·( ){(c-l)t-cx+y}+C2 , 
n l cn+l 

2.5.2 Group-invariant solution of Case 4.2 

For the Case 4.2, the equation (2.1) becomes 

- nu 0 
Utt - Uxx - Uyy + Oe = , 6, n =I= 0. 

n =I= ±l. 

(2 .13) 

Again using the symmetry r = f 1 +r2 + r 3 and the invariants u = v(z, w), z = x - t 

and w = y - t, the equation (2. 13) transforms into the nonlinear PDE 

(2.14) 

This equation admits the point symmetries 

The symmetry X 1 + c.X2 gives rise to the group-invariant solut ion v = F(s), where c 

is a non-zero constant , s = w - cz is an invariant of X 1 + cX2 and F(s ) satisfies the 

second-order nonlinear ODE 

2cF
11 (s) - fienF(s) = 0. (2. 15) 
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Integrating this equat ion twice and reverting back to the original variables, we obtain 

the solution of equat ion (2. 13) in the form 

where C1 and C2 are constants of integration. 

2.6 The subclass of nonlinearly self-adjoint equa­

tions and conservation Laws 

In this section we use Ibragimov theorem to obtain conservations laws for the nonlin­

early self-adjoint [57-60] subclass of the (2+ 1 )-dimensional Klein-Gordon equation. 

2 .6.1 Self-adjoint and nonlinearly self-adjoint equations 

In this subsection we will derive nonlinearly self--adjoint equation from equation (2.1 ). 

Equation (1.40) yields 

E* = : [v(utt - Uxx - Uyy + p(u))] 
u 'U 

= Vtt - Vxx - Vyy + p'(u)v . 

Setting v = h(x, t , u) in (2. 17) we get 

We now assume that 

E * - A('Utt - 'Uxx - 'Uyy + p('u)) = 0, 

where /\ is an undetermined coefficient. Condition (2.18) yields 

p'(u) h + htt + 2uthtu + Utthu + uzhuu - hxx - 2'llxhxu - 1lxx hu - u; huu 

-hyy - 2uyhyu - Uyyhtt - 'u;hm, - AUtt + AUxx + AUyy - >.p(u) . 

Comparing the coefficients for the different clerivatives of u, we obtain 
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h1, - A = 0, h1,u = 0, htu = 0, hxu = 0, hyu = 0, 

p'(u)h + hu - hxx - hyy - p(u)hu = 0. 

Solving the above system, we get 

where c1 , c2 are constants and B(t , x , y) satisfy the following condit ion 

Vie can now state the following theorem: 

(2.19) 

T h eor em 2. 6. 1 Equation (2 .1) is nonlinearly self adjoint for a function p(u) = ctu 

with 

h = C11L + B(t , x, y) 

for any function B(t, x, y) satisfying condition (2. 19). 

2 .6.2 Conservation laws 

In this subsection we use Theorem 1.7.1 on cons~rvation laws proved in [49] in conjuc­

tion with Theorem 2.6.1 to derive the conservation laws of the nonlinearly self-adjoint 

equation. 

We now apply T heorem 1. 7 .1 to find the conserved vectors for the nonlinearly self­

adjoint equation 

This equation has the Lagrangian .C given by 

and the eight Lie point symmetries 

X1 = Dt , X2 = Bx , X3 = oy, X4 = xEJt + tDx , X5 = yDt + toy , 

X6 = -yox + :i:c)y, X1 = uc)u , Xs = F (t, x, y) Du , 
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,,,here F = F(t, x, y) satisfies Fu - F'.--cx - Fyy + c2F = 0. 

The conserved vectors associated with t he above eight symmetries are given by 

c3 
4 

c2 
5 

c3 
5 

CJ= C1U(Utt - Uyy + C2u) + B(uu - Uyy + C2'u) - c1u; - UxBx, 

CJ = -C(llx'Uy - 'UxBy + C(U'llxy + 'llxyB; 

Ci = C1 UtUy + UyBt - C1 U1lty - UtyB, 

ci = - C1'U,xUy - uyBx + C1'/J,'Uxy + UxyB, 

cf= C1U(1ltt - Uxx + C2u) + B(uu - Uxx + c2u) - C1u; - 'UyBy ; 
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CJ -C1Y'llt'Ux + C1X:'Ut'Uy - Y 'UxBt + X 'UyBt + C1Y'U'Utx - C1X'U'Uty + Y 'UxyB - X'UtyB, 

CJ -ciy'/l,('/l,tt - 'll·yy + C2'u,) - By('ll,tt - 'llyy + C2'tt ) + c1y'n; - C1:'l':'U,x'lly + Y'ILxBx 

- xuyBx + C1UUy + 'll y B + C1XU1lxy + XUxy B , 

C£ Cixu(utt - Uxx + C2u) + Bx('LLtt - Uxx + c2u) + C1YUxUy - C1xu; + yux B y 

CJ UtB - uBt , 

C; 'ILBx - Ux B 

c3 
7 u B y - Buy; 

CJ C1UFt + F t B - F B t - C1UtF; 

CJ C1Ux F + F Bx - C1U F x - F x B 

respectively, where the funct ions B(t , x, y) and F(t; x, y) satisfy the equation 

2. 7 Conclusion 

In t his chapter Lie group classification was performed on t he generalized (2+ 1 )­

dimensional Klein-Gordon equation (2.1 ). The functional forms of the generalized 

(2+ 1 )-dimensional Klein-Gordon equation of the type linear , power, exponent ial 

and logarithmic were obtained. From the classification we retrieved two special 

equations, namely, t he generalized Liou ville equation in (2+ 1) dimension and the 

(2+ 1 )-dimensional generalized combined sinh-cosh-Gordon equation. In addition, 

the group-invariant solutions of the generalized (2+1)-dimensional Klein-Gordon 

equation ,,,ere derived for power law and exponent ial function cases. We have also 

illustrated t hat the generalized ( 2+ 1 )-dimensional Klein-Gordon equation is nonlin­

early self-adjoint under t he conditions given in Theorem 2.6. 1. Last ly conservation 
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laws for the nonlinearly self-adjoint subclass were derived by using the new conser­

vation theorem due to Ibragimov. 
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Chapter 3 

Symmetry reductions, exact 

solutions and conservation laws of 

a generalized double sinh-Gordon 

equation 

In this chapter , we study a generalized double sinh-Gordon equation, namely 

Utt - kitxx + 2a sinh(nu) + .8 sinh(2nu) = 0, n?. l , (3.1) 

where k, a and .8 are non-zero real constants. The above equation appears in several 

physical phenomena such as integrable quantum field theory, kink dynamics and fluid 

dynamics. It should be noted that when n = k = l , a = 1/ 2 and .8 = 0, (3 .1 ) reduces 

to the sinh-Gordon equation [61]. Furthermore, if k = a, a = b/2 and ,8 = 0, (3 .1) 

becomes the generalized sinh-Gordon equation [62]. Various methods have been used 

to study (3 .1 ). In [13] t he tanh method and variable separable ODE method was 

employed to find the exFtct solutions of (3.1 ). The authors of [lG] studied t he exis­

tence of periodic wave, solitary wave, kink and anti-kink wave and unbounded wave 

solut ions of (3. 1) by using the method of bifurcation theory of dynamical systems. 

The soli tary and periodic wave solut ions of (3. 1) were obtained in [44] by employing 

( G' / G)-expansion method . In addit ion, it was shmvn that the solutions obtained 
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in [44] were more general than t hose obtained in [13]. Here we use Lie symmetry 

analysis together with t he exponential-function method and the simplest equation 

method to obtain exact solut ions for t his equation. Moreover, we derive conservation 

laws for the underlying equation by using four different approaches , namely, the di­

rect method, the Noether theorem, the new conservation theorem due to Ibragimov 

and the mult iplier method. 

Part of this work has been published in [63]. The other part has been submitted for 

publication. See [64]. 

3.1 Symmetry reductions and exact solutions of 

(3.1) 

We assume that the vector field of the form 

X = T(t, x, u)ot + ((t , x, u)Bx + r; (t, x, u)ou 

will generate the symmetry group of (3. 1). Applying t he second prolongation x [2l to 

(3. 1) we obtain an overdetermined system of eight linear partial differential equations, 

namely 

(u = 0,Tu = 0, 'r/uu = 0,(t - kT.--c = 0, 

Tt - (x = 0, Ttt - kTxx - 2rttu = 0, (tt - k(xx_ + 2kr;xu = 0, 

-2{Jnr; + 40'.Tt sinh(nu) - 2ar;u sinh(nu) + 2anr; cosh(nu) + 4{Jn17 cosh2(nu) 

+4fJ Tt cosh(nu) sinh(nu) - 2fJ 'r/u cosh(nu) sinh(nu) + 'r/tt - krtxx = 0. 

Solving the above equations one obtains the following three Lie point symmetries: 

X1 = Ox, X2 = Ot, X 3 = ktox + XOt . 

3 .1.1 One-dimensional optimal system of subalgebras 

In t his subsection we first obtain the optimal system of one-dimensional subalgebras 

of (3.1 ). Thereafter the optimal system will be used to obtain the optimal system 
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of group-invariant solutions of (3.1). For this purpose we invoke the method given 

in [23] . Recall that the commutator of Xi and X 1, denoted by [Xi,X1], is given by 

and the adjoint transformations are given by 

Ad(exp(EX·))X· = X - E[X X-·J + ~ E2[X· [X· X]] - · · · i 1 1 i, 1 2 
i, i , 1 · 

The commutator table of t he Lie point symmetries of (3 .1 ) and the adjoint repre­

sentations of the symmetry group of (3. 1) on its Lie algebra are presented in Table 

1 and Table 2, respectively. 

Table 1. Commutator table of the Lie algebra of system (3. 1) 

[Xi,X1] X1 X2 X3 

X1 0 0 X2 

X 2 0 0 kX1 

X3 -X2 -kX1 0 

Table 2. Adjoint table of the Lie algebra of system (3.1) 

Ad X1 X2 X3 

X1 X1 X2 X3 - cX2 

X2 X1 X2 X3 - kcX1 

X3 
1 . 

cosh( v'kc)X1 + /k smh( v'kc)X2 v'k sinh( v'kc)X1 + cosh( v'kc)X2 X3 

Thus, from Tables 1 and 2 and following the method given in [23] one can conclude 

that an optimal system of one-dimensional subalgebras of (3 .1 ) is given by {cX1 + 
X2 , X2, X3}, where c is a non-zero constant . 

3.1.2 Sy1n1netry reductions of (3 .1) 

Here the optimal system of one-dimensional subalgebras constructed above will be 

used to obtain symmetry reductions. Thereafter, we will obtain the exact solutions 

of (3.1). 
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The symmetry generator cX 1 + X 2 gives rise to the group-invariant solution 

11, = TV(z), (3.2) 

where z = x - ct is an invariant of the symmetry cX1 + X2 and TY is an arbitrary 

function of z. The insertion of (3.2) into (3.1) yields the ODE 

(c2 
- k)W" (z) + 2a sinh (nW(z)) + ,8 sinh (2nW(z)) = 0. 

Using the transformation 

1 
W(z) = - ln(H(z)) 

n 

on (3.3) we obtain the nonlinear second-order ordinary differential equation 

2(c2 
- k)H(z) H"(z) - 2(c2 

- k)H'(z)2 + 2anH(z) 3 
- 2anH(z) 

+,BnH(z)4 
- ,Bn = 0. 

(3 .3) 

(3.4) 

(3.5) 

The integration of the above equation and reverting back to original variables , yields 

1 

± / [k ~ c2 ( 2anexp(nu) + 2anexp(3nu) + ~,Bn + ~,Bnexp(4nu) ) + c1 exp(2nu)]-
2 

x 

nexp(nu)d'u = x - ct+ c2, 

where c1 and c2 are constants of integration. 

Case 2. X2 

The symmetry operator X2 results in t he group-invariant solution of the form 

u = VV(z), (3.6) 

where z = x is an invariant of X2 and Ti\/ is an arbitrary function satisfying the ODE 

-kVV"(z) +2asinh (nVV(z)) +,Bsinh (2nW(z)) = 0. (3.7) 

Again using the transformation (3.4), equation (3. 7) becomes 

-2kH(z) H" (z) + 2kTJ'(z)2 + 2anH(z) 3 
- 20'7df(z) + ,BnH(z) 4 

- ,Bn = 0, (3.8) 
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whose solut ion is 

1 

±/ [½(20:nexp(rw,)+2a:nexp (3nn)+ ~,Bn+ ~,Bnexp(4nu) ) +c1 exp(2rm)]-
2 

x 

n exp(nu)du = X + C2, 

where c1 and c2 are constants of integration and we obtain a steady state solut ion. 

Case 3. X3 

The symmetry X 3 , gives rise to the group-invariant solut ion 

'lt = W (z), (3.9) 

where z = x2 
- kt2 is an invariant of X 3 and lV satisfies t he ODE 

4kzVV" (z) - 2HV'(z) + 2a sinh (nlV(z)) + ,B sinh (2nW(z)) = 0. 

3.1.3 Exact solut ions of (3 .1) using exponential-function method 

In this subsection we employ the exponential-function method to solve equation (3.5). 

This method was introduced by He and Vh1 [9]. The exponential-function method 

results in the travelling wave solut ion based ori the assumption t hat the solut ion of 

(3 .5) can be expressed in the form 

( ) 
_ E ~=-c an exp(nz) 

H z - Eq ( ) ' m=-p bm exp m z 
(3.10) 

where c, d, p and q are posit ive integers that can be determined, and an and bm are 

unknown constants. 

\1\Te assume that t he solution of (3 .5) can be expressed as 

JJ (z) = acexp(cz) + .. . + a_dexp(-dz). 
bp exp(pz) + ... + b_q exp(-qz) 

(3.11) 

The values of c and d, p and q can be determined by balancing the linear term of the 

highest order with the highest order of nonlinear term in (3.5), i.e., H H " and H 4 . 

By straight forward calculation, we have 

H H " = c1 exp[(2c + 3p)z] + ... 
c2 exp[5pz] + ... 
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and 

H 4 = c3 exp[4cz] + .. . 
c4 exp[4pz] + .. . 

c3 exp[(4c + p)z] + ... 
C4 exp[5pz] + ... 

(3. 13) 

where Ci, are coefficients only for simplicity. Balancing the highest order of exponential­

function in (3.12) and (3.13), we have 2c+ 3p = 4c+ p, ,,_,hich yields c = p. Similarly, 

we balance the lowest order in (3.5) to determine values of d and q. \!\Te have 

and 

H H" = ... + s1 exp[- (2d + 3q)z] 
... + s2 exp[-:--5qz] 

H 4 = ... + s3 exp[4dz] 
.. . + s4 exp[- 4qz] 

... + s3 exp[- (4d + q) z] 
... + S4 exp[-5qz] 

(3.14) 

(3. 15) 

where si are coefficients only for simplicity. Balancing the lowest order of exponential­

function in (3.14) and (3.15), we have 2d + 3q = 4d + q, which yields d = q. For 

simplicity, we first set c = p = l and cl= q = l, t hen (3 .11) reduces to 

H(z ) = a1 exp(z) + ao + a_1 exp(- z). 
b1 exp(z) + b0 + b_1 exp(- z) 

Inserting (3.16) into (3.5) and using Maple, we obtain 

(3. 16) 

1 
B [C4 exp(4z) + C3 exp(3z) + C2 exp(2z) + C1 exp(z) + C0 + C_1 exp(-z) 

+C-2 exp(-2z) + C_3 exp(-3z) + C_4 exp(-4z)] = 0, (3 .17) 

where 

B (b1 exp(z) + b0 + b_1 exp(-z))4, 

C4 2o-aib1n - j3bfn + ,Bafn - 2w1,1bin, 

C3 -2afbob1c2 + 2a1aobi c2 + 6aaoaf b1n - 6aa1bobfn + 2aibob1k - 2aoa1 bik 

+2aaibon - 2aoa1bik + 2a aibon + 4/3aoain - 2aaobin - 4/3 bobin, 

C2 4,8a_1ain - 8aib-1b1c2 + 8a_1a1 bic2 + 8aib-1b1k - 8a_1a1 bik + 2aarb_1n 

-2aa_1bin - 4,8b_1bin + Gaaoaibon + 6aa6a1b1n - 6aa1b6b1n - 6/3b6bin 

+6aa_1aib1n - 6a a1bib-1n + 6/3a6ain - Gaaobobin, 

C1 -2a6bob1c2 + 2aoa1b6c2 + 2a6bob1k - 2aoa1b6k - 2aibob-1c2 + 2a_1aobic2 
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-2aoa_1bf /..; + 2c.Ya6b1n + 4,Ba6a1n - 2aa1b6n - 4,Bb6b1n + 12a_1a1bob1c2 

-l2a_1a1bob1k + l2aoa1b-1b1k + 60-a.5n,1bon - 60'. aob6b1n + l2aa_1aoa1 b1 n 

-12ac1,1b-1bob1n + 6aa_1afbon - 6aaob_1bfn - 6aa_1bobfn + 6aaoafb-1n 

+l2,Ba_1aoain - 12,Bb-ibobin + 2aibob-1k - 12aoa1b-1b1c2, 

Co 2cw6bon - 2aaob6n + ,Ba6n + 6aa_1aib-1n + 6aa5a1b-1n + 6cw~1a1b1n 

+6aa_1a5b1n + l2,Ba_1a6a1n - 6aa1b~1 b1n - 6aa1b-1b6n - 6aa_1b-1 bfn 

- ,Bb6n - 6aa_1b6b1n - l2,Bb_1b6b1n + 8a_1a1b6c2 
- 8a6b-1bic2 - 8a_1a1b6k 

+8a6b-1b1k + 6,Ba~1 afn - 6f-3b~ 1 bin+ 120-rL1aoa1hon - l2aaob-1bob1n, 

C_1 12aa_1aoa1b-1n - l2aa_1b-1bob1n + 2a_1aob6c2 - 2a6b-1boc2 + 2a6b-1bok 

-2a_1aob6k + 2aoa1b~1c2 - 2a~1bob1c2 - 2aoa1b~1k + 2a~1bob1k + 2aagb_1n 

+4,Ba_1agn - 2aa_1 b6n - 4,Bb_1 bgn + 12a_1a1b-1boc2 - 12a_1aob-1b1c2 

-l2a_1a1b-1bok + l2a_1aob-1b1k + 6aa_1a5bon - 6aaob-1b5n + 6aa~1 a1bon 

+6aa~1aob1n + l2,Ba~ 1aoa1n - 6aa1b~1bon - 6miob~1b1n - l2,Bb~1bo b1n , 

C_2 2mi~1b1n + 8r1,_1a1b~1c2 + 8a~1b_1h1k - 8a_1a1 l;~1k + 4,Ba~1a1n - 4,Bb~1b1n 

-2aa1b~1n - 8a~1b-1b1c2 + 6aa_1a5b_1n + 6cw~ 1aobon - 6aaob~1bon 

+6aa~1a1b-1n - 60:a_1b~1b1n + 6,Ba~ 1a6n - 6,Bb~1b6n - 6aa_1b-1b6n, 

C_3 6aaoa~1b_1n - 6aa_1b~1bon - 2a~1b-1boc2 + 2a_1aob~1c2 + 2a~1bob-1k 

-2a_1a.ob~1k + 2aa~1bon + 4,Ba.oa~1n - 2o'.aob~1n - 4,Bbo b~1n , 

C_4 = ,Ba4___1n - ,B b4___ 1n + 2aa~1b_1n - 2aa_1b~1n. 

Equating the coefficients of exp (z) in (3.17) to zero , we obtain a set of algebraic 

equations 

C4 = 0, C3 = 0, C2 = 0, C1 = 0, C0 = 0, 

C_1 = 0, C_2 = 0, C_3 = 0, C_4 = 0. (3. 18) 

Solving t he system (3. 18) with t he help of Maple, we obtain t he following three cases: 

Case 1 

,B = ab5 - 4ab1b_1 
4b1b-1 ' 
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Case 2 

Case 3 

k = abgn + 2b_1b1c
2 

2b_1b1 

1 
¢ _ - aoaibo + a5a1b1 + a1b5b1 - ao bobi 

w iere - (a1 - b1)2(a1 + bi)2 · 

Substitut ing values from (3. 19) into (3. 16), we obtain 

H (z) = b1 exp(z) - bo + b:___1 exp(- z). 
b1 exp(z) + bo + b_1 exp( - z) 

As a result one of the solutions of (3. 1) is given by 

( ) 
_ ~l (b1 exp(z) - b0 + b_1 exp(- z)) 

U1 X, t - 11 ( ) ( ) , n b1 exp z + bo + b_1 exp -z 

l /3 
ab5 - 4ab1b-1 d k ab5n + 2b_1b1c2 

"" 1ere z = x - ct = ----- an ~ = ------
' 4b1b-1 2b1b- 1 

(3 .19) 

(3.22) 

As a special case, if we choose b0 = 2 and b_1 = b1 = 1 in (3.22), then we get /3 = 0, 

k = 2an + c2 and obtain the solution of t he generalized sinh-Gordon equation as 

1 ? 
·u1 (x, l) = - ln(tanh- [(1/ 2)(x - cl)]), 

n 
(3.23) 

which is the solut ion obtained in [12, 45]. 

Iow substitut ing the values from (3. 20) (Case 2) into (3 .16) results in the second 

solut ion of (3. 1) as 

(3.24) 
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The third solut ion of (3. 1) is obtained by using the values from (3.21) (Case 3) and 

substit uting them into (3.16) . Consequently, it is given by 

, (· · ) _ ~l ( a1 exp(z) + a0 - b1¢exp(- z) ) 
U3 .T, . /, - n ( ) ( ) , , n b1 exp z + bo - a_1¢exp - z 

(3.25) 

h _ _ . ,1.., _ -aoaiho + a5n1h1 + a1h5b1 - a0 h0bi _ - fJ(ai + bi) 
w ere z - x ct , '+' - (a1 - b1)2(a1 + b1)2 , a - --2-a1_b_1_ and 

-~~~n+fJ~n+fJ~n+2~~2 
k = 2a2b2 

1 1 

To construct more solutions of (3.1), we now set c = p = 2 and d = q = 2. Then 

(3.11) reduces to 

H (z) = a2 exp(2z) + a1 exp(z) + ao + a_1 exp(-z) + a_2 exp(-2z) 
b2 exp(z) + b1 exp(z) + bo + b_1 exp(-z) + b_2 exp(-2z) · (

3
-
25

) 

Proceeding as above, we obtain the following three solutions of (3. 1): 

1 ( a2 exp(2z) + ab~~1 exp(z) + ab~~o + a_1 exp(-z) ) 
·u4(x, t) = -ln b , 

n a
2 

-
1 exp(z) + b1 exp(z) +ho+ b_1 exp(- z) 

a-1 

Q (a2 + b2 ) I-' -1 -1 where z = x - ct a= - -----· 
' 2a_1b_1 ' 

( ) _ ~l ( a2 exp(2z) + a1 exp(z) + b0 ) 
V,5 X, t - 11 ( ) ( ) , n - a2 exp z + b1 exp z + bo 

and 

(3 .27) 

(3 .28) 

(3.29) 

l 
_ _ __ 8a2b-2 ( c2 - k) R _ 2 ( 4a2b-2c2 - 4a2b-2k - b5c2 + b5k) 

w 1ere z - x ct, a - b2 , I-' - 2 
0n b0n 

By taking n = .2 , b_1 = -1 , b0 = 2, c = 1 and b1 = - 1 in t he solut ion (3.22) , we 

have its profile given in Figure 3.1. 
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Figure 3.1: Profile of solution (3. 22) 

By taking n = 3, b_2 = 1, b0 = 2, c = 1 and a1 = 1 in the solut ion (3 .29) , we have 

its profile given in Figure 3.2. 

Figure 3.2: Profile of solution (3.29) 

3.1.4 Exact solutions using sin1plest equation 1nethod 

In this subsection we invoke the simplest equation method to solve t he highly non­

linear ODE (3.5). This method was introduced by Kudryashov [65, 66] and later 

modified by Vitanov [67]. This will then give us the exact solution for the general­

ized double sinh-Gordon equation (3.1 ). The simplest equations that we will use are 

the Bernoulli and Riccat i equations. 

Here we first present the simplest equation method and consider the solutions of 
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(3.5) in the form 

M 

H (z) = ~Ai(G(z))i, (3.30) 
i=O 

where G(z) satisfies the Bernoulli a.nd Ricca.ti equations, ]\,f is a positive integer that 

can be determined by balancing procedure as in [67] and Ao, ••• , AM are parameters 

to be determined. \Ne note t hat the Bernoulli and Ricca.ti equations are well-known 

nonlinear ODEs whose solut ions can be expressed in terms of elementary funct ions. 

Let us consider here t he Bernoulli equation 

G' (z) = aG(z) + bG2(z), (3.31 ) 

where a and bare arbitrary constants. The general solut ion to (3.31) is given by 

G z) = a{ cosh[a(z + C)] + sinh[a(z + C)] } · 
( 1 - b cosh[a(z + C)] - b sinh[a(z + C)] 

In case of the Ricca.ti equation 

G'(z) = aG2 (z) + bG(z) + v, (3.32) 

where a, b and v are arbitrary constants, we shall use the solutions 

G(z) = -- - - tanh -0(z + C) b 0 [ 1 ] 
2a 2a 2 

and 

b e (1 ) sech (
0
;) G(z) = -- - - tanh - 0z + --~----~. 

2a 2a 2 C cosh ( 0
{ ) - 2

0
a sinh ( 0

{) ' 

,vith 02 = b2 - 4av > 0 and C is an arbitrary constant of integration. 

Solutions of (3.1) using the Bernoulli equation as the simplest equation 

The balancing procedure [67] yields J.,,f = 1, so the solut ions of (3.5) take the form 

(3.33) 
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Inserting (3 .33) into (3.5) and using the Bernoulli equation (3.31) and thereafter, 

equating the coefficients of powers of Gi to zero, we obtain an algebraic system of 

five equations in terms of A0 , A1, namely 

,BnAt - ,Bn + 2anA5 - 2anAo 0, 

4,BnA5A1 - 2a2 AoA1k - 2anA1 + 6anA6A1 + 2a2 AoA1c2 0, 

anAoAi - aAoA1bk + ,BnA6Ai + AoA1abc2 0, 

,BnAi + 2Aib2c2 
- 2Aib2 k 0, 

+4,BAoAin + 4AoA1b2
c2 

- 4AoA1b2 k + 2anA1 + 2Aiabc2 
- 2kAiab 0. 

Solving the above system of algebraic equat ions, with the aid of J\/Iaple, one possible 

solution is 

Thus, reverting back to the original variables, a solut ion of (3. 1) is 

. _ 1 1 ( A A { cosh[a(z + C)] + sinh[a(z + C)] }) 
U t , X - - 11 O + 1a . , 

( ) n l - h cosh[a(z + C)] - b smh[a(z + C)] 
(3.34) 

where z = x - ct and C is an arbitrary constant of integration. 

Solutions of (3.1) using the Riccati equation as the simplest equation 

In this case t he balancing procedure yields M = l. So the solut ions of (3.5) take the 

form 

(3.35) 

Substituting (3.35) into (3.5) and making use of the Riccati equation (3.32), we 

obtain an algebraic system of equations in terms· of A0 , A1 by equating t he coefficients 

powers of Gi to zero. The result ing algebraic equations are 

-2A0A1bkv + 2anA5 - ,Bn + 2Aikv2 
- 2Aic2v2 

- 2anAo + ,BnA6 + 2AoA1bc2
11 = 0, 

-2Aia2k + 2a2 Aic2 + ,BnAf = 0, 
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-4aAoA1kv + 4,BnA~A1 + 2Ai bkv + 4aAoA1c2
1; - 2Aibc2 v - 2A0 A 1b2k + 6anA6A1 

-2anA 1 + 2A 0 A1lic2 = 0, 

-abk + ,BnAoA1 + abc2 + anA1 = 0, 

2a2 A 0 A 1c2 + aAibc2 
- aAibk - 2a2 A0A1k + o:nAi + 2,BnAoAi = 0. 

Solving t he above equations, we get 

and consequently, the solutions of (3.1 ) are 

·u(l, x) = ~ ln (Ao+ A.1{- !_ - !_ tanh [!fJ(z + c)] }) 
n 2a 2a 2 

(3.36) 

and 

(3.37) 

where z = x - cl and C is an arbitrary constant of integration. 

3.2 Conservation laws of (3.1) 

In this section conservation laws will be constructed for (3 .1) by using four different 

methods, namely, the direct method, the Noether theorem, the new conservation 

theorem and the mult iplier method. 

Vve recall that t he equation (3 .1 ) admits the following t hree Lie point symmetry 

generators: 
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3.2.1 Application of the direct 111.ethod 

It is well-known that there exists a fundamental relationship between the point sym­

metries admitted by a given equation and the conservation laws of that equation. 

Following [39], we see that the conservation law 

(3.38) 

which must be evahrn,ted on the partial differential equation , can be considered to­

gether with the following requirements: 

xlnl(T1
) + T 1 Dx(O -T2 Dx(T) = 0, 

xlnl(T2
) + T 2 Dt(T) - T 1 Dt(O = 0 

(3.39) 

(3.40) 

in which x ln] is the nth prolongation of a point symmetry of the original equation. 

The order of the extension equals to the order of the highest derivative in T 1 and 

T 2
. Consequently, for given X , (3 .38)-(3.40) can be solved to obtain the conserved 

vectors or tuple T = (T1, T 2
). 

The condition (3 .38) on the equation (3. 1) gives 

[JTl [JTl ( . ) [JTl [JTl [JT2 
!:l +ut~ + k'llxx - 2asinhnu-fJsmh (2nu) ~ +utx~ + ~ 
ut u1l UUt U'l.lx ux 

8T2 8T2 8T2 
+ 'Ux~ + 'Utx~ + 'Uxx~ = 0. 

UU UUt UUx 

Since T 1 and T 2 are independent of the second derivatives of u, it implies that the 

coefficients of 1ltt, 11,tx and 1/.xx must be zero. Hence, 

[JTl [JT2 
- + -= 0 
01lx OUt ' 

[JTl [JT 2 
k~+~=0, 

UUt u 'Ux 

[JTl [JTl ( ) EJTl EJT2 [JT2 
-
0 

+ Ut - D - 2asinh (nu)+ fJsinh (2nu) -
0 

+ -
0 

+ Ux~ = 0. 
/, 'U, 'Ut '.C: U'U 

(3.41) 

(3.42) 

(3.43) 

VVe now construct the conservation laws for (3 .1) using the three admitted Lie point 

symmetries. 
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Vle start with the translation symmetry X 1 = Dt, which is already in its extended 

form. The symmetry conditions (3.39)-(3.40) yield 

EJT1 8T2 

-=0 -=0. 
8t ' 8t · 

(3.44) 

respectively. Therefore from (3.41 )-(3.43) and (3 .44) t he components of the conserved 

vector of (3.1) associated with the symmetry X 1 are given by 

c4u; . , 2 . , 2c4 [2acosh(nu) ,Bcosh(2nu)] ,.( ) . 
- k- + C4 Ux + C5 Ux + - k + ') + J X + C5, " " n ~n 

where c4, c5 , c6 and c7 are arbitrary constants and j(x) is an arbit rary function of x . 

Continuing in the same manner using X2 and X 3 we obtain the components of the 

conserved vector for equation (3.1) as 

c,flli 2 2c4 [2acosh(n'll) ,Bcosh(2n:u)] 
-k- + C4 Ux + C5 Ux + - k + ') + Cg - ,. n ~n 

-2C4Ut'Llx - C5Ut + p(t ), 

and 

respectively, where c4 , c5 , C6 and c8 are constants and p(t) is an arbitrary function of 

t. However, we note that t he symmetry X 3 gives a t rivial conserved vector. 

3.2.2 Application of the Noether. theore1n 

Here we apply the Noether theorem to construct conservation laws of the generalized 

double sinh-Gorclon equation (3 .1). It can be easily verified that equation (3 .1) has 

a first-order Lagrangian given by 

L = ! 'll2 _ ~'ll2 _ (2acosh(nu) + ,Bcosh(2nu) ) . 
2 t 2 x n 2n 

(3.45) 

The insertion of (3.45) into t he aether operator determining equation (1.37) gives 
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+{ (1/ 2)-u.; - (k/2)-u; - (2a/n)cosh(nu) - (,B / 2n)cosh(n'U) }{ Tt + 'UtTu + (x + ·uxlu} 

The separation of the above equation on the derivatives of u, yields 

(k / 2)lx - k'l]u - (k/2)Tt = 0, ?Jt = Bt, k?Jx = -B~, 

2o!sinh (nv,)77 + ,Bsinh (2n:11.)17 + 2(a/n)cosh (nu)Tt + 2(a./n)cosh (nu)lx 

+(,B/ 2n)cosh (2nu)Tt + (,B/2n)cosh (2nu)l x = -B; - B;. 
After some straightforward but lengthy calculations, we obtain 

T = cl1, l = - cl2, ?J = 0, 

Bt1(t , x) + B;(t,x) = 0, 

where d1 and d2 are arbit rary constants and B 1(t, x) and B 2 (t , x) are arbitrary func­

tions oft and x . We can choose B 1 (t, x) = B 2 (t, x) = 0 as they contribute to the 

t rivial part of t he conserved vectors. Thus, we get tvi'O Noether point symmetries, 

namely 

The use of t he theorem due to Noether, with X1 = Ot, gives t he conserved vector 

r 1 1 2 k 2 2a ( ) ,B ( ) T = --u - - u - - cosh nu - - cosh 2nu , 
2 t 2 x n 2n 

Using X2 = Dx and employing the Joether t heorem, we obtain 

1 k 2a ,8 
T 2 = - u; + - u; - - cosh (nu) - - cosh (2nu). 

2 2 n 2n 

3.2 .3 Application of the new conservation theore1n 

In t his subsection we use the new conservation t heorem given in [49] and construct 

conservat ion laws for (3 .1 ). The adjoint equation of (3 .1), by invoking (1.40), is 

E*(t,x ,u,v, . .. ,?lxx,Vxx) = :u [v('Lltt - k'Uxx + 2asinh(nu) + ,Bsinh (2nu)] = 0, 

(3.46) 
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where v = 'u(l, :t:) is a new dependent variable. Thus from (3.46) we have 

Vtt - kvxx + 2nv [a cosh (nu)+ (3 cosh (2nu)] = 0. (3.47) 

It is clear from the adjoint equation (3 .47) t hat equation (3.1 ) is not self-adjoint. 

By recalling (1.45), we obtain t he Lagrangian for t he system of equations (3 .1) and 

(3.47) as 

L = v[uu - k'llxx + 2asinh (nu)+ (3 sinh (2mL)]. (3 .48) 

(i) Vie first consider the Lie point symmetry generator X 1 = Dt, It can easily be seen 

from (1.42) t hat the operator Y1 is the same as X 1 and that the Lie characteristic 

function \;\/ = -'Ut. Thus, by using (1.44), the components Ti, 'i = 1, 2, of t he 

conserved vector T = (T1
, T 2 ) are given by 

Remark. The conserved vector T contains the arbitrary solution v of the adjoint 

equation (3.47) and hence gives an infinite number of conservation laws. This remark 

also applies to the two cases given below. 

(ii) For t he symmetry X 2 = Bx, we have HI = -ux, Thus, by using (1.44), the sym­

metry generator X 2 gives rise to the following components of the conserved vector: 

T 1 = VtUx - 1171,tx, T 2 = v ( 'U,tt + 2a sinh (nu) + (3 sinh (2nu)) - kvxUx , 

(iii ) The symmetry X 3 = x Ot + kt Bx has the Lie characteristic function TV = -xut -

ktux. Thus, invoking (1.44), we obtain the conserved vector T , given by 

T 1 xv ( - kuxx + 2asinh (rm)+ (3sinh (2nu)) + XVtUt + ktvtUx - kvux - ktvutx, 

T 2 ktv(uu + 2a sinh (nu)+ (3 sinh (2nu)) - k:rvxut - k2tvxux + kvut + kxvutx· 

3.2.4 Application of the 1nultiplier rnethod 

In t his subsection we ut ilize the multiplier method [50] to obtain conservation laws 

of the generalized double sinh-Gordon equation (3.1). After some straightforward 
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but lengthy calculations we obtain a single multiplier for (3. 1) viz., 

A= A(t, X, U, Ux) = Ux. 

Hence the conserved vector T = (T1 , T 2 ) associated with the above multiplier is 

given by 

1 
- ( 'l.lt Ux - U Utx) , 
2 

1 ( 20'. /3 ) ? UttU + - cosh(nu) + - cosh(2nu) - kux 2 
- 2a . 

~ n n 

3.3 Concluding remarks 

In this chapter we performed symmetry reductions of the generalized double sinh­

Gordon equation (3. 1) based on the optimal systems of one-dimensional subalgebras 

of (3.1) . Thereafter, exact solut ions with the help of simplest equation method and 

exponential function method were obtained. These exact solutions obtained here are 

different from the ones obtained in [13, 16, 44]. Finally, conservation laws for (3 .1) 

were derived by employing four different methods; the direct method, t he Noether 

theorem, the new conservation theorem and multiplier method. The usefulness of 

conservation laws was discussed in the introduction. 
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Chapter 4 

Exact solutions and conservation 

laws for a generalized double 

combined sinh-cosh-Gordon 

equation 

The double combined sinh-cosh-Gordon equation [2, 7, 45] 

Utt - kuxx + asinh(u) + acosh(u) + ,8sinh(2u) + ,8cosh(2u) = 0 (4.1) 

is a well known NLPDE which appears in a wide range of physical applications. It 

admits geometric interpretation as the differential equation which determines time­

like surfaces of constant positive curvature in t he same spaces. The travelling wave 

solutions of this equation were derived by \Vazwaz [2] using the tanh method and 

variable separated ODE method . In [7], ( G' / G)-expansion method was used to obtain 

solutions which were hyperbolic functions and trigonometric functions. Exponential 

function method was used in [45] to compute travelling wave solutions of ( 4.1). In 

this chapter, we study the generalized form of the double combined sinh-cosh-Gordon 

equation ( 4.1), given by 

11,tt - knxx + o,sinh(n11,) + acosh(n11.) + ,8sinh(2rw,) + f]cosh(2nu) = 0, (4.2) 
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where k, a and /3 are non-zero real constants and n is a positive integer. 

The aims of this chapter are two fold . Firstly, we use Lie group method together 

with the simplest equation method to construct exact solut ions of (4.2) . The second 

interest is to find conservation laws of ( 4.2) by using four different approaches namely, 

the direct method, the oether theorem, the new conservation theorem and the 

multiplier method. 

This work is new and has been submitted for publication. See [68]. 

4.1 Symmetry reductions and exact solutions of 

(4.2) 

The symmetry group of the generalized double combined sinh-cosh-Gordon equation 

(4.2) will be generated by the vector field of the form 

The application of the second prolongation x l2l to (4.2) yields the following overde­

termined system of linear partial differential equations: 

~u = 0, Tu = 0, 'r/uu = 0, ~t - kTx = 0, 

Tt - (x = 0, Ttt - kTxx - 2r1tu = 0, (tt - k(xx + 2kr]xu = 0, 

cm cosh (nu) rJ + an sinh (nu) 7] - krJxx - 2/3 Tt - 2/3n77 + 2a cosh (nu) Tt 

+2a sinh(nu) Tt + 4 /3 cosh2 (nu) Tt - a cosh (nu) 'r/u - a sinh(nu) 'T]u 

-2/3 cosh2 (nu) 'T]u + 4/3n cosli(n1l) 77 +4/3 cosh (n1l) sinh (rm) Tt 

-2/3 cosh(n1l) sinh(n1l) 1)u + 4/3n cosh(n1l) sinh(rm) 'r/u + 1)tt + /3'l}u = 0. 

Solving the above equations we obtain t he following three Lie point symmetries: 
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4 .1.1 One-dhnensional opthnal syste1n of subalgebras 

We note that the Lie point symmetries of equation ( 4.2) are exactly the same as of 

equation (3. 1), namely 

Thus, we conclude that the one-dimensional optimal system of subalgebras will be 

the same as for equation (3 .1 ), namely {cX1 + X2,X2,X3}, where c is a non-zero 

constant. 

4.1.2 Sy1nmetry reductions of ( 4 .2) 

Here the optimal system of one-dimensional subalgebras {cX1 + X 2 , X2 , X3 } will be 

used to obtain symmetry reductions that transform ( 4.2) into ordinary differential 

equations. Thereafter, we will obtain t he exact solut ions of (4.2). 

The symmetry generator cX1 + X2 gives rise to t he group-invariant solut ion 

u = V(z), (4.3) 

where z = .r, - d is an invariant of the symmetry cX1 + X2 and V is an arbitrary 

function of z. The insertion of (4.3) into (4 .2) yields the ODE 

(c2 
- k )V"(z) + a sinh (n V(z)) + a cosh (n V (z)) + ,B sinh (2n V(z)) 

+,Bcosh (2nV(z)) = 0. (4 .4) 

Using t he transformation 
1 

V(z) = - ln(H (z)) 
n 

(4.5) 

on ( 4.4) we obtain the nonlinear second-order ODE 

(c2 
- k)H(z)H"(z) - (c2 

- k)H'(z) 2 + anH(z) 3 + ,BnH (z) 4 = 0. (4 .6) 
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The integration of the above equation and reverting back to the original variables, 

yields the solution of ( 4.2) in the form 

1 

; . 1 2 ( 1 ) ]--x - ct+ c2 = ± lk _ c2 cmexp(3nu) + 2,Bnexp(4m1,) + c1 exp(2nu) 
2 

x 

n exp(n:a )du , 

where c1 and c2 are constants of integration. 

Case 2. X2 

The symmetry operator X2 results in the group-invariant solution of the form 

11, = V(z), (4.7) 

where z = x is an invariant of X 2 and V is an arbitrary function satisfying the ODE 

kV"( z) - asinh (nV(z))- acosh (nV(z))-,8sinh (2nV(z)) 

- ,8 cosh (2nV(z)) = 0. (4 .8) 

The transformation ( 4.5) on equation ( 4.8) yields 

kH(z) H"(z) - kH' (z )2 
- anH(z)3 

- ,BnH(z) 4 = 0. (4.9) 

Solving the above equation and reverting back to the original variables , yields 

1 

x + c2 = ± ./ [¾ (an exp(3nu) + ~,Bnexp(4nu)) + c1 exp(2nu)]-
2

nexp(nu)du, 

where c1 and c2 are constants of integration. 

Case 3. X3 

The symmetry X 3 gives rise to the group-invariant solution 

·11. = V( z), (4.10) 

where z = x2 
- kt2 is an invariant of X 3 and t he arbitrary function V satisfies the 

ODE 

4kzV"(z) + 4kV'(z) - a sinh (nV(z)) - a cosh (nV(z)) - f3 sinh (2nV(z)) 

- ,8 cosh (2nV(z)) = 0. 
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4.1.3 Exact solutions using simplest equation method 

In this subsection we invoke the simplest equation method to solve the highly nonlin­

ear ODE ( 4.6). This will then give us the exact solutions for the generalized double 

combined sinh-cosh-Gordon equation (4 .2). The simplest equations that we will use 

here are the Bernoulli and Riccati equations. 

Solutions of ( 4.2) using the Bernoulli equation as the simplest equation 

The balancing procedure yields A/= 1, so the solutions of (4.6) take the form 

( 4.11) 

Inserting (4. 11) into (4.6) and using the Bernoulli equation [69] and thereafter, equat­

ing the coefficients of powers of Gi to zero, we obtain an algebraic system of five 

equations in terms of A0 , A 1 , namely 

,BnA6 + anA~ 0, 

,BnAf - b2kAi + llc2 Ai 0, 

-ka2 A0 A1 + 4,BnA~A1 + 3anA5A1 + a2 c2 AoA1 0, 

-3abkA0 A1 + 3a.bc2 A0 A1 + 6,BnA5Ai + 3anAoAi 0, 

anAf + abc2 Ai+ 2b2 c2 AoA1 - 2b2kAoA1 - abkAi + 4,BnAoAi 0. 

\i\Tit h the aid of Maple, solving the above systern of algebraic equations, one possible 

solution is 

A 
- a.2 ( c2 - k ) 

o- ) A 
_ a.b (c2 

- k) 
1 - ) 

an an 

Thus, reverting back to the original variables, a solut ion of ( 4.2) is given by 

_ 1 · [ A { cosh[a(z + C)] + sinh[a(z + C)] }] 
u t , x - - ln A0 + 1 a . , 

( ) n 1 - bcosh[a(z + C)] - bsmh[a(z + C)] 
(4. 12) 

where z = x - ct and C is an arbitrary constant of integration. 
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Figure 4.1 : Profile of the solution (4.12) 

Solutions of ( 4.2) using the Riccati equation as the simplest equation 

The balancing procedure yields J,.f = l , so the solutions of (4 .6) take the form 

(4.13) 

Inserting (4. 13) into (4.6) and making use of the Riccati equation [69], we obtain 

algebraic system of equations in terms of A0 , A1 by equating the coefficients powers 

of Ci to zero. The resulting algebraic equations are 

,6nA6 + anl l~ + kv2 Ai - c2
1;

2 Ai+ bc2 vAoA1 - bkvAoA1 0, 

-a2kAi + a.2c2 Ai+ ,BnAf 0, 

3anAoAi - 3abkAoA1 + 3abc2 AoA1 + 6,6nA6Ai 0, 

-abkAi - 2a2kAoA1 + abc2 Ai+ 4,BnAoAi + anAi + 2a2c2 AoA1 0, 

2ac2 vAoA1 + 4,BnA~Ai + 3anA6A1 - b2kA oA1 + bkvAi + b2c2 AoA1 

-2akvAoA1 - bc2 vAi 0. 

Solving the above equations, we get 

A 1 (b + Jb2 - 4av) (bA0 - vAi)(c2bAo + 2kvA1 - 2c2vA1 - kbAo) 
Ao= 2 , a= A3 , a n 0 

,6 = _ (c2 
- k)(bAo - vA1) 2 

nAa 
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and consequently, the solutions of ( 4.2) are given by 

u(t, x) = ~ ln [Ao+ Ai {- ~--'- !_ tanh [!e(z + C)] } ] (4.14) 
n 2a 2a 2 

and 

_ _ 1 [ { b 0 ( 1 ) sech ( 
0
;) } ] u(t, x) - - ln Ao+ Ai - - - - tanh -0z + (Bz) ?a . (Oz) , 

n 2n, 2a 2 C cash - - =:_ smh -
2 0 2 

where z = x - ct and C is an arbitrary constant of integration. 

F igure 4.2: Profile of the solution (4.14) 

4 .2 Construction of conservation laws of ( 4 .2) 

In this section conservation laws will be constructed for the generalized double com­

bined sinh-cosh-Gordon equation ( 4.2) by four different methods , namely, the di­

rect method, the Noether theorem the new conservation t heorem and the mult iplier 

method . 

Vile recall ( 4.2) admits the following three Lie point symmetry genera.tors: 
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4 .2.1 Application of the direct n~ethod 

There is a fundamental relat ionship between the point symmetries admitted by a 

given equation and the conservation laws of that given equation. Following [39], we 

see t hat t he conservation law 

D T 1 + D T2 = 0 t X , (4. 15) 

·which must be evaluated on the partial differential equation, can be considered to­

gether wit h the following requirements 

xlnl(T1
) + T 1 

Dx(O -T2 
D x(T) = 0, 

x lnl(T 2
) + T 2 

D t(T) - T 1 
D t(O = 0, 

(4. 16) 

(4.17) 

in which xln) is the nih prolongation of a point symmetry of the original equation. 

The order of the extension equals to the order of the highest derivative in T1 and 

T 2 . Consequently, for given X , (4. 15)-(4 .17) can be solved to obtain the conserved 

vectors or t uple T = (T1 , T 2). 

The condit ion (4. 15) on t he equation (4.2) gives 

( ) 
aT 1 

k'llxx - asinh (nu) - acosh (nu) - ,Bsinh(2nu) - ,Bcosh (2nu) Dut + 

EJT1 aT1 aT1 aT 2 0T 2 0T2 EJT2 
-,-~ - + Ut ~ + 'lltx ~ + -,~- + Ux-----;:;- + Utx ~ + Uxx ~ = 0 • 
ot on u11,x ox u11, unt u1lx 

Since T 1 and T 2 are independent of the second derivatives of ·u, it implies that the 

coefficients of Utt, Utx and Uxx must be zero. Hence, 

E)Tl + 3y2 = 0 (4.18) 
O'llx O'Ut ' 

[)Tl E)T2 
k- + - = 0 (4.19) 

8ut Bux ' 

8Tl ( ) 8Tl 8t - a sinh (nu)+ a cosh (nu)+ ,B sinh (2rm) + ,B cosh (2nu) But 

[)Tl [JT2 3T2 
+7.lt -----;:;- + -,)- + Ux-,1- = 0. (4.20) 

U '/1, ( :7; C,'/,l 

\"le now construct the conservation laws for the generalized double combined sinh­

cosh-Gordon equation ( 4.2) using the t hree admitted Lie point symmetries. 
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\li/e start with the translation symmetry 

(4 .21) 

which is already in its extended form. The symmetry conditions (4. 16)-(4.17) yield 

8T1 

~ = 0, ut 
aT2 

DL=O, 

( 4.22) 

( 4.23) 

respectively. Therefore from (4.18)-(4.20) and (4 .22)-(4.23) the components of the 

conserved vector of the generalized double combined sinh-cosh-Gordon equation ( 4.2) 

associated with t he symmetry X 1 are given by 

T 1 = c
4 

[2acosh(nu) + 2asinh(nu) ~ ,8cosh(2nu) + ,8sinh(2nu)] 
nk 

2 
C4 7.1,t 2 . ( ) +k + C4Ux + C5Ux + J X + C5, 

T 2 = -2C47.ltUx - C5'Llt + C7, 

where c4 , c5 , c6 and c7 are arbitrary constants and j(x) is a function of x. 

Continuing in the same manner using X2 and X 3 we obtain the components of the 

conserved vector for equation ( 4.2) as 

and 

T 1 = ~ [2acosh(nu) + 2c.Ysinh(nu) + ,8cosh(2n·u) + ,8sinh(2nu)] 
nk 

2 
C4Ut 2 +k + C41lx + C511,x + Cs 

T2 
-2C4UtUx - C51lt + p(t), 

T 2 -c511.t + cgkt, 

respectively, where c4 , c5 , cs and r:9 are constants and p(L) is a function of/,. Vle note 

that the symmetry X 3 gives a trivial conserved vector. 

58 



4 .2 .2 A pplicat ion of t he N oet her t heorem 

Vie now apply the Noether theorem to construct conservation laws of the generalized 

double combined sinh-cosh-Gordon equation (4.2). It cR-n be eR-sily verified that 

equation ( 4.2) has a first-order Lagrangian given by 

L = ~'u;- ~u;-~ (2acosh(n:a) + 2o:sinh(n'I.L) + ,Bcosh (2mL) + ,Bsinh(2nu)) . ( 4.24) 
2 2 · 2n 

The insert ion of (4.24) into the Noether operator determining equation (1.37) gives 

- a77sinh(nu) - a77cosh(n1.1,) - ,877sinh(2m1.) - ,8'l7cosh (2n11,) + ut { 77t + 1lt77u -

'llt(Tt + UtTu) - 'llx((t + 'Ut~u) }- kilx { r]x + 'I.Lxr]u - Ut(Tx + 'I.LxTu) - Ux((x + 'I.Lx(u)} 

+ l 2u - 2u - --- - ----------- --- -{ ( / ) 
2 (k/ ) 2 O'.Cosh(rw,) C\'.Sinh(rrn) ,Bcosh (2nv,) ,Bsinh(2rm)} 
t x n n 2n 2n 

{ Tt + 'lltTu + (x + 'llx(u } = B; + 'UtB1: + B; + 'UxB~. 

The separation of t he above equation on the derivatives of 'll, yields 

Tu = 0, (u = 0, kT.--c - (t = 0, (x - Tt + 27]u = 0, 

(x - 2771' - Tt = 0, 77t - Bt,o, kr]x + B~ = 0, 

a77sinh(nu) + a77cosh (nu) + ,877sinh(2n'll) + ,B77cosh(2nu) + {(a/ n)cosh(n'll)}Tt 

+{ (a/ n)sinh (nu)}Tt + { (,B / 2n)cosh(2n'u)}Tt + { (,B /2n)sinh(2n'a)}Tt + { (a/ n)cosh(rm)}~x 

+{(a/ n)sinh(mL)}~x + {(,B/2n)cosh(2nu)}~x + {(,B/2n)sinh(2nu)}~x +Bf+ B; = 0. 

Solving the above equations yield 

T = d1, ~ = -d2 , 7] = 0, 

B{(L. ,x) + B;(l,x) = 0, 

where d1 and d2 are arbitrary constants and B 1 (t, x) and B 2 (t, x) are arbitrary func­

tions oft and x. \Ne can take B 1 (t, x) = B 2 (t , x) = 0 since t hey contribute to the 

trivial part of the conserved vectors. Thus, we get two Noether point symmetries , 

namely 
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The use of t he theorem clue to Noether , with X 1 = Dt, gives the conserved vector 

l k l [ ] T 1 = - 2u; - 2u; -
2
n 2acosh (nu) + 2asinh(nu) + ,6cosh(2nu) + ,6sinh(2nu) , 

T2 = k'Ut'Ux. 

Using X 2 = Bx and employing the Noether theorem, we obtain 

y 1 = -UtUx, 

T 2 = -'ut + -u; - - 2acosh(nu) + 2asinh(nu) + ,6cosh(2nu) + ,6sinh(2nu) . l k l [ ] 
2 2 2n 

4.2 .3 Application of the new conservation theorem 

In this subsection we use the new conservation t heorem [49] and construct conserva­

tion laws for (4. 2). The adjoint equation of (4.2), by invoking (1.40) , is 

E*(t, X, U, V, ... , Uxx, Vxx) = -!--[v{'uu - kuxx + asinh (nu)+ acosh (nu) 
(J'U 

+,6 sinh (2nu) + ,6 cosh (2nu)}] = 0, ( 4.25) 

where v = v(t , x) is a new dependent variable. _Thus from ( 4.25) we have 

Vtt - kvxx+nv{a sinh (nu) +a cosh (nu) + 2,6 sinh (2nu) +2,6 cosh (2nu)} = 0. (4. 26) 

It is clear from the adjoint equation ( 4.26) that equation ( 4.2) is not self-adjoint . By 

recalling (1.45) , we obtain the following Lagrangian for the system of equations ( 4.2) 

and (4 .26): 

L = v{ Utt - kuxx + a sinh (nu)+ a cosh (nu)+ ,6 sinh (2nu) + ,6 cosh (2nu)}. (4.27) 

(i) V\Te first consider the Lie point symmetry generator X 1 = Bt . It can easily be shown 

from (1.42) that the operator Y1 is the same as X 1 and hence t he Lie characteristic 

function liV = -nt, Therefore by using (1.44), the components Ti, i = l , 2, of the 

conserved vector T = (T 1, T 2) are 

T 1 = v ( - kuxx + a sinh (nu )+ a cosh (nu )+ ,6 sinh (2nu) + ,6 cosh (2nu) ) + UtVt, 
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Remark. The conserved vector T contains the arbitrary solution v of the adjoint 

equation ( 4.26) and hence gives an infinite number of conservation laws. 

This remark also applies to the following two cases. 

(ii ) The generator X 2 = Bx, gives W = -ux. Thus, by using (1.44), the generator 

X2 we have the following components of the conserved vector: 

'U(llx - 'U'Utx , 

v (uu + a. sinh (rm)+ a cosh (nu)+ /3 sinh (2nu) + /3 cosh (2nu)) - kvxux. 

(iii ) The symmetry generator X 3 = :dlt + kl.ax has the Lie characteristic function 

HI = - X'Ut - kfox, Thus, invoking (1.44), we obtain t he conserved vector T as 

T 1 = .T-1! ( - kuxx + n sinh (rm)+ a. cosh (nn) + /3 sinh (2m1.) + /3 cosh (2nu) ) 

+xVtUt + ktVtUx - kvux - ktVUtx, 

T 2 ktv (Utt+ a sinh (nu) + a cosh (nu) + /3 sinh (2nu) + /3 cosh (2nu)) 

-kXVxUt - k2tvx'Ux + kvut + kXV'U,tx· 

4.2.4 Application of the multiplier Inethod 

Lastly, in this subsection we ut ilize the multiplier method [50] to obtain conservation 

laws of ( 4.2) . After some straightforward but lengthy calculations we obtain the first­

order multiplier for (4.2), viz., 

where Ci, i = 1, 2, 3 are arbitrary constants. The above multiplier yields the following 

three local conserved vectors of (4.2). Hence t he conserved vectors associated with 

the above multiplier are given by 
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T2 
1 

y,1 
2 

r,2 
2 

and 

+ - cosh (rm) smh (rm) + - cosh- (mt) - - - - , 2f3 x . 2f3x ? 2ax 2f3x ) 
n n n n 

k ( 2 2at 2at 
-? Utttu - UtUxX + Ut'l.L - kuxt + 11,txXU + - sinh (nu)+ - cosh (mt) 
- n n 

+ - cosh (nu ) sinh (nu)+ - cosh- (nu) - - - - , 2f3 t 2f3 t ? 2at 2f3 t) 
n n n n 

1 

2(Ut'Ux - UUtx) , 

1 ( 2 20, 20'. 2/3 
-
2 

'UttU - kux + - sinh (nu)+ - cosh (nu)+ - cosh (nu) sinh (nu) 
n n n 

+ - cosh (rm)- - - - , 2/3 2 2a 2/3 ) 
n n n 

T 1 1 ( ? 2a 2a 2/3 
3 ? - k'LtxxU + u-;: + - sinh (nu)+ - cosh (nu)+ - cosh (nu) sinh (nu) 

- n n n 

+ - cosh-(rm)- - - - , 2/3 ? 2a 2/3 ) 
n n n 

k 
T] 2(U1ttx - UtUx) , 

4 .3 Concluding remarks 

The generalized double combined sinh-cosh-Gorclon equation ( 4.2) was investigated 

by using the Lie symmetry analysis. Symmetry reductions based on the optimal 

systems of one-dimensional subalgebras of ( 4.2) were obtained. Thereafter exact 

solutions with the help of simplest equation method were constructed. The exact 

solutions obtained here are more general than · the ones given in [2, 7, 45]. Futher­

more, several conserved quantities for ( 4.2) were derived by employing four different 

techniques; the direct method, the aether theorem, the new conservation theorem 

and the multiplier method. 
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Chapter 5 

Exact solutions and conservation 

laws for the (2+1)-dimensional 

nonlinear sinh-Gordon equation 

The sinh-Gordon equation 

Utt - Uxx + sinh u = 0 

is one of the equations which appears in solitary waves theory [46]. This equation 

gained importance because of its collisional behaviours of solitons. It first appeared 

in the propagation of fluxons in the Josephson junction [47] between two supercon­

ductors. In (2+ 1) dimensions the sinh-Gordon equation is given by 

'Utt - 'Uxx - 'l.lyy + sinh u = 0. (5. 1) 

Equation (5.1) has applications in solid state physics, integrable field theory, kink 

dynamics, fluid dynamics, and many other scientific fields. This equation was studied 

using numerical and analytical approaches and more recent ly one soliton solut ion 

and two soliton solutions were formally derived using the simplified Hirota's method 

in [46]. 

In this chapter we study equation (5.1). The objectives of this chapter are in two di­

rections. Firstly, we employ t he Lie group analysis along with the simplest equation 
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method and ( G' / G)-expansion method to construct exact solut ions of ( 5.1). Sec­

ondly, conservation laws for the underlying equation are also derived by employing 

the direct method, Noether theorem and the new conservation theorem. 

This work is new and has been submitted for publication. See [70]. 

5.1 Symmetry reductions and exact solutions of 

(5.1 ) 

We first compute the Lie point symmetries of (5. 1). Let us assume that the vector 

field of the form 

X = T(t, x, y , n)Bt + ~(t , .'I:, y, u)ax + 'lj;(t, .T,, V, u.)ay + ry (t, x, y , u)au 

will generate the symmetry group of (5. 1). Applying the second prolongation x l2l 

to (5.1) we obtain an overdetermined system of thirteen linear part ial differential 

equations, namely 

~u = 0, Tu = 0, 'lpu = 0, 'r/uu = 0, ~t ~ T.--c = 0, Ty - 1Pt = 0, 

~y + '<Px = 0, ~x - 'lpy = 0, Tt - 'lpy = 0, Ttt - Txx - Tyy - 2r]tu = 0, 

~tt - ~xx - ~yy + 2rJxu = 0, 'lptt - VJxx - 7/Jyy + 2r]yu = 0, 

17 cosh(u) + 2 'lj;y sinh(v.) - rJu sinh(u) + f/tt - rJxx - ?]yy = 0. 

After some tedious calculations one can obtain t he values of T, ~, 7/J and rJ . Thus 

equation (5.1 ) has the following six Lie point symmetries: 

X1 = Dt, X2 = Ox, X3 = Dy, X4 = XOt + tox 

X5 = '!}Dt + t8y, x6 = - yox + XOy-

Vve now use t he t hree translation symmetries X 1, X 2 and X 3 to transform (5. 1) to a 

partial differential equation of two independent vari ables. The linear combination of 

these three symmetry, namely X = X 1 +X2 +X3 gives the following three invariants: 

p = t - V, q = X - Y, 71 = ? /, . (5.2) 
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Taking p and q as new independent variables and v as t he new dependent variable, 

the equation (5. 1) transforms to 

2vqq + 2vpq - sinh(v) = 0. (5.3) 

Now we further reduce (5.3) using its symmetries . The equation (5.3) has t he fol­

lowing three symmetries: 

The symmetry cVi + ½, where c -=I=- 0 is a constant , yields the invariants z = p - c q 

and ¢ = v, which gives the group-invariant solut ion ¢ = cp(z) where cp satisfies the 

second-order nonlinear ODE 

(2c - 2c2)cp"(z) + sinh(cp) = 0. (5.4) 

Using the transformation 

cp(z) = ln(w(z)) (5.5) 

on (5.4) we get 

(4c - 4c2 )w"(z)w(z) + (4c2 
- 4c)w' (z) 2 + w(z) 3 

- w(z) = 0. (5.6) 

5.1.1 Exact solutions using siinplest equation method 

In this subsection we invoke the simplest equation method [65] to solve the highly 

nonlinear ODE (5 .6). Consequent ly t his will then give us the exact solutions for the 

(2+1)-dimensional nonlinear sinh-Gorclon equation (5. 1). The simplest equations 

that we use are t he Bernoulli and Riccati equations [69]. 

V·le assume that the solutions of the nonlinear ODE (5.6) are of the form 

M 

w(z) = L A(G(z))\ (5.7) 
i=O 

where G(z) satisfies the Bernoulli or Riccati equation , Ji.!J is a positive integer that 

can be determined by the balancing procedure and A0 , · · · , A.111 are parameters to be 

determined. 
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Solutions of (5.1) using the B ernoulli equation as the simplest equation 

The balancing procedure yields M = 2, so the solutions of (5.6) are of the form 

(5.8) 

This value of w(z) is now inserted in (5. 6). Then using the Bernoulli equation [69] and 

thereafter, equating the coefficients of powers of Gi to zero, we obtain an algebraic 

system of seven equations in terms of A0 , A 1 , A 2 , namely 

Ao - A~= 0, 

4kb2 A~+ A~= 0, 

3A6A1 + 2ka2 AoA1 - A1 = 0, 

8kb2 A1A2 + 4kabA~ + 3A1A~ = 0, 

6kabAoA1 - 3J16112 + 8ka2 AoA2 - 112 + 3Jloili = 0, 

3Ai A2 + 10kabA1A2 + kb2 Ai + 12kb2 AoA2 + 3AoA~ = 0, 

4kAoA2b2 + 20kabAoA2 + 2ka2 A1A2 + 6AoA1A2 + 2kabAi + Ai = 0. 

VJith the aid of Maple, we solve the above system of algebraic equations and obtain 

where k is any root of (2c2 
- 2c)k2 

- 1 = 0. T hus, from (5 .8) and (5 .5), and then 

reverting back to the original variables, a solution of (7. 1) is [69] 

( ) 1 [A A { 
cosh [a(z + C)] + sinh [a(z + C)] } 

'l.l t , x. y = n o + a 1 [ ] [ ] · 1 - bcosh a(z + C) - bsinh a(z + C ) 
. 2 

2 A { cosh[a(z + C)] + sinh [a(z + C)] } ] 
+ a 2 1 - bcosh [a(z + C)] - bsinh [a(z + C)] ' 

(5.9) 

where z = t - ex + ( c - 1 )y and C is an arbitrary constant of integration. 

Solutions of (5.1) using the Riccati equation as the simplest equation 

The balancing procedure gives 111 = 2, and so (5.7) becomes 

(5.10) 
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The insertion of this value of w(z) into (5:6) and making use of the Riccati equation 

[69], yields the following algebraic system of equations in terms of Ao , A1 , A2 : 

3A1A~ + 8ka2 A1A2 + 2kabA~ = 0, 

lOknJJA1A2 + 2ka2 Ai + 12klL2 J\0112 + 3/\i/ 12 + 3/\oA~ = 0, 

2kabAi +Al+ 6AoA1A2 + 20kabAoA2 + 4kavAoA2 + 2kb2 A1A2 - 4kbvA~ 

+4ka2 A0A1 = 0, 

l6kavAoA2 - 4kv2 A~+ 3AoAi - A2 + 8kb2 AoA2 + 6kabAoA1 + 3A6A2 

-2kbvA1A2 = 0, 

l2kbvAoA2 - 4kv2 A1A2 - 2kl)//Ai + 2kb2 AoA1 + 3A6A1 + kavAoA1 - A1 = 0, 

2kbvJ\oJ\ 1 + Jl~ + Llk1,12 AoA2 - 2kv2 /Ii - A0 = 0. 

The solution of the above system using Maple is 

where pis any root of (2c2 - 2c)p2 - 8avc2 +8avc+ l = 0. Consequently, the solutions 

of (5.1) are [69] 

'U(t, ::c , y) = In [Ao+ A1 {- ~ - !!_ tanh (~0 (z + C))} 
2a 2a 2 

+ A2 { _ _!!_ _ .!!_ tanh (~e(z + c)) }2

] 
2a 2a 2 

(5. 11) 

and 

. . [ { b () _ ( 1 ) sech ( ~ ) } 'u,(t, x, y) = ln Ao+ A1 - - - - tanh -0z + ~ (Oz ) 2n . (Oz) + 
2a 2a 2 C cosh 2 - 0 smh 2 

{ 
b 0 (1 ) sech (

0
,:) }

2
] A? - - - - tanh -0z + . -

- 2a 2a 2 C cosh ( 0;) - 2
0
n sinh ( 0

2
z) ' (5. 12) 

where z = t - ex+ (c - l)y and C is an arbitrary constant o[ integration. 

5.1.2 Solutions of (5.1) 1is1ng ( G' /G)-expansion method 

In this subsection we use the (G' /G)-expansion method [8] and obtain some exact 

solu tions of the ODE (5.6). This will resnlt in t he exact solntions of the equation 
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(5.1 ). 

Let ns consider the solut ions of (5.6) in the form 

M ( G'(z)) i 
w(z) = ~ ai G(z) , (5. 13) 

where G(z) satisfies the linear second-order ODE with constant coefficients, viz., 

G" + >..G' + 11,G = 0, (5. 14) 

where >.. and µ are constants. The positive integer l\1 in (5.13) is found by the 

homogeneous balance method between the highest order derivative and highest order 

nonlinear term appearing in (5.6), The coefficients C\'o,,,, , aM are parameters to be 

determined. 

The application of the balancing procedure to the ODE yields JI f = 2, so the solutions 

of (5.6) are of the form 

( 
G' ( z) ) ( G' ( z)) 2 

w(z) = ao + a1 G(z) + a2 G(z) (5. 15) 

Inserting the value of w(z) from (5.15) into (5.6) and making use of (5. 14) leads to 

the follow ing overdetermined system of algebraic equations: 

a~ - ao - Lla10·0>..1ic2 - 8a2ao1i2c2 + 4af, i2c2 + 4a1o:0 A/l7J + 8a2o·01.t2c - 4afµ2c = 0, 

3a6a1 - a1 - 4aoa1>..2c2 + L1af >..µc2 - 24ao0'.2A/lC2 + 8a1a21ic2 - 8aoa1µc2 

+ 4aoa1>..2cµ - 4ai>- + 24aoo·2>..p,c - 8a1a21t2c + 8aoa1p.c = 0, 

3aoaf + 3a50·2 - a2 - 1Gaoa2/\ 2c2 + 4a1a2 /\pc2 - 12aoa1>.. c2 + 8a~1i2c2 
- 32a0a 2pc2 

+ l6aoa2/\2c - 4a1a2/\1ic: + 12cYocv.1>..c - 8c.Y~1?c: + 32aoa2J.lC: = 0, 

+ 4a2a1>..2c - 8a~>..µc + 4ai>..c + 40o·oa2>..c + 8a2a1 1ic + 8aoa1c = 0, 

3aoa~ + 3aia2 - 20a1a2>..c2 - 4aic2 - 24aoa2c2 + 20a1a2>..c + 4aic + 24aoa2c = 0, 

3a1a~ - 8a~>..c2 - l6a1a2c2 + 8a~ >..c + l6a1a2c = 0, 

a~ - 8a~c2 + 8a~c = 0. 

68 



Solving t his system of algebraic equations, with t he aid of rviathematica, we ob tain 

ao = 2 (>.2c2 
- >- 2c) 

c.t1 = 8 ( ✓\ c2 - ✓\ c) 

0 !2 = 8 ( r:2 - C) 

>- 2 
- 41-i + J >- 4 

- 8>- 21i + 2 ✓\ 2 + l61-i2 - 81-i 
c=----------------

2 ( ✓\2 - 41.i ) 

Now using t he general solu tion o [ (5. 14) in (5 .15), we have the following two types 

of travelling wave solu tions of equation (5 .1 ): 

vVhen >- 2 
- 111.i > 0, we obtain 

(5.16) 

(5. 17) 

where z = t - c.1: + (c - l )y , 1)1 = ½ J >- 2 - 411,, C1 and C2 are arbitrary cons tants . 

When >.2 
- 4µ < 0, we obtain 

where z = t - c.r. + (c - l )y , 1)2 = ½Jt111, - >- 2 , C1 and C2 are arbit rary constants . 

5.2 Conservation laws of (5.1) 

vVe derive conservation laws for t he (2+ 1 )-dimensional nonlinear sinh-Gordon equa­

tion 

Utt - 'nxx - Uyy + sinh u = 0, 

by using three different m ethods, namely, the direct method , t he Noet her theorem 

and t he new conservation t heorem . 
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5.2.1 Application of the direct 111.ethod 

Following [39], we see that the conservation law 

(5. 18) 

which must be evaluated on the partial differen.tial equation , can be considered to­

gether with the following requirements 

x[nl(T1
) + T 1

(D1,e + Dy't/;) - (T2 
DxT + T 3 

DyT) = 0, 

xfnl(T2
) + T 2

(DtT + D 11't/;) - (T1 
Dte + T 3 

Dye}= 0, 

xlnl(T3
) + T 3 (DtT + DxO - (T1 Dt?/J + T2 Dt'l/J) = 0, 

(5.19) 

(5 .20) 

(5.21) 

in which xln] is the nlh prolongation of a. point symmetry of the original equation . 

The order of the extension equals to the order of the highest derivative in T 1
, T 2 and 

T 3 . Consequently, for given X, (5.18)-(5 .21) can be solved to obtain the conserved 

vectors or tuple T = (T1, T 2 , T:~). 

T he condition (5.18) on the equation (5.1) gives 

aT1 ar1 ar1 ;-rr 1 
( ) aT1 aT2 aT2 

-a+ 7lt~ + 'lltx~ + 'Uty~ + 1lxx + 'llyy - sinh 'll -a+~+ 1lx~ + 
t u'll U'llx U1Ly . 'llt ux u1l 

EJT2 aT2 aT2 EJT3 8T3 EJT3 DT3 aT3 

'lltx ~ + 'll1;x ~ + 11.xy ~ + ~ + 1l11 -D + 1lxy ~ + 1lyy-D + 1lty -D = 0. 
O'llt U 'llx U 'lly uy 'l l U 'llx 'Uy 'llt 

Since T 1 , T 2 and T 3 are independent of the second derivat ives of u, it implies that 

the coefficients of 'Ll,xt, 'llxx , 11,ty, 1lyy and 1lxy must be zero. Hence, 

ar1 aT2 

-,.) - + -.)- = 0, 
(, '11.x D'll,t 

DT1 DT2 

-+-= 0 
07lt aux ' 

aT1 + ar3 = o, 
auy O'llt 

DT1 DT3 

-+-= 0 
Hut chi.v ' 
aT2 DT3 

-+-= 0, 
01ly aux 

ar1 ar1 ar1 aT2 ar2 EJT3 EJT3 
- - sinh u- + 'U,t- + - + 1lx---;::;- + ~ + 'U,y~ = 0. 
at 011,t a1l ax U1l uy U1l 
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(5 .25) 

(5.26) 

(5.27) 



\Ve now construct t he conservation laws for the (2+ 1 )-dimensional nonlinear sinh­

Gordon equation (5.1) using the six admitted Lie point symmetries. 

\Ve start with the time trR.nsla tion symmetry 

(5.28) 

which is already in its extended form. The symmetry conditions (5.19)-(5.21) yield 

f)Tl = 0 
at ' 

;rr2 

Bt= O, 
JT3 
_l - = 0 
At ' 

(5.29) 

(5 .30) 

(5.31) 

respectively. Therefore from (5 .22)-(5.27) and (5.29)-(5 .31) the components of the 

conserved vector of the (2+1)-dimensional nonlinear sinh-Gordon equation (5 .1 ) as­

sociated with the symmetry X 1 are given by 

+ h(x, y, u), 

T2 = - 2c1Ut'llx - C2Ut + g(x, y), 

T3 = - 2c11t,tUy + 2c1y'l.ttsinh 'I.I, - Ut I h,,(x, y , u)dy + a(x, u)1tt - / Dx(x, y)dy + b(x). 

Continuing in the same manner for the remaining symmetries we obtain the compo­

nents of the conserved vector for equation (5.1) ci.s follows. 

In case of X2 we have 

T1 =C11lZ + c111.;, + C2'l.t.x + c11t; + 2c1cosh 'Ll + f(y) - g(y, u)t'l.ty - a(y, 1l )uy 

- t I Dv(Y, 1t)du - / ay(Y, 1l)du + c4 , 

T 2 = - 2C1'llt'l.lx - C2Ut + g(t, Y), 

T 3 = - 2c1U(ll,y + .IJ(Y, 11,)t11.t + a(y, 11,)nt + .l 9(y, 11,) rlu + C5. 

Considering X 3 we obtained 
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T 2 = - 2c1Ut1/.x - C2'llt - / h1(x, t)clx + g(t ), 

T3 = - 2c1u(uy + a(x, u)t Ut + n. (x, u)u1 + / ct(x, u)du + b(x ), 

while the symmetry X 4 results in 

symmetry X 5 leads us to this conserved vector 

Lastly, we have X6 from which we obtain 

yi = (jJ(x2 + y2) + cs, y2 = g(l,)y, y3 = -g(l )x + cg, 

where c;, i = 1, ... , 9 are arbitrary constants. One cnn note that the symmetries 

X 4 , X 5 and X6 give trivial conserved quantities . 

5 .2.2 Application of the Noether theore1n 

In this subsection, we employ the Noether theorem to construct conservation laws of 

(5.1). A first-order Lagrangian for eq11 ntion (5.1) is given by 

L = (1/2)u; - (1/2)'u; - (1/2)u; - cosh u . (5.32) 

T he Noether point symmetries fo r the above Lagranginn can be obtained by substi­

tuting (5.32) into the Noether operator determining equation (1.37), which gives 

-17sinhu + Ut{?Jt + 7.lt?]·u - U t (T1. + 7ltT1,) - Ux(~t + Ut~u) - 'lly('l/Jt + 'll t'i/Ju)} 

- 'llx bx + 'llx 1]11 - 7lt ( T_-,; + 'l.lx T,.) - 'U.x ( ~x + 'llx~ ;, ) - 'lly ('1/;j, + 1.l x 't/;11 )} 

+ { (1/2)u; - (1/2)u; - (1/2),u; - cosh u }{ Tt + 'lltTu + ~x + 'llx~11 + 'lpy + 'lty1/;11 )} 

Bl Bl B2 B2 B3 B3 = t + 'llt 11 + x + 'llx u + y + Uy "· 

Splitting the above equation on the derivatives of u, we obtain 
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Solving t he above equations yield 

T = d2x + d,1 + lls, ( = -d1y + cl2t + d3, ~/J = d1x + dst + cl5, rJ = 0, 

Bi(t, x, y) + B;(t, x, y) + Bi(t, x, y) = 0, 

where cl1 , rl2 , cl3 , rl4 , cl5 and d6 are arbitrary constants and B 1(t, x, y), B 2 (t, x, y) and 

B 3(t, :1:, y) are arbitrary fun ctions of i , :i: and y. Vve can choose B 1(t, :1:, y) = 

B 2 (t, x, y) = B 3 (t;, :r:, y) = 0 as they contribute to the trivial part of the conserved 

vectors. Thus, we get six Noether point symmetries, namely 

X1 = Ot, X2 = Ox, X3 = Dy, X,i = XOt + tBx 

Xs = YDt -f- tDy, x6 = -ye\ -f- XOy· 

Note: It so happens that t he Noether symmetries of (5.1) and Lie point symmetries 

of (5.1) me exactly the same. 

The use of Noether t heorem, with X 1 = 81, gives the conserved vector 

Using X2 = Bx and applying the Noether t heorem, we obtain 

Conserved vector corresponding to X3 = Ay and employing the Noether theorem is 

given by 

The Noether theorem gives the conserved vector 

73 



T 2 - ·'·( 
1 

,,2 + 
1 

'112 1
, 2 cosl1 - ) + X" 7 rr3 + t 4 - I, -l,t - 'x - -lly - , ll . , clx l,t, . ,1 = X 'llt1ly ··u x'll y 

2 2 2 

corresponding to X,1 = XOt + W,c-

The conserved vector associated with X5 = y8t + toy is given by 

Lastly the Noether theorem gives rise to the conserved vector 

for Noether symmetry x6 = - v Dx + XOy -

5 .2. 3 Application of the new conservation theorem 

In t his subsection we use the new conservation theorem [,t9] to construct conservation 

laws for the (2+1)-cl imensional nonlinear sinh-Gordon eq11ation (5 .1) . The adjoint 

equation of (5.1), by invoking (1-40), is 

where '/J = 1,(t, x) is a new dependent variable. Thus from (5 .33) we have 

'Utt - 'Uxx - 'llyy + v cosh 'll = 0. (5 .34) 

It is clear from the adjoint eqnation (5.3Ll) that equation (5, 1) is not self-adjoint. By 

recalling (1.45), we obtain the following Lagrangian for the system of equations (5 .1) 

and (5.34) : 

L = v(tltt - 'llxx - Uy y +sinhu) . (5, 35) 

(i) V,Je first consider the Lie point symmetry generator X1 = Dt- It can easily be shown 

from (1.42) that the operator Y1 is the same as X 1 and hence the Lie characteristic 
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function W = - 'Llt- By using (l.L111), the components Ti, 'i = l, 2, 3, of the conserved 

vector T = (T1, T 2
, T 3

) are gi,;en by 

Remark. The conserved vector T contains the arbitrary solution v of the adjoint 

equation (5 .34) and hence gives a.n infinite number of conservation laws. This remark 

applies to the following five cases where we nse t he conservat ion theorem. 

(ii) For the symmetry generator X2 = Dx, we have W = -'Ltx . Thus, by using (1.44), 

the symmetry generator X2 gives rise to the following components of the conserved 

vector: 

(iii ) For the symmetry generator X 3 = Av, we have W = - ny. Using (1.44), t he X 3 

gives rise to the conserved vector with components 

(iv) The symmetry generator X 4 = XDt + tax has the Lie characteristic function 

TV= -X'l.lt - fox. Thus , invoking (1.L14) , we obtain the conserved vector T, given by 

Tl 
4 

T2 
4 

T3 
4 

xv(-Uxx - 'Llyy + sinh 1t) + XVt'llt + hlt'Llx - V 'l.l x - iV'l.ltx, 

tv('lltt - 'llyy + sinh 1t) - XVx'llt - foxUx + VUt + XVUtx , 

(v) The symmetry generator X5 = y8t + toy has the Lie characteristic function 

W = -JJ'll,t - /,'11,Y. Using (1.44), we obtain t he conserved vector T , given by 

r,2 
5 

yv(-'ll,xx - 'llyy + sinh 'll) + J)'Ut'llt + l'Ut'lly - 'U'lly - l'U'llty, 
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Tf Lv('Lltt - ·u·yy + sinhu) -y'lly'llt - Lvy'lly + v·u,t + yv'llty · 

(vi) The symmetry generator X 6 = -yox + xo.y has t he Lie characteristic function 

lV = '!J'llx - X'l.ly . Thus, using (1.44), we obtain the conserved vector T, given by 

T,l 
6 

y2 
6 

T3 
6 

-yv('lltt - 'llyy + sinh 1l) + '.IJ'U~;'ll~; - X'Llx'lly + 'U'lly + X 'U'Uxy, 

5.3 Concluding re1narks 

In this chapter the (2+1)-dimensional nonlinear sinh-Gorclon equation (5.1) was in­

vestigated. Firstly, we obtained exact solutions of (5.1) by using the Lie symmetry 

analysis along with the simplest equation method and ( G' / G)-expansion method. 

Furthermore, several conserved quantities for equation (5.1) were derived by em­

ploying three different techniques; the di rect m·ethod, the Noether theorem and the 

new conservation theorem. 
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Chapter 6 

011. the solutions and conservation 

laws for the ( 3-1-1 )-din1.ensional 

nonlinear si11.h-Gordon equation 

In Chapter 5, we studied (2+ 1 )-dimensional nonlinear sinh-Gordon equation 

'l/.tt - u xx - 'llyy + sinh u = 0. (6.1) 

In t his chapter, we consider the above equatiori. in higher dimension , which is given 

by [46] 

Utt - 'llxx - 'll yy - 'llzz + sinh u = 0 (6.2) 

and obtain exact solutions of the (3+1)-climensional nonlinear sinh-Gorclon equation 

(6 .2) . \Ne also derive conservation laws for (6.2) using two methods, namely Noether 

theorem and the new theorem by Ibragimov. 

This work is new and has been submitted for publication. See [70]. 
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6 .1 Sym1netry reductions and exact solutions of 

(6 .2) 

The symmetry group of (6.2) will be generated by the vec tor field of the fo rm 

X = T(t, x, Y, z, u)Bt + ( (t , x, y, z , u)ox + cp( t , x, Y, z, u) 8y + cp(t, x, y , z, u)oz 

+r; ( t, :i;, y , z) 1l )8,1£• 

Applying the second prolongation xl2l to (6. 2) we obtain the following overdeter­

mined system of part ial different ial equat ions: . 

(u = 0, Tu= 0, 'Pu= 0, cf>u = 0, 1}1m = 0, (t - Tx = 0, Ty - 'Pt= 0, (x - c/>z = 0, 

Tz - CPt = 0, (z + cf>x = 0, CPz - <py = 0, Ttt - Txx - Tyy - Tzz - 2r;tu = 0, 

(y + 'Px = 0, 'Pz + cf>v = 0, Tt - c/>z = 0, cf> u - cf>x1: - cf>vv - c/>zz + 2r;w = 0, 

~t.t - ~xx - ~VY - (zz + 2'1]x11 = 0, 'Ptt - 'Pxx - 'Pyy - 'Pzz + 21]yu = 0, 

17 cosh ('u) + 2 (Pz sinh ('U) - f/u sinh ('ll) + 'r/tt - 17xx - 'r/yy - 'r/zz = 0. 

Solving t he above equations one obtains the following ten Lie point symmetries: 

X1 = Ot, X2 = Ox, X3 = Dy, X4 = Oz, X5 = -ZO:c + :;d)z, x6 = ZOt + t8z 

X1 = -ZOy + YOz, Xs = YDt + toy, Xg = XOt + tBx, X10 = - yD:c + XOy. 

v.,re now use t he four t ranslational symmetries X1 , X2 , X3 and X4 to transform (6.2) 

to a partial differenti al eqliation depending on three vari ables. The linear combina­

t ion of these four symmetries, namely 

gives the fo llowing invariants: 

f = :r: - t , 9 = '!) - t, h = Z - t , 'U = 1l . (6.3) 

Taking f, g and h as new independent variables and v as the new dependent vari­

able, equation (6.2) t ransforms to a nonlinear pa rti al differential equation in three 

dependent variables 

21119 + 21111i + 2v91i + sinh (v) = 0. (6.4) 
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Now we will further reduce (6.L!) using its symmetries. Equation (6.L!) admits the 

following six symmetries: 

Vi= 81, 112 = 89 , Vi= 81i, Vi= f81 + (f - h)89 - h81i , 

Vi= (g - h)81 + g89 - h811, Vi= (g - h)81 + (h - f)89 + (.f - 9)811. 

The symmetry V = Vi+ ½+ kVi , yields the invariants r = g - f, s = h - kf and 

w = 11, which gives t he group invariant solution _v = w(r, s) and consequently using 

these invariants, equation (6 .4) transforms to 

2kwrr + 2kwrs + 2Wss - sinh(w) = 0. (6.5) 

Now equation (6 .5) ad mits the three symmetries 

A1 = or, A2 = as, A:i = (r-:-- ~)or+ (2r - s)c)s. 

The symmetry A1 + A2 gives the invariants x = s - r and w = H. Using these 

invariants we obtain the group-invariant solution w = H(x) , where H satisfies the 

seconcl-o.rcler nonlinear ODE 

211"(x) - sinh(JJ) = 0. (6.6) 

Using the transformation H(x) = ln(',t,(x) ) on (6.6), we get 

(6 .7) 

6.1.1 Exact solutions of (6.2) using si111plest equation method 

Vve now use the simplest equation method [65 ,66, 71], which was used in the previous 

chapter, and obtain exact solutions of t he nonlinear ODE (6.7). Consequently this 

will t hen give us the exact solutions for eqnation (6.2). 

Solutions of (6.2) using the Bernoulli equation as the simplest equation 

The balancing procedure yields Jd = 2, so the solutions or (6.7) take the form 

(6 .8) 
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Substituting (6.8) and its derivatives in to (6.7) and using the Bernoulli equation 

[69] and thereafter, equating the coefficients of powers of Gi to zero , we obtain an 

algebraic system of seven equations in terms of A0 , Ai, A2, namely 

A~ -Ao= 0, 

4c2b2 A~ - A~= 0, 

2c2a 2 Ao.Ai - 3A6Ai + Ai = 0, 

8c2b2 Ai.A 2 + 4c2ab.A~ - 3AiA~ = 0, 

6c2abAoAi - 3A6A2 + 8c2a2 AoA2 + A2 - 3AoAi = 0, 

lOc2abAiA2 - 3AiA2 + 2c2b2 A~+ 12c.:2 /l Aoll2 - 3AoA~ = 0, 

4c2 AoA2b2 + 20c2abAoA2 + 2c2a2 AiA2 - 6AoAiA2 + 2c2abA i - Ai = 0. 

Solving the above system of algebraic equations, with t he aid of Maple, one possible 

solut ion for A0 , Ai and A2 is 

1 8b 
o. = J2' Ao = 1, ./1 1 = J2' 1\2 = 8/i. 

Thus, reverting back to t he original variables, a solution of (6.2) is 

( { 
cosh[a(x + C')] + sinh[a(x + C)] } 

'll(t, x, y, z) = In Ao+ aA1 b l [ ( C)] b . l [ ( C)] 1 - cos ·1 a x + - s1111 a x + 
2 1 { cosh[a(x + C')] + sinh[a(x + C)] }

2
) 

+ a 
12 

1 - hcosh[a(x + C')] - hsinh[n.(x + C)] ' 
(6.9) 

where x = (k - l)t + (1- k)x - y + z and C is an arbitrary constant of integration. 

Solutions of (G.2) using the Riccati equation as the simplest equation 

In this case the balancing procedure gives M = 2, so the solutions of (6.7) are of the 

form 

(6. 10) 

Inserting (6 .10) into (6 .7) and using the Iliccati equation [69], we obtain algebraic 

system of equations in terms of 110 , ./1 1 , J\ 2 by cqnating the codficients powers of Gi 
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to zero. The resulting algebraic equaLions are 

-A~+ 4c2a 2 A~ = 0, 

-3A1A~ + 8ca2 A1A2 + 4c2ab.A~ = 0, 

lOcabA1A2 + 2ca2 Ai + 12ca2 AoA2 - 3AiA2 - 3A0 A~ = 0, 

2cabA? - A1 - 6AoJ\ 1A2 + 20abcAoA2 + 4acvA 1A 2 + 2cb2 A1A2 - 4bcvA~ 

+4a2cl1oA1 = 0, 

16acvAoA2 - 4w2 A~ - 3AoAi + A2 + 8b2cAoA2 + 6abcAoA1 - 3A6A2 

-2bcvA1A2 = 0, 

-4cv2 A1A2 - 2bcvAi + 12bcvAoA2 + 2h2cAoA1 - 3A5A1 + 4acvAoA1 + A1 = 0, 

Ao+ 2bc11A oA1 - A~+ 4cv2 AoA2 + 2cv2 Ai = 0. 

Solving the above equations, we get 

b = i, Ao= 8av -1, A1 = ap, J\ 2 = 8a2
, 

where p is any root of p2 
- 256av + 32 = 0. Consequently, the solutions of (6.2) are 

1.t(t, x, y, z) = ln (Ao+ A1 { - !_ - !!_ tanh [!e(x + C)] } 
2n 2a 2 

+ A2{- !_ - !!_ tanh ·[!e(x + c)] }2
) 

2o. 2a 2 
(6.11) 

and 

. ( { b fJ . ( 1 ) sech ( 
8
{-) } 1.t(t, x, y, z) = In Ao+ A 1 - - - - tanh -Ox + (ox) ?a . ( 0') 

2a 2a 2 C cosh 
2 

- -
0 

srnh 
2
-

{ 
b 0 (1 ) sech (

0
;) }

2
) + A2 - - - - tanh -0x + ~ 

2o, 2a 2 Ccosh( 0
:{ ) -

2i'sinh( O
:{) ' 

(6.12) 

where x = (k - l)t + (1 - k)x - y + z and C is an arbitrary constant of integration. 

6.1.2 Solutions of (6.2) using (G'/G)-expansion 1nethod 

In this subsection we use the ( G' / G)-expansion method, which was used in Chapter 

5, to solve (6. 7) and as a result we obtain the exact solut ions of the equation (6 .2). 
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Application of the balancing procedm e to the ODE (6.7) yields M 

solutions of (6.7) are of the fo rm 

(
G'(x) ) (G'(x)) 2 

7/; (x) = o'o + 0'1 -- + n:2 --G(x) G(x) 

2, so the 

(6 .13) 

Substituting (6 .13) into (6.7) and making use of the second-order ODE (5. 14) leads 

to the following overdetermined system of algebraic equations: 

4aoct1A 2 - 4.af Afl + 24ao CY2Afl - 8a1 a2l + 8aoCY1 /l - 3a6a1 + 0'.1 = 0, 

l6aoa2 ✓\2 - Ll a1a2A/l + 12aoct1>. - 8a~l + 32aoct2/l - 3aoaf - 3ala2 + a2 = 0, 

4et2aJ ✓\2 - 8a~ /\fl + 4ai ✓\ + 40aocv2>. + 8a2et1/l - a~+ 8etoet1 - 6ao0'.2a1 = 0, 

20a2a1>. - 3a2ai + 4af - 3aoa~ + 24aoa2 = 0, 

Sa~.\ - 3a1a~ + l6a1a2 = 0, 

Sa~ - n~ = 0. 

Solving this system of algebraic equatiqns, with the aid of Mathematica, we obtain 

Now using the general solut ion of (5.14) in (6.13), we have the following t hree types 

of travelling wave solu tions of (6 .2): 

V/hen /\ 2 - 4/l > 0, we obtain the hyperbolic function solntions 

(6 .14) 

(6. 15) 

where x = (k - l)t + (1 - k)x - y + z , 51 = ½J✓\ 2 - 4Jl , C1 and C2 are arbitrary 

constants . 

When ✓\2 - 4µ < 0, we obtain t he trigonometric function solu tions 
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( 
>- r -C'1 sin (62x)+C'2cos(62x))

2
] + C\'.2 - - + U? _________ _ 

2 - C'1 cos ( 82x) + C2 sin ( 82x) ' 

where X = (k - l)t + (1 - k)x - y + z, 62 = ½J4tt - >-2, C1 and C'2 are arbitrary 

constants. 

\i\Then .>-2 
- 4ft = 0, we obtain the rational fun ction solutions 

where x = (k - l )t + (1 - k)x - y + z, C1 and C2 are arbitrary constants. 

6.2 Conservation laws of (6.2) 

\i\Te now construct conservation laws of (G .2) by two different methods, namely, the 

Noether theorem and the new conservation theorem. 

6.2.1 Application of the Noether theoren~ 

In this subsection, we employ the Noether theorem to construct conservation laws 

of the (3+1)-climensiona.l non linear sinh-Gorclon equation (G.2). A first-order La­

grangian for equation (G.2) is given by 

L = (1/2)·u,z - (1 /2) '11,; - (1/ 2)·n; - (1/2)'ll; - cosh ·n. (6. 16) 

The Noether point symmetries for the above LR.grnngian can be obtained by substi­

t ut ing (6 .16) into the Noether operator determining equation (1.37) which gives 

+ { (1/2)'1.l; - (1/2)u; - (1/2)u; - (1/2)'1.l; - cosh 'll }{ Tt + 1ltTu + lx + 'llxlu + <py 

+ Uy<p•u + <Pz + 'Ll z</>11 } - 17sinh 'l.l = B} + ulB,\ + B; + 7l,cB~ + B; + 1lyB;. + B; + 1lzB~ . 
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Splitting the above equation on the derivatives of 'Ll, we obtain 

cf>x + ~z = 0, CPt - Tz = 0, <Py + '-Pz = 0, ~x - Tt, + 2'1Ju + 'Py + <Pz = 0, 

Solving the above equations, we obtain 

</> = cl2y + cl,1:r: + rlst + clio, 'f] = 0, 

B;(t, x, y, z ) + B,; (t , x , y, z ) + B;(t, x, y, z) + B; (t:, x, y , z) = 0, 

where d1 ,cl2 ,cl3 ,d4 ,cl5 ,cl6 ,cl7 ,cl8 ,cl0 and cl10 are arbitrary constants and B 1(t ,x, y, z ), 

B 2 (t:, x, y , z ), B 3 (t, :r; , y, z ), and B 4 (t,, :i:, y, z ) are arbitrary fun ctions oft, x, y and 

z . Vve can choose B 1(t, x, y, z) = B 2 (t, :1: , y , z) == B 3(t, x, y , z) = B 4(t, x, y, z) = 0 as 

they contribute to the trivial part of the conserved vectors. Thus, we get ten Noether 

point symmetries, namely 

Vve note that these Noether symmetries of (6.2) and Lie point symmetries of (6.2) 

are exactly the same. 

The use of the theorem due to Noether , with X~ = 81, gives t he conserved vector 

1 1 2 1 2 1 2 1 2 2 3 T4 
Tl = -fl/,t, - :t'·x - flly - :tlz - cosh u, Tl = 1.lt'U,3:, Tl = 7l(l.ly, l = 'lltUz , 

Using X2 = Bx and applying the Noether theorem, we obtain 

1 2 1 2 1 , 2 1 2 1 2 l 1,3 , r,4 
T2 = -Ut'l.lx, T2 = 21l1 + 21Lx - 2uy - 2uz - COS 17l , 2 = llxUy, 2 = 'Llx1lz . 

Conserved vector corresponding to X 3 = Dy and employing the Noether theorem is 

given by 

1 T2 3_12 12 12 l , 2 ' T 'l T3 = -Uy1lt, 3 = 1lx1.ly, T3 - 2ut - 2ux + 21ly - 2llz - cosh u, 3 = UyUz. 
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By using X 4 = Dz and employing the Noether theorem, we get 

1 ') 3 <] 1, 2 1 2 1 2 1 2 I'.1 = -'ll(Uz, T,j = 'llx'llz, T4 = 'lly'llz, T4 = -llt - -7l - - 'll + - 'll - cash 'll . 2 2:r. 2Y 2z 

The Noether theorem gives us the following conserved vector 

corresponding to Xs = -yox + XOy. 

The Noether theorem gives us t he fo llowing conserved vector 

l_ (1 2 1 2 12 1, 2 ) ., r2_ .(12 1 2 1 2 T6 - -x 21lt + flx + fly + rlz + cash 1/, - fot'll x, T5 - t, 21lt + fllx - 2'lly 

-~u; - cosh'll) + X 'llx'llt, Tl = X 'Ut1ly + hlx '~ly, rt= X 'llt.'ll z + i 'llx'llz, 

corresponding to x6 = XOt + tax. 

The Noether theorem gives the following conserved qnantity 

associated with X 7 = YDt + toy. 

The Noether theorem gives rise to the fo llowing conserved vector 

for Noether symmetry X s = -zox + XOz . 

The application of Noether theorem gives us the following conserved vector 
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for Noether symmetry X 0 = zAt + tAz . 

Lastly, t he Noether t heorem gives rise to the fo llowing conserved vec tor 

for Noether symmetry X10 = -z8y + yaz. 

6 .2 .2 Application of t he new conservation theorem. 

In this subsection we use the new conservation theorem given in [49] and construct 

conservation laws fo r the (3+1)-dimensional nonlinear sinh-Gordon equation (6.2). 

The adj oint equation of (6 .2), by invoking (1.40), is 

E"(t, X, 11,, 11, . .. , 11.xx, 1ix1,) = :u [v (11.u - 11-1:x - nyy - 11.zz + sinh '//)] = 0, (6.17) 

where v = v(t,x) is a new dependent variable. Thus from (6.17) we have 

Vt.t - Vxx - 'liyy - Vzz + '/) cosh u = 0. (6. 18) 

It is clear from the adj oint equation (6. 18) that equation (6.2) is not self-adjoint . By 

recalling (1.45), we obtain the following Lagrangian for the sys tem of equations (6.2) 

and (6. 18): 

L = v('lltt - 1lxx - 'llyy - 'llzz + sinh u). (6. 19) 

(i) We fi rst c:onsider the Lie point symmetry generator X 1 = /\ . It can easily be shown 

from (1.42) that the operator Y1 is the same as X 1 and hence t he Lie characteristic 

function vV = - 'llt- T hus, by using (1.44), the components T i, i = I , 2, 3, 4, of the 

conserved vector T = (T1 , T 2
, T 3

, T 4
) are given by 
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Remark. The conserved vector T contains the arbit rary solution v of t he adjoint 

egnation (G .18) and hcnee givc~s an infinite nnmhcr of conservation laws. 

T his remark appli es to t he following nine cases where we use the conservation theo­

rem. 

(ii ) For the symmetry generator X 2 = f)c, we have W = -ux. Thus, by using (1.44) , 

t he symmetry generator X 2 gives r ise to t he following components of the conserved 

vector : 

'J.71 T.2 ( + . 1 ) 
2 = V(llx - V1ltx, 2 = V 'Llu - 'Uyy - 'l l zz Sl n 1 'll - Vx 1lx, 

(iii ) For the symmetry generator X 3 = By, we have W = -'lly· Thus, by using (1.44), 

the symmetry generator X 2 gives rise to the fo llowing components of the conserved 

vector : 

(iv) For the symmetry X 1 = Oz, we have W - 11,z . T hus, by usmg (1.44), t he 

symmetry generator X 2 gives rise to t he conserved quantity 

(v) The symmetry generator X 5 = -zox + xoz has t he Lie characteristic funct ion 

T,V = Z'llx - X'llz. Thus, invoking (1.44), we obtain the conserved vector T , given by 

T,l 
5 

Tl 
r,3 

5 

-Z'Ut 'llx + XVl7lz + Z'//'lltx - .T:'i!'ll tz, 

-zv(v,u - 'llyy - 1lzz + sinh u) + ZVx'll,x - XVx'll z + V'l.l z + XVUxz, 
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(vi) The symmetry genera.tor X 6 = - z Dt + lDz has t he Lie characteristic funct ion 

W = Z'/1.t - f,11,z· Thus, invoking (1.44), we obtain the conserved vector T, given by 

r,1 
6 

T.2 
6 

r,3 
6 

T.4 
I) 

z v(-1ixx - 1iyy - 'Uz z + sinh u) + ZVtUt + tVtUz - VUz - tV'Lltz, 

(vii) The generator X 7 = -zoy + yoz has the Lie characteristic function W = Z'ny -

JJ1iz, Thus, invoking (1.44), we obtain the consei·ved vector, given by 

Tl 
7 

T2 
7 

y_3 
7 

y_4 
7 

= 

(viii) The symmetry operator X 8 = y8t + toy has the Lie characteristic function 

W = -yut - fay. Thus, nsing (1 .L14), we obtain the conserved vector given by 

r,1 
8 

r,2 
8 

3 Ts 

T.4 
8 

(ix) The symmetry Xn = x8t+t8x has the Lie characteristic function W = -X'Llt-hix. 

Thus, invoking (1.44) we obtain t he conserved vector whose components are given 

by 

T,l 
D 

r,2 
!) 

r,3 
!) 

r:1 
!) 

xv(-'Uxx - 7lyy - 'llzz + sinh ?t) + X'UtUt + tvt1lx - VUx - tVUtx, 

tv(utt - Uyy - Uzz + sinh v ,) - XVx'Llt - tvx'Ux + V'Lit + XVUtx, 
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(x) Finally, the symmetry operator X 10 = -yO~ + xDy has the Lie characteristic 

function vV = 7J1lx - .rr,·ny. Thus, as before we obtain the conserved vector T whose 

components are given by 

3 Tw 

T4 
10 

6.3 Concluding ren1arks 

In thi s chapter we performed symmetry reduction of the (3+ 1 )-dimensional nonlinear 

sinh-Gordon equation (6.2). Thereafter the simplest equation method and ( G' /G)­

expansion method were employed to construct exact solutions of (6.2). V./e also 

obtained several conserved quantities for equation (G.2) by applying two different 

methods, namely the Noether theorem and the new conservation theorem clue to 

Ibra.gimov. 
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Chapter 7 

Exact solutions an d_ conservation 

law s of four Boussinesq-type 

equations 

In this chapter, we will study fom Boussinesq-type equations, namely the Boussinesq­

clouble sine-Gordon equation, t he Bouss inesq-double sinh-Gordon equation, the 

Boussinesq-Liouville type I equa tion and the Boussinesq-Liouville type II equation 

given by 

1ltt - CcUxx + Uxxxx 

U tt - O'.Ux,c + 1lxxx,c 

'lltt - CYllxx + 'll,cxx~: 

sin n + ~ sin(2u) , 
2 

3 
sinh u + 2 sinh(2u), 

e" + ~e2·u 4 , 

e-" + ~e-2" 4 , 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

respectively. It is well-known t hat the Boussinesq equation is a fourth order P DE 

that includes t he physicnl dispersion term. It n.ppears in integrFtble quantum field 

theory, kink dynamics, fluid dynamics and has lots of scientific applications. The 

aforementioned equat ions were established by coinbining the linear Boussinesq equa­

tion with t he double sine-Gordon , double sinh-Gorclon and the Liouville equations. 

These equations were recently strnlic~d in [118] hy using simplified Hirota's method 
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and one and two solit on solutions were obtained. Here, we employ the Lie symmetry 

method together with the simplest equat ion method and obtain exact solutions of 

equations (7.1 ), (7.2), (7.3) and (7.4). In addit ion to the exact solutions, conserva­

t ion laws of these equations are derived using the Noether theorem and the multiplier 

approach . 

7.1 Lie point syn1metries of (7.1)- (7.4) 

The symmetry group of equat ions (7.1 )- (7.4) will be generated by the vector field of 

the fo rm 

Applying the fom th prolongation x[4l to (7.1)- (7.4) and solving the resul ting overde­

termined system of li near partial differenti al equ ations of each equation , we obtain 

the following two Lie point symmetries for each equation: 

vVe now use the above symmetries to transform (7. 1)- (7.4) to ordinary differential 

equations. 

7.2 Exact solutions of (7.1)- (7.4) 

In this section we construct exact solut ions of (7.1)- (7.4). 

vVe now take the linear combination of these two symmetries, namely 

which gives t he follmving two invariants: 

z = :i: - ct, H = 11 .. (7.5) 
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\Ve now treat H as the new dependent variable and z as the new independent variable 

and transform the PDEs (7.1)- (7.4) to ODEs. V"e t hen use the simplest equation 

method to obtain exact solutions of the ODEs. 

7.2.1 Exact solutions of t he B oussinesq-double sine-Gordon 

equat ion (7.1) 

Taking z as the new independent variables and JJ as t he new dependent variable, 

the substitution of (7.5) into (7.1 ) gives rise to the second-order non linear ODE 

c2 H" (z) - nd-T"(z) + n (4l(z) = sin H + ~ sin(2H). 
2 

Then by using the transformation 111 = ei lf we obtain the second-order nonlinear 

ODE 

-4c2w(z)3w"(z) + 4c2w(z)2,w'(z) 2 + L1aw(z)3w"(z) - 4aw2 (z) w'(z) 2 

-4w(4l(z)w(z )3 + l6w"'( z )w'(z )w(z)2 
- L18w"(z)w'(z)2w(z) + 12w"(z)2w(z)2 

+2Llw' (z)4 + 2w(z)5 
- 2w(z) 3 + 3w(z)fi - w(z)2 = 0. (7.6) 

Solut ions of (7. G) using the B ernoulli equation as the simplest equation 

The balancing procedure yields M = 2, so the solutions of (7.6) take the form 

(7.7) 

Substituting (7.7) and its derivatives into (7.6) and using the Bernoull i equation and 

thereafter, equating the cocfiic:ients of powers of G'i to zero we obtain an algebraic 

system of thirteen equations in terms of A0 , A1 , A2 , namely 

-48 b4A24 + 3 A26 = 0, -96ab3 A24 
- l92b4A 1A} + 18A1A2

5 = 0, 

3Ao6 + 2Ao5 
- 2Ao3 

- 3Ao2 = 0, 

-4a4 Ao3A 1 - tlri2c2 Ao3 A 1 + Lla2ailo3 A1 + 18Ao5il1 + 10Ao4A1 

-6Ao2A1 -6 J\0A1 = 0, 
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+8b2aA2
4 + 18AoA2

5 + 45A/A24 + 2A25 = 0, 

-384 ab3 Ao/1 2
3 

- 576ab311/ Al - 8 abr:2 A2 4 
- 576 l/1 Ao /11/ \22 - 192 l/1A1 3 A2 

-32 b2c2 A1A23 + 8 aba A2 4 + 32 b2a A1Al + 90 A0A1A2'1 + 60 A/ A2 3 

+lOA1A24 
- 8a3bA24 

- 224a2b2A1A23 = o; 

-8 a2c2 Aa2 A/ - 12 abc2 Ao3 A1 + 16 a2a Ao3 A2 + 8 a2a Aa2A} + 12 aba Ao3 A1 

+18Ao5A2 + 45Ao4A/ + 10 Ao4A2 + 2OAo3A/- 6Ao2A2 - 6A oA/- 6AoA2 

-64 a4J\0
3 A2 + 16 a4Ao2 A/ - 60 a3bAo3 A1 - 16 r?c2 A0

3A2 - 3 A/ = 0, 

-36a3b/1 1J\23 
- 28On.2h2/ \0 A2 3 

- 3O8n.2b2A/Al-10O8ah3AoJ\ 1Al 

-432ab3A1
3A2 - 36abc2A1A23 

- 24Ob4Ao2A2 2 - 672b4AoA12A2 -24b4A1
4 

+36 aba A1A2
3 + 40 b2a AoA23 + 44 Ila A/ Al+ 45 Ao2 A 2 

4 + 180 AoA/ A23 

+45A1 4Al + lO AoA24 + 2OA/A23 = 0, 

+28abaA0
2A/ +8b2aA0

3A152a'1Aa2Ai lb-4a4A0A1
3 -52Oa3bA0

3A2 

+2Oa3bA0
2A/- 2OOa2b2Ao3A1 - 44a2c2Ao2A1A2 -4a2c2AoA 1

3 -4Oabc2A0
3A 2 

-28 abc2 Ao2 A/ - 8 lic2 Ao3 
J\1 + 44 a2n, Aa2 J\1/\2 + 4 a2n Ao A/+ 40 abn Ao3 A2 

+90 Ao 4A1A2 + 60 Ao3 A1 3 + t1Q Ao3 A1A2 + 20 Ao2 J\1 3 
- 12 AoA1A2 - 2 A1 3 

-6 A1A2 = 0, 

-4a'1A1A23 - 152a3bAoA23 -4a3 bA1 2Al - 296a21>2AoA1A22 - 312a2b2A1 3A2 

-96 ab3 A0
2 Al - 1536 ab3 A 0A/ J\ 2 - tl8 ab3 A/1 

- 56 abc2 A0A2
3 

- 52 abc2 A/ Al 

-96 b4AoA 1
3 

- 104 b2c2 AoA1A2 2 
- 24 b2c2 A1 3 l b+ 4 a2a A1A23 + 56 aba AoA2:, 

+ 104 li a. J\0A1Al + 24 b2a A/ J\2 + 180 J\o2 / \1/\23 + 180 AoA1 3 J\22 + 18 J\1 5 J\2 

-L! a2c2 .A 1A2
3 

- 864b4 Aa2 A1A2 + 52 aba A/ Al+ 20 A1 3 Al+ 40 AoA1A23 = 0, 

256a4Ao2Al-32a4AoA/A2 - 22Oa3 bAa2A-1A2 - 2Oa3bAoA1
3 -132Oa2b2Ao3A2 

-14Oa2b2Aa2A/- 32a2c2Aa2A22 - 32a2c2.AoA/A2 - 24Oab3A0
3A1 

-124 abc2 Ao2 A1.A2 - 20 abc2 AoA1
3 

- 24 b2c2 Ao3 A2 - 20 b2c2 Ao2 A/+ 32 a2a Aa2 Al 

+32 a2a AoA/ A2 + 124 abn Aa2 A1A2 + 20 aba AoA1 3 + 24 b2a Ai A2 + 20 b2a Ao2 A/ 

+45 A0
4Al + 18OA 0

3 A/ A2 + 45 J \0
2 A1 4 + 20 J\o3 Al+ 60 Aa2 A/ J\2 + 10 J\ 0A/ 

-6AoA22 - 6A12A2 - 31122 = 0, 
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52a4AoA1Al-4a4A1
3A2 + 872a3 bAo2Al- 30tla3bAoA/A2 -4a3bA1

4 

- 1424a2liAo2/ 11/\2 -112 a2/J2Jlo/\/-44n.2-c:2/\o /\1 Jll- 4c?c2J\13J\2 - 6111/12 2 

-1344 ab3 A0
3 A2 - 288 ab3 Aa2 A/ - 88 abc2 Aa2 A2

2 - 112 abc2 A 0A/ A2 - 4 abc2 A1
4 

-96 b'1 Ao3 Ai - 80 b2c2 Aa2 A1 A2 - 16 b2c2 AoA1 3 + t14 a2a AoA1A2 2 + 4 a2a A1
3 A 2 

+88a.baAa2Al + ll2abaAoA /A2 + 4abaA1 4 + 80b2aAo2A1A2 + l6b2aAoA1
3 

+l80A0
3A1Al + l 80A 0

2A}A2 + l8A 0A1
5 + 60A 0

2A1Al + 40A0 A /A2 + 2A1
5 = 0, 

-64 ci'1AoA23 + 16 a4A/ A2
2 + 188 a3bAoA1Al - 76 a3 bA 1

3 .11 2 + 760 a2b2 Ao2 Al 

-ll36a2liAoA/A2 - 28n.2!i/\1 4 - 16n.2r:2/\o/\l- 8a2r:2A1 2/\l - 2016n.!?Aa2A1J\2 

-l92ab3A 0A/- l48a.bc2A0 A 1Al- 28abc2A1
3J\2 - 480b4A0

3A 2 - l44b4A0
2A/ 

-5G b2c2 Ao 2 Al - 80 b2c2 AoA1 2 A2 - tl b2c2 A1 4 + 16 a2a AoA23 + 8 a2a A1 2 A22 

+60A 0
3112

3 + 270 Aa2 A/ Al+ 90 A0A1
4 A2 + 3 A16 + 20 Aa2 A2

3 + 60 A0A/ Al 

+l0A1 4A2 - 2A2
3 = 0. 

Vlith the aid of Maple, solving the above system of algebraic equations, one possible 

solution for A0 , A 1 and A2 is 

Thus, reverting back to t he original variables, a solution of (7.1 ) is 

'll(l,:i:) = .1 ( 1 A { cosh [a(z + C)] + sinh[a(z + C)] } 
- 'l 11 / O + a - 1 

1 - bcosh[a(z + C)] - bsinh [a(z + C)] 

2 { cosh [a(z + C)] + sinh[a (z + C)] }
2
) +a J\? -------------- ' 

- 1- bcosh[a(z + C)] - bsinh [a(z + C)] 
(7.8) 

where z = x - ct and C is a.n arbitrary constant of integration. 

Solutions of (7.6) using the Riccati equation as the s implest equ ation 

The balancing procedure yields /1,f = 2, so the solu tions of (7.6) take t he form 

(7.9 ) 

Inserting (7.9) into (7.6) and making use of the Ricca.ti equa tion, we obtain algebraic 

system of equations in terms of /\ 0 , J\1, /12 by eqnating the coeffi.cients of powers of 
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Qi to zero . The resulting algebraic equations a.re 

-48A24a4 + 3A26 = 0, - 96A24ba3 - 192A1A23a4 + 18A1A25 = 0, 

-8 c2 A2 4a.2 + 8 n A24a.2 + 18 Ao/\25 
- 64 /\2 4 a.3z.1 + 45 ; I/ A2 4 

- 288 A/ J\22a.4 

-192AoA2 3a4 + 2A2 5 
- 384A1A23 ba3 

- 56A2
4b2a2 = 0, 

-256 A 1A 2
3a3 v - 8 c2 Jb 4 ba - 8 A/b3a + 60A1

31b3 
- 576 AoA1A 2

2a4 + 10 A1A2 
4 

+ 90 AoA 1A2 4 + 8 a A2 4 ba -1- 32 a A1A23 ci2 - 224 A1A23b2a2 - 384 AoA23ba3 

-32c2A1A23a2 - 64A24ba2v-192A1
3A2a.4 

- 576A1
2Alba3 = 0, 

-96A2r}A/Ao -3Aa2- 32Ao3A 1ba.v2 -1- 32A}m,13Aa2 -8c2A0
3A2v2 

-1-2 Jlo5 -1- 4 a J\o3J\1bv -1- 48 J\ l 1/ 111o2 
- 4 Jlo3 J\1!?11 -1- 24 J\1 41; 4 

- 4 a Ao2 Jl/v2 

- 64 Ao3 A2av3 -1- 4 c2 Ao 2 A/v2 -1- 28 A}llv2 J\o2 -1- 8 a Ao3
A 2 z1

2 - 48 A 1
3bv3 Ao 

+ 144 A2b1_13A1Ao2 - 56Ao3A2b2v2 -1- 3Ao6 
- 2Ao3 -4c2Ao3A1b11 = 0, 

-672 Ao A/ A2a4 -1- tl5 Ao2 Jb 4 
- 36 A1A23 b3a - 40 c2 AoA2 3a.2 -1- 20111

2 A2
3 

+45A1
4Al- 320AoA23o.3v + 36aA1A23 ba -1- lOAoA24 

- 352A/Ala3 v 

-240 Al A2
2a4 

- t132A/ A 2ba3 -1- 40 a A0A2
3a2 - 44c2 A/ Ala2 - 36 c2 A 1A 2

3 ba 

-308 A/ J\? b2n.2 - 1008 AoJ\1J\l ba3 
- 24 J\1

4n4 - 288 J\1J\ 2
3

ba
2v - 280 AoJ\ 2

3/ln.2 

-i-44aA/Ala2 -1- l8OA0A/A23 = 0, 

-4 c2 Ao3 i \ib2 + 8 c2 Aoi \i 3v2 + 4 a Ao3 A ill - 120 Ao3 A 2b3v - 64 A 0
3 A1a2v2 - 6 A 0A 1 

-8 a AoA1 3 v2 -1- 480 Albv3 Ao2 - 88 A/b2v2 Ao - 32 A1 3av3 Ao - 288 Alv4 A 1Ao 

-6Ao2A1 + 10Ao4A1 -1- 18Ao5A1 - 4.Ao3A1b4 -1- 48A1
4 bv3 -1- 96 i bv4A1

3 -8c2A 0
3 A 1av 

-24 c2 A0
3 A2bv - t! c2 Al A/bv - 8 c2 Al A 1A 2v2 -1- 8 a A 0

3 Jhav -1- 24 a A 0
3 A 2bv 

+4 O'. Aa2 Jl/bv + 8 rt Ao2 A 1A2112 - 88 Ao3 J\ 1b2av - 480 / lo3 A2av2b -1- 112 A0
2 Jl/bn.v2 

+376 Ao2 A1A2b2v2 + 224 Aa2 A1i bm;3 
- 384A2bv3A1

2 Ao = 0, 

-24 c2 Ai 3 A2a2 
- 4 c2 A1A23b2 + 8 c2 l b 4 bv -1- 24 a A1 3 A2a2 -1- 4 a A1A23b2 - 8 a A2 

4 bv 

-864 Ao2A1A2a4 
- 96Aa2Alba3 

- 152AoA2 3b3 a - 288A1
3 Jba3

11 - 312A13Jbb2a2 

-4 A1
2 Alb3a - Gt! A1A 23a2v2 + 64 A2 4av2b -1- 20 A1

3 A22 + 18 A1
5 A2 - 96 A0A 1

3a4 

-48 A/ba3 
- 4A1A23b4 -1- 8A2 4 b3 v -1- 40 AoA1A2 3 -1- 180 AoA1 3 A/ -1- 180 Al A1Jb 3 

- 104 c2 AoA 1Az2a2 
- 56 c2AoA 23

ba - 52 r:2 A/ Alba - 8 c2 A 1A23
a11 -1- 104 a. A0A 1Ala2 
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+56 er AoA23ba + 52 a A1 2 Alba+ 8 er A1A23av - 1536 AoA 1
2 A2ba3 

- 544 A0A1A/a3v 

- 296 AoJ\1A/lla2 - 736 J\0J\ 23ba211 - 272 /\ 1
2 Alt)().2v - 88 J\ 1A2

31i2a.v = 0, 

-16 c2 Ao3 A2b2 - 8 c2 Aa2 A/b2 - 8 c2 Aa2 Alv2 + 16 a 110
3 A2b2 + 8 a Aa2 A/b2 

+8o:Aa2Al,}-5L14Ao3 Jba2v2 - 6OAo 3 A1lila+ 16Ao2A 1
2a.2v2 

+ 1096 Aa2 A'./b21.12 + 704 Aa2 Alav3 
- 44 AoA1

3b3v + 192 Jbbv3 A1
3 

- 6 A0A2 

-6 Aa2 A2 - 6 AoA/ + 10 Ao 4A2 + 20 Ao3 A/+ 18 Ao5 Jb + 45 A/A/ 

-52 c2 Aa2 A1A2b1.1 + 592 Aa2 A1A2av2b + 52 a Ao 2 A1A2b11 + 4 c2 A/1v2 

-64 J\0
3 J\ 2b4 + 16 11a2 /\ 1

21/1 
- 4 n'. J\/11} + 28 Jl/ llv2 + 32 J\/1av3 + 144 Jl/v4 A/ 

-288A2
3v4A0 - 12 c2 A0

3 A1ba - 32 c2 A0
3 A2rw - 16 c2Aa2 A/av+ 4 c2 A0A13bv 

+16 c2 A0A/ A2v2 + 12 o: Ao3 A1ba + 32 a Ao3 A2cw + 16 a Aa2 A/av - 4 o: A0A}bv 

-16 a Ao A/ A2v2 - 240 Ao3 A1bci2v - 928 Ao3 A2b2a1.1 + 284 J\ 0
2 A1A2b3v 

+ll2A0
2A/b2av - ll2AoA 1

3 bav2 -464A 0A/A 262v2 -256A0A/A2av3 

-8M All)l/3 A1Ao - 3 A}= 0, 

3 J\ 1
6 + 320 / lo2 J\/a3v + 760 Ao2 A22h2n.2 + 112 II/ Alti2av + 16 J\ 1A23av2/J 

-192AoA1
3ba.3 -54L!J\oA23a2

11
2 -76A1

3A2b3a+ l6A/Ala2v2 -28A1A2 3 b3 v 

-56 c2 Aa2 A22a2 - 16 c2 Ao1-b 3
/} - 8 c2 A/ Alli+ 56 a Ao2 Ala2 + 16 a A0 A23 b2 

+8 a A/ Alb2 + 20 Ao2 J\23 + 10 A/A2 + 60 Ao3 A23 
- 148 c2 AoA1A22ba 

+ 148 a AoA1Alba - 176 AoA 1Alba2v + 4 a A/1a2 - 4 c2 A/a2 - 8 a A2 
4v2 

+8c2A2
4

1.1
2 

- 480A 0
3A2a4 -144A 0

2A/a4 
- 64A 0A2

3b4 
- 28A/lla2 - 32A/a3 v 

+16 A/ 1\l/J4 +56112 4b2v2 + 64 A2 4av3 + 60 /\oil/ II/+ 90 Ao/1 1
4112 

+270 Aa2 A/ A/ - 80 c2 AoA/ A2a2 
- 32 c2 AoA2

3av - 28 c2 A1
3 A2ba - 2 A2

3 

-16 c2 A/ A22av + 20 c2 A1A23bv + 80 a AoA/ A2a2 + 32 o: AoA23av + 28 a A1
3 A2ba 

+l6o:A/A/av- 2Oa i \i A2 3 bv- 2016 Aa2A 1A2ba3 
- l024A0A/A2a3 v 

-1136AoA1
2 A2b2a2 + l88AoA1Alb3a - 928AoA23b2av - 368A1

3 A2ba2v = 0, 

-8 c2 A0
3 A1a.2 

- 4 c2 AoA 1
3b2 + 4 c2 A/liv + 16 c2 A} A2v2 + 8 a A0

3 A1a2 

+4 cv Ao A 1
3 /i2 - 4 n A/hv - 16 rt / \ 1

3 / l2v2 + 88 n: l lol l1A/rw - 6 A 1A/ 

-200 Ao3 A1li2a2 - 160 Ao3 A1a3v - 520 Ao3 A2b3a + 20 Ao2 i\i 2/?a + 52 Aa2 A1A2b4 
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+92OAa2Az2liv- 64A0A/a2,} + 32A/bav2 + ll2A1
3A2b2v2 + 128A1

3A2av3 

+288 A/bv3 JI/ - 960 A23 lJll 3 / lo - 6 J\ 1112 + 20/\o2111
3 +60 110

3 A1
3 

-88 c2 Ao2 A1A2av - 1G c2 AoA/ A2bv + 88 a Ao2 A1A2av + 1G a AoA/ A2b1,1 

-704 AoA/ Jbav2b + 184 Ao2 J\iA2b2av - 12 AoA1Jb - 4 AoA1
31./1+4A1

4b3v 

+96 A23v'1A1 + 40 Ao3 A1A2 + 90 Ao 4A1A2 - 40 c2 Ao3 A2ba - 28 c2 Aa2 A/ba 

-L14c2Ao 2A1A2 li - 4Oc2Aa2Az2bv-8c2AoA1
3o.v + 16c2AoA 1Az2v2 + 4Oa A0

3A2bo. 

+28 a Aa2 A/bn + ,14 a Ai A1A2b2 + 40 a Aa2 A/b11 + 8 a A0 A/a1,1 - 16 a A0A1Az2v2 

-1760 Ao 3 A2ba.2v - 128 Aa2 /\ 1/\20.2//2 - 801\02 A/bn2v + 2560 Aa2 A22av2b 

-2O8AoA1
2A2b3v - 88Ao A1 3lia1,1 - 752AoA1Az2liv2 -448AoA 1Alav3 

- 2A1
3 = 0, 

2A/ - 16 c2 AoA 1
3a2 - 4 c2 A/ba - 4 c2 /1 1

3 A;2b2 + 24 c2A1A2
3v2 + 16 a A0 A1

3a2 

+4 a A 1
4 ba + 4 a A1

3 J\2b2 - 24 a A1J\2
3v2 - 1344 J\ 0

3 A2ba3 
- 288Aa2 A/ba3 

+872 J\0
2 Alb3 a - 112 A 0 J\i 3 b2a2 

- 128A0A1
3a3 v + 52 A0 A 1Alb4 

- 488 A0A2
3b3v 

-64 A1
3 A2a2v2 - 32 A1 

4bci2v + 68 A/ A:/b3v + 24 A1A23b2
1,1

2 + 96 A1A2 3av3 

+ 18 AoA1
5 

- 112 r:2 J\o /11
2 A2l)(t - 88 c2 J\0J\1Alav + 112 ct 11oA1

2 A2ha 

-1472 A0A/ A2ba2v + 184 AoA1Az2b2nv - 96 Ao 3 A1a'1 
- 4 A/b3 a - 4 A1

3 A2b4 

+96 A2 4 bv3 + 40 AoA} A2 + 60 Aa2 A1Az2 + 180 Ao2 A1 3 A2 + 180 Ao3 A1A22 

-8Oc2A0
2A1A2a2 -88c2Aa2.A22ba-44c2A0A1Az2b2 -8c2A01b 3b1,1 - 8c2A1

3Jbav 

+20 c2 J\ 1
2 A22b1/ + 80 a Ao2 A1A2n2 + 88 a Aa2 A22ha + 44 a AoA1Alb2 + 8 a AoA23bv 

+8 a A/A2n,1/ - 20 a, JI/ Alb1/ - 1216 A0
2 l \iA2a31/ - 1424 J\0

2 A1J\2/i2a2 

+2176Jla21ll hr?v - 3M Ao /11
2 J\2lia - 128 / loA1Az2n2v2 

- 1504 AoA23av2b 

-88 J\ 1
3 A2liav + 304 A/ Ala//2b = 0, 

-24 c2 A0
3 J\ 2a2 - 20 c2 J\ 0

2 A/a2 - 32 c2 Aa2 Az2b2 + 28 a AoA1Az2bv - 6 A/ A2 

+8 c2 A0A2
3v2 + 28 c2 A/ Az2v2 + 24 a Ao3 A2a2 + 20 a J\0

2 A1
2a2 + 32 a /1 0

2 Az2b2 

-8 a A0Alv2 - 28 a A/ Al1/2 - 960 J\ 0
3 A2a3 v - 240 A0

3 J\i ba3 
- 1320 J\0

3 A2b2a2 

-140 J\ 0
2 A/b2a2 

- 160 J\0
2 A/a3 1,1 + 1216 A 0

2 Ala21,12 - 20 A0A}b3a - 32 A0 A/ A2b4 

- 1096110/1 2
3

!1
21/2 - 7O4J\ol123n.v3 + 12 / l13 

J\2/1
3

z; + 196111 2 A221i2v2 + 224/\/ Alrw3 

+ 144 A2 
3bv3 A1 - 6 AoAl + 48 A2 4v4 + 10 AoA1 4 + 20 Aa3 Al + 45 Aa2 A/ 
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+45 A0 
4 Al - 64 c:2 A0A1

2 A2n11 - 28 c:2 A0A 1A2
2l)/J + 64 c.Y AoA/ A2a11 - 3 A} 

- 1280 Al J\1A2lm.2 11 - 70<'1 / lo/\/ J\2/l n.11 - 512 / lo/11/\lm}/J - 124 c2 J\o2 
/\ 1 /12/m 

+124 a Al A 1A 2ba + 256 Al Alb4 + 60 Al A/ A2 + 180 Ao3 A/ A2 - 64 c2 Al A/av 

-20 c2 AoA1
3ba - 32 c2 AoA/ A2b2 + 12 c2 A1 3 A2b11 + 64 a Ao2 Alav + 20 a AoA13ba 

+32 a A0A/ A2b2 - 12 a A1
3 Jbbv - 220 Ao2 A1A2 lia + 2752 Ao2 Alb2av 

-512 A0 A/ A2a2v2 - 160 A0 A/ba2v - 124 Jl 0 A1Alb3v + 96 A1
3 A2av2b = 0. 

Solving this algebraic system of equations we get 

b =Y, II= ---
Lia ' 

Ao - 1 
a=c2 -3 ) A 1 = 4aY, 

where Y is any root or Y2 - Ao= 0, and consequently, t he solut ions of (7.1) are 

u(t,x) = -i ln (A o + A1 { - .!!_ - .!l__ ta.nh [~e(z + C)] } 
2a 2a 2 

{ 
b 0 . [1 ] }2

) +A2 - - - -ta.nh -0(z+C) 
2a 2a 2 

(7.10) 

and 

u(t,x) -i ln (Ao+ A1 { -
2
h -

2
° tanh (-

2

1 ez) + (::)ch(!). (Oz )} + 
a a C cosh 2 - 0 smh 2 

A2 { - _b - !!_ ta.nh (~rJz) + ___ s_e_ch_(_o2~_·) ___ }2) 
2a 2a 2 C cosh ( 0

2z) - 2
0
a sinh ( 0

2z) ' (7.11) 

where z = x - ct; and C is an arbitrary constant of integration . 

7.2 .2 Exact solutions of the Boussinesq-double sinh-Gordon 

equation (7.2) 

vVe next study the Boussinesq-cl ouble sinh-Gorclon equation 

71.tt + ()'11,xx + '1/.xxx~; = sinh 1l + ~ sinh 21, .. 

Taking z as a new independent variables and H as a t he new dependent variable, 

the substitution of (7. 5) into (7.2) give rise to a second-order nonlinear ODE 

c2 H"( z ) - Cl'fl" (z) + J-1(4
) (z) = sinh H + ~ sinh(2H). 
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Then by using the transformation w = eH, the above equation trasforms to 

- 4c2w(z)3w"(z) + 4c2w(z)2,w'(z) 2 + 4aw(z)3w"(z) - 4mu2 (z)w'(z)2 

- 4w(4)(z)w(z)3 + l6w"'(z )w'(z)w(z) 2 
- 48w"(z)w'(z)2,w(z) + l2w" (z)2,w(z) 2 

+24w'(z) 4 + 2w(z)5 
- 2w(z)3 + 3w(z)° - 3w(z)2 = 0. (7.12) 

Solutions of (7.12) using the Bernoulli equation as the simplest equation 

Following the above procedme, we obtain the values of 110 , A1 and A2 as 

a= - 1, a= c2 
- 3 , Ao= l , A1 = -Lib, 

Thus, reverting back to t he original variables, a solu tion of (7.2) is 

u(t,x) = l (A I { 
cosh[a (z + C)] + sinh[a(z + C)] } 

n o + af1 
1 - bcosh[a(z + C)] - hsinh[a(z + C)] 

2A { cosh[a(z + C)] + sinh[n.(z + C)] }
2

) +a 2 -------------- , 
1 - bcosh[a(z + C)] - bsinh[a(z + C)] 

(7. 13) 

where z = x - ct and C is an arbitrary constant of integration. 

Solutions of (7.12) using the Riccati equation as the simplest equation 

Similarly, by using the Ricca.ti equat ion as the si'mplest equation we obtain 

b=Y, 
Ao - l 

v=---
Lla ' 

a= c2 
- 3 

' 
A1 = Lln.Y, 

where Y is any root of Y2 
- Ao = 0. Consequently, the solutions of (7.2) are 

and 

ln (Ao+ A1{- !!_ - !!_ tanh (!oz)+ sech (9f) } + 
2a 2a 2 C cash (f;z ) - 2

0
a sinh (fl

2
z) 

{ 
b 0 (1 ) sech (

1i') }2
) A2 - - - - tanh -0z + --------- (7.15) 

2a 2a 2 C cosh c;z) - 2
; • sinh Ci') ' 

where z = x - ct and C is an arbi trary constant of integration. 
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7.2.3 E xact solut ions of t h e B oussinesq-Liouville t yp e I equa­

t ion (7 .3) 

V-.re next study the Bonssinesq-Liouville type I equation. T he substit ut ion of (7.5) 

into (7.3) gives rise to a second-order nonlinear ODE 

Then the transformation w = eH transforms the R.bove equation to 

- Llc
2w(z) 3w"(z) + 4c2w(z)2w'(z) 2 + 4aw(z)3w"(z) - 4aw2 (z)w'(z) 2 

-4w(4l(z)w(zr3 + 16w'"(z )w'(z)w(z )2 
- 48w"(z)w'(z )2,w(z ) + 12w"(z)2,w(z)2 

+24w'(z) 4 + 4w(z) 5 + 3w(z) 6 = 0. (7. 16) 

Solution s of (7 .16) using the Bernoulli equation as the simplest equation 

Solving (7.16) by using the Bernoull i equation as the simplest equation , one possible 

solution for A0 , A 1 and A2 is 

Thus, revert ing back to the original variables, a solu tion of (7.3) is 

'//.( /., :r:) = 1 ( A { 
cosh[a(z + C')] + sinh[a(z + C)] } 

11 (l, l 
1 - b cosh[a.(z + C)] - bsinh [a(z + C)] 

2A { cosh[a(z + C)] + sinh[a(z + C)] }
2

) +a 2 . , 
1 - bcosh[a.(z + C)] - bsmh[a(z + C)] 

(7. 17) 

where z = 1': - r:t and C is an arbitrary constant of integration. 

Solut ions of (7.16) using the Riccati equation as the simplest equation 

By using the Riccati equation as the simplest equat ion, we obtain 

32a2 + 1GA0a2 + 16a2c2 + Ai 
a = , Ao = -4av, 

l 6a2 

Thus, the solutions of (7.3) are 

'u(/,, :r:) = ln (A o + A1 { - !_ - !!_ tanh [~ o(z + C)]} 
2a. 2a 2 
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+A 2 { - _!!_ - !!_ tanh [!e(z + c)] }2

) 
2a 2a 2 

(7.18) 

and 

u(t.,x) In Ao + A1 - - - - tanh -0z + .2 . + ( { 
b f} ( 1 ) sech (Oz) } 

2a 2a 2 C cash ( O
2
z) - 2

0
a smh ( 0

2
z) 

{ 
b f} (1 ) sech (

0
2z) }

2
) A? - - - - tanh -0z + --~~---'----"---'----- (7.19) 

- 2a 2a 2 C' cash ( 0
2z) - ~~ sinh ( 0{ ) ' 

where z = x - ct and C is an arbitrary constant or integrat ion. 

7. 2.4 Exact solutions of the Boussinesq-Liouville type II equa­

tion (7.4) 

Substitut ion of (7.5) into (7.4) gives rise to a second-order nonlinear ODE 

T he transformation w = e-H transforms the above equation to 

4c2w(z) 3w"(z) - 4c2w(z)2w'(z)2 
- 4aw(z)3w"(z) + 4.mv2(z)w'(z) 2 

+4.w(4 )( z)w(z)3 
- 16w'"(z)w'(z )w(z)2 + 4.8w"(z)w'(z)2w(z) - 12w"(z)2w(z) 2 

-24w'(z)4 + 4w(z )5 + 3w(z)6 = 0. (7.20) 

Solutions of (7.20) using t h e B ernoulli equation as the s implest equat ion 

Following the above procedure, and using t he Bernoulli equation, we get the values 

Ao, A1 and 112 as 

Al __ 2aA2 ' 110 = 0, 
12 

where 12 is any root l + A~ = 0. Thus, reverting back to t he original variables, a 

solution of (7.4) is 

1 ( I I { 
cosh[a(z + C)] + sinh[a(z + C)] } 

n f O + af 1 
1 - bcosh [a( z + C)] - bsinh [a(z + C)] 

2/\ { cosh[a(z + C)] + sinh [a(z + C)] }
2

) +a 2 . , 
1- bcosh[a.(z + C)] - bsmh [a(z + C)] 

(7.21) 
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where z = x - d, and C is an arbi trary constant of integration. 

Solutions of (7.20) u sing the Riccati equation as the simplest equation 

When the Riccati equation is used as the simplest equation , we get on ly the trivial 

solution of (7.20). 

7.3 Conservation laws of (7.1)- (7.4) 

In t his section we construct conservaLion laws o[ (7.1)- (7.4) by using two approaches, 

namely the Noether theorem and multiplier method. 

7.3.1 Conservation laws for the Boussinesq-double sine-Gordon 

equation ( 7 .1) 

Application of Noether theorem 

In this subsection we employ the Noether theorem [41] to construct conservation laws 

of the Boussinesq-double sine-Gordon equation (7.1) . A second-order Lagrangian for 

equation (7.1) is given by 

_ 1 2 a , 2 1 2 3 
T.1 - - -11.1 + -n .. + - 1, ..... + cos n + - cos (2n) . 2 2 ·" 2 ·"·" ,1 (7. 22) 

The Noether point symmetries for t he above Lagrangian can be obtained by substi­

tu ting (7.22) into the Noether operator determining equation (1.37), which gives 
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By splitting Lhe above equation on the derivatives of u, we obtain 

-''7 sin 'l.l - (3/2) 17 sin (2'1.l) + cos 'Ll Tt + (3/4) cos (2'U) Tt - cos 'l.l (x 

• -(3/4)cos (2u) (x =Bl + B;. 

Solving the above system of equations, we get 

where c1 and c2 are arbi trary constants and B 1(t ,x) and B 2(t,x) are arbitrary func­

tions oft and x. VJe can take B 1(t ,x) = B 2 (t,x) = 0 since they contribute to 

the t rivial part of the conserved vectors. Thus, we get the following Noether point 

symmetries: 

The use of the theorem clue to Noether with X 1 = Eli, gives the conserved vector 

l_ 1 2 a 2 1 2 , 3 , 
Tl - 21lt + 21lx + 21lx,: + cos IL + 1 cos(2 n), 

Using X 2 = Ox and applying the Noether theorem, we obtain 

2 1 2 a 2 1 2 3 
T2 = - fll·t - il/,x - f lxx + 'll,;'ll x.1:x + COS 'll + 4 cos(2'Lt). 

Application of t he mult iplier method 

In this subsection we uti lize the multiplier method [50] to obtain conservation laws of 

(7 .1). Aft.er some straightforward but lengthy calculations we obtain the first-order 

multiplier for (7.1), viz., 

where Ci, i = 1, 2 a.re arbitrary constants . The above mul tiplier yields t he following 

two local conserved vectors of (7 .1): 

yt 
1 

5 1 2 CY 1 3 9 - 2 + 2 1/.t - 2 11, Uxx + 2 'll1lx,::i::i: + COS 7.l + 2 COS- 1l , 
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T2 
1 

and 

Tl 
2 

1 ]_ 
- 2 UUtx + 2 Ut Ux, 

Tff 
5 3 ') C\'.9 ]_ ]_ ? 

-? + COS 1l + -
2 

COS- 1l - ? 71.x - + U~c U~r:i:x +? UUtt - -
2 

U:i;x - . 
~ ~ ~ 

7.3 .2 Conservation laws for the Boussinesq-double sinh-Gordon 

equation (7.2) 

In this subsection , we give conservation laws of the Boussinesq-double sinh-Gordon 

equation which where obtain by using the Noetlter t heorem and multiplier method. 

Application of Noether theorem 

Equation (7.2) has the Lagrangian given by 

1 2 a 2 1 2 . 3. 
L = --u1 + -ux + - u .... - smh u - - smh (2u). 2 2 . 2 ., .. ., L! 

The Rpplication of Noether t heorem gives the conserved vectors of (7.2) as 

(7.23) 

1 1 2 CY 2 1 ') 3 T2 
Tl = - '1./,t + -ux + -u-xx - cosh 'll - - cosh (2u), 1 = -CY,'llt'llx + '1.1,t'llxxx - 'llxt'l.lxx 2 2 · 2 .. 4 

and 

2 1 2 (Y 2 1 2 3 
T') = - - 'l.lt - -2ux - -') 'U,··x + U x 1·lxxx - cosh u - - cosh (2u). - 2 · ~ .,.. . . . . 4 

Application of the multiplier method 

Equation (7.2) ha.s the fo llowing first-order rnu] tiplier: 

(7.24) 

The application of the multiplier method yields the following conserved quantities of 

(7,2): 

Tl 
1 
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T2 
1 

and 

Tl 
2 

T 2 
2 

1 1 - 2 U1lt.x + 2 1/.t 1lx, 

5 3? a') 1 1 ? 
? - cash 7.L - -2 cash- 7l - ? 'l tc - + 1/.1; 7lxX1: + ? 'lLUtt - ? 1lxx - . 
~ ~ ~ ~ 

7.3 .3 Conservation laws for t he B oussinesq-Liouv ille type I 

equation (7.3) 

In this subsection, we use t he Noether t heorem and the mul tiplier method to obtain 

conservation laws of the Boussinesq-Liouville type I equation. 

A pplication of Noether t heorem 

The second-order Lagrangian for equation (7.3) is given by 

(7.25) 

The use of t he t heorem clue to Noether with the Noether operator X 1 , gives t he 

conserved vector 

Using X 2 = Bx and applying t he Noether theorem, we obtain 

Application of the multiplier metho d 

Equation (7.3) has the fo llowing first-order multipli er: 

(7.26) 

The application of t he multiiJlier method yields the following conserved quantities 

for (7.3): 

1 ll 1 2 C\'. 1 " 3 2 ,, 
Tl = 8 + 2 1lt - 2 7L 1l1:x + 2 7.L'llx1:xx - e - S e , 
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and 

7.3.4 Conservation laws for the Boussinesq-Liouville type II 

equation (7. 4) 

In this subsection, we construct conservation laws of the Boussinesq-Liouville type 

II equation by using the Noether theorem and t he multiplier method. 

Application of Noether theorem 

The Lagrangian of equation (7.4) is given by 

(7.27) 

Similarly by using the theorem clue to Noether with X 1 = Ot, gives the conserved 

vector 

1 1 ?. (.\'. 2 1 2 3 2 
T 1 - + 0 + -'Lt + e-u + - e- 1£ 

1 = 2 l,t 2'lx 2 xx 8 ' T2 
l = -Cl'.'ll(llx + 11.t'l.l,xxx - 1lxt1lxx 

and using X 2 = Bx together wi th the Noether theorem, we obtain 

Application of the multiplier m ethod 

The first-order multiplier for equation (7.4) is given by 

(7.28) 

Thus, the mult iplier method yields the fo llowing local conserved quantities for (7.4): 

Tl 
1 
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and 

T2 
1 

a l 1 a l 1 
? 1l1/,tx - -

2 
UUt1:1:x + ? U,:1:x Ut - -

2 
Ux Ut + ? Ux 11,11:x - ? 1lxx 1ltx 

~ ~ ~ ~ 

1 1 
- 2 UU13; + 2 1lt Ux, 

11 3 _21, 1 ? a 2 1 -u -- + -e - -1/, . - - -1l . + - 'IWtt + e + Ux 1lxxx· , 8 8 2xx 2x 2 

7.4, Concluding re1narks 

In this chapter we studied the four Boussinesq-type equations, namely the 

Boussinesq-double sine-Gordon equation, the Boussinesq-double sinh-Gordon equa­

tion, the Boussinesq-Liouville type I eq11ation and the Boussinesq-Liouville type II, 

Lie point symmetries of these equations were obtained and the two translation sym­

metries were used to transform these equations into ODEs. Then the simplest equa­

tion method was used to obtain exact solutions. Futhermore, several conserved 

quantities for these equations were derived by employing two different techniques, 

namely the Noether theorem and multiplier method, 
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Chapter 8 

Concluding remarlcs · 

In this thesis we first recalled some important definitions and results from Lie group 

theory and conservation laws, which were later used. In Chapter two, Lie group 

clRssification was performed on the generalized Klein-Gordon equation in (2+ 1) 

dimensions . The functional forms of (2. 1) of the type linear, power, exponential 

and logarithmic were obtained . We retrieved two special equations, namely, the 

Liouville equation in (2+ 1) dimension and the (2+ l )-dimensional generalized com­

bined sinh-cosh-Gordon equation. In addition, t he group-invariant solut ions were 

derived for power and exponential fund. ions. \Ne have also illustrated that the 

(2+ 1 )-dimensional Klein-Gordon equation is nonlinearly self-adjoint. In addition, 

conservation laws for the nonlinearly self-adjoint subclasses were derived by using 

the new Ibragimov 's t heorem. 

In Chapter three we studied the generalized double sinh-Gordon equation (3.1) using 

the Lie symmetry analysis. Symmetry reductions based on the optimal systems of 

one-dimensional subalgebras of (3.1) and exact solut ions with the help of simplest 

equation method and exponential-fun ction method were obtained. Conservation laws 

for (3.1) were derived by employing four different methods, namely the direct method, 

Noether theorem, the new conservation theorem and multiplier method. 

In Chapter four we investigated the generalized double combined sinh-cosh-Gordon 

equation from the point of view of Lie symmetry analysis. Similarity reductions and 
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exact solutions with the aid of simplest equation method were obtained based on 

the optimal systems of one-dimensional subalgebras for the generalized double com­

bined sinh-cosh-Gordon equation. Finally, local conserved vectors for the generalized 

double combined sinh-cosh-Gordon equation were derived by various methods. 

In Chapter five Lie group analysis was utilized to stud y the (2+1)-dimensional non­

linear sinh-Gordon equation. V./e also obtained exact solutions for this equation by 

using the symmetry analysis along with t he simplest equation method and ( G' / G)­

expansion method. Furthermore, several conserved quantities for equation (5 .1) were 

derived by en,ploying three different techniques; the direct method, the Noether the­

orem and the new conservation theorem. 

In Chapter six Lie symmetry analysis was employed to study the (3+ 1 )-dimensional 

nonlinear sinh-Gordon equation. Exact solutions of the underlying equation were 

obtained by using Lie symmetry analysis together with the simplest equation method 

and ( G' / G)-expansion method. Conservation laws were also constructed by using the 

Noether theorem and the new conservation theorem. 

In Chapter seven we studied the four Boussinesq-type equations , namely, the 

Boussinesq-double sine-Gordon equation, the Bonssinesq-double sinh-Gordon equa­

tion, the Boussinesq-Liouville type I equation and the Boussinesq-Liouville type II . 

Lie point symmetries of these equations were obtained and the two translation sym­

metries were used to transform t hese equations into ODEs. Thereafter , the simplest 

equation method was used to obtain exact solutions. Conserved quanti ties for these 

equations were derived by em ploying two different techniques; namely, the Noether 

theorem and multipli er method. 

In future, conservation laws of various nonlinear differential equations will be used 

to construct exact solutions. 
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