
The use of object oriented systems development methodologies in data
warehouse development

Esterhuyse, J
12247219

Dissertation in partial fulfilment of the requirements for the degree Master of

Science at the Potchefstroom campus of the North-West University.

Supervisor: Dr. R Goede

Co-supervisor: Prof. HM Huisman

Nov 2008

Abstract

CANDIDATE: Jacques Esterhuyse

PROMOTOR: Dr. R Goede / Prof. HM Huisman

DEPARTMENT: Computer Science

DEGREE: Master of Science (Information Technology)

KEYWORDS: Object oriented, data warehousing, decision support systems,

data warehousing, information systems development

methodologies.

Research has shown that data warehouses potentially offer great investment

opportunities to business. To benefit from this, business needs to invest large

sums of money. Such investments are very risky, as no guarantee of the success

of these ventures can be given.

Object-oriented development has proved successful for developing operational

systems in industry. This study researches object-oriented techniques to discover

whether these techniques could be used successfully in data warehousing.

A literature study focuses on the definition of an information systems

development methodology and defines the components of such methodology. A

further literature study on four popular object-oriented methodologies determines

the commonalities of these methodologies. In conclusion, a literature study on

data warehouse methodologies is done to discover the phases and techniques

used in developing data warehouses.

Based on the literature, a method is proposed to build a data warehouse

harnessing object-oriented phases and techniques. The proposed method is

applied as an interpretive experiment, followed by an evaluation of the data

warehouse implemented.

Opsomming

KANDIDAAT: Jacques Esterhuyse

PROMOTOR: Dr. R Goede / Prof. HM Huisman

DEPARTEMENT: Rekenaarwetenskap

GRAAD: Meesters in wetenskap (Inligtingstegnologie)

SLEUTEL WOORDE: Objek georienteerde ontwerp, data pakhuise, besluit steun

stelsels, informasie stelsel ontwerp metodologie

Navorsing het getoon dat data pakhuise moontlik groot beleggings geleenthede

beskikbaar stel aan besighede. Om die voordeel hiervan te realiseer moet

besighede groot somme geld bele. Sulke beleggings is riskant aangesien die

sukses hiervan nie gewaarborg kan word nie.

Objek georienteerde ontwerp se sukses in die ontwikkeling van operasionele

stelsels is reeds bewys in industrie. Met hierdie studie word navorsing gedoen na

objek georienteerde tegnieke om uit te vind of hierdie tegnieke suksesvol gebruik

kan word in die ontwerp en skepping van data pakhuise.

'n Literatuurstude fokus op die definisie van 'n inligtingstelsel ontwikkelings

metodologie en definieer die komponente van so 'n metodologie. 'n Verdere

literatuurstudie is gedoen op vier populere objek georienteerde metodologie om

die ooreenkomste te bepaal tussen die metodologie. Ten slotte is 'n

literatuurstudie gedoen na data pakhuis metodologie om uit te vind watter fases

en tegnieke gebruik kan word in die ontwikkeling van data pakhuise.

Gebasseer op die literatuurstudie, word 'n metode voorgestel vir die bou van 'n

data pakhuis deur middel van objek georienteerde fases en tegnieke. Die

voorgestelde metode is toegepas as 'n interpratiewe eksperiment gevolg deur 'n

evaluasie van die data pakhuis implementasie.

it

Table of contents

Chapter 1 - Introduction 1
1.1. Introduction 1
1.2. Background 1
1.3. Motivation for study 2
1.4. Problem statement 6
1.5. Methodology 6
1.6. Limitations of the study 7
1.7. Provisional chapter allocation 8

Chapter 2 - Research methodology 9
2.1. Introduction 9
2.2. Overview of quantitative and qualitative research 9
2.3. Philosophical perspectives 10
2.4. Qualitative research methods 11
2.5. Action research 12
2.6. Research considerations for this study 14
2.7. Summary 15

Chapter 3 - Systems development methodologies 16
3.1. Introduction 16
3.2. Systems development approach 17
3.3. Systems development process model 21
3.4. Information systems development method 23
3.5. Systems development techniques 24
3.6. Dynamic classification framework for classifying ISDM (livari et al.) 25
3.7. Summary 30

Chapter 4 - Object-Oriented Approach 31
4.1. Introduction 31
4.2. The object-oriented (00) approach 31

4.2.1. Definition and goal of the 0 0 approach 31
4.2.2. Guiding principles and beliefs 32
4.2.3. Fundamental Concepts 33
4.2.4. Principles of the ISD Process 34

4.3. The applicability of the 0 0 methodology 35
4.4. The 0 0 methodologies 36

4.4.1. Object-Oriented Analysis (OOA) 36
4.4.2. Object-Oriented Software Process (OOSP) 41
4.4.3. Rational Unified Process (RUP) 64
4.4.4. Object Modelling Technique (OMT) 72

4.5. Comparing the ISD Methodologies 81

iii

4.5.1. Philosophy 82
4.5.2. Model 85
4.5.3. Techniques and tools 85
4.5.4. Scope 86
4.5.5. Output 87
4.5.6. Practice 87
4.5.7. Product 88

4.6. The general aspects of the comparison 90
4.6.1. Requirements gathering 91
4.6.2. Analysis 92
4.6.3. Design 93
4.6.4. Implementation 94
4.6.5. Testing 94

4.7. Summary 95

Chapter 5 - Data Warehouse Development 98
5.1. Introduction 98
5.2. The data warehouse 98
5.3. The data warehouse development methodologies 102

5.3.1. The business dimensional lifecycle approach 102
5.3.2. Data driven methodology 125

5.4. Summary 139

Chapter 6 - Data Warehouse and the Object Oriented Approach 140
6.1. Introduction 140
6.2. The OO model 140
6.3. Data warehouse (DW) development using the Business dimensional
lifecycle approach phases and an OO approach 141

6.3.1. Business Requirements Definition 143
6.3.2. Dimensional modeling 156
6.3.3. Technical Architecture modelling 173
6.3.4. Physical Design 180
6.3.5. Data staging 183
6.3.6. End use application 191
6.3.7. Deployment 192
6.3.8. Maintenance and growth 192
6.3.9. Summary: The business dimensional lifecycle approach based on an
OO approach 194

6.4. Data warehouse development using the Data-driven methodology phases
197

6.4.1. Data model analysis 198
6.5. Summary 210

IV

Chapter 7 - Object-oriented implementation of a data warehouse 216
7.1. Introduction 216
7.2. Research question and scope of study 216
7.3. Nature of the study 216
7.4. Research method 217
7.5. Research design 217
7.6. Implementing the business lifecycle approach in an object-oriented
fashion 219

7.6.1. Diagnosis and Background to the data warehouse prototype
implemented 219
7.6.2. Business requirements definition 220
7.6.3. Dimensional modelling 241
7.6.4. Technical Architecture modelling 264
7.6.5. Physical designs 272
7.6.6. Data staging 281
7.6.7. End user applications 288
7.6.8. Deployment 290
7.6.9. Maintenance and growth 291

7.7. Summary 292

Chapter 8 - Evaluation of the IS Prototype 295
8.1. Introduction 295
8.2. The research question and the evaluation 295

8.2.1. User acceptance testing 296
8.2.2. Incident requests 297
8.2.3. Change requests 300
8.2.4. Evaluation of 0 0 and DW 301
8.2.5. Conclusion on the evaluation of the data warehouse 307

8.3. Specifying learning 312
8.3.1. Requirements gathering 313
8.3.2. Analysis of the requirements 314
8.3.3. Design 315
8.3.4. Implementation 315
8.3.5. Testing 315
8.3.6. Future iterations of the study 316

8.4. Conclusion 316
8.5. Summary 317

References 320

v

List of figures

Figure 1-1 The Action Research Cycle (Baskerville, 1999:14) 7

Figure 2-1 Underlying epistemology of qualitative research (Myers, 1997) 10

Figure 2-2 The Action Research Cycle (Baskerville, 1999:14) 13

Figure 3-1 Evolutionary development (Avison & Fitzgerald, 2003:86) 22
Figure 3-2 Boehm's sprial model (Avison & Fitzgerald, 2003:88) 23

Figure 3-3 The dynamic classification framework (livari etal., 2000:189) 25

Figure 4-1 The OOSP Methodology (Ambler, 2001:439) 42

Figure 4-2 A use case diagram for a simple university (Ambler, 2001:46) 44

Figure 4-3 "Enroll in seminar" as an essential use case (Ambler, 2001:55) 45

Figure 4-4 User interface flow diagram (Ambler, 2001:73) 46

Figure 4-5 An example CRC card (Ambler, 2001:76) 47

Figure 4-6 System use case (Ambler, 2001:187) 51

Figure 4-7 Sequence diagram for student (Avison & Fitzgerald, 2000:199) 52

Figure 4-8 A UML class diagram based on the CRC model (Ambler,2001:210).53

Figure 4-9 UML activity diagram (Ambler, 2001:230) 54

Figure 4-10 Layering system based on class types (Ambler, 2001:255) 57

Figure 4-11 The student and studentnumber design classes (Ambler, 2001:282)

60

Figure 4-12 State chart diagram for student object (Avison & Fitzgerald,

2000:254) 61
Figure 4-13 A collaboration diagram (Ambler, 2001:302) 62

Figure 4-14 Deployment diagram (Ambler, 2001:313) 62

Figure 4-15 The five work flows that takes place over the four phases (Jacobson

et a/., 2001:11) 65
Figure 4-16 Object model (Rumbaugh ef a/., 1991:168) 75

Figure 4-17 Example of a function description (Rumbaugh etal., 1991:183) 77

Figure 4-18 Outline for the comparative review of methodologies (Avison &

Fitzgerald, 2003:556) 82

vi

Figure 4-19 The requirements phase 92

Figure 4-20 The analysis phase 93

Figure 4-21 The design phase 94

Figure 4-22 The implementation phase 94

Figure 4-23 The testing phase 94

Figure 4-24 Summary of requirements, analysis, design, implementation and

testing 97

Figure 5-1 Star schema for sales (Rob & Coronel, 2002:647) 100

Figure 5-2 A Typical Data Warehouse Architecture (Ramakrishnan & Gehrke,

2003:870) 101

Figure 5-3 The business dimensional lifecycle (Kimball etal., 1998:33) 103

Figure 5-4 Business requirements impact every aspect of the data warehouse

project (Kimball et al., 1998:96) 106

Figure 5-5 Example of a fact table (Kimball et al., 1998:145) 107

Figure 5-6 The Data Warehouse Bus Architecture matrix for a telephone

company (Kimball eta/., 1998:271) 111

Figure 5-7 Basic high-level data staging plan schematic (Kimball etal., 1998:613)

115
Figure 5-8 High-level technical architecture model (Kimball et a/., 1998:329) ..117

Figure 5-9 Architecture development process flow chart (Kimball etal., 1998:503)

119
Figure 5-10 The relationship between the corporate data model and the

operational model and data warehouse model (Inmon, 1996:83) 127

Figure 5-11 Stability Analysis performed on a table (Inmon, 1996:84) 129

Figure 5-12 Example of a data item set (Inmon, 1996:89) 130

Figure 5-13 Example of a physical model (Inmon, 1996:93) 131

Figure 5-14 A three dimensional view of data in the data warehouse (Inmon,

1996:140) 134
Figure 5-15 A star join of the order entity (Inmon, 1996:141) 135

vii

Figure 5-16 The feedback loop (Inmon, 1996:283) 138

Figure 6-1 Summary of requirements, analysis, design, implementation and

testing 141

Figure 6-2 Business Dimensional Lifecycle diagram (Kimball et al. ,1998:33).. 142

Figure 6-3 Requirements Model in OOD 143

Figure 6-4 Data warehouse use case diagram 145

Figure 6-5 Essential business process use case diagram example for an

insurance company 146

Figure 6-6 Data warehouse use case example for sales department 148

Figure 6-7 Use case example for quoting business 149

Figure 6-8 Example of a DWCRC model 152

Figure 6-9 Documentation on data warehouse maintenance and growth 154

Figure 6-10 Object Oriented Analysis activities 157

Figure 6-11 Data warehouse system use case example for sales department. 158

Figure 6-12 Business process system use case example for quoting business159

Figure 6-13 Sequence diagram for quoting for insurance 160

Figure 6-14 The Data Warehouse Bus Architecture matrix for the insurance

company example 165

Figure 6-15 Dimension table diagram (Kimball etal., 1998:281) 167

Figure 6-16 Dimension attribute detail description (Kimball etal., 1998:283) ...168

Figure 6-17 Quote fact table diagram 169

Figure 6-18 Fact table detail for quote fact table 169

Figure 6-19 Data source definition 170

Figure 6-20 Source-to-target data map 171

Figure 6-21 Quote dimensional model 172

Figure 6-22 Object Oriented analysis and design 174

Figure 6-23 High-level technical architecture model (Kimball etal., 1998:329) 174

Figure 6-24 Entity Relationship model of a sample database 176

Figure 6-25 High level data stage schema plan 177

viII

Figure 6-26 Detail schematic plan for fact table load 178

Figure 6-27 List of sources with the upload type 179

Figure 6-28 Partial physical model for quote 181

Figure 6-29 Database size and index plan 182

Figure 6-30 State chart model (SC01) extract for broker dimension (part of use

cased) 186

Figure 6-31 ER Model for staging environment for sales ETL 187

Figure 6-32 Collaboration diagram on the ETL for the data warehouse 188

Figure 6-33 Example of SQL script to create the #temp_broker table 189

Figure 6-34 DTS Example for populating dimension broker 190

Figure 6-35 Implementation model 192

Figure 6-36 Lifecycle of a DM development 193

Figure 6-37 Data driven methodology (Inmon, 1996:344) 197

Figure 6-38 Corporate entity relationship diagram for insurance company

example 199

Figure 6-39 UML class diagram 200

Figure 6-40 Corporate data item set for product 201

Figure 6-41 Physical data model for product DIS 202

Figure 6-42 Document containing the different grains needed for the subject area

203

Figure 6-43 Example of the production system layout 204

Figure 6-44 example of a technical specification document 206

Figure 7-1 The Action Research Cycle (Baskerville, 1999:14) 218

Figure 7-2 Requirements Model 221

Figure 7-3 Insurance company organisational structure (human resources

department) 222

Figure 7-4 Data warehouse use case diagram for the insurance company 223

Figure 7-5 Business process diagram for Sales department 226

Figure 7-6 Object-Oriented Analysis diagram 241

ix

Figure 7-7 Quote Sequence Diagram 247

Figure 7-8 Commission Sequence Diagram 247

Figure 7-9 Set Target Sequence Diagram 248

Figure 7-10 Training Sequence Diagram 248

Figure 7-11 Data Warehouse Bus Architect Matrix for the case study 251

Figure 7-12 Lifecycle of a DM development 252

Figure 7-13 Fact table diagram and detail diagram for FACT_API 255

Figure 7-14 Star diagram for Fact Target API 263

Figure 7-15 High-level technical architecture model (Kimball etal., 1998:329) 264

Figure 7-16 ER diagram for IAA-SPF (Part of IAA database) 266

Figure 7-17 ER diagram for lAA-Party (Part of IAA database) 267

Figure 7-18 ER diagram for SalesLogix 268

Figure 7-19 High level data stage schema plan for case study 269

Figure 7-20 Detail level diagram for policyholder dimension extract 269

Figure 7-21 Detail level diagram for intermediary dimension extract 270

Figure 7-22 Detail level diagram for actual dimension extract 270

Figure 7-23 Detail level diagram for Target API/Head fact extract 270

Figure 7-24 Detail level diagram for Target API fact and Target Head fact extract

271
Figure 7-25 State chart model for SP_BUILD_IAA_HIERARCHY 283

Figure 7-26 State chart model for SP_PROMOTE_ACTUAL 283

Figure 7-27 State chart model for SP_PROMOTE_PARTY_CONSULTANT ...284

Figure 7-28 State chart model for SP_PROMOTE_PARTY_INTERMEDIARY.284

Figure 7-29 State chart model for SP_PROMOTE_PARTY_POLICYHOLDER285

Figure 7-30 State chart model for SP_PROMOTE_FACT_API 285

Figure 7-31 ER Model for staging environment for sales ETL 286

Figure 7-32 Collaboration diagram on the ETL for the data warehouse 287

Figure 7-33 SSIS that controls the flow of the stored procedures 288

Figure 7-34 SQL Server Manager Studio used by developers 289

x

Figure 7-35 End userapp report 290

Figure 7-36 CVS as repository system for source code 291

Figure 8-1 Evaluation in the Action Research Cycle (Baskerville, 1999:14) 296

Figure 8-2 Application used to manage incidents and change requests 301

Figure 8-3 Specifying learning in the Action Research Cycle (Baskerville,

1999:14) 312

Figure 8-4 Chapters according to the Action Research Cycle (Baskerville,

1999:14) 318

xi

List of tables

Table 3-1 Summaries of the five IS development approaches (livari etal.,

1999:4) 19
Table 4-1 Comparison of the philosophies of the 0 0 methodologies 90

Table 5-1 A comparison of data warehouse and operation database

characteristics (Rob & Coronel, 2002:624) 99

Table 6-1 Example of a list of data warehouse use cases generated from the

data warehouse use case diagram 146

Table 6-2 Example of a list of essential use cases generated from the use case

diagram 147

Table 6-3 Business rules 153

Table 6-4 Combination of the DW use cases with the business use cases 162

Table 6-5 Technical Business rules 177

Table 6-6 Standards with descriptions 181

Table 7-1 List of data warehouse use cases 224

Table 7-2 DWUC01 - Sales 225

Table 7-3 list of use cases in sales busines process diagram 226

Table 7-4 Reports To business process use case 227

Table 7-5 Set API / Heads business process use case 228

Table 7-6 Claw back commission business process use case 228

Table 7-7 Pay commission business process use case 229

Table 7-8 Training business process use case 229

Table 7-9 Quote business process use case 230

Table 7-10 List of reports identified 231

Table 7-11 Policyholder CRC 232

Table 7-12 Broker CRC 232

Table 7-13 Consultant CRC 233

Table 7-14 Area Manager CRC 233

Table 7-15 Divisional Manager 233

xii

Table 7-16 Product CRC 234

Table 7-17 Quote and statement of benefits CRC 234

Table 7-18 Learn student module CRC 234

Table 7-19 Commission Paid 234

Table 7-20 Commission claw back 235

Table 7-21 Policyholder actor CRC 235

Table 7-22 Broker actor CRC 235

Table 7-23 Consultant actor CRC 235

Table 7-24 Area manager actor CRC 235

Table 7-25 Sales stats report CRC 236

Table 7-26 Commission incentive report CRC 236

Table 7-27 Commission claw back report CRC 237

Table 7-28 External reference business rule 238

Table 7-29 Broker validity business rule 238

Table 7-30 Consultant validity business rule 238

Table 7-31 Area manager validity rule 239

Table 7-32 Area business rule 239

Table 7-33 Target Year To Date Calculation business rule 239

Table 7-34 Achieved Calculation business rule 239

Table 7-35 System DWUC01 - Sales 242

Table 7-36 Data type definition of ProductType 242

Table 7-37 Data type definition of PropertyType 243

Table 7-38 Data type definition of PartyType 243

Table 7-39 Data type definition of ContactPrefrence 243

Table 7-40 Reports To business process systems use case 244

Table 7-41 Set API / Heads business process systems use case 244

Table 7-42 Claw back commission business process systems use case 245

Table 7-43 Pay commission business process systems use case 245

Table 7-44 Training business process use case 245

xiii

Table 7-45 Quote business process use case 246

Table 7-46 Combination of the DW use cases with the business use cases249

Table 7-47 Time dimension hierarchy and attribute detail 253

Table 7-48 Policyholder dimension hierarchy and attribute detail 253

Table 7-49 Broker dimension hierarchy and attribute detail 254

Table 7-50 Consultant dimension hierarchy and attribute detail 254

Table 7-51 Product dimension hierarchy and attribute detail 255

Table 7-52 Data source definition for the data warehouse 256

Table 7-53 Source to Target for Fact API 257

Table 7-54 Source to Target for Dim Party Policyholder 259

Table 7-55 Source to Target for Dim Party Intermediary 260

Table 7-56 Source to Target for Dim Party Consultant 261

Table 7-57 Source to Target for Dim Actual 262

Table 7-58 Load type definition for DW case study 271

Table 7-59 Standards definition for the use case 272

Table 7-60 Physical table layout for lAAJHierarchy 274

Table 7-61 Physical table layout for

FACT_CONSULTANT_TARGET_PROPERTIES 274

Table 7-62 Physical table layout for FACTJHEAD 275

Table 7-63 Physical table layout for DIM_PARTY_POLICYHOLDER 276

Table 7-64 Physical table layout for DIM_PARTY_INTERMEDIARY 277

Table 7-65 Physical table layout for DIM_PARTY_CONSULTAMT 278

Table 7-66 Physical table layout for DIMJDATE 278

Table 7-67 Physical table layout for DIM_ACTUAL 279

Table 7-68 Physical table layout for AUDIT_LOG 279

Table 7-69 Database size and index plan for the case study DW 280

Table 8-1 Requirements gathering on development of the DW using 0 0

techniques 303

Table 8-2 Analysis phase on development of the DW using OO techniques....305

xiv

Table 8-3 Design phase on development of the DW using OO techniques 306

Table 8-4 Testing phase on development of the DW using OO techniques 307

xv

Chapter 1 - Introduction

Chapter 1 - Introduction

1.1. Introduction

This chapter serves as an introduction to the study. It starts with a discussion on the

underlying background and motivation for the study. Thereafter, the problem statement

is established, followed by the methodology and limitations of the study. It concludes

with the chapter allocation.

1.2. Background

"In today's world, the competitive edge is coming less from optimisation and more from

the proactive use of information that these systems have been collecting over the years.

Companies are beginning to realise the vast potential of the information that they hold in

their organisations. If they can tap into this information, they can significantly improve

the quality of their decision making and the profitability of the organisation through

focused actions. The problem for most companies, though, is that their operational

systems were never designed to support this kind of business activity, and probably

never can be." (Anahory & Murray, 1997: 3). This statement proves that the information

a company holds is potentially a great investment, but that money needs to be invested

to reap the benefits thereof.

According to Anonymous (2006) in "Data Warehouse Portal Basics", a data warehouse

(DW) is a tool to support the managing and the controlling business data. This is a

system which is often at the heart of the strategic reporting systems. Its function is to

consolidate and reconcile information from across disparate business units and IT

systems and provide a means for reporting on, and analysing corporate performance

management, profitability and consolidated financials compliance.

Anahory and Murray (1997:4) state that over the past 20 years, more than $1 trillion

have been invested in new computer systems to gain competitive edge. This proves

1

Chapter 1 - Introduction

that developing an information system is a costly exercise, and one surely doesn't want

it to be unsuccessful.

1.3. Motivation for study

Information systems methodologies are used to aid in information systems

development. Boahene (1999) found that the use of methodologies enables the

following when developing information systems:

• Provides background knowledge of the development - this includes the

underlying assumptions, beliefs and values, as well as the nature of information

systems

• Group development activities in process steps

• Provides transformation management - this is the needs of a client transformed

into targeted information systems

• Techniques and methods to enforce standards and procedures used in the

development of information systems

One such methodology is object-oriented (00) development. Owing to its advantages,

this methodology has grown very popular in software development. Avison and

Fitzgerald (2003:247) point out that 0 0 has the following advantages:

• It leads to a controlled environment due to concepts such as inheritance

• The organisation develops a library of object classes dealing with all the basic

activities the organisation undertakes

• Classes get tested thoroughly in the component development phase, thus

providing immediate industrial strength applications

• 0 0 techniques are robust, error-free, quicker and cheaper

Ambler (2001:12) claims that the use of 0 0 as a development methodology increases

the chance of success for the following reasons:

2

Chapter 1 - Introduction

• Provides models as a communication medium between users and the

development team

• The use of models in turn allows one to work closely with the users of the system

• The time invested in defining the requirements and models pays off in the long

run

• 0 0 provides reusability for a wide variety of artefacts, such as code, models and

components

Unfortunately, not all system environments are favourable for object-oriented approach.

Ambler (2001:451) advises against object-oriented techniques for the following system

environments:

• Systems for which structured techniques are ideal - It is argued that these

systems are specifically built to fulfil only a certain role and no other

• Systems which cannot use 0 0 throughout the entire development lifecycle - the

reason for this being that the benefits of 0 0 are achieved throughout the

development lifecycle. Ambler warns that 0 0 techniques should not be applied if

the programming language does not support 0 0

From the above, it can be derived that 0 0 is a very powerful methodology effectively

managing risks in operational software development, though with certain limitations.

The second concept this study focuses on is data warehouses. Research has shown

that data warehouse solutions are different to operational systems for the following

reasons:

• Evolution and growth as business requirements for information change over a

period of time (Anahory & Murray, 1997:8)

• Concepts of time variance and non-volatility essential for a data warehouse (Sen

& Sinha, 2005:80)

3

Chapter 1 - Introduction

Anahory and Murray (1997:8) point out that in practice, data warehouses must be

designed to change constantly. They state that the main content of the data warehouse

might be known, but it is unlikely to know all the detail required, the real problem being

that the business itself may not be aware of its future information requirements. From

the above, it can be derived that if a data warehouse solution is different from an

operational solution, the development of such system should also be different from that

of operational systems. This reflects in Anahory and Murray (1997:8) "in order to

provide a flexible solution, one needs to look at the process that delivers a data

warehouse, this process has to be fundamentally different from a traditional waterfall

method"

Inmon (1996:260) advises against the use of the classical Systems Development Life

Cycle (SDLC), also known as the waterfall approach.

From this, it can be assumed that the SDLC methodology will not produce the desired

results in terms of developing a data warehouse, however there are methodologies

other than the traditional information systems development methodologies (ISDMs)

suitable for this purpose.

The above-mentioned methodologies are examined in Sen and Sinha (2005),

comparing eight data warehouse methodologies. Sen and Sinha noted that as yet,

none of the methodologies reviewed has achieved the status of a widely recognised

standard, but two approaches well known in the development of data warehouses, are

mentioned, i.e. the work of Inmon (1996) and Kimball etal. (1998).

Inmon's (1996:290) approach advocates the reverse of SDLC. Instead of starting from

requirements, data warehouse development should be driven by data. Data is first

gathered, integrated, and tested. Next, programs are written against the data and the

results analysed. Finally, the requirements are formulated. The approach is iterative in

nature. According to Anonymous (2006), the structure of the data warehouse is also

4

Chapter 1 - Introduction

different to Kimball's structure. Inmon follows a dependant mart structure, the top down

approach. This approach transfers the data from diverse OLTP into a centralised area

(the data warehouse). In this area, the data is organised into subject-oriented,

integrated, non-volatile and time variant structures. The data marts are treated as

subsets of the data warehouse and each data mart is built for an individual department.

Once the data warehouse aggregation and summaries process is complete, it gets

transferred to the staging area and a subset of transformations is done according to the

departments' requirements. On completion of this process the OLAP environment gets

refreshed.

The second approach is that of Kimball et al. (1998), the business dimensional lifecycle

approach. This approach differs significantly from more traditional, data driven

requirements analysis, and the focus is on analytic requirements elicited from business

managers/executives to design dimensional data marts. The lifecycle approach starts

with project planning, followed by business requirements definition, dimensional

modelling, architecture design, physical design, deployment and other phases. Kimball's

data warehouse structure follows what Anonymous (2006) calls the data warehouse bus

structure, the bottom-up approach. The data marts are connected using a bus structure;

this structure contains all the common elements used by data marts, such as conformed

dimensions, measures, etc. defined for the enterprise and allowing one to query all data

marts together. Kimball et al. (1998:19) defines the data warehouse as "nothing more

than the union of all constituent data marts". The data flow in the Kimball's (1998)

approach starts with extraction of data from operational databases into the staging area

where it is processed and consolidated and thereafter loaded into the operational data

store (ODS). Once the ODS is refreshed, the current data is once more extracted into

the staging area and processed for the Data mart structure. Thereafter, the data from

the Data mart is extracted to the staging area, aggregated, summarised and loaded into

the Data Warehouse, from where it is made available to the end user for analysis.

5

Chapter 1 - Introduction

From the above, it is clear that a data warehouse is a unique system, as it follows a

unique development methodology and architecture. Object-oriented development, on

the other hand, proved successful in industry, owing to characteristics such as

reusability, polymorphism and inheritance. These characteristics provide great

advantages, such as a better controlled environment, more robust solutions and a

healthier financial outcome.

The study aims to investigate the applicability of object-oriented systems development

methodologies and their techniques in the development of data warehousing systems.

1.4. Problem statement

The problem statement is to investigate the applicability of object-oriented information

systems development methodologies and techniques in the development of data

warehouses.

1.5. Methodology

Before focusing on the object-oriented data warehouse development objective, the key

concepts of ISDMs need to be investigated and more specifically, the components of a

methodology identified. Thereafter, an investigation into the object-oriented

development approaches, as well as the approaches to a built data warehouse should

be carried out. To compare methodologies and link data warehouse approaches to

ISDMs, a proposed framework should be established, livari et al. (1999) proposes such

a framework.

The study aims to understand data warehouse development methodologies and object-

oriented development methodologies, in order to apply general object-oriented concepts

in data warehouse development methodologies. Therefore the study will follow the

action research approach illustrated in Figure 1-1.

6

Chapter 1 - Introduction

Figure 1-1 The Action Research Cycle (Baskerville, 1999:14)

This study will follow a qualitative research approach with an interpretive philosophy as

the research methodology and secondly, follow action research as the research method

Information systems (IS) prototypes will be conducted in the form of an interpretive

experiment by developing a data warehouse using an object-oriented approach. It will

follow the development lifecycle of an object-oriented approach. The outcome of the

case study should be to provide detailed information on components and concepts of

0 0 successfully applied to the development of a data warehouse, as well as

components and concepts not suited to this. This should also provide the possible

advantages of developing a data warehouse in 0 0 fashion, as well as the

disadvantages of using such methodology.

1.6. Limitations of the study

The present-day data warehouse industry follows several approaches in data

warehouse development. However, Sen and Sinha (2005) discovered that the

approaches of Inmon (1996) and Kimball er al. (1998) are widely recognised in the

development of data warehouses. Therefore, this study will concentrate on these data

warehouse development approaches only. On the subject of object-oriented methods

the study will focus on Object-Oriented Analysis (OOA), Object-Oriented Software

Process (OOSP), Rational Unified Process (RUP) and Object Modelling Technique

(OMT).

7

Chapter 1 - Introduction

1.7. Provisional chapter allocation

Chapter 1 serves as an introduction to the study.

Chapter 2 provides a detailed discussion on the research methodology used in the

context of information systems research.

Chapter 3 reports on a literature study covering information systems development

methodologies. It focuses primarily on the components of systems development

methodologies, such as philosophy, methodology, methods and techniques. Attention is

given to a proposed classification system for information systems development

methodologies.

Chapter 4 reports on literature relevant to object-oriented information systems

development methodology. The focus of this chapter is on defining the components of

object-oriented development, as well as reporting on most commonly used object-

oriented methods.

Chapter 5 covers a literature study on data warehousing and reports on common

development approaches used in data warehousing development.

Chapter 6 describes how to build data warehouses using object-oriented concepts and

also serves as the research plan of the study.

Chapter 7 describes the implementation of the data warehouse as an interpretive

experiment and serves as the action taking phase of the study.

Chapter 8 reports on the findings of the experiment and serves as the evaluation and

specified learning of the study.

8

Chapter 2 - Research methodology

Chapter 2 - Research methodology

2.1. Introduction

The purpose of this chapter is to focus attention on the research methodology used in

the study. It explains the commonly available research methodologies, as well as the

reasons why the specific research methodology will be followed.

2.2. Overview of quantitative and qualitative research

Leedy and Ormond (2005:94) define quantitative research as an approach identifying

relationships among measured variables with the purpose of explaining, predicting and

controlling the phenomena.

In contrast, qualitative research is an approach that identifies the complex nature of a

phenomenon with the purpose to describe or understand the phenomena from the

participant's point of view.

Myers (1997:241) states that the reasoning behind preferring qualitative research over

quantitative research is that qualitative methods are designed to help researchers

understand people and the social and cultural contexts within which they live.

Kaplan and Maxwell (1994) also argue that the goal of understanding a phenomenon

from the point of view of the participant and his/hers particular social and institutional

context, is largely lost when textual data is quantified. Due to this reasoning, the study

will follow a qualitative approach.

9

Chapter 2 - Research methodology

2.3. Philosophical perspectives

Myers (1997) argues that qualitative research consists of

philosophical epistemologies, illustrated in Figure 2-1.

three subordinate

Qualitative Research

influences/guides

Underlying
epi stern ology Positivist Interpretive Critical

Figure 2-1 Underlying epistemology of qualitative research (Myers, 1997)

The underling philosophical epistemologies are:

• Positivist - This is stated to be when an attempt is made to test a theory.

Orlikowski and Baroudi (1991:5) classify research as positivist if there was

evidence of formal propositions, quantifiable measures of variables, hypothesis

testing and the drawing of inferences about a phenomenon from the sample to a

stated population.

• Interpretive - This is stated to be when an attempt is made to understand

phenomena through the meaning people assign to them. Walsham (1993:4)

defines interpretive research in information systems as "aimed at producing an

understanding of the context on the information system, and the process

whereby the information system influences and is influenced by the context".

Klein and Myers (1999:72) suggest a set of principles for the conduct and

evaluation of interpretive research, these being:

o The fundamental principle of the hermeneutic circle.

o The principle of contextualisation.

o The principle of interaction between the researchers and the subjects.

o The principle of abstraction and generalisation.

10

Chapter 2 - Research methodology

o The principle of dialogical reasoning.

o The principle of multiple interpretation.

o The principle of suspicion.

• Critical - This is stated to be when an attempt is made to criticise a theory, in

which the restrictive and alienating conditions of the status quo are brought to

light. Harvey (1990:19) identifies the following shared elements in different critical

methods: abstraction, totality, essence, praxis, ideology, structure, history, and

deconstruction and reconstruction.

2.4. Qualitative research methods

Myers (1997) identifies four methods used when qualitative research is conducted.

These are:

• Action research - This method is defined by Rapoport (1970:499) as a method

that "aims to contribute both to the practical concerns of people in an immediate

problematic situation and to the goals of social science by joint collaboration

within a mutually acceptable ethical framework". As participative change is key to

action research, it is often viewed as belonging to the critical social theory

paradigm.

• Case study - This method describes a unit of analysis or a research method. A

case study is an empirical inquiry that investigates a phenomenon within a real

life context where the boundaries between phenomenon and context are not

clear. Case study research methods are particularly well suited to IS research, as

the focus is on information systems within the organisation.

• Ethnography - In this method, one is required to spend a significant amount of

time in the field in order to study the phenomenon in its social and cultural

context.

• Grounded theory - In this method, it is sought to develop theory that is grounded

in data which is systematically gathered and analysed. Martin and Turner (1986)

11

Chapter 2 - Research methodology

define this as "an inductive, theory discovery methodology that allows the

researcher to develop a theoretical account of the general features of a topic

while simultaneously grounding the account in empirical observations or data."

According to Myers (1997), the major difference between grounded theory and

other methods is that its specific approach to the development suggests a

continuous interplay between data collection and analysis.

Owing to the experimental nature of the study, it is recommended to use action

research as a method for qualitative research.

2.5. Action research

Baskerville (1999:6) defines action research as a two step process:

• Diagnostic stage - defined as a collaborative analysis of the social situation by

the researcher and the subjects of the research. During this stage, theories are

formulated.

• Therapeutic stage - defined as a collaborative change experiment. The changes

are introduced and the causes studied.

The following discussion is based on Baskerville (1999) and explains the approach to

action research.

Most common action research approaches require a research environment and consist

of a five phase cyclical process. Figure 2-2 shows the five respective processes.

12

Chapter 2 - Research methodology

J Diagnosing)

Specifying^ ^ A c t i o n
Learning) \^ Planning

^ Evaluating) (Action Taking \r

Figure 2-2 The Action Research Cycle (Baskerville, 1999:14)

The five processes are:

Diagnosing - is the process of identifying the primary reasons why change is necessary

in the organisation. It involves self interpretation of the problem and should be done in a

holistic fashion and not through reduction and simplification. The diagnosis should

develop certain theoretical assumptions about the problem domain.

Action Planning - involves the researchers and practitioners to collaborate and produce

actions that should relieve or improve the problems identified. A plan containing the

necessary actions is created and executed by means of a theoretical framework. The

plan should establish the target and approach for change.

Action Taking - implements the action plan. This causes changes in the organisation.

Evaluating - the outcomes of the plan implemented is evaluated. The evaluation

determines whether the theoretical effects were realised and whether the problems

identified are relieved or not. If the changes implemented were successful, it must be

determined whether the changes were the sole cause of the success. If the changes

implemented were unsuccessful, a framework for the next iteration should be

established.

13

Chapter 2 - Research methodology

Specifying learning - is the knowledge gained from the research and may stem from the

following sources:

• "Double-loop learning" - the knowledge gained from the restructuring of

organisational norms to reflect new knowledge gained by the organisation during

the research.

• If unsuccessful, the additional knowledge may provide a further foundation for

diagnosis in preparation of further action research.

• The theoretical framework providing important knowledge for dealing with future

research settings.

The action research cycle can continue irrespective of whether the action is successful

or not.

Baskerville (1999:11) further explains that the ideal conditions for executing action

research are:

• Settings where the researcher is actively involved, with the expectation of both

the researcher and organisation benefiting

• Settings where knowledge obtained can be applied immediately

• Settings where research is a process of linking theory and practice

All the above conditions are applicable to the researchers study.

2.6. Research considerations for this study

The study aims to understand data warehouse development methodologies and object-

oriented development methodologies, in order to apply common object-oriented

concepts in data warehouse development methodologies.

Action research from a qualitative perspective will be used as research methodology.

14

Chapter 2 - Research methodology

As action research is applied, the study will follow the following research plan:

• Literature studies on systems development methodologies, object-oriented

methodologies and data warehouse development methodologies

• Development and implementation of a data warehouse methodology

incorporating object-oriented concepts and techniques

• Evaluation of the implemented data warehouse to determine whether the theory

is a success

2.7. Summary

This chapter describes the type of research methodologies available. It starts with the

difference between qualitative and quantitative research. The different types of

philosophies found in qualitative research are positivist, interpretive and critical.

The qualitative research methods available are action research, case study,

ethnography and grounded theory. Action research is discussed in more detail, as this

is the preferred method for the researcher, while research considerations for this study

are also covered.

15

Chapter 3 - Systems development methodologies

Chapter 3 - Systems development methodologies

3.1. Introduction

This chapter introduces systems development methodologies. The main objective is to

explain what is meant by a methodology and its components.

Methodologies do not have a universal definition, and this matter is regularly discussed

by the information systems community (Avison & Fitzgerald, 2003:527).

Avison and Fitzgerald (2003:528) suggest that a methodology comprises of a number of

components that specifies:

• How the project is broken down into stages.

• What tasks are to be carried out at each stage.

• What outputs are to be produced.

• When and under what circumstances, methodologies are to be carried

out.

• What constraints are to be applied.

• Which people should be managed and controlled.

• What support tools may be utilised.

The authors also state that a methodology addresses the critical issue of a 'philosophy'.

It is argued that this 'philosophy' gives methodology underlying theories and

assumptions that shape the development of the methodologies. It gives a methodology

unwritten aspects and beliefs that make the methodology effective in information

systems development (ISD).

Huisman and livari (2003:1014) define a methodology as a combination of the following:

• A systems development approach(es):

16

Chapter 3 - Systems development methodologies

This represents the philosophical view on which the methodology is built. It is

the set of goals, guiding principles and beliefs, fundamental concepts and

principles of the systems development process that drives interpretations and

actions in systems development.

• A systems development process model(s):

A process model as a representation of the sequences of stages through which

a system evolves.

• A systems development method(s):

A method is a systematic approach to conducting at least one complete phase

of systems development, consisting of a set of guidelines, activities, techniques

and tools, based on a particular philosophy of systems development and the

target system.

• A systems development technique(s):

Systems development techniques can be defined as a procedure, possibly with

a prescribed notation, to perform a development activity.

Further study will be based on the definition of a methodology by Huisman and livari

(2003). Components of the methodology will be dealt with in the following sections.

3.2. Systems development approach

According to (livari et a/., 2000:181), an information systems development approach

(ISDA) is a class of methodologies which shares the fundamental concepts and

principles for information systems development. On a more specific note, they define an

ISDA as a set of related features that drives interpretation and action in information

systems development (ISD). As previously discussed, an ISDA is a set of features:

Goals, guiding principles and beliefs, fundamental concepts and principles for the ISD

process. This can be described as follows:

• Goal - specifies the general purpose of the ISDA.

17

Chapter 3 - Systems development methodologies

Guiding principles and beliefs - form the common philosophy of the ISDA, which

ensures that its information systems development methodology (ISDM) instances

form coherent wholes.

Fundamental concepts - largely define the nature of an information system (IS)

implicit in the approach; the focus and unit of analysis in ISD.

Principles for the ISD process - express the essential aspects of the ISD process

in the ISDA.

Table 3-1 illustrates the feature of different ISDAs (livari etal., 1999:4)
Structured Approach Information Socio- technical Object-Oriented SSM Approach

Modelling Approach Approach

Goals To provide an To provide an To provide an To provide an To provide a

approach that helps to approach for approach for ISD approach which learning

produce high quality enterprise-wide that enables future helps to ensure that methodology to

(reliable and development of users to play a the products are support debate on

maintainable) software information systems major part in the delivered to the user desirable and

in a productive way (databases) which design of the on time and within feasible changes.

enables co­ system. To cater budget, that the

ordinated for job satisfaction products meet user

development of objectives in requirements, that

integrated addition to more user requests to

application systems technical and modify the system

and their long-term operational and/or fix bugs are

evolution objectives, and to

ensure that the

new technical

systems is

surrounded by a

compatible well-

functioning

organisational

system.

responded to in a

timely fashion, that

increasingly

sophisticated

products are offered

so as to keep a

competitive edge,

that the changes in

standards and

delivery technology

are kept up and that

the project team

feels motivated and

successful.

Table 3-1 Summaries of the five IS development approaches (livari etal., 1999:4)

•

•

■

18

Chapter 3 - Systems development methodologies

Structured Approach Information

Modelling

Socio- technical

Approach

Object-Oriented

Approach

SSM Approach

Guiding

principles

andb

eliefs

Separation of the

essential model from

the implementation

model; Careful

documentation to make

the development

process visible;

Graphical notations;

Top-down partition

able transformations /

process models to hide

complexity;

Unambiguous,

minimally redundant

graphic specification;

Balancing of models;

Design modules with

high cohesion and

weak coupling

Data for a stable

basis for information

systems. Separation

of conceptual and

internal schemas.

The conceptual

schema forms the

core model for an

information system.

Applications are built

on top of the

conceptual schema.

IS development

should be based on

an engineering

rigorous

methodology.

Self-design of a

work system;

Minimal critical

specification;

Open-ended

design process; Fit

between the social

and technical sub

systems; Joint

optimisation;

Redundant

functions.

Seamless analysis,

design and

implementation;

Encapsulation;

Information

(implementation)

hiding.

User of notional

system modules

called 'human

activity systems' to

illuminate different

Weltanschauunge

n which may be

applied to any

social system; An

information system

is a system to

support the truly

relevant human

activity system.

Fund­

amental

con-cepts

Essential model vs.

Implementation model;

Transformation; Data

flow; Data store;

Terminator; Module;

Cohesion; Coupling.

Universe of

discourse.

Information

database;

Conceptual schema;

External schema;

Entity Relationship;

Attribute

Technical

systems; Social

systems;

Variance; Unit

operation;

Technical needs;

Social needs Gob

satisfaction)

Problem domain vs.

Implementation

domain; Object and

class;

Encapsulation;

Information hiding;

Inheritance;

Polymorphism;

Communication

between objects

Weltanschauung;

Human Activity

Systems; Root

definition;

Relevant system.

Princi­

ples for

the ISD

process

A step by step process

at the detailed level of

analysis and design

activities. Situation

dependent at the

"strategic level"

(waterfall or concurrent

prototyping)

Incremental

conceptual schema

design; View

integration.

User participation;

Socio- technical

design; Evolution.

Iterative and

incremental

development; Re­

use

Stream of cultural

analysis; Stream

of logic-based

analysis.

Table 3-2 (Continued) Summaries of the five IS development approaches (livari etal., 1999:4)

19

Chapter 3 - Systems development methodologies

To illustrate what is meant by the statement "an ISDA is a class of methodologies

sharing fundamental concepts and principles", one can for instance examine the goals,

guiding principles and beliefs, fundamental concepts and principles of object-oriented

methodologies.

From the table above, the following features of an Object-Oriented Approach can be

derived:

• The goal - To provide an approach which helps to ensure that products are

delivered to the user on time and within budget, that the products meet user

requirements, that user requests to modify the system and/or fix bugs are

responded to in a timely fashion, that increasingly sophisticated products are

offered so as to keep a competitive edge, that changes in standards and delivery

technology are kept up and that the project team feels motivated and successful.

• Guiding principles - Seamless analysis, design and implementation;

Encapsulation; Information (implementation) hiding.

• Fundamental concepts - Problem domain vs Implementation domain; Object and

class; Encapsulation; Information hiding; Inheritance; Polymorphism;

Communication between objects

• Principles for the ISD process - Iterative and incremental development; Re-use

Object-oriented analysis and design (OOAD) (Coad & Yourdon, 1991), Object Modelling

Technique (OMT) (Rumbaugh et al., 1991) and Rational Unified Process (RUP)

(Jacobson et al., 2001) essentially share the same attributes in terms of the goal,

guiding principles, fundamental concepts and principles of the ISD process. These

methodologies can be classified as methodologies based on the object-oriented

approach.

livari et al. (1998:166) argues that ISDA may exist without any (methodology) instances

and that it may serve as a template for deriving concrete ISDM instances.

20

Chapter 3 - Systems development methodologies

3.3. Systems development process model

A software process model is a process of the sequence of stages through which a

software product developed (Wynekoop & Russo, 1993:182). An example of this is

illustrated in the system development life cycle (SDLC). The SDLC has many variants

but follows the following basic structure and is executed in a sequential order (Avison &

Fitzgerald, 2003:27):

• Feasibility study - This stage examines the present system and its

intended requirements, the problems facing these requirements, new

requirements and the investigation of alternatives.

• Systems investigation - This stage represents a fact finding mission. The

following are examined: Functional requirements of the existing system

and whether these requirements are being met. Requirements of the new

system, constraints, exceptions and problems with the current working

method. These facts are obtained through means of observation,

interviews, questionnaires, searching of records and documentation and

sampling.

• Systems analysis - Once the above facts are obtained, the analyst asks

questions such as:

■ Why do these problems exist?

■ Why were certain methods of work adopted?

■ Are there alternative methods?

■ What are the likely growth rates of data?

• Systems design - This stage involves the design of both the computer and

manual parts of the system.

• Implementation - In this phase the following aspects are addressed:

quality control, education and training, documentation, such as operation

and user manuals, and security. All of these need to be in place before

implementation of the new system is allowed.

21

Chapter 3 - Systems development methodologies

• Review and maintenance - This is done while the system is operational.

The system is being evaluated for improvements on the current system.

Another example of a process model is the incremental approach (Avison & Fitzgerald,

2003:85). The first implementation is not seen as the main objective, but forms part of

the continuing evolution and improvement of the original requirements.

Each iteration consists of a requirements-, analysis-, design- and implementation

phase, all of which are repeated. The second iteration evolves iteration one and

integrates it into the requirements of iteration two. The third iteration may reflect

changes such as government imposed rules and mandatory changes. This iteration

should result in a large portion of the requirements to be fulfilled. Figure 3-1 is a

representation of the evolutionary development.

Iteration 1

y S s
I Learning
; Experience

Iteration 2
I Learning
; Experience ~7 S </ S
I Learning
; Experience

Iteration 3

I Learning
; Experience

/ X s y
—>

100

l l
O d) -o
0 £ 0)

Figure 3-1 Evolutionary development (Avison & Fitzgerald, 2003:86)

According to Avison and Fitzgerald (2003:87) the spiral approach is a further attempt to

combine the SDLC with the evolutionary process. Figure 3-2 illustrates the spiral

process. The model adopts the concept of a series of incremental developments or

Iteration 2

Iteration 1 1

22

Chapter 3 - Systems development methodologies

releases. The development spirals outwards from the centre in a clockwise direction

with each cycle of the spiral resulting in successive refinements of the system. The main

activities in the spiral are planning (bottom left quadrant), determination of objectives

(top left quadrant), risk analysis (top right quadrant) and development (bottom right

quadrant). The model includes a risk phase to easily detect potential problems early in

the process, before development is started.

Figure 3-2 Boehm's spiral model (Avison & Fitzgerald, 2003:88)

3.4. Information systems development method

According to Wynekoop and Russo (1993:182) a method is a systematic approach to

conducting at least one complete phase of systems development.

23

Chapter 3 - Systems development methodologies

Typical examples of such phases are the design and testing of software, consisting of a

set of guidelines, activities, techniques and tools of systems development pertaining to

the target system.

From the above definition, one can derive that a method consists of a process model

such as the SDLC, or an incremental or spiral process and, secondly, a set of tools and

techniques. Examples of these are Object-Oriented Analysis and Design (method) and

Soft Systems Methodology (method).

3.5. Systems development techniques

A systems development technique is a procedure with prescribed notation to perform a

development activity. Brinkkemper et al.(1996:276) states that commonly, notations are

referred to as techniques, but as in electrical engineering, there are standardised

notations for transistors, resistors and the like. The application of these must follow a

specific design of some structured plan. The same applies to software development. A

technique relates to the type of development it supports.

As seen in Avison and Fitzgerald (2003:353), techniques are not necessarily unique in

sets of methodologies, but can be shared across different methodologies, for example

dataflow diagrams that are used in STRADIS and YSM. Another example is the use

case technique that is used in Object-Oriented Analysis and Design (OOAD) and in

Rational Unified Process (RUP) (Avison & Fitzgerald, 2003:413).

livari et al. (2000:180) argues that in order to cope with the confusion created by the

proliferation of ISDMs, it is desirable to construct an organising structure that reduces

the complexity of the myriad of ISDMs. This construct, the so-called dynamic

classification framework, is discussed in a series of papers (livari et al., 1998, 1999 and

2000).

24

Chapter 3 - Systems development methodologies

3.6. Dynamic classification framework for classifying ISDM

The dynamic framework for classifying information systems development methodologies

is illustrated in Figure 3-3 (livari et al.,2000).

Figure 3-3 The dynamic classification framework (livari ef a/., 2000:189)

25

Chapter 3 - Systems development methodologies

This is a four tiered framework that concentrates on paradigmatic analysis rather than

doing an analysis on the methodology level. It is stated that one should think of an

ISDM as merely one instantiation of a more general abstract class, and that this class

has the basic features that are inherited by all the ISDMs belonging to it. livari ef al.

(2000:181) argues that on the top level of the framework, one should find a set of

philosophical (paradigmatic) assumptions and beliefs underlying every ISDA and ISDM.

This makes it possible to group ISDM into paradigmatic positions.

It is also argued that there is a critical difference between Burrell and Morgan's (1979)

and Kuhn's (1970) use of a paradigm. Kuhn uses it to describe the historical

developments of natural science, whereas Burrell and Morgan use it to describe social

sciences (livari ef al., 1998:171). The difference is that social sciences capture the basic

assumptions of coexistent theories, whereas natural sciences capture the assumptions

of historically successive theories. Information Systems (IS) research is more similar to

social sciences than it is to natural sciences, and to differentiate livari et al. (1998:172)

named it IS science. This indicates its paradigmatic status as an academic discipline

rather like social sciences than natural sciences. It is also argued that IS science

concentrates on three levels of analysis, namely individuals, organisations and society.

According to livari et al. (1998:172) the paradigmatic assumptions can be divided into

four groups, namely:

• Ontology - This is assumed to be the nature of IS. It is proposed that the

ontology of IS research is concerned with information and data, information

systems, human beings in their different roles of IS development, the use of IS

technology in the organisation, as well as the society. From this, one can infer

what is to be the ontology assumption, livari et al. (1998:172) states that there

are two types of ontology views, namely realism and idealism. Realism looks

upon data as describing facts, information systems as consisting of technological

structures, human beings as subject to casual laws and organisations as

26

Chapter 3 - Systems development methodologies

relatively stable structures. Idealism sees data as socially constructed meanings

that signify intentions, information systems as a form of social systems realising

human intentions, human beings as voluntaristic systems with consciousness

and free will, technology as flexible structures subject to social and human choice

and organisations as interaction systems or socially constructed systems.

• Epistemology - This is what human knowledge entails and how it can be

acquired. There are two contrasting elements in epistemology according to

Burrell and Morgan (1979), namely positivism and antipositivism. Positivism

seeks to "explain and predict what happens in the social world by searching for

regularities, casual relationships between its constituent elements". On the other

hand, antipositivism "can only be understood from the point of view of the

individuals who are directly involved in the activities which are to be studied.

Antipositivism rejects the standpoint of the 'observer', which characterises

positivist epistemology as a valid vantage point for understanding human

activities. They maintain that one can only 'understand' by occupying the frame

of reference of the participant in action. One has to understand from the inside

rather than the outside" (livari et a/., 1999:5). Thus, according to livari et al.

(1998:174), positivism views are scientific knowledge that consists of regularities,

casual laws and explanations, whereas antipositivism emphasises human

interpretation and understanding as constituents of scientific knowledge.

• Research methodology - livari et al. (1998:174) uses research methodologies in

a context that refers to procedures used to acquire knowledge about ISDAs and

related ISDMs methods and tools. The knowledge they refer to, is in the context

of ISDAs consisting of rules and principles needed to elaborate and refine the

ISDA. livari et al. (1998:175) divides research methods into three types, the first

being constructive methods. This research method is concerned with the

engineering of artefacts which may be purely conceptual artefacts, or more

technical artefacts with a physical realisation. This method is highly emphasised

in the IS- and computer science by March and Smith (1995), because it does not

27

Chapter 3 - Systems development methodologies

describe existing reality, but rather create new ones. The second type is

nomothetic methods. This includes format mathematical analysis, experimental

methods and non experimental methods, such as surveys and field studies. The

last type is idiographic methods where case studies and action research place

"considerable stress upon getting close to one's subject and exploring its detailed

background and life history (Burrell & Morgan, 1979:6)

• Ethics of research - This refers to the assumptions about the responsibility of the

researcher for the consequences of his/her research approach and its results.

livari et al. (1998:175) focuses on IS science as an applied discipline and IS as a

practice. It distinguishes between two interrelated aspects; the role of IS as an

academic discipline and the value of IS research. Three potential roles for IS

science is identified: means-end oriented, interpretive and critical. In the first

case, it is stated that the scientist aims at providing knowledge about means for

achieving given goals, this without questioning the legitimacy of the goals. In the

second case, the aim of an "interpretive scientist is to enrich peoples

understanding of their action," "how social order is produced and reproduced"

(Chua, 1986:615). Lastly, the critical scientist insists that research has "a critical

imperative: the identification and removal of domination and ideological practice".

livari et al. (1998:175) also states that when considering the value of IS research,

one has to analyse whose and which values dominate the IS research, with the

understanding that research may openly or latently serve the interests of

particular groups. These groups could be top management, IS professionals, IS

users and stakeholders.

The second level of the framework depicts the ISD approaches (ISDAs). livari et al.

(2000:186) defines an ISDA as "a class of specific ISDMs that share a number of

common features". The features of an ISDA are the following:

• Goals - specify the general purpose of the ISDA.

28

Chapter 3 - Systems development methodologies

• Guiding principles and beliefs - form the common philosophy of the ISDA that

ensures that its ISDM instances form coherent wholes.

• Fundamental concepts - define the nature of an IS implicit in the approach, this

is the focus and unit of analysis in the ISD.

• Principles for the ISD process - express the essential aspects of the ISD process

in the ISDA.

The third level of the framework represents the ISD methodologies (ISDM). From the

framework two features are evident, one of which is the detailed ISD process. The

definition of livari et a/. (2000:186) fits this description. The definition defines an ISDM

as "a codified set of goal-oriented procedures that guide the work and co-operation of

the various parties (stakeholders) involved in the building of an IS application. These

procedures are usually supported by a set of preferred techniques and tools, and

guiding principles".

The second feature is the relationship between techniques, livari et a/. (2000:186)

explains it as a sequence of elementary operations that more or less guarantee the

achievement of certain outcomes if executed correctly.

ISDMs share the specific goals, guiding principles, fundamental concepts and principles

of their respective approach (ISDA) (livari etal. 2000:188).

The last tier of the framework concentrates on the ISD techniques. As explained above,

these are the techniques used in the ISDM. They are also seen as the lowest level of

the framework.

The title of the study, "The use of object-oriented systems development methodologies

in data warehouse development", suggests that object-oriented development

methodologies will be used. From the framework follows that one of the four products of

29

Chapter 3 - Systems development methodologies

the first tier (ISD paradigms) is functionalism and that one of the approaches in the

functionalism paradigm is the object-oriented approach. Departing from here, the object-

oriented approach and methodologies falling within it will be discussed in the next

chapter.

3.7. Summary

This chapter introduced systems development methodologies. Information systems

development methodologies were defined as a combination of systems development

approaches (ISDA), systems development process models, systems development

methods (ISDM) and systems development techniques.

The framework introduces the components of different methodologies. From the ISD

paradigms tier, it is clear that the functionalism paradigm is one of the four paradigms

illustrated. The object-oriented approach is part of this paradigm and the object-oriented

methodologies part of the object-oriented approach.

In the following chapter, the object-oriented approach, as well as the methodologies

falling within this approach, will be discussed. The chapter also compares the different

object-oriented methodologies in an attempt to find a general use of object-oriented

methodologies. This in turn will be used to map the object-oriented methodology to the

different data warehouse development methodologies.

30

Chapter 4 - Object Orient Approach

Chapter 4 - Object-Oriented Approach

4.1. Introduction
The purpose of this chapter is to focus attention on object-oriented (00) approaches

and methodologies. The chapter will start with a discussion on the 0 0 approach.

The previous chapter introduced the features of systems development methodologies,

as well as a framework for classifying methodologies. From the dynamic classification

framework, it was determined that 0 0 development is an approach to which 0 0

methodologies belong. A literature study found that the Object-Oriented Analysis

(OOA), Object-Oriented Software Process (OOSP), Rational Unified Process (RUP) and

Object Modelling Technique (OMT) are popular 0 0 methodologies. This chapter will

therefore focus on these methodologies. The chapter also includes a comparison of

these methodologies to find commonalities.

4.2. The object-oriented (00) approach
The discussion is based on the lay-out of the dynamic classification framework (livari et

a/., 2000) discussed in the previous chapter. The aspects of the methodology that will

be discussed are the following:

• Definition and goal of the 0 0 approach.

• The guiding principles and beliefs.

• Fundamental concepts.

• Principles of the ISD process.

4.2.1. Definition and goal of the 0 0 approach

The goals of the 0 0 approach are described by livari et al. (1999:4) as an approach

which helps to ensure that

• products are delivered to the user on time and within budget.

• products meet user requirements.

31

Chapter 4 - Object Orient Approach

• increasingly sophisticated products are offered to keep a competitive edge.

• the changes in standards and delivery technology are kept up.

• the project team feels motivated and successful.

4.2.2. Guiding principles and beliefs

The key points that livari et al. (1999:4) provides under guiding principles and beliefs

are seamless analysis, design and implementation.

Avison and Fitzgerald (2003:247) explain that in 0 0 one makes use of the unified

modelling language (UML) to achieve this seamless analysis, design and

implementation. UML is a set of rules and semantics that is used to specify the structure

and logic of a system.

Booch ef al. (2001:94) defines two categories for UML diagrams.

The first category is structural diagrams comprising the following:

• Class diagram - illustrates a set of classes, interfaces and collaborations and

their relationships.

• Object diagram - illustrates a set of objects and their relationships. This serves to

illustrate the data structures and static snapshots of instances of the objects

found in class diagrams.

• Component diagram - illustrates a set of components and their relationships.

This is used to illustrate the static implementation view of a system.

• Deployment diagram - illustrates a set of nodes and their relationships. It is used

to illustrate the static deployment view of the architecture.

The second category of diagrams is dynamic behaviour diagrams. (Booch ef al.,

2001:97). These are:

32

Chapter 4 - Object Orient Approach

• Use case diagram - illustrates a set of use cases and actors and their

relationships. This is used to illustrate the static view of a system. It is also used

to organise and model behaviours of a system.

• Sequence diagram - an interaction diagram that emphasises the time ordering of

messages. It shows a set of objects and the messages sent and received by

these objects. This is used to illustrate the dynamic view of a system.

• Collaboration diagram - an interaction diagram that emphasises the structural

organisation of the objects that send and receive messages. A collaboration

diagram illustrates a set of objects, links among these objects and messages

send and received by these objects.

• State chart diagram - illustrates a state machine, consisting of states, transitions,

events and activities. State chart diagrams emphasise the event ordered

behaviour of an object.

• Activity diagram - illustrates the flow from activity to activity within a system. An

activity illustrates a set of activities, the sequential flow from activity to activity, as

well as the object that acts and is acted upon. Activity diagrams are important for

modelling the function of a system.

4.2.3. Fundamental Concepts

livari et al. (1999:4) identifies the following concepts as part of the 0 0 approach:

• Problem domain vs. implementation domain - Ambler (2001:208) explains this as

the problem space vs. solution space. Conceptual models are used to depict the

detailed understanding of the problem space of the system. During the design,

these conceptual models are evolved and furthered into classes that address the

solution space and the problem space.

• Object and class - Booch (1994:83) defines an object as an entity that has a

state, behaviour and identity. The structure and behaviour of similar objects are

defined in their common class; the terms instance and object are

interchangeable.

33

Chapter 4 - Object Orient Approach

• Encapsulation information hiding - Booch (1994:50) defines encapsulation as the

process of compartmentalising the elements of an abstraction that constitute its

structure and behaviour; encapsulation serves to separate the contractual

interface and an abstraction and its implementation.

• Inheritance - Ambler (2001:95) states that inheritance is a representation of an

"is a", "is like" or "is kind o f relationship between classes. Avison and Fitzgerald

(2003:243) argue that inheritance implies that the relationship is such that the

hierarchy goes from classes of a general type down to classes of a more specific

type.

• Polymorphism - Ambler (2001:173) explains that polymorphism enables objects

to collaborate with other objects without knowing their type in advance.

• Communication between objects - (Ambler, 2001:161) Communication between

objects is achieved by means of messaging; a message from one object to

another object can be a request for information, or to execute a task.

4.2.4. Principles of the ISD Process

livari et al. (1999:4) states that the OO approach is iterative and incremental in its

development process.

Ambler (2001:432) concurs with these principles by explaining that the waterfall

approach does not truly reflect how software is developed and that a spiral approach is

more realistic. The reason for this is that the spiral approach promotes iterative and

incremental development. This allows development to be more suitable for changing

business environments and getting portions of the development out quicker. The

biggest disadvantage (Ambler, 2001:435) of iterative development is that it complicates

the process of defining deadlines.

A second principle stated by livari et al. (1999:4) is re-use. This principle is found in

concepts such as inheritance (Avison & Fitzgerald, 2003:247) and polymorphism. Once

34

Chapter 4 - Object Orient Approach

a class is created, it can be re-used time and again, thus avoiding 'reinventing the

wheel' (Avison & Fitzgerald, 2003:146).

4.3. The applicability of the OO methodology

Ambler (2001:450) highlights the following system environments as an indication of

when one should use OO development:

• Complex systems - it is argued that the easiest way to deal with complexity is to

break it down into smaller components, and then deal with each component in

turn. The OO paradigm is based on the concept of defining systems based on a

collection of interacting objects. This strategy enables one to break down a

complex system into smaller components.

• Systems that are prone to change - When the system is in its development

stage, it is prone to change. It is argued that OO development leads to systems

that are extensible.

• Systems with graphical user interface (GUI).

• Systems that are based on the client/server model.

• Systems that are integrated - With OO techniques one is able to develop

wrappers around non-object technology. In OO style, this can be integrated with

the organisation's overall system.

Not all system environments are favourable for OO approach Ambler (2001:451)

advises against OO development for the following system environments:

• Systems for which structured techniques are ideal - It is argued that these

systems are specifically built to fulfil a certain role.

• Systems which cannot use OO throughout the entire development lifecycle.

Avison Fitzgerald (2003:247) points out that OO has the following advantages:

• It leads to a controlled environment due to concepts such as inheritance.

35

Chapter 4 - Object Orient Approach

• The organisation develops a library of object classes that deals with all the basic

activities the organisation undertakes.

• Classes get tested thoroughly in the component development phase and

therefore provide immediate industrial-strength applications.

• 0 0 techniques are robust, error-free, quicker and cheaper.

4.4. The OO methodologies

There are numerous methodologies available, and it is not practical to discuss all of

them. A literature study showed that the following 0 0 methodologies are popular:

• Object-Oriented Analysis (OOA) (Coad & Yourdon, 1991).

• Object-Oriented Software Process (OOSP) (Ambler, 2001).

• Rational Unified Process (RUP) (Jacobson etal., 1991).

• Object Modelling Techniques (OMT) (Rumbaugh eta/., 1991).

The following discussion will focus on the methodologies highlighted above.

4.4.1. Object-Oriented Analysis (OOA)

Coad and Yourdon (1991) are the original authors of the OOA methodology. The

methodology was created before the unified modelling language (UML) existed and

uses its own notation to describe objects and classes. This discussion will follow the

original notation.

Coad and Yourdon (1991:178) define OOA as a method of analysis that identifies and

defines the classes and objects found in the vocabulary of the problem domain.

The methodology consists of the following activities (Coad & Yourdon, 1991:34):

• Finding classes and objects.

• Identifying structures.

• Identifying subjects.

36

Chapter 4 - Object Orient Approach

• Defining attributes.

• Defining services.

It is further explained that these steps should not be used as sequential steps, but

regarded as the common overall approach. These activities, as discussed below, should

be used iteratively.

4.4.1.1. Finding class and object

Booch (1994) expanded on the concepts of Coad and Yourdon (1991) for finding

classes and objects. Booch (1994:155) explains three different approaches to find

classes and objects, namely:

• classical approach.

• behaviour analysis.

• domain analysis.

The above approaches are discussed below:

Classical Approach

The classical approach is derived from principles of classical categorisation (Booch,

1994:155). Booch uses the work of Coad and Yourdon (1991) as an example of

providing a source for potential objects. These are:

• Structure - the "Is a" and "part of relationship.

• Other systems - an external system the application interacts with.

• Devices - devices the application interacts with.

• Event remembered - an historical event that must be recorded.

• Roles played - the different roles played in interacting with the system.

• Locations - the physical locations such as offices and sites important to the

application.

• Organisational units - groups to which users belong.

37

Chapter 4 - Object Orient Approach

Behaviour analysis

Behaviour analysis focuses on dynamic behaviour as the primary source of classes and

objects (Booch, 1994:156). This is the knowledge the object maintains and the actions it

performs.

The responsibilities of the object convey its purpose in the system. Classes are objects,

grouped according to common responsibilities; this also forms hierarchies of classes.

Domain analysis

Domain analysis seeks to identify classes and objects common to all applications within

the domain. Booch (1994:157) claims that domain analysis works well, except for

unique kinds of software.

Moore and Bailin (1988:2) suggest the following steps for domain analysis:

• "Construct a straw man generic model of the domain by consulting with domain

experts.

• Examine existing systems within the domain and present this understanding in a

common format.

• Identify similarities and differences between the systems by consulting with

domain experts.

• Refine the generic model to accommodate existing systems"

Booch (1994:158) explains that the domain expert can be the users of the system or

their manager, but this will ultimately be the individual who uses the vocabulary of the

problem domain.

4.4.1.2. Identifying structures

Coad and Yourdon (1991:79) define structure as an expression representing both the

problem domain and the system's responsibilities. The term "structure" is used as an

38

Chapter 4 - Object Orient Approach

overall term to describe both generalisation-specialisation, or "gen-spec"- and "whole-

part" structures.

The purpose of the structure is to focus on complexity of the problem and to uncover

additional classes and objects that might not have been discovered (Coad & Yourdon,

1991:80). The gen-spec structure reflects a hierarchy of classes.

Coad and Yourdon (1991:84) suggest that, on the lower level classes, one should

consider the following questions as a strategy for testing the gen-spec structure:

• Is it in the problem domain?

• Is it within the system responsibilities?

• Will there be inheritance?

• Will the specialisations meet the "what to consider and challenge" criteria?

The "whole-part" structure is hierarchies of objects indicating that one object is

composed of, or made up from a series of sub-objects.

Coad and Yourdon (1991:90) suggest that one should consider three types of whole-

part structures:

• The "assembly and it's constitute parts"-type, i.e. an organisation and its

departments.

• The "container and its contents"-type, i.e. a lecture hall and its seats.

• The "collection and its members"-type i.e. the football club and its players and

helpers.

The set of criteria for testing the whole-part structure is similar to the test used for the

gen-spec structure, with the exception that one does not test for inheritance in whole-

part structures.

39

Chapter 4 - Object Orient Approach

4.4.1.3. Identifying subject

Subjects are defined as a mechanism for guiding the reader (analyst, problem domain

expert, manager and client) through a large, complex mode. Subjects are also helpful

for organising work packages on larger projects, based upon initial OOA investigations

(Coad&Yourdon, 1991:106).

As explained by Avison and Fitzgerald (2000:420), this is a bottom-up process with a

top-down view. Grouping may be based on any criteria relevant to the area of concern;

this can involve traditional, functional decomposition, but could also be based on

problems or issues emerging from the problem domain.

One can use the example of a university problem domain. The subject layer can be

admissions, courses, examinations and appeals. Admissions can be classes concerning

applications, criteria, acceptance, references and payments.

4.4.1.4. Defining attributes

Coad and Yourdon (1991:119) define attributes as a form of data for which each object

in a class has its own value. Coad and Yourdon (1991:121) suggest that the following

steps be followed to identify attributes:

• Identify the attributes - Identify what the object in a class is responsible for

knowing the value.

• Position attributes - Position which best describes the attribute within the class

and object.

• Identify instance connections - This models the association between classes to

manage complexity.

• Check for special cases - Special cases such as the following, need to be

considered:

o Check the attribute for a value of "not applicable".

40

Chapter 4 - Object Orient Approach

o Check each class and attribute with just one attribute - should the class

be considered or not?

o Check each attribute for repeating values.

• Specify the attribute - Name the attribute according to the vocabulary used in the

problem domain and the system's responsibility domain. Add descriptions for

each attribute. Additional constraints will add to the description of the attribute.

4.4.1.5. Defining services

Coad and Yourdon (1991:143) explain that a service in an object is a specific behaviour

that an object is responsible for exhibiting. The strategy used by Coad and Yourdon

(1991:144), is to:

• Identify object states.

• Identify the requested services.

• Identify message connections.

• Specify the services.

• Put the OOA documentation set together.

OOA only focuses on the analysis phases of the solution and not on the design and

implementation phases (Coad & Yourdon, 1991:178).

4.4.2. Object-Oriented Software Process (OOSP)

Ambler (2001:27) describes the OOSP methodology as a collection of process patterns.

When brought together, these process patterns describe a complete process for

developing, maintaining and supporting software.

OOSP uses the concept that large-scale, mission-critical, software development is serial

in the large and iterative in the small. This leads to delivery of incremental releases of

software on time.

41

Chapter 4 - Object Orient Approach

Figure 4-1 is an overview of the interaction between techniques used in the OOSP

methodology.

USES interface
Row Diagram

Essential
User Interface

Prototype

; Nonfunctional
j Requirementt

Case Model £ _

— T -

i S

i I
i i

US

CRC Model £

i i

i i Class Model
(Analysis)

Component
Diagram

Activity
Diagram

2F
>-*v ">» >« MlS ■!«

Collaboration
Diagram

T T

Figure 4-1 The OOSP Methodology (Ambler, 2001:439)

OOSP starts off by gathering the user requirements (Ambler, 2001:27) for the system

and validating the requirements found (Ambler, 2001:110). This is shown in the left

block in Figure 4-1. The requirements are analysed (Ambler, 2001:182), as illustrated by

the middle block in Figure 4-1. The product of the analysis is then used for the design

phase (Ambler, 2001:250), as indicated in the upper right block in Figure 4-1. Finally,

the designs are implemented, as shown in the lower right block in Figure 4-1.

4.4.2.1. Gather requirements

The following discussion is based on Ambler (2001). The method starts with gathering

the requirements for the system to be developed. A so-called requirement modelling

team is put together. The team comprises subject matter experts (SME).

The SMEs are the individuals who are:

• Direct users of the system

• A customer / payer of the system

1

42

Chapter 4 - Object Orient Approach

• Affected by the output of the system

• Required to approve the system

• Required to support the system

The purpose of the SMEs is to provide the analyst with the necessary requirements.

Different techniques, such as interviewing or brainstorming, are used as gathering

techniques.

The activities used for gathering requirements, are:

• Essential use case modelling

• Essential user interface prototyping

• Domain modelling

These activities are discussed in the following section.

Essential Use Case Modelling

Jacobson et al. (2001:122) distinguishes between two types of use case models:

• Firstly, an essential business, or abstract use case model. This is a technology-

independent view of the behavioural requirements.

• Secondly, a system concrete, or detailed use case model. The function of this is

to analyse the behavioural requirements describing in detail how users will

interact with the system.

The essential use cases are firstly identified, and from these the system use cases are

developed.

This discussion will focus only on essential use cases, as the function of these is to

identify the essence of the problem in a technology-free, idealised and abstract

environment (Ambler, 2001:52).

43

Chapter 4 - Object Orient Approach

Figure 4-2 is an example of an essential use case model. The purpose of an essential

use case model is to identify actions that provide measurable value to actors within a

boundary and to depict the relationship between these entities.

The ellipse in Figure 4-2 represents a class. The link between the actor and the class is

the relationship between the two entities and is described by a use case (Ambler,

2001:46).

Input marks

Enrol in seminar

Distribute
transcriptions

o

Grade Administrator

Figure 4-2 A use case diagram for a simple university (Ambler, 2001:46)

An actor represents anything that interacts with the system. To identify actors, one can

follow the following questions:

Who is the main customer of the system?

Who obtains information from this system?

Who provides information to the system?

Who installs the system?

Who operates the system?

Who shuts down the system?

What other systems interact with this system?

Does anything happen automatically at a given time?

44

Chapter 4 - Object Orient Approach

Who will supply, use, or remove information from the system?

Where does the system get information?

Once the essential diagram is completed, the essential use cases can be documented.

A sample is illustrated in Figure 4-3.

Name: Enroll in Seminar
Description: Enroll an existing student in a seminar for which she is
eligible.
Preconditions: The Student is registered at the University
Postconditions: The Student will be enrolled in the course she wants if
she is eligible and room is available.

Basic Course of Action:
1. A student wants to enroll in a seminar.
2. The student submits his name and student number to the registrar.
3. The registrar verifies the student is eligible to enroll in seminars at the

university according to business rule "BR129 Determine Eligibility to
Enroll."

4. The student indicates, from the list of available seminars, the seminar
in which he wants to enroll.

5. The registrar validates the student is eligible to enroll in the seminar
according to the business rule "BR130 Determine Student Eligibility
to Enroll in a Seminar."

6. The registrar validates the seminar fits into the existing schedule of
the student, according to the business rule "BR143 Validate Student
Seminar Schedule."

7. The registrar calculates the fees for the seminar, based on the fee
published in the course catalog, applicable student fees, and
applicable taxes. Apply business rules "BR180 Calculate Student
Fees" and "BR45 Calculate Taxes for Seminar."

8. The registrar informs the student of the fees.
9. The registrar verifies the student still wants to enroll in the seminar.
10. The student indicates he wants to enroll in the seminar.
11. The registrar enrolls the student in the seminar.
12. The registrar adds the appropriate fees to the student's bill according

to business rule "BR100 Bill student for Seminar."
13. The registrar provides the student with a confirmation that he is

enrolled.
14. The use case ends.

Figure 4-3 "Enroll in seminar" as an essential use case (Ambler, 2001:55)

One way of identifying essential use cases, is to identify potential services by asking the

SME the following questions from the actors' point of view:

• What are the users in this role trying to accomplish?

• To fulfil this role, what must users be able to do?

45

Chapter 4 - Object Orient Approach

• What are the main tasks of users in this role?

• What information do users in this role need to examine, create or change?

• What do users in this role need to be informed of by the system?

What do users in this role need to inform the system about?

Once all use cases are identified, they can be grouped into packages. This simplifies

the complex diagrams.

Essential User Interface Prototyping

Essential user interface (Ul) prototypes are Uls that are technology-independent, the

purpose being to understand the requirements. The prototypes are done by using basic

drawings.

Once all the Uls and the major components of the Uls are identified, a Ul flow diagram

is created. This diagram models the interactions between the users and the system for

a certain use case, and it helps the analyst in getting a high level understanding of the

Ul for the system. Figure 4-4 is an example of a user interface flow diagram.

.Main Menu

-̂ r use
Enrollment
Requester

use
Transcript
Requester

:Enroll in
Seminar

jse

_ ^ » .
:Obtain

Transcript

Professor
Information
Requester

Prerequisite
Details

Requester

:Professor
Information

use
Seminar

*~ Information
Requester

:Seminar
Information

use
Transcript
Requester

:Transcript

Figure 4-4 User interface flow diagram (Ambler, 2001:73)

•

use

46

Chapter 4 - Object Orient Approach

Domain Modelling

The function of domain modelling is to define the problem space. The problem space

typically consists of classes representing the things and concepts within the domain in

question.

Class Responsibility Collaborators (CRC) cards is a tool used to model classes. This

tool is a collection of standard index cards divided into three sections:

• Class name - a collection of similar objects.

• Responsibilities - something that a class knows.

• Collaborators - what the other class needs to fulfil its responsibilities.

Figure 4-5 is a typical example of a CRC card. This example illustrates that the class is

the Student, and its responsibilities are the student number, name, address, phone

number, enrol in a seminar, drop a seminar and request transcripts. The collaborator for

the student class is the seminar class.

Student

Student number Seminar
Name
Address
Phone Number
Enroll in a seminar
Drop a seminar
Request transscripts

Figure 4-5 An example CRC card (Ambler, 2001:76)

The domain modelling should be executed iteratively. The steps are:

• Find classes.

• Find responsibilities.

• Determine collaborators.

• Define use cases.

47

Chapter 4 - Object Orient Approach

• Move the cards around according to the responsibilities.

There are three types of classes that exist, namely:

• Actor classes - representing the actors in the use case model and indicated by

using "«Ac to r» " after the class name.

• Business classes - representing the places, things, concepts and events in the

business.

• User interface classes - representing the screens and the menus in the system

and indicated by using " « U I » " after the class name.

Develop a supplementary specification

The supplementary specification is a document containing all the requirements not

specified in the use case model, user interface model, or the domain model. This

document typically includes constraints, business rules and non-functional

requirements.

Identify change cases

The change cases motivate the new requirements that have come forth, or the changes

that need to be applied to the existing requirements. These changes should be

documented.

Once the requirements are gathered, they should be validated to ensure that they are

correct.

4.4.2.2. Validating the requirements

Ambler (2001:111) explains that the requirements can be misunderstood by the user,

the analyst, or the designer. This is why requirements should be validated, thus

ensuring accuracy.

48

Chapter 4 - Object Orient Approach

It is recommended that testing should be done early and often to avoid problem fixing at

a later stage, as this can be a costly exercise (Ambler, 2001:111).

The following discussion is based on Ambler (2001). The requirements can be tested by

using the following techniques:

• Use case scenario testing.

• User interface walkthroughs.

• Requirements reviews.

Use case scenario testing

This is a technique that tests the domain model, the CRC model, or a class model. The

process is as follows:

• Perform domain modelling - create a CRC model, or an analysis class mode that

represents the domain.

• Create the use case scenario - it describes the situation which the system may,

or may not be able to handle. The use case scenario is different to the use cases

in the sense that it describes the logic, including the basic and alternative course

of action.

• Assign classes to SMEs - one or more classes should be assigned to each SME

in order to spread the functionality of the system to every SME.

• Act out a scenario - the SMEs act on the rolls of the cards given to them. This

serves to describe the business logic of the responsibilities of each use case. A

ball is used to indicate that the class or SME is busy processing; the ball is

passed on to the next class or SME, it is collaborating with.

• Update the domain model - during testing, the missing responsibilities will be

highlighted, thereby allowing updating of the domain model.

49

Chapter 4 - Object Orient Approach

User interface walkthroughs

The user interface walkthroughs are similar to the user case walkthroughs, the only

difference being the Uls are tested and not the domain models. The SMEs describe

which screen and component on this screen will be used when a scenario is acted out.

Requirements review

The requirements review is a process in which a facilitator reviews the requirements

gathered by the stakeholders responsible for the system. This is to verify that the

requirements gathered, are correct and that the needs of the users are fulfilled.

Once the requirements are verified, the analysis of the requirements can be executed.

4.4.2.3. Object-oriented analysis (OOA)

One should to keep in mind that the OOA used in OOSP, is used in the context of a

phase. This phase is based on the 0 0 methodology originally developed by Coad and

Yourdon (1991) as discussed in section 4.4.1

Ambler (2001:182) explains that the purpose of analysis is to understand what needs to

be developed. Analysis is an iterative process that is highly interrelated to requirements

gathering. The essential models created in the requirements gathering are evolved into

their corresponding analysis artefacts. The following is based on Ambler (2001:185).

System use case modelling

The essential use case model is evolved into a system use case. It is similar to the

essential use case with the exception that it includes high-level implementation

decisions, such as the screen numbers and properties, for example "extends", inherited.

Figure 4-6 is an example of the essential use case "Enroll in seminar" evolved into a

system use case.

50

Chapter 4 - Object Orient Approach

Name: Enroll in Seminar
Identifier: UC17
Description: Enroll an existing student in a seminar for which she is eligible.
Preconditions: The Student is registered at the University
Postconditions: The Student will be enrolled in the course she wants if she
is eligible and room is available.
Extends: -
Includes:
Inherits From: -
Basic Course of Action:
1. A student wants to enroll in a seminar.
2. The student inputs his name and student number into the system via

"UI23 Security Login Screen."
3. The system verifies the student is eligible to enroll in seminars at the

university according to business rule "BR129 Determine Eligibility to
Enroll."

4. The systems displays "UI32 Seminar Selection Screen," which indicates
the available seminars.

5. The student indicates the seminar in which he wants to enroll.
6. The system validates the student is eligible to enroll in the seminar,

according to the business rule "BR130 Determine Student Eligibility to
Enroll in a Seminar."

7. The system validates the seminar fits into the existing schedule of the
student, according to the business rule "BR143 Validate Student
Seminar Schedule."

8. The system calculates the fees for the seminar, based on the fee
published in the course catalog, applicable student fees, and applicable
taxes. Apply business rules "BR180 Calculate Student Fees" and "BR45
Calculate Taxes for Seminar."

9. The system displays the fees via "UI33 Display Seminar Fees Screen."
10. The systems asks the student whether he still wants to enroll in the

seminar.
11. The student indicates he wants to enroll in the seminar.
12. The system enrolls the student in the seminar.
13. The system informs the student the enrollment was successful via

"UI88 Seminar Enrollment Summary Screen."
14. The system bills the student for the seminar, according to business rule

"BR100 Bill student for Seminar."
15. The system asks the student if he wants a printed statement of the

enrollment.
16. The student indicates he wants a printed statement.
17. The system prints the enrollment statement "UI89 Enrollment Summary

Report."
18. The use case ends when the student takes the printed statement.

Figure 4-6 System use case (Ambler, 2001:187)

51

Chapter 4 - Object Orient Approach

Sequence diagram

Sequence diagrams are developed from the use cases. Jacobson et al, (2001:251)

states that the function of sequence diagrams is to model the logic of usage scenarios.

A usage scenario is a description of a potential way in which the system can be used.

This may include use cases or alternative courses and provides a bridge between the

use cases and the class models.

Figure 4-7 shows a typical sequence diagram. The boxes at the top represent classifiers

or instances, which can be use cases, objects, classes or actors. The lines from the top

boxes represent object lifelines, meaning the life span of the object during the scenario

being modelled. The long thin boxes on the lifelines are method-invocation boxes. They

indicate that a process is being performed on the given object to fulfil a message.

Messages are represented by labelled arrows.

Description

Check application

Offer generation

Confirmation

Prepeare reg pack

Accespt student

CheckApp

ValidApp ValidApp

I
GenerateOffer

ValidApp

RegPackP

ValidApp ValidApp

CreateStudent ■

Figure 4-7 Sequence diagram for student (Avison & Fitzgerald, 2000:199)

Conceptual modelling

Class diagrams represent the conceptual model. The function of class diagrams is to

model the classes of the system, the relationships between them, as well as their

operations and attributes. The conceptual model is used to depict a detailed

understanding of the problem space. During the design phase, the model is evolved to

include classes that address the solution space.

The class model contains the following elements:

• Classes

«bus iness» «business>3 «business>3 :<business» «business>3

52

Chapter 4 - Object Orient Approach

• Methods

• Attributes

• Associations

• Dependencies

• Inheritance relationships

• Aggregation associations

• Association classes

Figure 4-8 illustrates a typical UML class diagram.

SecurityLogon
« U I »

Enrolled

EnrollmentRecord SecurityLogon
« U I »

Enrolled marksReceived Enrolled marksReceived

acceptStudent()
AcceptStudentNameO
validateStudentf)

N
getAverageToDateO
getFinalMark{)

acceptStudent()
AcceptStudentNameO
validateStudentf)

N , - - '~'--..N
getAverageToDateO
getFinalMark{) Enrolled

in ,xs Student \
Enrolled
in ,xs

name
address
phoneNumber
emailAddress
studentNumber
averageMark

X
N

Enrolled
in

Transcript
« U I »

name
address
phoneNumber
emailAddress
studentNumber
averageMark

X
N

Enrolled
in

name
address
phoneNumber
emailAddress
studentNumber
averageMark

getStudent()
getSeminarsO
determineAverage()
OutputO

name
address
phoneNumber
emailAddress
studentNumber
averageMark

On waiting list Seminar
getStudent()
getSeminarsO
determineAverage()
OutputO

sx

name
address
phoneNumber
emailAddress
studentNumber
averageMark ^ name

seminarNumber
fees
waitingList

getStudent()
getSeminarsO
determineAverage()
OutputO

sx isEligible (name,
studetNumber)
getSeminarsTakenO

^ name
seminarNumber
fees
waitingList *v

isEligible (name,
studetNumber)
getSeminarsTakenO

^ name
seminarNumber
fees
waitingList

*̂

isEligible (name,
studetNumber)
getSeminarsTakenO

addStudent(student)
dropStudent(student)

s,s ^--~"
addStudent(student)
dropStudent(student)

EnrolllnSeminar
« U I » 2i» . . . - - ' ' '

instructs

searchForSeminars{)
displaySeminarListO
displaySeminarFees()
displayProfessor{)

• • = ; ; ; - X Professor
instructs

searchForSeminars{)
displaySeminarListO
displaySeminarFees()
displayProfessor{)

- "^»
name
address
phoneNumber
emailAddress
salary

instructs

searchForSeminars{)
displaySeminarListO
displaySeminarFees()
displayProfessor{)

- "^»
name
address
phoneNumber
emailAddress
salary

name
address
phoneNumber
emailAddress
salary

getlnformationf)

Figure 4-8 A UML class diagram based on the CRC model (Ambler,2001:210)

Each rectangle represents a class, with its name on top. Below the class name is the

stereo type indicated by " « " and " » " signs. The middle part reflects the attributes of

the class and the bottom section the methods of the class. The dashed lines between

53

Chapter 4 - Object Orient Approach

the classes (rectangles) represent a dependency, while the solid lines represent an

association with a description of the association.

Activity diagramming

The activity diagram's function is to model high-level business processes, or the

transitions between states of a class.

Figure 4-9 shows an activity diagram. In the activity diagram, the filled circle at the top

indicates the starting point of the activity diagram. The rounded rectangles represent

processes, or an activity that is performed. The text on the arrows represents conditions

that must be fulfilled. The diamond represents decision points. The thick bars represent

the start and end of potentially parallel processes. The filled circle at the bottom

represents an ending point.

i 1

'
[incorrect]

i 1

'
[incorrect]

\
Enrolling in the University
for the first timU
AD #: e07

[incorrect]

\
Enrolling in the University
for the first timU
AD #: e07

Fill out Enrollment
Forms

[incorrect] Obtain Help to Fill
Out Forms

Fill out Enrollment
Forms

Obtain Help to Fill
Out Forms

V

[correct]

i

Enroii in Univesity Enroii in Univesity

^ [accept] <
[reject]

^ [accept]

Attend University
Overview

Presentation

<
[reject]

^ [accept]

Attend University
Overview

Presentation

<
[reject]

^ [accept] <
[reject]

?

v

<
[reject]

?

v

Enroll in Seminar(s)
-

Make Initial Tuition
Payments

<
[reject]

?

v

Enroll in Seminar(s)
-

Make Initial Tuition
Payments

<
[reject]

?

v
* J*

Figure 4-9 UML activity diagram (Ambler, 2001:230)

54

Chapter 4 - Object Orient Approach

User interface prototyping

User interface prototyping is an activity in which users are actively involved in the

making-up of the system's user interface. The purpose of this is to explore the problem

space the system needs to address and to allow for the exploration of the solution

space from the users' point of view. It also allows for a vehicle to communicate possible

user interface designs.

The process is an iterative process consisting of the following steps:

• Determine the needs of the users.

• Build the prototype.

• Evaluate the prototype.

The above process is repeated until no further new ideas can be generated from the

prototype.

Evolving the supplementary specification

During the analysis phase, one's understanding of the content of the supplementary

specification evolves. It reflects mainly on the constraints, business rules and non­

functional requirements identified during the requirements defining phase. It is likely that

information originally specified, does not always contain enough detail and therefore

should be detailed further.

User documentation

Due to the complexity of the systems, it is recommended that they should be well

documented. It is imperative to furnish the following documentation:

• Tutorial manual

• Reference manual

• User manual

• Support user guide.

55

Chapter 4 - Object Orient Approach

4.4.2.4. Object-Oriented Design (OOD)

Coad and Yourdon (1991:3) distinguish between object-oriented analysis (OOA) and

object-oriented design (OOD) in object-oriented approach. OOA models the problem

domain and the system's responsibilities. The OOD is an implementation of an OOA

model (Coad & Yourdon, 1991:178).

Ambler (2001:250) explains that the function of modelling a design is to determine how

the system should be built and to obtain the information required to drive the

implementation of the system.

Before designing the system, the following should be considered: (Ambler, 2001:250):

• To design using a pure object-oriented solution or to design using a component

based solution. An object-oriented solution is built from a collection of classes,

while a component based solution is built from a collection of components. These

components can be a non-object-oriented technology.

• To design using a common business architecture; the business architecture can

be implemented straight through, or partially.

• Which non-functional requirements and constraints will be supported and to what
extent.

The following discussion is based on Ambler (2001).

Layering models

Layering is to organise the software design into different collections of classes, or

components that fulfil a common purpose. This increases the extensibility,

maintainability and portability of systems created. Figure 4-10 illustrates the layering on

class types.

56

Chapter 4 - Object Orient Approach

User Interface Classes

■U-

i i .
Controller /

Process Classes

I
User Interface Classes

Persistence Classes

Persistence Store(s)

System
Classes

Figure 4-10 Layering system based on class types (Ambler, 2001:255)

From Figure 4-10, it is evident that the arrows all point downwards, illustrating that the

flow of messages can only go in this direction.

The components are grouped as follows:

• User interface classes - These classes contains all the code needed for the

graphics user interface to function.

• Controller/Process Classes - These classes implement the business logic.

• Business/Domain Classes - these classes encapsulate the basic business

functionality.

• Persistence Classes - These classes provide the infrastructure to store and

retrieve information.

• System Layer - This provides access to the operating system.

Class Modelling

The function of class modelling is to model the static structure according to which the

software will be built. This structure typically focuses on the solution space and is more

specific to the technical environment.

57

Chapter 4 - Object Orient Approach

The following is modelled by using class modelling:

• Inheritance classes

• Association and dependency of classes

• Aggregation and composition of classes

• Attributes of classes

Rumbauch et al. (1991:168) rounds off class modelling by grouping the classes into

modules, these sub-sets should capture some logical sub-sets of the entire model.

Inheritance classes

Rumbauch et al. (1991:163) explains that inheritance in classes share a common

structure. This can be added in two directions: one is to generalise common aspects of

existing classes into a super class (bottom-up), or to refine existing classes into

specialised subclasses (top-down). To generalise common aspects, one needs to

search for classes with similar attributes, associations, or operations, and define a super

class that shares a common feature.

To refine existing classes into subclasses, a search for noun phrases composed of

various adjectives on the class name should be conducted.

Association and dependency of classes

Rumbauch et al. (1991:31) explains that associations indicate the class sharing the

information in subclasses. 0 0 uses pointers to indicate associations.

According to Booch (1994:109), there are three types of cardinality in associations.

These are:

• One to one

• One to many

• Many to many

58

Chapter 4 - Object Orient Approach

An association also indicates the dependencies of classes on one another (Booch,

1994:109).

Aggregation and composition of classes

Booch (1994:128) states that aggregation relationships among classes have a direct

parallel to aggregation relationships among the objects corresponding to these classes.

This means that when two classes are coupled tightly together, the one class will

always instantiate with the other class and cannot be dealt with independently.

Rumbauch et al. (1991:36) explains this as a "part-whole" or "a-part-of relationship

between the components. Two kinds of aggregations are illustrated, aggregation as

containment by value and aggregation as containment by reference.

Modelling attributes of classes

The attribute's name should indicate what it represents; this should be in the format of

"attributeName".

The second factor of significance is the attribute's visibility. UML supports three types of

attribute visibility, namely public, protected and private. Ambler suggests that all

attributes in a class should be declared private, as this promotes information hiding.

Thirdly, all attributes should be documented for any developer to understand its

purpose. The documentation should contain the description of the attribute, the

applicable invariants, being the conditions under which the attribute is true, as well as

the examples and visibility decisions explaining the reasons why the given attribute is

declared as such.

The following approach should be followed when designing attributes:

• Assign private visibility to all attributes.

• Update an attribute only in its setter methods.

• Directly access an attribute only in its getter methods.

• Always invoke a setter method for an attribute to update its value.

59

Chapter 4 - Object Orient Approach

• Always invoke a getter method for an attribute to obtain its value.

• Implement simple validation logic for an attribute in its setter method.

• Implement complex validation logic in separate methods.

Figure 4-11 is an example of the class design for two classes, i.e. student and

studentNumber. The "+" sign means the attribute is public and the "-" means the

attribute is private. A "#" means the attribute is protected (Ambler, 2001:284).

The arrow from the student to the studentNumber indicates the cardinality of the class.

Student

-name: string
-phoneNumber: PhoneNumber
-emailAddressiEmailAddress
-studentNumbenStudentNumber
-averageMark:ling

-name: string
-phoneNumber: PhoneNumber
-emailAddressiEmailAddress
-studentNumbenStudentNumber
-averageMark:ling

1 1 StudentNumber

-name: string
-phoneNumber: PhoneNumber
-emailAddressiEmailAddress
-studentNumbenStudentNumber
-averageMark:ling

1 1

-Numbenint
-nextStudentNumbenint

-name: string
-phoneNumber: PhoneNumber
-emailAddressiEmailAddress
-studentNumbenStudentNumber
-averageMark:ling

-Numbenint
-nextStudentNumbenint

+isEleeibile(name:string, studentNumber: StudentNumber]: boolean
+StudentfstudentNumber: StudentNumber):Student «constructor»
+getSeminarsTaken(): Vector
+purchasesParkingPass()
+getAverageMark():long
-setAverageMark(newAverageMark:long

-Numbenint
-nextStudentNumbenint

+isEleeibile(name:string, studentNumber: StudentNumber]: boolean
+StudentfstudentNumber: StudentNumber):Student «constructor»
+getSeminarsTaken(): Vector
+purchasesParkingPass()
+getAverageMark():long
-setAverageMark(newAverageMark:long

+StudentNumberO: StudentNumber « c o n s t r u c t o r »
+isEleeibile(name:string, studentNumber: StudentNumber]: boolean
+StudentfstudentNumber: StudentNumber):Student «constructor»
+getSeminarsTaken(): Vector
+purchasesParkingPass()
+getAverageMark():long
-setAverageMark(newAverageMark:long

Figure 4-11 The student and studentnumber design classes (Ambler, 2001:282)

State chart modelling

Avison and Fitzgerald (2003:253) explain that the function of a state chart diagram is to

illustrate the various permitted states an object may be in.

Figure 4-12 is an example of a state chart diagram, also known as a state diagram. The

state is a particular set of values of the attributes of an object at a particular time. When

these values change, the state also changes.

60

Chapter 4 - Object Orient Approach

S t u d e n t
Start

Student suspends/
setsuspend

f
v

Completes

Student suspends/
setsuspend

Current
Completes

. Current
-*

Current

'
Reinstates

t
Fails Reinstated

> ' n Suspend Fail Graduate n Suspend Fail Graduate

V

., Archive 3 Archive

Withdraws

End

Figure 4-12 State chart diagram for student object (Avison & Fitzgerald, 2000:254)

The states of an object (like the student object example above) are represented by

rectangles labelled with that state. Transitions are represented by the arrows associated

with the name of the event that triggers the change.

The solid black dot represents the starting point and the bull's eye the end of the flow of

states.

Collaboration modelling

Collaboration models provide a bird's eye view of the collection of collaborating objects.

This model shows the message flow between objects in an 0 0 application and also

implies the basic association between the classes.

The rectangles represent the classes and the lines connecting the rectangles represent

the association. The descriptions above the association lines are methods used to

complete the association.

61

Chapter 4 - Object Orient Approach

Figure 4-13 is an example of a collaboration diagram.

1: name := getName()
2: getDescriptionO

3; getLocation()
4: getSeatsLeft()

1.1: getName()
1.2: getNumber()

1.3: getDescriptionO
:Seminar
Details
« U I »

:Seminar

1.1: getName()
1.2: getNumber()

1.3: getDescriptionO

:Course
:Seminar
Details
« U I »

:Seminar :Course
:Seminar
Details
« U I »

:Seminar :Course

5.1:getlnfoO 1 ^ < ^ * 5.n:getlnfo()

enrollmentl
Enrollment

Record

enrollmentN
Enrollment

Record

5.1.1: get lnfo{) 1 |5-" l :get lnfo{)

studentl
:Student

studentN
:Student

Figure 4-13 A collaboration diagram (Ambler, 2001:302)

Deployment modelling

Deployment modelling depicts a static view of the run-time configuration of processing

nodes and the components running on those nodes. This diagram is essential in cases

where the system is deployed onto several machines.

Figure 4-14 illustrates a UML deployment diagram. The three-dimensional boxes

represent a node, which can be a computer or a switch. The connection is represented

by a dotted line between the boxes.

Student
] Administration

«:applfcation»

appServerSunSolarls

4
i

| Schedile

i Persistence
| « infra structu re »

E i j "

JJ

Figure 4-14 Deployment diagram (Ambler, 2001:313)

IS.
Client: browser dbServer: AIX

JOBC

■s

62

Chapter 4 - Object Orient Approach

User interface design

User interface design concludes OOD. This activity is based on the use interface

prototyping done during analysis.

The application of common user interface design principles and techniques is required.

It is recommended that the following principles be kept in mind when designing

interfaces:

• Structure - the interface should be designed purposefully in meaningful and

useful ways to be clear, consistent and recognisable.

• Simple - the design should be simple to use.

• Visibility - options should be visible without any redundant distractions.

• Feedback - the users should be informed constantly of the actions of the system.

• Tolerance - the design should be flexible and tolerant to reduce the cost of

mistakes and misuse.

• Re-use - the design should re-use external and internal components and

behaviours to maintain consistency.

During the user interface design, the flow will also be modelled. This is done by using

the interface flow diagram.

Once the design is finished, development of the solution may start. The artefacts

required for the implementation, (Ambler, 2001:348), are the following:

• User interface prototype

• State chart diagram

• Class model

• Collaboration Diagram

• Business rules

63

Chapter 4 - Object Orient Approach

4.4.3. Rational Unified Process (RUP)

Jacobson et al. (2001:4) explains that the rational unified process (RUP) is a use case

driven, architecture-centric and iterative process that uses the unified modelling

language (UML) to produce its blueprints for a software system.

The use case is used to capture the system's requirements and the combination of all

use cases makes up the use case model. This describes the complete functionality of

the system.

The use cases drive the system's architecture and the system's architecture in turn

influences the selection of use cases. The maturity of these components is driven by the

life cycle.

The architecture is cast in a so-called form. This form is based on the key use cases

explaining the core functionality of the system. As the lifecycle continues, the

architecture grows until it is deemed stable.

RUP is an incremental and iterative process. This means that the user requirements

cannot be determined all at once. Every iteration identifies and specifies the relevant

use cases.

The above-mentioned three concepts provide the structure according to which RUP

works and are interdependent.

4.4.3.1. Life cycle of RUP

RUP's life cycle repeats a series of cycles that makes up the life cycle of the system.

Every cycle is seen as a release, divided into the following phases:

• Inception

• Elaboration

64

Chapter 4 - Object Orient Approach

• Construction

• Transition

Each phase has a workflow, defined as a sequence of activities producing a visible

result (Avison & Fitzgerald, 2003:426). Due to RUP's popularity and flexibility, multiple

variances in terms of the workflows are found. This discussion will be based on the

original RUP (Jacobson etal., 2001).

Every release is a product ready for delivery and includes the requirements, use cases,

non-functional requirements and test cases (Jacobson etal., 2001:9).

Figure 4-15 illustrates the core workflows, i.e. requirements, analysis, design,

implementation and testing. These workflows take place over the four phases

(inception, elaboration, construction and transition). The curves are approximations of

the extent to which each workflow is carried out over a particular phase.

Core Workflows

Phases

Core Workflows Inception Elaboration Construction
; 1

Transition

Requirements

Analysis

1 >. '

: J An iteration in Requirements

Analysis ■ phase

Design
L ' 1" '

Implementation \ . ..)

Test
i

.. i

Iter.
#1

Iter.
#2 — — — — — Iter.

#1
Iter.
#1

Iterations

Figure 4-15 The five work flows that takes place over the four phases (Jacobson et al., 2001:11)

65

Chapter 4 - Object Orient Approach

Requirements workflow

The discussion on the requirements workflow is based on the work of Jacobson et al.

(2001). It starts with the development of the business models. These techniques

describe the business processes of the organisation. The result of the modelling is the

domain model.

The activity is supported by two kinds of UML models:

• Business use case models being the same concept as essential use case

models, described in OOSP.

• A business object model describing how each business use case is realised.

The domain model sets the context of the system, while the use case model captures

the functional requirements and the individual use cases the non-functional

requirements.

The use case model is described as a whole, a set of diagrams and a detailed

description of each use case (similar to the essential use case description in OOSP).

User interface prototypes are produced for each actor representing the user interfaces.

A supplementary requirements specification is created for generic requirements not

specific to a particular use case.

Analysis workflow

The discussion on the analysis workflow is based on Jacobson et al. (2001).

The analysis workflow produces an analysis model, which is a conceptual model

analysing the requirements through refinement and structure. The model includes the

following:

• Analysis classes

66

Chapter 4 - Object Orient Approach

• Use case realisations

• Analysis packages

• Service packages

• The architecture description

Analysis classes focus on the abstraction of classes, or subsystems in the design. They

contain the following:

• Responsibilities

• Attributes

• Relationships

• Special requirements

The three existing types of classes are:

• Boundary class - models interaction between the system and the actors. It is

involved in receiving and requesting information from external systems and

users. This is similar to the user interface classes in OOSP.

• Control class - co-ordinates sequence, transacts and controls other objects. It is

used to encapsulate control of a specific use case. This is similar to the business

classes in OOSP.

• Entity class - models information that is persistent. It includes the information

about the entity and its associated behaviour. This is similar to the actor classes

in OOSP.

Use case realisation analysis collaborates within the analysis model. It describes how

use cases are realised and performed in terms of the analysis classes. It provides a

trace to a specific use case in the use case model. A typical artefact used for this, is a

collaboration diagram. Analysis packages can be used to organise the artefacts of the

analysis model into manageable pieces. These artefacts, which are in the use case

realisation, are the analysis classes that are grouped together. The packages should be

67

Chapter 4 - Object Orient Approach

cohesive and loosely coupled. Services offered by the system, are grouped together by

service packages.

The architecture description contains the architecture view of the analysis model. It

furnishes a decomposition of the analysis model into its analysis packages and their

dependencies. It also contains the key analysis classes, such as the entity-, boundary-

and control classes. Furthermore, it contains the use case realisations that realise the

important and critical functionality of the system.

The output of the analysis workflow will be used for the design workflow. The analysis-

and service packages will impact on the design of the analysis- and service

subsystems.

Analysis classes will be used as specifications for designing classes. Use case

realisation analysis is the technique that will create more precise specifications for the

use cases. It will also serve as an input to designing the design use cases.

The architecture view of the analysis model will serve as an input to the architecture

view of the design model.

Design workflow

The discussion on the design workflow is based on Jacobson et a/., (2001). This

workflow produces the designs that serve as a blueprint for the implementation of the

system.

The processes executed, are design class, use case realisation design, design

subsystem, interfaces, deployment diagram and a description of the architecture.

The design class follows the same method for defining classes, as previously discussed

in OOSP, and also makes use of a class diagram. The use case realisation is the

68

Chapter 4 - Object Orient Approach

design process describing the events of a class diagram (called a system use case in

OOSP) and an interaction diagram (called a sequence diagram in OOSP).

The subsystem process is a mean of organising the design model into manageable

pieces. It consists of:

• Design classes

• Use case realisation - designs and interfaces.

As in the case of the analysis subsystem, it should be cohesive and loosely coupled.

Service subsystems fulfil the same function as previously discussed for other service

subsystems.

The user interface design is also done in this workflow and is executed in the same

fashion as for OOSP. The architecture description contains the architecture view of the

design model. It also contains a decomposition of the design model into the design

packages and their dependencies. Lastly, it should contain the use case realisations;

designs that need to be developed for the system. The key design classes trace back

to the key analysis classes.

The deployment model is a model that describes the network configurations, nodes, the

active mapping between the classes and the nodes and an architectural view of the

deployment model.

The output of the design workflow will be used in the implementation workflow. The

design- and service subsystems will be implemented by the implementation

subsystems. The design classes will be implemented by the file components.

69

Chapter 4 - Object Orient Approach

The use case realisation designs will be used by way of small steps that produce

"builds". Lastly, the deployment model and the network configurations will be used to

distribute the exceptionable components onto the nodes.

Implementation workflow

The discussion on the implementation workflow is based on Jacobson et al. (2001).

This workflow produces the implementation model required for the implementation of

the design model. It also describes the organisation of the component and its structure,

as well as the dependencies of the components in terms of the implementation

environment.

The implementation workflow produces:

• Components

• Implementation subsystems

• Interfaces

• Implementations

• Architecture descriptions

• Integration "build" plans

A component is a physical package of model elements, the model elements being

typically the design classes in the design model. Components can be one of the

following stereo types:

• «executable» - indicates a program that can be executed.

• « f i l e » - indicates a file that contains source code.

• « i i b ra ry» - indicates a static or dynamic library.

• « t a b l e » - indicates a database table.

• «document» - indicates a document.

70

Chapter 4 - Object Orient Approach

Implementation subsystems provide a mean to organise the design artefacts into more

manageable pieces. This can be a combination of components, interfaces and other

subsystems.

Interfaces in the component should implement all the operations defined by the

interface, and the dependencies supporting these operations should be available. Code

is used to create these interfaces.

The architecture description of the implementation workflow contains the architecture

view of the implementation model. It also contains a decomposition of the

implementation model into the design packages and their dependencies. The key

components trace back to the key design classes, executable components, and

components central to other components dependent on them.

Every "build" is a step that is released and tested for integration and the system's test.

Every "build" is version-controlled, thus enabling rollback in case of a faulty new

release. Every "build" is subject to a standard of testing. The test workflow focuses on

this.

Test workflow

The discussion on the test workflow is based on Jacobson et al. (2001).

This workflow produces a test model, consisting of:

• Test cases

• Test procedures

• Test plan

• Test evaluation

• Test components

71

Chapter 4 - Object Orient Approach

Test cases specify a way of testing the system. This includes what need to be tested,

with which inputs or results, and under which conditions. Test procedures specify how

to perform one or several test cases, or parts thereof. This can be an instruction of how

to test manually, or how to use an automated testing tool.

Test components automate one or more test procedures, or parts thereof. The test plan

describes the testing strategies, resources and schedules. It also includes the type of

tests to be performed and the objects for these tests.

A defect is produced when a system anomaly is found; this is tracked and resolved.

Evaluation tests are the results of test efforts, such as test-cases coverage, code

coverage and the status of defects.

4.4.4. Object Modelling Technique (OMT)

A literature study showed that Rumbaugh et al. (1991) are the original authors of the

OMT methodology. The methodology was created before unified modelling language

(UML) existed and uses its own notation to describe objects and classes. This

discussion will follow the original notation.

The OMT methodology consists of three phases (Rumbaugh et al., 1991:145):

• Analysis

• System Design

• Object Design

4.4.4.1. Analysis

The following discussion is based on Rumbaugh et al. (1991).The analysis phase

concentrates on the understanding and the modelling of the application and the problem

domain. It starts with a problem statement. This is an information statement to be

refined by the analyst at a later stage.

72

Chapter 4 - Object Orient Approach

The requirements document typically contains the following:

• Problem scope

• What is needed

• Application context

• Assumptions

• Performance needs

Once the initial requirements are finalised, the analysis of the requirements can be

done. The models created during the analysis, are the following:

• Object model

• Dynamic model

• Functional model

Object model

The object model models a static structure of the objects in the problem domain and

organises this into workable pieces.

The information for this model comes from the problem statement and expert

knowledge. The steps in object modelling are the following:

• Identify objects and classes - nouns in the problem domain are usually classes,

while entities are usually objects.

• Prepare a data dictionary - a description of the objects, the scope of the class

and the restriction on the object or class usage.

• Identify associations and aggregations between objects - usually correspond to

verbs or verb phrases. These verb phrases should be documented first (from the

problem statement).

• Identify attributes of objects and links - correspond to possessive nouns, e.g.

"the collector of the car". The adjective frequently represents the enumerated

attribute value. The attributes do not necessarily come from the problem

73

Chapter 4 - Object Orient Approach

statement, and one should make use of knowledge of the problem domain. A link

attribute is a link between two objects, e.g. the many-to-many association of the

objects stockholder and company, is a number of shares.

• Organise and simplify object classes with inheritance - done by searching for

classes with similar attributes, associations or operations. It can be accomplished

in two directions: generalising common aspects of existing classes into a super

class, or refining existing classes into specialised subclasses.

• Verify that access paths exist for likely queries - done by testing access paths

with meaningful questions. For example, what identifies a bank account, or can

one access more than one bank account from an ATM.

• Iterate and refine the model - the first iteration is only a start. Models are

identified and modified by each iteration.

• Group classes into modules - classes that are tightly coupled, need to be

grouped together into modules. A module captures a logical subset of the entire

model.

Figure 4-16 illustrates an example of an object model. The rectangles in Figure 4-16

represent the objects and classes. The name of the class is on top, with its attribute(s)

listed below the name. The association between classes is depicted by a line between

the classes. These associations are verbs and represent action taken.

Once the object model is defined, the dynamic model can be modelled.

74

Chapter 4 - Object Orient Approach

Entry
station

cash on hand
dispensed

X
Cashier

transaction

Cashier
station

Remote
transaction

Entered by

Update
amount
kind

Started by

Employs

name
address

balance
credit limit
type

Card
authorisation
password
limit

bank-code
card-code
serial number

Figure 4-16 Object model (Rumbaugh etal., 1991:168)

Dynamic model

The dynamic model models the time dependency behaviour of the system. This

analysis searches for events and summarises the event sequence by using a state

diagram.

Static data does not contain events, therefore no models are created for these systems.

Dynamic models are more suitable for interactive systems. To construct a dynamic

model, the following steps need to be performed:

• Prepare scenarios of typical interaction sequences - a scenario is a description

of the sequence of events. This is similar to a use case scenario used in OOSP

and RUP.

• Indentify events between objects - the use scenarios identify the events. An

event is anything that needs interaction from the external world.

Consortium

75

Chapter 4 - Object Orient Approach

• Prepare an event trace for each scenario - a list of events among the objects.

This is similar to a sequence diagram.

• Build a state diagram - this is similar to a state chart diagram used in OOSP and

RUP.

• Match events between objects to verify consistency - by checking for

completeness and consistency with the state diagram for all the objects.

Functional model

Functional models show how values are computed. This model does not take the

sequencing and structure of objects into consideration. Data flow diagrams are used to

show the functional dependencies. Functions are expressed in the form pseudo code,

natural language, or mathematical equations.

The following steps are performed to create the functional model:

• Identify input and output values - the values needed for an event. The problem

statement is a good source for defining inputs and outputs.

• Build data flow diagram showing functional dependencies - a diagram that

illustrates which outputs connect to which inputs. The data flow diagram is

created in layers, each detailing into deeper levels of the model.

• Describe functions - once the dataflow diagram is sufficiently refined, the

function can be described by means of natural language, mathematical

equations, pseudo code, or decision tables.

• Identify constraints - identify functional dependences between objects not related

by an input-output dependency.

• Specify optimisation criteria - values that need to be maximised, minimised or

optimised. For example, messages sent between different ATM sites.

Figure 4-17 is an example of a function description.

76

Chapter 4 - Object Orient Approach

Update account (account, amount, transaction-kind) -> cash, receipt, message
if the amount on a withdrawal exceeds the current account balance,

reject the transaction and dispense no cash.
if the amount on a withdrawal does not exceed the current amount balance,

debit the account and dispense the amount requested
if the transaction is a deposit

credit the account and dispense no cash
if the transaction is a status request

dispense no cash
In any case,

the receipt shows ATM number, date, time, account number,
transaction-kind, amount transacted (if any), and new balance

Figure 4-17 Example of a function description (Rumbaugh ef a/., 1991:183)

The analysis phase is an iterative process. The model serves as a specification of the

problem and the problem domain, without introducing an implementation.

The analysis document is the problem statement, object models, dynamic models and

the functional models.

4.4.4.2. System Design

The following discussion is based on Rumbaugh etal. (1991).

Analysis is required for determining what needs to be done with regard to a problem of

the system. Design is required for determining how the solution should be performed.

During the system's design, the overall structure is decided. This forms the architecture,

which is the organisation of the system into components known as subsystems. The

architecture serves as the context within which the detailed decisions are made during

the systems design. The decisions to be made are the following:

• Organise the system into subsystems - package of classes that represents a

well defined service interfacing with the system. Each subsystem can be divided

into smaller pieces known as modules.

• Identify concurrency inherited in the problem - not all software objects are

concurrent. One needs to identify which objects can be used together and which

need to be mutually exclusive.

77

Chapter 4 - Object Orient Approach

• Allocate subsystems to processors and tasks - concurrent subsystems must be

allocated to a hardware unit, which can be a general purpose processor, or a

specialised functional unit.

• Choose an approach for management of data stores - this can be in the form of

files, or in the form of database management systems (DBMS).

• Handle access to global resources - global resources, such as processors, tape

drives, disks, etc. need to be identified. A lock is an object that handles the

object. These locks need to be defined.

• Choose the implementation of control in software - analysis shows interactions

as events among objects. The designer must decide on ways to implement

control on these interactions. Two types of control exist:

o External control - flow of externally visible events among the objects of a

system.

o Internal control - flow of control within a process.

• Handle boundary conditions - the designer must provide for the following three

types of boundary conditions that exist:

o Initialisation - the system must be brought from a quiescent initial state to

a sustainable steady state.

o Termination - the system object is abandoned.

o Failure - the unplanned termination of a system.

• Set trade-off priorities - the design must provide for a decision to be made

between desirable, but incompatible goals. These, for instance, may affect the

performance of a development, or event, where a decision is required as to

whether certain functions should be dropped in order to complete the

development on time.

The system design document consists of the structure of the basic architecture of the

system and the high level strategy decisions.

78

Chapter 4 - Object Orient Approach

4.4.4.3. Object Design

The following discussion is based on Rumbaugh et al. (1991). The analysis phase

determines what the implementation needs to fulfil, the system's design determines how

this will be accomplished. The object design determines the full definition of classes and

associations used in the implementation, as well as the interfaces and algorithms.

During this phase, the analysis model is refined and detailed. The steps used in the

object design phase, are:

• Combine the three models to obtain the operations and classes - the actions and

activities of the dynamic model and the processes of the functional model are

converted into operations attached to the classes in the object model. This is the

mapping of the logical structure into a physical organisation of an application.

• Design the algorithms to implement operations - each operation specified in the

functional model, must be formulated as an algorithm; the algorithm tells how a

certain process should be done.

• Optimise access paths to data - the analysis model can be optimised for greater

performance, the trade-off being between an optimised or less optimised model

and a non-optimised generic model. For optimisation, the designer can apply one

of the following to the analysis model:

o Add redundant associations to minimise access cost and maximise

convenience.

o Re-arrange the computation for greater efficiency.

o Save derived attributes to avoid recompilation of complicated expressions.

• Implement control for external interactions - the strategy for implementing the

state-event models present in the dynamic model, must be refined. In the system

design, a strategy is taken on the implementation control in the software. In the

object design, the designer needs to flesh out this strategy by means of the

following approaches:

o Procedure-driven system approach - to use the location within the

program to hold the state of the program.

79

Chapter 4 - Object Orient Approach

o Event-driven system approach - to use a direct implementation of a state

machine mechanism, such as a state engine determining the next state of

objects.

o Control as current tasks - an object can be implemented as a task.

• Adjust class structure to increase inheritance - as the design progresses, more

classes and operations appear. The designer can follow the under-mentioned

approaches to increase the amount of inheritance in the system:

o Re-arrange and adjust classes and operations.

o Abstract common behaviour from classes.

o Use delegation to share behaviour in cases where inheritance is

semantically not valid.

• Design associations - provide access paths to objects. During object design, a

strategy is formulated for implementing associations. The designer needs to

analyse the associations to make use of the following association techniques:

o One-way associations - an association that is only traverse in one

direction.

o Two-way associations - an association that is traverse in both directions.

o Link attributes - are used for implementation of multiplicity associations of

an object.

• Determine objects attribute representation - the designer must choose when to

use primitive types in representing an object and when to combine groups of

related objects.

• Package classes and association into modules - this involves the following tasks:

o Information hiding - the goal is to treat classes as "black boxes" to which

the interfaces are public but the internal details are hidden.

o Coherence of entities - to organise entities such as classes, operations or

modules to fit together towards a common goal.

80

Chapter 4 - Object Orient Approach

o Constructing physical modules - the initial organisation of modules may

not be optimal. Modules need to be defined in such a way that the

interfaces are minimal and well defined.

The object design document consists of the detailed object models, detailed dynamic

models and the detailed functional models. The implementation of the system is the

translation of the analysis models into code.

Rumbaugh (1991:279) states that a non-object-oriented language can be used to

implement the analysis model, but an object-oriented language greatly improves the

concepts used in the analysis model.

From the methodologies discussed, it becomes evident that comparison of these

methodologies is not exactly straight forward, the problem being that the dynamic

classification framework is not a comparison framework, but a classification framework.

The next discussion explains a proposed framework that will be used to compare the

methodologies discussed.

4.5. Comparing the ISD Methodologies

So far, this chapter concentrated on describing the OOA, OOSP, RUP and OMT

methodologies. The following discussion will focus on comparing these methodologies

in an attempt to find commonalities among them.

A literature study indicated that there are several techniques for comparing

methodologies. In this discussion however, the technique described by Avison and

Fitsgerald (2003:555) will be used. Figure 4-18 outlines the comparative review

framework.

81

Chapter 4 - Object Orient Approach

1. Philosophy
a. Paradigm
b. Objectives
c. Domain
d. Target

2. Model
3. Techniques and tools
4. Scope
5. Outputs
6. Practice

a. Background
b. User base
c. Participants

7. Products

Figure 4-18 Outline for the comparative review of methodologies (Avison & Fitzgerald, 2003:556)

4.5.1. Philosophy

The first element discussed in the comparison framework, is philosophy. Avison and

Fitzgerald (2003:557) explain that a philosophy is a set of principles underlying the

methodologies.

From the methodologies discussed, one can derive that all methodologies use object-

oriented concepts in an iterative fashion. The methodologies work in phases of the

development, with some methodologies fo cusing on one phase only (OOA).

The components of the philosophy are paradigm, objectives, domain and target.

4.5.1.1. Paradigm

Avison and Fitzgerald (2003:557) identify two paradigms of relevance:

• The science paradigm - consists of reductionism, repeatability and refutation.

This implies that the breakdown of the problem domain into parts does not

disrupt the system of which it is a part.

• The systems paradigm - is a holistic approach concerned with the whole picture,

the emergent properties and the interrelationships between parts of the whole.

82

Chapter 4 - Object Orient Approach

Both hard and soft systems approaches are usually associated with this

paradigm.

The paradigm of OOA follows a "divide and conquer" approach to solve the problem.

This is a form of reductionism. The same argument can be applied to OOSP, RUP and

OMT.

All of these methodologies are iterative in their development approach, which is a form

of repeatability.

The phases of each methodology concentrate on a specific goal, e.g. the analysis

phase found in OOA, OOSP, RUP and OMT concentrates on modelling the problem

domain in a platform-free environment. This eliminates the restrictions posed by a

platform. Elimination is a form of refutation.

The OOA, OOSP, RUP and OMT methodologies concentrate on the problem given and

break it down into parts. These parts are modelled in terms of objects.

From the discussion above, one can derive that the OOA, OOSP, RUP and OMT

models are all based on the scientific paradigm.

4.5.1.2. Objectives

The second component of philosophy is the objectives of the methodology. Avison and

Fitzgerald (2003:557) explain that the objective of some methodologies is to develop a

computerised system, while for others the objective is to determine whether an

information system is really needed. This component determines the boundaries of the

area of concern.

The objective of the Object-Oriented Analysis (OOA) methodology is to concentrate on

the analysis of the problem domain and to model the problem domain in terms of

83

Chapter 4 - Object Orient Approach

objects. This methodology does not give any guidance as to gathering the

requirements, designing the system, or implementing the system. It only concentrates

on the analysis of the system.

The Object Modelling Technique (OMT) is a methodology that concentrates on more

aspects in the development lifecycle. It includes the analysis phase and the designing

phase, which are the system design and object design phases. However, it does not

give any guidance on requirements gathering, other than a problem statement. There

are no testing phases built into this methodology, and implementation is based on

common object-oriented concepts.

The Object-Oriented Software Process (OOSP) is a methodology concentrating on

requirements gathering, requirements validation, followed by the analysis of the

requirements, systems design and the implementation of the system. The methodology

does not include a testing phase, but makes use of another methodology, namely Full

Life Object-Oriented Testing (FLOOT), to complete its testing.

The Rational Unified Process (RUP) is a methodology focusing on requirements

gathering, analysis, design, implementation and testing. This methodology covers all

areas of developing a solution.

All of the methodologies concentrate on developing a computerised system.

4.5.1.3. Domain

Avison and Fitzgerald (2003:560) state that systems and problems interrelate and that

the solution to a number of interrelated problems is different to the sum of the solutions

to the individual problems, viewed in isolation. They state that this led to a number of

methodologies adopting a different philosophy. It caused methodologies to take on a

much wider view of their starting point and is not looking to solve particular problems.

They argue that, in view of the above for solving individual problems, it is necessary to

84

Chapter 4 - Object Orient Approach

analyse the organisation as a whole, devise an overall IS strategy, sort out the data and

resources of the organisation and identify the overlapping areas and the areas that

need to be integrated.

OOA, OOSP, RUP and OMT are methodologies specific to problem solving. They do

not focus on identifying the systems required, but assume that a specific problem needs

to be addressed.

4.5.1.4. Target

The last component in philosophy is the target. Avison and Fitzgerald (2003:560)

explain that target focuses on the applicability of the methodology. Methodologies are

targeted at particular types of problems, environment, type, or size of an organisation.

OOA concentrates only on analysing the requirements, thus solving the analysis phase.

OOSP, RUP and OMT focus on a software solution aimed at fulfilling a business

requirement.

4.5.2. Model

The second element in the framework is concerned with the analysis of the model the

methodology adheres to (Avison & Fitzgerald, 2003:561). This is the basis of the

methodological view, and can be seen as an abstraction and a representation of the

important factors of the information system. There are four distinct types of models, i.e.

verbal, analytic or mathematical, pictorial and simulation models.

All of the methodologies use diagrams to communicate designs. It can therefore be

classified as pictorial models.

4.5.3. Techniques and tools

Techniques and tools are those used in a particular methodology (Avison & Fitzgerald

(2003:561).

85

Chapter 4 - Object Orient Approach

The techniques and tools used in OOA, are mainly class, object and gen-spec structure.

OOSP uses essential use case models, change cases, essential use interface

prototypes, CRC models for domain modelling, user interface flow diagramming, user

interface prototypes, use case models, sequence diagram, class model (analysis),

activity diagrams, state chart diagrams, component diagrams, deployment diagrams,

collaboration diagrams and class models (design).

RUP uses use case models, use case realisations analysis and design, interface

analysis and design, architectural view of the analysis and designs, analysis and design

classes, analysis and design packages, design subsystems, deployment models, test

cases, test procedures and test components.

OMT uses problem statements, object models, dynamic models and function models.

From these, an investigation is carried out on the system, and a systems design

document is produced. The object design phase is concerned with adding platform

considerations to the object design document.

4.5.4. Scope

The scope of a methodology is an indication of the stages in the life cycle (Avison &

Fitzgerald, 2003:561). The scope of OOA is the analysis phase.

OOSP gathers the requirements, validates the requirements, analyses the

requirements, designs the analysed requirements and implements the designs. The

methodology follows a spiral life cycle approach.

RUP gathers the requirements, analyses the requirements, designs the analysed

requirements, implements the designs and tests the implementation. This methodology

also uses a spiral life cycle approach.

86

Chapter 4 - Object Orient Approach

OMT gathers the requirements, analyses the requirements, designs the analysed

requirements and implements the designs. It also uses a spiral life cycle approach.

4.5.5. Output

This component is concerned with the deliverables of the methodology at each stage

and most importantly, the final deliverable (Avison & Fitzgerald, 2003:562).

In terms of output, the OOA methodology produces an analysed class and object

model.

OOSP's requirements phase produces the functional and non-functional requirements

for the problem domain. The validation phase produces change cases, if needed. The

analysis phase produces an analysis model, used for the designs. The design phase

produces the design model, used for the implementation phase.

RUP follows a similar output. The requirements mode is used for the analysis model,

which in turn is used for the design mode and thereafter for the implementation model.

The result of the implementation is tested in the test model.

OMT also produces the same output as RUP and OOSP. The analysis phase produces

an analysis document, the systems design phase produces a systems design

document, and these documents are used to produce an object design document. The

object design document is used for the implementation phase.

4.5.6. Practice

The practice component in the framework is measured according to the following

(Avison & Fitzgerald, 2003:562):

• The methodology's background in commercial or academic terms.

• The user base (not part of the discussion).

87

Chapter 4 - Object Orient Approach

• The participants in the methodology and the required skills level. The practice

should also include an assessment of difficulties and problems encountered, as

well as perceptions of success and failure.

• It should be done by the users of the methodology. The results will be subjective,

depending on who is consulted.

The background for OOA, OOSP, RUP and OMT is mainly based on object-oriented

principles that have evolved into a full life cycle.

The OOA methodology is a methodology (Coad & Yourdon, 1991) that focuses on one

aspect only. The principals used in OOA, are imbedded in OOSP, RUP and OMT in the

analysis phase.

OOSP, RUP and OMT cater for a development full life cycle. The user base for OOA is

the designers. The output, is utilised by them. The OOSP, RUP and OMT user base

caters for architects, analysts, designers, programmers and testers, responsible for

producing a full working software solution.

The participants in OOA are mainly the analysts, whereas in OOSP and RUP, the user

base and business are included.

4.5.7. Product

Product is the last component in the framework, and as the name implies, this is the

final deliverable of the methodology. It can range from a software product to a telephone

help service (Avison & Fitzgerald, 2003:562). The product falls outside the scope of this

study and will not be discussed.

88

Chapter 4 - Object Orient Approach

Table 4-2 is a summary of the discussion on the comparative framework of Avison and

Fitzgerald (2003).

OOA OOSP RUP OMT

Philosophy Iterative,

incremental, object

oriented

Iterative, incremental,

object oriented

Iterative, incremental,

object oriented

Iterative,

incremental, object

oriented

Paradigm Scientific Scientific Scientific Scientific

Objectives To analyse the

requirements of

the system.

To determine the

requirements needed for a

system, analyse the

requirements, design the

system and build it.

To determine the

requirements needed

for a system, analyse

the requirements,

design the system,

build it and test the

system.

To determine the

requirements

needed for a system,

analyse the

requirements, design

the system, build the

system.

Domain Only the analysis

domain

Only on the software

solution domain.

Only on the software

solution domain.

Only on the software

solution domain.

Target Analysis of the

problem.
Software solution of the

business problem domain.

Software solution of

the business problem

domain.

Software solution of

the business

problem domain.

Model Pictorial Pictorial Pictorial Pictorial

Techniques and

Tools

Class and object

diagrams and gen-

spec diagrams

Essential use case

models, change cases,

essential use interface

prototypes, CRC models

for domain modelling,

user interface flow

diagramming, user

interface prototypes, use

case models, sequence

diagram, class model

(analysis), activity

diagrams, state chart

diagrams, component

diagrams, deployment

diagrams, collaboration

diagrams and class

models (design)

Use case models,

use case realisations

analysis and design,

interface analysis and

design, architectural

view of the analysis

and designs, analysis

and design classes,

analysis and design

packages, design

subsystems,

deployment models,

test cases, test

procedures and test

components

Problem statements,

object models,

dynamic models and

function models from

this an investigation

is made on the

system and a

systems design

document is

produced. The object

design phase

concerns itself with

adding platform

considerations to the

object design

document

Table 4-1 Comparison of the philosophies of the 0 0 methodologies.

89

Chapter 4 - Object Orient Approach

Scope Analysis

requirements

Gather requirements,

validate requirements,

analyse requirements,

design analysed

requirements, lastly

implement designs, spiral

life cycle

Gather requirements,

analyse

requirements, design

analysed

requirements,

implements designs,

tests implementation

spiral life cycle.

Gathers the

requirements,

analyses the

requirements, design

the analysed

requirements and

implements the

designs, spiral life

cycle.

OOA OOSP RUP OMT

Outputs Analysed class

and object model

Requirements phase

produces the functional

and non functional

requirements, change

cases in validation,

analysis models for

design and design models

for implementation

Requirements model,

analyse model,

design model,

implementation

model and test

model.

The analysis phase

produces an analysis

document, the

systems design

phase produces a

systems design

document and these

documents are used

to produce an object

design document.

The object design

document is used for

the implementation

phase.

Practice

(Background)

Based on 0 0

principles, caters

for analysis

Based on 0 0 caters for a

full development life cycle.

Based on OO caters

for a full development

life cycle.

Based on OO caters

for a full

development life

cycle.

Practice (User

base)

N/A N/A N/A N/A

Practice

(Participants)

Analysts Architects, analysts,

designers, programmer,

testers and business

Architects, analysts,

designers,

programmer, testers

and business

Architects, analysts,

designers.

Product N/A N/A N/A N/A

Table 4-2 (Continued) Comparison of the philosophies of the 0 0 methodologies.

4.6. The general aspects of the comparison

In the previous paragraph, OOA, OOSP, RUP and OMT were compared to one another.

The goal was to find commonalities among these methodologies.

90

Chapter 4 - Object Orient Approach

From a philosophical perspective, the OOA, OOSP, RUP and OMT methodologies use

object to explain reality.

The scope of OOA is to analyse the requirements, whereas in OOSP, RUP and OMT,

the analysis phase is one of several phases.

All of these methodologies communicate by means of diagrams. The common phases

highlighted, are:

• Requirements gathering - All methodologies cover a part of requirements

gathering, except OOA, which assumes that requirements have already been

dealt with and consequently starts with the analysis thereof.

• Requirements validating - highlighted only in OOSP, but of great importance to

get a clear understanding of the problem.

• Analysis - All methodologies focus on analysing the problem.

• Design - All methodologies (except OOA) focus on design based on the

analysis.

• Implementation - All methodologies (except OOA) focus on implementing the

designs.

• Testing - All methodologies (except OOA and OOSP) focus on testing. OOSP

uses a different methodology to test the implementation.

4.6.1. Requirements gathering

The main tool used for requirements gathering, is based on use cases. The use case

diagram highlights the interaction between the actors and the processes

(users/systems). Each relationship between the actor and the process is a use case.

For every relationship there must be an interface, the mean of linking the actor and

process. From this, a domain is modelled on which requirements are based. The

91

Chapter 4 - Object Orient Approach

business has rules and processes, which are captured by using supplementary

documentation.

Figure 4-19 represents the different activities in the requirements phase. The

requirements phase is subdivided into two, the requirements gathering phase and the

requirements validating phase.

Phase Activity

c
(U
E
'5
cr
(U
0£

f s
• Essential Use Case Diagram
• Essential Use Case
• User Interface Prototyping
• Domain Modelling
• Supplementary Documentation

c
(U
E
'5
cr
(U
0£ I2 • Use Case Scenario Testing

• User Interface Walkthrough
• Requirements Review

Figure 4-19 The requirements phase

4.6.2. Analysis

The analysis phase uses as input, the artefacts produced by the requirements phase. It

starts with a more detailed use case, called a systems use case in OOSP and a use

case realisation - analysis in RUP. OMT uses a functional description, which is a form

of a use case.

From the above, a sequence model is built, specifying the interactions among the

classes. A class model is built, while most of the concepts of OOA are used in OOSP,

RUP and OMT.

The class model provides the detail that will be contained in the class. An activity

diagram is created to explain the operation of a use case or method. The user

interfaces captured in the requirements, are evolved into more specific detail. Next, the

92

Chapter 4 - Object Orient Approach

supplementary documentation and the user documentation are evolved and lastly, all

components are organised into more manageable packages

All of these diagrams are platform non-specific. Figure 4-20 indicates the activities

included in the analysis phase.

Phase Activitv

I

si f

System Use Case
Sequence Diagram
Conceptual Class Modelling
Activity Diagram
User Interface Prototyping
Supplementary Specifications
User Documentation
Organise Packages

Figure 4-20 The analysis phase

4.6.3. Design

The design phase aims at being more platform-specific. The class model is designed

according to the rules of the programming platform, while a state chart diagram is used

to illustrate the state of the object.

From the above, a collaboration diagram is created to trace the relationship between the

class diagram and the sequence diagram. Component modelling is done to group the

use cases, interfaces and class diagrams together.

A deployment diagram is created to illustrate the dependencies, as well as to specify

the platform specifics.

Rational persistence modelling is done to model the persistence layer of the system.

Lastly, the user interface is designed by making use of the platform specifics.

Figure 4-21 illustrates the design phase.

93

Chapter 4 - Object Orient Approach

Phase Activity

• Class Modelling
0) • State Chart Modelling

• Collaboration Modelling
O w • Component Modelling O w

• Deployment Modelling
.5" • Relational Persistence
O Modelling

• User Interface Design

Figure 4-21 The design phase

4.6.4. Implementation

The implementation phase focuses on the actual code development in accordance with

the design phase. In this phase, all the classes are created according to the class

design. The logic of the state charts and the user interfaces are coded.

The implementation is packaged according to the component design. The deployment

environment is set up and the packages deployed. Figure 4-22 illustrates the

implementation phase.

Phase Activity
-a c 0) o

O «

s-g-

• Code development
• Component packaging
• Deploy packages

Figure 4-22 The implementation phase

4.6.5. Testing

The testing phase tests the implementation in various ways and is completed by unit-

testing every component. Figure 4-23 illustrates the testing phase.

Phase Activity

O
bj

ec
t

O
rie

nt
ed

Te

st
in

g • Unit test components

Figure 4-23 The testing phase

94

Chapter 4 - Object Orient Approach

4.7. Summary

This chapter dealt with the detail of object-oriented systems development

methodologies. It explained that the goal of 0 0 is to ensure that:

• products are delivered to the user on time and within budget

• products meet user requirements

• increasingly sophisticated products are offered to keep a competitive edge

• the changes in standards and delivery technology are kept up

• the project team feels motivated and successful

The guiding principles and beliefs of the object-oriented development process is a

seamless analysis, design and implementation process. The fundamental concepts of

object-oriented development discussed, are:

• Problem domain vs. implementation domain

• Object and class

• Encapsulation

• Inheritance

• Polymorphism

• Communication among objects.

The lifecycle approach of object-oriented development is found to be iterative and

incremental in nature.

The chapter also included a detailed discussion on four object-oriented development

methodologies:

• Object Oriented Analysis (OOA)

• Object Oriented Software Process (OOSP)

• Rational Unified Process (RUP)

• Object Modelling Technique (OMT)

95

Chapter 4 - Object Orient Approach

The second part of the chapter compared the four methodologies by using the

comparison framework of Avison and Fitzgerald (2003).

The framework focuses on various aspects of a systems development methodology,

such as:

• Philosophy

• Model

• Technique and tools

• Scope

• Output

• Practice

• Product

A summary of the discussion on the four methodologies and the framework is outlined

in Figure 4-24. The figure represents the following six phases commonly found in

object-oriented development:

• Requirements gathering

• Requirements validating

• Analysis

• Design

• Implementation

• Testing

96

Chapter 4 - Object Orient Approach

Phase Activity

y>

CD

E
CD

CT
CD

en

J ? CD

• Essential Use Case Diagram
• Essential Use Case
• User Interface Prototyping
• Domain Modelling
• Supplementary Documentation

y>

CD

E
CD

CT
CD

en
CO

fi • Use Case Scenario Testing
• User Interface Walkthrough
• Requirements Review

to
"to >,
CO

c
<
CD

c
■c
o
o
CD

!Q
O

• System Use Case
• Sequence Diagram
• Conceptual Class Modelling
• Activity Diagram
• User Interface Prototyping
• Supplementary Specifications
• User Documentation
• Organise Packages

c
D)

'co
CD

Q
-o
3
CD

6
o
CD
S" o

• Class Modelling
• State Chart Modelling
• Collaboration Modelling
• Component Modelling
• Deployment Modelling
• Relational Persistence Modelling

User Interface Design

T3 C

.1 -
6 |
O a)

O I

• Code development
• Component packaging
• Deploy packages

O
bj

ec
t

O
rie

nt
ed

Te

st
in

g

• Unit test components

Figure 4-24 Summary of requirements, analysis, design, implementation and testing.

The next chapter will focus on the common data warehouse methodologies, and the

matrix created in this chapter will be mapped to these methodologies.

97

Chapter 5 - Data Warehouse Development

Chapter 5 - Data Warehouse Development

5.1. Introduction

The purpose of this chapter is to focus attention on the data warehouse (DW) and its

development methodologies.

Ramakrishnan and Gehrke (2003:848) explain that organisational decision making

requires a comprehensive view of all aspects in the enterprise. For this reason, many

organisations create data warehouses that contain data drawn from operational

databases by difference business units, together with historical and summary

information.

The previous chapter focused on object-oriented approaches and methodologies which

are used in the development of operational systems. Little literature exists on object

oriented data warehousing. This chapter introduces data warehousing as an addition to

operational systems.

This chapter will focus on the following:

• Data warehouse development as a decision support system

• Differences between operational database systems and the data warehouse

• Data warehouse methodologies

5.2. The data warehouse

It is necessary to understand that the data warehouse serves a different purpose than

the operational database system in the organisation.

Ramakrishnan and Gehrke (2003:847) explain that operational database systems

maintain operational data. Operational data represents the day to day operations of the

business.

98

Chapter 5 - Data Warehouse Development

Database systems typically execute small changes to data with a large number of

transactions. They are optimised to perform more effectively for specific applications.

Ramakrishnan and Gehrke (2003:847) further explain that there was a need in

organisations to analyse the data. This is done through a data warehouse.

A typical data warehouse contains historical data that is analysed and explored. It

identifies useful trends and creates summaries of data to support high level decision

making. A data warehouse is also referred to as a type of Decision Support System

(DSS).

The characteristics of data in data warehouses compared to operational database

systems, also differ (Rob & Coronel, 2002:624). Table 5-1 lists the differences in

characteristics of data in a data warehouse and data in an operational database.
Characteristic Operational database data Data warehouse data
Integrated Similar data can have different

representations or meanings
Provide a unified view of all
data elements with a common
definition and representation
for all business units.

Subject-oriented Data are stored with a functional,
or process orientation.

Data are stored with a subject-
orientation that facilitates
multiple views of the data and
facilitates decision making.

Time-variant Data are recorded as current
transactions.

Data are stored with a
historical perspective in mind.
Therefore, a time dimension is
added to facilitate data
analysis and various time
comparisons.

Characteristic Operational database data Data warehouse data
Non-volatile Data updates are frequent and

common.
Data cannot be changed. Data
are added only periodically
from historical systems. Once
the data are properly stored,
no changes are allowed.
Therefore, the data
environment is relatively static.

Table 5-1 (Continued) A comparison of data warehouse and operation database characteristics

(Rob & Coronel, 2002:624)

99

Chapter 5 - Data Warehouse Development

The design model of a data warehouse is also unique; it makes use of the so-called star

schema design. Rob and Coronel (2002:641) explain that the star schema design

allows the dimensional model to be mapped to a relational database.

The star schema comprises of the following components:

• Facts - numeric measurements that represent a specific aspect of an activity.

• Dimensions - characteristics that provide additional perspectives to a given fact.

• Attributes - descriptions that are found in a dimension.

• Attribute hierarchies - provide a top-down data organisation; this is used for drill-

down / roll-up data analysis.

The fact table relates to each dimension in a many-to-one relationship.

Figure 5-1 is a representation of the sales fact and illustrates the different dimensions

(location, customer, time and product) and the fact (sales). Each entity can have

different record totals.

LOCATION

LOCID
LOC.DESCRIPTION
REGIONID
LOC_STATE
LOC_CITY

25 records

CUSTOMER

CUSTJD
CUST_LNAME
CUST_FNAME
CUSTJNITIAL
CUST DOB

125 records

SALES

TIMEJD
LOCJD
CUSTJD
PRODJD
SALES_QUANTITY
SALES_PRICE
SALES TOTAL

3,000,000 records

Daily sales aggregates by
store, customer, and product

TIME

TIMEJD
TIME_YEAR
TIME_QUATER
TIME_MONTH
TIMEJDAY
TIME CLOCKTIME

365 records

PRODUCT

PROD ID
PROD DESCRIPTION
PROD TYPE ID
PROD BRAND
PROD COLOR
PROD SIZE
PROD PACKAGE
PROD_PRICE

3,000 records

Figure 5-1 Star schema for sales (Rob & Coronel, 2002:647)

100

Chapter 5 - Data Warehouse Development

Advanced analysis tools utilise the data warehouse for their analysis processes.

Ramakrishnan and Gehrke (2003:847) explain that one can find three classes of

analysis tools:

• Online analytic processing (OLAP) - these tools typically support group by

aggregation of data and complex boolean condition queries.

• Traditional structured query language (SQL) - some database management

systems (DBMS) have built-in support for SQL queries that utilise OLAP

performance.

• Trends and patterns search - exploratory data analysis and data mining are used

on top of the data warehouse to find interesting patterns and behaviours in the

data.

Typical data warehouse architecture will follow the concepts explained in Figure 5-2.

Figure 5-2 A Typical Data Warehouse Architecture (Ramakrishnan & Gehrke, 2003:870)

Figure 5-2 illustrates the sources (the operational databases) to the left. These sources

are extracted, cleaned, transformed and loaded through an interface to the data

warehouse. To the right are the reporting tools served by the data warehouse. The data

warehouse is situated between the source systems and the reporting tools. From the

above, one can derive that the data warehouse serves as a decision support system.

This is a unique system compared to operational systems, where only the operational

aspect of the business is supported.

101

Chapter 5 - Data Warehouse Development

The development methodology of data warehouses differs from that of traditional

operational systems. The following discussion will focus on the different methodologies

used in developing data warehouse solutions.

5.3. The data warehouse development methodologies

A literature study by Sen and Sinha (2005) found that the most recognised

methodologies used in data warehouse development are those of Kimball et al. (1998)

and Inmon(1996).

The methodology of Kimball et al. (1998) will be discussed before that of Inmon (1996)

since it is the more important to the main argument of this dissertation.

5.3.1. The business dimensional lifecycle approach

Kimball et al. (1998:19) defines the data warehouse as "nothing more than the union of

all constituent data marts. A data warehouse is fed from the data staging area "and a

"queryable source of data in the enterprise".

To fully understand the above definition, one should investigate the following:

• Data Mart - Kimball et al. (1998:18) states that this can be seen as a local sub­

set of the complete data warehouse. A data mart is defined as a restriction of the

data warehouse to a single business process, or to a group of related business

processes targeted toward a particular business group.

• Data staging area - Kimball et al. (1998:16) defines this as "a storage area and

a set of processes that clean, transform, combine, de-duplicate, household,

archive and prepare source data for use in the data warehouse." This is

everything between the source system and the presentation server.

102

Chapter 5 - Data Warehouse Development

Kimball et al. (1998) uses the business dimensional lifecycle approach to develop data

warehouses. This is illustrated in Figure 5-3.

Business
Requirements

Definition

Business
Requirements

Definition

Technical
Architecture

Design
—* Product

Selection &
Installation

Business
Requirements

Definition

Technical
Architecture

Design
—* Product

Selection &
Installation

Business
Requirements

Definition

Business
Requirements

Definition

1 Business
Requirements

Definition
Dimensional

Modeling -
Physical
Design » Data staging

design &
development

Deployment — » Maintenance
and growth

Business
Requirements

Definition
Dimensional

Modeling -
Physical
Design » Data staging

design &
development

Deployment — » Maintenance
and growth

Business
Requirements

Definition
Dimensional

Modeling -
Physical
Design » Data staging

design &
development

Deployment
Business

Requirements
Definition

Business
Requirements

Definition

End-User
Application

Specification

End-User
Application

Development

Business
Requirements

Definition

End-User
Application

Specification

End-User
Application

Development

-M Project Management

Figure 5-3 The business dimensional lifecycle (Kimball etal., 1998:33)

The business dimensional lifecycle is a sequence of high level tasks required for

effective data warehouse design, development and deployment. Three tracks, namely

data-, technology- and application tracks are executed in parallel.

5.3.1.1. Project Planning

This phase addresses the definition and scoping of the data warehouse project,

including readiness assessment and business justification. Kimball et al. (1998:33)

states that project planning focuses on resource- and skill-level staffing requirements,

linked with task assignments, duration and sequencing. The resulting integrated project

plan identifies all tasks associated with the "Business Dimensional Lifecycle" and

indicates the parties involved. It serves as the corner stone for the ongoing

management of a data warehouse project. Project planning is dependent on the

business requirements. This dependency is illustrated by the two-way arrow between

project planning and business requirements in Figure 5-3.

The rest of the discussion on projection planning is based on the work of Kimball et al.

(1998). To gain a more in depth understanding of the authors' methodology, one should

examine the following aspects:

103

Chapter 5 - Data Warehouse Development

• Project definition and scoping

• Project planning

Project definition and scoping

Before a data warehouse or a data mart project is commenced, one has ensure that

there is a demand and where the demand is coming from. If there are no strong

business sponsor(s), and/or eager users, the project should be postponed.

The following five factors should be present before detailed work on the design and

development of the data warehouse begins:

• Strong business management sponsor

• Compelling business motivation

• Is/business partnership

• Current analytic culture

• Feasibility

It is recommended that after the above assessment has been done, a preliminary scope

should be developed. This preliminary scope should be based on business

requirements.

Another aspect of project planning is business justification, which includes the following

tasks:

• Determine the financial investments and costs

• Determine the financial returns and benefits

• Combination of the investments and returns, to calculate return on investment.

Project planning

Once the project is defined and approved, planning of the project may commence.

This entails the following:

104

Chapter 5 - Data Warehouse Development

• Establishment of project identity - giving the project a name.

• Staffing of the project - a data warehouse project requires a number of different

roles and skills from both the business and IS communities. The authors illustrate

the various roles by comparing them to a professional sports team:

o "Front office: sponsors and drivers"

o "Coaches: project managers and leads" - this consists of the following:

• The project manager

• Business project lead

o "Regular project lead" - this consists of the following:

• Business systems analyst

• Data modeller

• Data warehouse database administrator

• Data staging systems designer

• End user application developers.

• Data warehouse educator

o "Special teams" - these members contribute on a very specialised basis,

including the following:

• Technical/security architect

• Technical support specialists

• Data staging programmer

• Data steward

• Data warehouse quality assurance analyst

• Developing the project plan - two key words should be kept in mind when

describing a project plan, namely 'integrated' and 'detailed'. The reason for this is

that most data warehouse teams have multiple project plans that do not tie up.

5.3.1.2. Business Requirement Definition

The business requirements definition is the next phase in the business dimensional

lifecycle approach. According to Kimball et al. (1998:95), this step is regarded as the

105

Chapter 5 - Data Warehouse Development

centre of the "data warehouse universe". Figure 5-4 illustrates that business

requirements have an impact on every aspect of the data warehouse project. To

determine the business requirements, one should start by interviewing business users.

A series of interviews must be conducted with each level of management in the

organisation. The next step is to determine the success criteria, after which the

preparation and publishing of deliverables follow. On completion of the above, the IS-

and business teams should reach an agreement on the scope of the project (Kimball et

al., 1998:132).

Figure 5-4 Business requirements impact every aspect of the data warehouse project (Kimball et

al., 1998:96)

This phase entails the foundation for the three parallel tracks focusing on technology,

data and end user applications as depicted in Figure 5-3 (Kimball et al., 1998:34).

5.3.1.3. Data Track: Dimensional Modelling

Once the business requirements are firmly established, the next step is to design the

dimensional modelling.

106

Chapter 5 - Data Warehouse Development

Dimensional modelling is defined as "a logical design technique that seeks to present

the data in a standard framework that is intuitive and allows for high performance

access. It is inherently dimensional and adheres to a discipline that uses relational

model with some important restrictions" (Kimball et a/., 1998:144).

Kimball et al. (1998:27) strongly believes that dimensional modelling should be part of

the presentation phase of the data warehouse, as compared to entity-relationship (E/R)

modelling, it yields better predictable and understandable designs, which can be used

and assimilated by users and which can be queried effectively. Unlike E/R modelling,

dimensional modelling does not require the database to be restructured, or queries to

be rewritten when new data is introduced into the data warehouse. Lastly, a

dimensional data mart does not need to anticipate the user's queries and is very

resilient to changes in user analysis patterns. The explanation of dimension modelling is

aided by Figure 5-5.

Time Dimension
Product Dimension

tims_key(PK)

SQL^dale

day_of_week

week_number

month

etc.

Store Dmension

stote_key(PK}

storeJD

store_name

addross

district

f loor jype

etc.

Clerk Dimension

clerkJ<ey(PK)

clerkJD

derk_name

clerk_grade

etc.

I _ ^ timeJ«!y(FK)

pmductkey(FK)

-i store^key(FK)

customer_key(FK)

- ^ derk_key(FK)

promotion_key(FK)

dollars_sokJ

unils_sold

dollars cost

product_key(PK)

SKU

description

brand

category

package_type

Customer Dimension

customerJ<ey(PK)

customerjrtame

purchase_proflle

credit_profile

demographicjype

Promotion Dimension

promotion_key(PK)

promotion_name

price.type
a d j y p e

display_Jype

etc.

Figure 5-5 Example of a fact table (Kimball ef al., 1998:145)

107

Chapter 5 - Data Warehouse Development

Kimball et al. (1998:144) explains that this model consists of one table with a multipart

key, called the fact table, and a set of similar tables, called dimensional tables. A

dimensional table contains a single part primary key that corresponds to one of the

components of the multipart key in the fact table. The fact table also contains one or

more numerical facts. The authors (Kimball et al., 1998:146) explain that the key to

understanding the relationship between dimensional modelling and E/R modelling, is to

take a single E/R diagram and break it down into multiple fact table diagrams. One then

needs to select the many-to-may relationships in the E/R model containing numeric and

additive non-key facts, and designate them as fact tables. Lastly, all the remaining

tables need to be de-normalised into flat tables with single-part keys that connect

directly to the fact tables. These tables become the dimension tables.

The master dimensional model of a data warehouse for a large enterprise will consists

of 10 to 25 similar star-join schemas (Kimball et al., 1998:146).

Dimensional modelling has five major strengths (Kimball et al., 1998:147):

• A dimensional model has a predictable, standard framework, thus providing

strong assumptions about the model and making interfaces more

understandable.

• The predictable framework of the star join schema withstands unexpected

changes in user behaviour

• Extensibility to accommodate unexpected new data elements and new design

decisions. In summary, the following can be added:

o New unanticipated facts that are consistent with the fundamental grain of

the existing fact table.

o New dimensions, for which a default value of that dimension is defined for

the existing fact tables.

o New unanticipated dimensional attributes.

108

Chapter 5 - Data Warehouse Development

o Lastly, existing dimensional records taken down to a lower level of

granularity from a certain point in time forward.

• A standard of approaches available for handling common modelling situations.

These situations include:

o Slowly changing dimensions - "constant" dimension that evolves

asynchronously. Dimensional modelling provides specific techniques for

handling slowly changing dimensions, depending on the business

environment.

o Heterogeneous products - for example, a bank needs to track a number

of attributes and facts, but simultaneously needs to describe and measure

the individual lines of business in highly idiosyncratic ways using

incompatible facts.

o Pay-in-advance databases - transactions of a business are not revenue,

but the business needs to look at both the individual transactions, as well

as reports on revenue on a regular basis.

o Event-handling databases - the fact table is "factless".

• Growing strength of administrative utilities and software processes that manage

the use of aggregates.

When creating a data warehouse, Kimball et al. (1998:156) advises that a set of

standards must be formed. This set of standards is handled by the so-called Data

Warehouse Bus Architecture, a master suite of conformed dimensions and standardised

definitions of facts.

The authors recommend that the following should be kept in mind when creating

conformed dimensions (Kimball et al., 1998:156):

• Conformed dimension - dimension that produces the same meaning with every

possible fact table to which it can be joined.

109

Chapter 5 - Data Warehouse Development

• Data warehouse design team - the responsible team to establish, publish,

maintain, and enforce the conformed dimensions.

• Strict adherence to conformed dimensions - needed for the data warehouse to

function as an integrated whole.

Conformed dimensions allow the following (Kimball etal., 1998:157):

• A single dimension table to be used against multiple fact tables.

• User interfaces and data content to be consistent whenever a dimension is used.

• A consistent interpretation of attributes and therefore the ability to do rollups

across data marts.

110

Chapter 5 - Data Warehouse Development

The Data Warehouse Bus Architecture matrix (Figure 5-6) is a tool to decide which

dimensional model to build. The matrix requires the naming of all the data marts that

can possibly be built, as well as the dimensions implied by those data marts (Kimball et

a/., 1998:271).

CD
E
}-

E o

o

CD

C O

&
o
£
O

CO

CD
TO
•>

-if

co
"co o o

to
Q.

_c

O

"U

.2
C)

CD
"U
■ >

Li.
CD o c
s
w
Q

i
O) c o

_ l

o
15

CO

E>
o
TO

B
c

CD
CD

§■
"5.
E

LU

c o
IS o o
_ l

CD
Q.

1
it

CD

=5.
§■

"U
CD
1 .
§■

E
£

CD

1
w

CO

c

o
8 <

Customer Billing V V V V V >/ V V

Service Orders V V V V V V V V V V ^

Trouble Reports V V V V V V V V V V V V V ^

Yellow Page Ads V V V V V V V v
Customer Inquiries V V V V V V V V V V V v
Promotions & Comm'n V V V V V V V V V V V V V V

Billing Call Detail V V V V V V V V V V V V V V V

Network Call Detail V V V V V V V V V V V V V V V

Customer Inventory V V V V V V V V V V V V

Network Inventory V V V V ^ ^ ^ V

Real Estate ^ V -i V V

Labour & Payroll V V V V

Computer Charges V V V V V V V V V V V

Purchase Orders V V V V V V V

Supplier Deliveries V V V V V V V

Combined Field Ops. V V V V V V V V V V V V V V V

Customer Rein. Mgmnt V V V V V V V V V V V V V V V V

Customer Profit V V V V V V V V V V V V V V V V

Figure 5-6 The Data Warehouse Bus Architecture matrix for a telephone company
(Kimball era/., 1998:271)

The rows of the above Figure 5-6 are the data marts and the columns the dimensions.

The mark on the intersections indicates where a dimension exists for a data mart.

111

Chapter 5 - Data Warehouse Development

Advantages of the matrix are the following (Kimball et a/., 1998:272):

• It forces the question whether each candidate dimension might in some way be

linked to a given data mart.

• It determines how important a dimension is by looking down the column.

Once all the potential data marts and dimensions are identified, the four-step method

can be applied. The discussion on the four-step method for designing an individual fact

table is based on Kimball et at. (1998:273).

Step 1: Choose the Data Mart

The data mart is selected. The following is recommended:

• The data warehouse designer should implement only single-source data marts

first. This reduces the number of lengthy extract development tasks.

• Implement data marts in the context of a set of conformed dimensions to allow

the plug in of the data marts into the data warehouse bus.

Step 2: Declare the Grain

The grain specifies the level of detail. It is advisable to be very precise when defining

the fact table grain. The grain should be as low as possible to accommodate a more

robust design. There are many advantages in choosing a low-level grain, such as

individual transactions, individual day snapshots or individual document line items.

Step 3: Choose the Dimensions

The grain itself will often determine the primary or minimal set of dimensions needed. At

this stage, the designer will examine all the data resources available and preferentially

attach the single-valued descriptors as dimensions.

Step 4: Choose the facts

Add as many facts as possible within the context of the declared grain. The grain of the

fact table allows the individual facts to be chosen and clarifies the scope of the facts.

The facts should always be specific to the grain of the fact table.

112

Chapter 5 - Data Warehouse Development

5.3.1.4. Data Track: Physical Design

This phase focuses on the physical database design. The emphasis is on structures

supporting the logical database design. Primary elements of this process will include

defining, naming standards and setting up the database environment. Preliminary

indexing and partitioning strategies are also determined (Kimball etal., 1998:543).

A proper set of aggregated records that coexists with the primary base records,

improves query performance. Four design goals should be kept in mind when

aggregating a data mart (Kimball etal., 1998:556):

• Aggregates must be stored in their own fact tables. The aggregated table should

be separate from the base atomic data. Each distinct aggregation level must

occupy its own unique fact table.

• The dimension tables attached to the aggregate fact tables must be shrunken

versions of the dimension tables associated with the base fact table.

• The base atomic fact table and its related aggregated fact tables must be

associated with one another. This is to allow the aggregate navigator to know

which tables are related to one another.

• All created queries by any end user data access tool or application must be

forced to refer exclusively to the base fact table and its full-size dimension tables.

To summarise the above discussion on completing the physical design, Kimball et al.

(1998:571) recommends the following steps:

• Developing standards - this includes database-naming standards, using

synonyms for all tables accessed by users, and develop standards for physical

file locations.

• Developing the physical data model.

• Developing the initial index plan.

• Designing and building the database instance.

• Developing the physical storage structure.

113

Chapter 5 - Data Warehouse Development

• Implementing usage monitoring.

5.3.1.5. Data Track: Data Staging Design and Development

The data staging design and development phase of the business dimensional lifecycle

represents the bulk of the data warehouse project (Kimball etal., 1998:609).

A ten-step plan is followed to accomplish the data staging design and development. The

discussion on the ten-step plan is based on Kimball etal. (1998:612-652).

The plan is divided into three sections:

• The plan

• Dimension loads

• Fact tables and automation.

The plan involves the following activities:

• Create a high-level, one-page schematic plan of the source-to-target flow. This

schematic plan should be very simple. It should highlight what the developer

knows about the source-to-target flow, where the data originates from, and

annotate the major challenges that the developer may face. Figure 5-7 illustrates

a typical example of this plan.

The three steps in data staging, namely extract, transform and load are

highlighted in this high level plan by illustrating the sources, transformations and

targets.

114

Chapter 5 - Data Warehouse Development

Sources

Targets

Figure 5-7 Basic high-level data staging plan schematic (Kimball era/., 1998:613)

• This is followed by testing, choosing and implementing a data staging tool. The

decision of which tool to use, is based on the nature of the environment, cost and

functionality.

• Create a detailed plan. A drill down by target table (changing the view of the data

to a greater level of detail) and a graphical sketch detailing complex data

restructures or transformations. The plan graphically illustrates the surrogate-key

generation process which includes developing preliminary job sequencing.

Dimension loads involve the following activities.

• Build and test a static dimension table load. The primary goal of this step is to

work out the infrastructure links, including connectivity, file transfer, and security

problems.

• Build and test the slowly changing process for one dimension

• Build and test the remaining dimensions.

Fact tables and automation involves the following activities.

115

Chapter 5 - Data Warehouse Development

• Build and test the historical fact table loads (on base tables only) including
surrogate-key lookup and substitution.

• Build and test the incremental load process and aggregate table loads.
• Design, build and test the staging automation.

5.3.1.6. Technology Track: Technical Architecture Design

An architectural plan is a technical translation of the business requirements. The
essence of this phase is to identify the capabilities most important to the organisation.
This is an iterative process, and as one moves forward, relevant information is
uncovered and applied.

The value of architecture entails the following (Kimball era/., 1998:318):
• Communication - provides a platform to communicate the project to

management.
• Planning - provides a cross check for the project plan.
• Flexibility and maintenance - anticipate many possible issues and provide

mechanisms for the possible issues.
• Learning - plays an important role as documentation for the system.
• Productivity and re-use - the architecture takes advantage of tools and metadata

as the primary enablers of productivity and re-use.

The business requirements serve as the primary guide to what should be in the
architecture and which parts should be prioritised. Once these are defined, the high-
level technical architecture can be modelled (Kimball ef a/., 1998:328). Figure 5-8
illustrates a high-level technical architecture.

116

Chapter 5 - Data Warehouse Development

The Back Room

Data
Staging
Services

-Extract
- Transform
-Load
-Job Control

□ 1 =)

The Front Room

Metadata

Catalog

Presentation Servers

Dimensional Data Marts with
Only Aggregated Data

The Data
Warehouse

Bus I

Query
Services

-Warehouse Browsing
-Access and Security
- Query Management
- Standard Reporting
- Activity Monitor

Conformed
Dimensions &
Conformed
Facts

Dimensional Data Marls
Including Atomic Data

Standard Reporting
Tools

o Desktop Data
Access Tools

o Application Models

c Downstream /
Operational Systems

Figure 5-8 High-level technical architecture model (Klmball era/., 1998:329)

The model provides a logical separation between the internal working of the warehouse,

namely the back room and the front room. The back room is known for the area where

the process of data acquisition is executed.

The backroom consists of the following (Kimball etal., 1998:336):

• Source systems - these are typical transaction systems within the business,

which can range from client/server ERP systems, reporting systems to operation

data store.

• Data staging - described as the construction site of the warehouse, is the area

where most of the data transformation takes place. Much of the value of the data

warehouse is added at this stage. The advantages of using the data staging area

are the following:

o It provides a place for keeping emergency backup of the data.

o The conformed dimensions are kept in flat files ready for export.

o It is the source of most atomic transactional data.

• Presentation Servers - the target platform where direct querying is executed by

end users. The Data Warehouse Bus in the presentation servers allows for

117

Chapter 5 - Data Warehouse Development

parallel development of business process data marts. The ability to integrate

these data marts ensures the existence of conformed dimensions. The data

marts found in the presentation servers do not show significant differences

between the atomic data marts and the aggregated data marts, since all of the

queries are still made in a dimensional format.

The second logical separation, the front room, is the part business interfaces with. The

primary goal of the warehouse is to make information as accessible as possible; this is

the function of the data access services layer. This layer reduces complexities between

the data warehouse and the end users (Kimball etal., 1998:373).

The access services provide for the following (Kimball et a/., 1998:378):

• Warehouse browsing - the data warehouse catalogue is used to support the

users in their efforts to find and access information needed.

• Access and security services - facilitate the end user's connection to the data

warehouse. These services rely on authentication from authentication services, a

major design and management challenge.

• Activity monitoring services - involve capturing information about the usage of

the data warehouse. This can be used for monitoring performance, user support,

marketing and planning.

• Query management services - a set of capabilities that manages the exchange

between query formulation, execution and results returned. These services are

metadata driven, and services that are managed, are:

o Content simplification

o Query reformulation

o Query retargeting and multi-pass SQL

o Aggregate awareness

o Data awareness

o Query governing

118

Chapter 5 - Data Warehouse Development

• Standard reporting services - provide the ability to create a production style,

fixed format report that has limited user interaction, a broad audience and regular

execution schedules. It is described as a standard report of some sort.

Kimball et al. (1998:409) regards the front room development as vital, as this is the part

of the data warehouse the business users interface with.

Figure 5-9 depicts the theory behind the architecture and illustrates the process flow of

the architectural design. The high level model is entailed in the architecture process

flow.

D a t a Technical Infrastructure

Business Requirements
(Including business, data, and Infrastructure issues)

.
Bus

Architecture
Matrix

Technical
Requirements Doc and

Technical
Architecture Model

Infrastructure
Issues Doc (and

Basic Model)

Bus
Architecture

Matrix

Technical
Requirements Doc and

Technical
Architecture Model

*
Infrastructure

Issues Doc (and
Basic Model)

Technical
Requirements Doc and

Technical
Architecture Model

* * *

I Business
Process Data Product Evaluation

Matrices

*

Infrastructure
Plan

I Business
Process Data Product Evaluation

Matrices ,
Infrastructure

Plan ,

■ ■

,

Logical and
Physical Data

Models
Select Products

, ,

i

Implement

Figure 5-9 Architecture development process flow chart (Kimball etal., 1998:503)

The layer enclosed in the dashed-line box is the technical architecture; the process that

needs to be followed in creating the technical architecture. The major deliverables in

this process are the technical architecture plan and the infrastructure plan (Kimball et

a/., 1998:504).

119

Chapter 5 - Data Warehouse Development

The process of creating the technical architecture should be executed once the

requirements are clearly defined. This process includes (Kimball etal., 1998:505):

• Form an architecture task force.

• Gather architecture-related requirements.

• Create a draft architecture requirements document.

• Create a technical architecture model.

• Determine the architecture implementation phases and deliverables for each

phase.

• Create a technical architecture plan document.

5.3.1.7. Technology Track: Product Selection and Installation

During the selection of products, four major purchase areas for a typical warehouse

must be considered (Kimball et al., 1998:515):

• Hardware platforms

• DBMS platform

• Data staging tool

• Data access tools

To evaluate a product, the following evaluation process techniques are recommended

(Kimball et al., 1998:516):

• Production evaluation matrix - this contains certain product criteria that are

evaluated to give an indication of which product is best suited to a certain

situation.

• Market research

Once the above evaluation is completed, the selection can be narrowed down to no

more than five products. The selected product can be installed and tested after an

120

Chapter 5 - Data Warehouse Development

agreement has been reached. Thorough testing is required to ensure end-to-end

integration of the data warehouse.

5.3.1.8. Application Track: End User Application Specification

The end user application fills a critical gap in meeting the data access needs of the

organisation (Kimball etal., 1998:666).

Four steps are identified to aid the specification process (Kimball etal., 1998:670):

• Determine initial template set - including report candidate identification, as well

as consolidation and prioritising of the list.

• Develop the navigation strategy - to assist users in finding what they need

quickly. Using the template, metadata can also be useful.

• Determine template standards - naming and placing of objects and receiving an

output that is satisfactory to the organisation.

• Develop detailed specifications - two parts of specifications are identified,

namely the definition and the lay-out.

5.3.1.9. Application Track: End User Application Development

After the end user application specifications have been identified, the development of

these applications can commence.

The development phase involves configuring the metadata tool and constructing the

specified reports. This is done by using a data access tool. Kimball et al. (1998:678)

states that the development lifecycle of the application depends on the organisation and

the data access tool used.

5.3.1.10. Deployment Planning

Deployment planning is defined as "the convergence of technology, data and

applications on the business users' desks, along with the necessary education and user

support structure" (Kimball etal., 1998:691).

121

Chapter 5 - Data Warehouse Development

Extensive planning is required before the actual deployment can commence. The

following steps should be followed when planning deployment of a data warehouse

(Kimball era/., 1998:692):

• Determine desktop installation readiness - Kimball et a/.(1998) point out that

technology residing on the user's desktop, is the last piece that needs to be in

place prior to deployment.

• Develop the end user education strategy - business users' education must

address three key aspects of the data warehouse, namely:

o Data content

o End user application

o The data warehouse access tool

• Develop an end user strategy - determining a support organisation structure,

anticipation of data reconciliation support and end user application support,

establishing support communication and feedback and lastly, providing support

documentation.

• Develop the deployment release framework - including an alpha release, beta

release and a production release framework.

5.3.1.11. Maintenance and Growth

Maintenance and growth are entered into, as soon as the data warehouse is

operational. The following must be done to maintain the data warehouse (Kimball et a/.,

1998:719):

• Manage the existing data warehouse environment - this focuses on the business

users using the data warehouse and includes continued support and education.

• Manage the data warehouse operations - this includes managing the technical

infrastructure, tuning the database performance and maintaining data and

metadata management processes.

122

Chapter 5 - Data Warehouse Development

• Measure and market the data warehouse success - It is important to measure

the performance of the data warehouse against the agreed success- and

satisfaction criteria. In order to achieve this, one must do the following:

o Monitor success and service metrics.

o Capture the decisions made from using the data warehouse.

o Proactively market the data warehouse.

• Communication - The maintenance plan should include an extensive

communication strategy. This strategy should include the business sponsors and

drivers, the business users, the general business community, the IS

management and the data warehouse team.

5.3.1.12. Maintain and grow the data warehouse

A data warehouse is bound to evolve and grow; it is stated that "this is a sign of

success, not failure" (Kimball et al., 1998:727). To facilitate the ongoing development of

the data warehouse, several strategies can be followed (Kimball et al., 1998:728):

• Establishing a data warehouse steering committee.

• Prioritising growth and evolution opportunities.

• Managing iterative growth and evolution by using the business life cycle

approach.

5.3.1.13. Project Management

Kimball et al. (1998:77) discusses the following techniques for keeping the data

warehouse project on track.

• Conduct the project team kick-off meeting - The purpose of this "is to get the

entire project team on the same page in terms of where the project currently

stands and where it hopes to go" (Kimball et al., 1998:78).

• Monitor project status - It should be monitored on a regular basis, by means of

the following:

o Project status meetings

o Project status reports

123

Chapter 5 - Data Warehouse Development

• Maintain the project plan and project documentation - The integrated project plan

mentioned earlier, should be updated weekly to accurately reflect progress and

should be shared with the core project team.

• Manage the scope - There will be changes to the data warehouse project. They

originate from two sources, namely previously unidentified issues and additional

user requests.

The following techniques are recommended to track issues and change requests.

• Track issues - It is critical to ensure that nothing slips between the "cracks" and

that everyone's concerns have been heard, also that the rationale used to

resolve issues has been captured for future reference. Two classes of issues

exist, firstly, those known to have an overall impact on the project and secondly,

those known to be task-oriented. It is recommended that a log be kept to capture

all issues.

• Control changes - "Formal acknowledgement of project changes is critical to

overall project success. Any issues resolution that impacts the project schedule,

budget or scope should be considered a change. If a change does not affect the

schedule or budget, it is often not documented. However, these changes may still

impact the overall scope. By formally documenting and communicating the

change, users' expectations will be readjusted as well." (Kimball etal., 1998:86)

• Document Enhancement requests - log/capture requests for future action, rather

than expanding the current project scope.

• Develop communication plan to manage expectations - Establish a successful

and robust communications plan ("game plan") to address the needs of different

audiences. The overall plan should outline general message, content, format,

and frequency of communication for each group of constitutes. Developing a

communications plan, forces the project manager to fully consider the

organisation's requirements. The following parties should engage in the

communications plan:

124

Chapter 5 - Data Warehouse Development

o Project team

o Sponsor and drivers

o Business user community

o Other interested parties - these include executive management, IS

organisation and the organisation at large.

5.3.2. Data driven methodology

Inmon (1996) follows the so-called data driven methodology to build data warehouses

and defines a data warehouse as "a subject-oriented, integrated, non-volatile, and time-

variant collection of data in support of management's decisions."

To better understand this definition, one needs to investigate the key words. These are

explained as follows: (Inmon, 1996:33)

• Subject-Orientation - A data warehouse is oriented around the major subjects of

the organisation. It is organised around subjects such as customer, vendor,

product and activity. The grouping around subject areas affects the design and

implementation of the data found in the data warehouse.

• Integration - Data found in the data warehouse environment is integrated. This is

the essence of the data warehouse environment. Integration can be implemented

in different ways, such as consistent naming conventions, consistent

measurement of variables, consistent encoding structures, consistent physical

attributes of data and so forth.

• Non-volatile - Inserts, deletes and changes are done regularly to the operational

environment on a record-by-record basis. Data manipulation occurring in the data

warehouse is much simpler. There are only two kinds of operations that occur in

the data warehouse, i.e. the initial loading of data and the access of data. There

is no update of data.

• Time variance - All data in the data warehouse is accurate as of some moment

in time. This basic characteristic of data in the warehouse is very different from

data found in the operational environment. In the operational environment, data

125

Chapter 5 - Data Warehouse Development

is accurate as of the moment of access. In the data warehouse, data is accurate

as of some moment in time. Data found in the data warehouse is said to be

"time-variant".

Inmon (1996:291) makes it clear that the Decision Support System (DSS) does not take

on a normal operational development life cycle, starting with requirements and ending

with the code, as it starts with data and ends with requirements.

Inmon presents the methodology in three parts;

• The first part is aimed at operational systems and processing - It includes

interviews to produce a "soft core" of what the production system does, as well

as determining the opinion of middle management and data gathering, detailed to

"fill in the gap" in the requirements process. Furthermore, Joint Application

Design (JAD) sessions to execute group brainstorming for spontaneous flow of

ideas and strategic business planning to manifest the system in business.

(Inmon, 1996:317)

• The second part is aimed at DSS systems and processing - This is the

methodology used to create the data warehouse.

• The final part is aimed at the heuristic component of the development process -

It focuses on the usage of the data warehouse for the purpose of analysis. This

main difference in this phase is that the development process always starts with

the data from the data warehouse. Secondly, the requirements are not known at

the beginning of the development process and thirdly, the processing is done in a

very iterative heuristic fashion. (Inmon, 1996:344)

This research will be focussing on the second part of Inmon's (1996) data driven

methodology, namely the development of DSS systems, which entails the following:

• Data model analysis

• Breadbox analysis

126

Chapter 5 - Data Warehouse Development

• Technical analysis

• Subject area analysis

• Data warehouse design

• Source system analysis

• Specifications

• Programming

• Population

5.3.2.1. The data model analysis

The data model analysis is the first activity in the development of a DSS system.

According to Inmon (1996:335), the data model takes on different levels of modelling

(Figure 5-10), called corporate modelling, operational data modelling and data

warehouse modelling.

Figure 5-10 The relationship between the corporate data model and the operational model and
data warehouse model (Inmon, 1996:83)

The corporate model only contains primitive data and is constructed with no distinction

between existing operational systems and the data warehouse. Performance factors are

127

Chapter 5 - Data Warehouse Development

added to the corporate model to transport it to the operational data model. The last

model is the data warehouse model, which contains a fair number of changes. It is also

developed in an iterative fashion.

The following changes are applied to the data warehouse model:

• Data used purely in the operational system, is removed.

• The key structures of the corporate data model are enhanced with an element of

time.

• Derived data is added to the corporate data model where the derived data is

publicly used and calculated once only and not repeatedly.

• Data relationships in the operational environment are turned into artefacts in the

data warehouse.

• A stability analysis is performed to the data warehouse data model.

A stability analysis is a technique to identify attributes with similar characteristics. Figure

5-11 is an example of a stability analysis. It illustrates the following attributes:

• Description

• Lead time

• Acceptable credit rate

• Shipping manifest

These attributes do not change frequently, thus they are grouped together. The next set

of attributes (Primary substitute, Safety stock, Primary supplier, Expediter) changes

more frequently than the first group and is therefore grouped together. The last group

(Quantity on hand, Order unit, Last order date, Last delivery and Order amount)

changes most frequently and is grouped together. The Part-id attribute serves as a key

and is included in all the groups.

128

Chapter 5 - Data Warehouse Development

A data model has three levels (Inmon, 1996:85):

• High level modelling

• Mid level modelling

• Low level modelling

High level modelling is called the Entity Relationship Diagram (ERD). It represents the

entity relationship level. Entities shown in the ERD are at the highest level of

abstraction. The choice of what entities belong to the scope of the model and what

entities do not is determined by what Inmon calls the "scope of integration". The so-

called scope of integration defines the boundaries of the data model and needs to be

defined before the modelling process commences. The scope of integration should be

agreed upon by the modeller, management and the ultimate user of the system.

Part-id

Description

Primary substitute

Qty on hand

Order unit

Safety stock

Primary supplier —

Lead time

Acceptable credit rate

Expediter

Last order date

Last delivery to

Shipping manifest —

Order amount

Part-id
Description
Lead time
Acceptable credit rate
Shipping manifest

Part-id

Primary substitute

Safety stock

Primary supplier

Expediter

Part-id

Qty on hand

Order unit

Last order date

Last delivery to

Order amount

Figure 5-11 Stability Analysis performed on a table (Inmon, 1996:84)

129

Chapter 5 - Data Warehouse Development

Mid level modelling is called the Data Item Set (DIS). This is the next model after the

high level model. For each subject area or entity identified in the high level model, a mid

level model is created. Figure 5-12 is an example of a data item set.

Primary
grouping of
data " - - . .

"type o f

Key

XXXXXX
XXXXXX

Key

XXXXXX
XXXXXX

"type o f

Key

XXXXXX
XXXXXX

Key

XXXXXX
XXXXXX

"type o f

Kee

"type o f

Kee

"type o f
Key

XXXXXX
XXXXXX

i Key

XXXXXX
XXXXXX

"type o f
Key

XXXXXX
XXXXXX

I

:

Connector
<ata

Key

XXXXXX
XXXXXX

data
I

:

Connector
<ata

data

Secondary
grouping of
data

I

:

Connector
<ata

Key

XXXXXX
XXXXXX

data data

Figure 5-12 Example of a data item set (Inmon, 1996:89)

The primary grouping exists only once for each major subject area and holds attributes

that exist only once for each subject area. The primary grouping contains attributes and

keys. The secondary grouping of data holds data attributes that can exist multiple times

for each major subject area. The secondary grouping is indicated by a line emanating

downward from the primary grouping of data. The connector relates data from one

grouping to another. The "type o f data is indicated by a line leading to the right of a

data grouping. The grouping of data to the left is the super type of data. The grouping of

data to the right is the sub-type of data.

130

Chapter 5 - Data Warehouse Development

The lowest level is the low level model. This is called the physical model. This model is

created from the mid level data model. Inmon (1996:96) indicates that this model may

look like relational tables. Figure 5-13 is an example of a physical model.

Deposit

Deposit table

Banking activity Deposit
Acct =1234

Date = Jan 5

Instrument = check

Posting request = no

Instrument

Pos li ng reques ted ?

Acct =1234

Date = Jan 5

Instrument = check

Posting request = no
Acctno

Date

Time

Amount

Location

Type

teller

Instrument

Pos li ng reques ted ?

Acct =1234

Date = Jan 5

Instrument = check

Posting request = no
Acctno

Date

Time

Amount

Location

Type

teller

Instrument

Pos li ng reques ted ?

Acct =1234

Date = Jan 5

Instrument = check

Posting request = no
Acctno

Date

Time

Amount

Location

Type

teller

Instrument

Pos li ng reques ted ?

Withdraw table

Acctno

Date

Time

Amount

Location

Type

teller

Withdraw

Withdraw table

Acctno

Date

Time

Amount

Location

Type

teller

Withdraw Acct = 1234

Date = Jan 5

Time= 1:31 pm

Balance verified = yes

ID used = yes

check

Acctno

Date

Time

Amount

Location

Type

teller ID number

Limit request exceeded

Exact lime stamp

Acct = 1234

Date = Jan 5

Time= 1:31 pm

Balance verified = yes

ID used = yes

check

ID number

Limit request exceeded

Exact lime stamp

Acct = 1234

Date = Jan 5

Time= 1:31 pm

Balance verified = yes

ID used = yes

check
Banking activity
table

ID number

Limit request exceeded

Exact lime stamp

Acct = 1234

Date = Jan 5

Time= 1:31 pm

Balance verified = yes

ID used = yes

check
Banking activity
table

Acct = 1234

Date = Jan 5

Time= 1:31 pm

Balance verified = yes

ID used = yes

check

ATM table Acct =1234

Date - Jan 2

Time = 1:31 pm

Amount - S25

Type = w/d

Teller = atm

ATM ATM table Acct =1234

Date - Jan 2

Time = 1:31 pm

Amount - S25

Type = w/d

Teller = atm

Balance verified ?

ID used ?

Cash/check/other?

Acct = 1234

Date = Jan 5

Time = 1:31 pm

ID number =Ab00191S

Limit exceeded - no

Exact timesiamp = 1:31:35:05

Acct =1234

Date - Jan 2

Time = 1:31 pm

Amount - S25

Type = w/d

Teller = atm

Balance verified ?

ID used ?

Cash/check/other?

Acct = 1234

Date = Jan 5

Time = 1:31 pm

ID number =Ab00191S

Limit exceeded - no

Exact timesiamp = 1:31:35:05

Acct =1234

Date - Jan 2

Time = 1:31 pm

Amount - S25

Type = w/d

Teller = atm

Acct = 1234

Date = Jan 5

Time = 1:31 pm

ID number =Ab00191S

Limit exceeded - no

Exact timesiamp = 1:31:35:05
Teller

Acct = 1234

Date = Jan 5

Time = 1:31 pm

ID number =Ab00191S

Limit exceeded - no

Exact timesiamp = 1:31:35:05
Acct = 1234

Date = Jan 2

Time = 3:15 pm

Amount = $1000

Type ~ desposit

Teller = Teller

Acct = 1234

Date = Jan 5

Time = 1:31 pm

ID number =Ab00191S

Limit exceeded - no

Exact timesiamp = 1:31:35:05
Acct = 1234

Date = Jan 2

Time = 3:15 pm

Amount = $1000

Type ~ desposit

Teller = Teller

Teller Id

Automated verification

Sequence number

Cashbox balance

Teller table
Acct = 1234

Date = Jan 2

Time = 3:15 pm

Amount = $1000

Type ~ desposit

Teller = Teller

Teller Id

Automated verification

Sequence number

Cashbox balance

Acct =1234

Dale = Jan 5

Time = 1:31 pm

Teller Id = JLC

Automated verification = no

Sequence number = 901

Casnbox balance = $112,109.32

Acct = 1234

Date = Jan 2

Time = 3:15 pm

Amount = $1000

Type ~ desposit

Teller = Teller

Acct =1234

Dale = Jan 5

Time = 1:31 pm

Teller Id = JLC

Automated verification = no

Sequence number = 901

Casnbox balance = $112,109.32

Acct =1234

Dale = Jan 5

Time = 1:31 pm

Teller Id = JLC

Automated verification = no

Sequence number = 901

Casnbox balance = $112,109.32

Figure 5-13 Example of a physical model (Inmon, 1996:93)

Inmon (1996:335) states that a data model (data warehouse) is successful when it

satisfies the following requirements:

• Major subject areas are identified

• Boundaries of the model are clearly defined

• Primitive data is separated from derived data

• The following are identified for each subject area:

o Keys

o Attributes

o Groupings of attributes

o Relationships among groupings of attributes
o Multiple occurring data

131

Chapter 5 - Data Warehouse Development

o Type of data

The end result of the data model is a series of tables, each of which contains keys and

attributes. To save input/output, tables can be normalised/de-normalised. Unfortunately,

there is no strategy to follow, and as Inmon explains "it is answering this question that

the physical database designer earns his or her reward" (Inmon, 1996:93).

5.3.2.2. Breadbox analysis

After the data analysis is completed, the next step is to carry out a breadbox analysis. A

breadbox analysis is a sizing (in terms of gross estimates) of the DSS environment and

the project, as well as how much data the data warehouse will hold (Inmon,

1996:336).The parameter for success is to estimate the amount of data (in terms of

number of rows) on both the one-year and five-year horizons for the entire data-

warehouse environment. Based on the results of the estimate, one decides whether

different levels of granularity are needed. If the data warehouse needs to contain large

amounts of data, multiple levels of granularity should be considered. If the data

warehouse is small, multiple levels are not required.

5.3.2.3. Technical assessment

Inmon (1996:337) argues that the technical requirements for managing the data

warehouse are different from the technical requirements for managing an operational

database. Consideration is needed for managing data and processing it in the

operational environment.

To be successful, the technical functionality of the data warehouse must be able to:

• Manage large amounts of data.

• Allow data to be accessed flexibly.

• Organise data according to a data model.

• Both receive and send data to a wide variety of technologies.

• Have data periodically loaded in masses.

132

Chapter 5 - Data Warehouse Development

• Access a set at a time, or a record at a time

5.3.2.4. Subject area analysis

During the subject area analysis, the subjects to be populated are selected. The subject

area should be large enough to be meaningful and small enough to be implemented

with ease (Inmon, 1996:339). The populations should start small and can follow larger

subjects, or even sub-sets of subjects. The output from this phase should serve as a

definition of what data is to be populated.

5.3.2.5. Data warehouse design

The core step in the development of the data warehouse is the data warehouse design.

The data warehouse design should not be done in a heuristic manner, but should be

done using the feedback loop (Inmon, 1996:73):

• Portion of the data is populated.

• The data is then used and scrutinised by the DSS analyst.

• Based on the feedback of the end user, the data is modified, or other data is

added to the data warehouse

It is argued that the requirements of the data warehouse cannot be identified, thus

requirements driven approaches will not help. For this reason, loop needs to be

continued throughout the entire life of the data warehouse.

The data warehouse design is based on the data model. This model represents the

needs of the organisation and is a technology in dependent view (Inmon, 1996:276). A

few aspects of the data model need to be changed to turn the data model into a data

warehouse design (Inmon, 1996:278):

• An element of time needs to be added to the key structure if it is not already

present.

• All purely operational data needs to be eliminated.

• Referential integrity relationships need to be turned into artefacts.

• Derived data frequently used, is added to the design.

133

Chapter 5 - Data Warehouse Development

• The structure of the data needs to be altered when appropriate for:

o Adding arrays of data.

o Adding data redundantly.

o Further separating data under the right conditions.

o Merging tables when appropriate.

• Stability analysis of the data is done.

The data warehouse design will typically be organised around the subject areas

identified.

Data in the data warehouse is stored in a multidimensional perspective (Inmon,

1996:140). Figure 5-14 illustrates a three dimensional view of data in the data

warehouse; it illustrates that the entities (vendor, customer, order, shipment and

product) do not contain equal amounts of records.

Figure 5-14 A three dimensional view of data in the data warehouse (Inmon, 1996:140)

One shortcoming of a data model is that it cannot represent data that should be

multidimensional (Inmon, 1996:139).This shortcoming is resolved by using a technique

called star joins (Inmon, 1996:140).The star joins-technique enables one to manage

large amounts of data residing in an entity in the data warehouse. Figure 5-15 shows a

simple star join in which one entity is populated.

134

Chapter 5 - Data Warehouse Development

vendor

order

vendor Order id
Order data
Order data

Vendor is
Nonkey data /
Cust id /
Nonkey dat t /
Order id /
Nonkey data

Vendor id
Vendor data
Vendor data \

Order id
Order data
Order data

Vendor is
Nonkey data /
Cust id /
Nonkey dat t /
Order id /
Nonkey data

shipment Vendor id
Vendor data
Vendor data \

Order id
Order data
Order data

Vendor is
Nonkey data /
Cust id /
Nonkey dat t /
Order id /
Nonkey data

Order id
Order data
Order data

customer

Order id
Order data
Order data

Vendor is
Nonkey data /
Cust id /
Nonkey dat t /
Order id /
Nonkey data

Order id
Order data
Order data

customer

Order id
Order data
Order data

Vendor is
Nonkey data /
Cust id /
Nonkey dat t /
Order id /
Nonkey data

product
cust id
Cust data
Cust data

Order id
Order data
Order data

Vendor is
Nonkey data /
Cust id /
Nonkey dat t /
Order id /
Nonkey data product id

product data
product data

cust id
Cust data
Cust data Nonkey data

product id
product data
product data Nonkey data

Figure 5-15 A star join of the order entity (Inmon, 1996:141)

In Figure 5-15, ORDER is at the centre of the star join. ORDER is the entity that will be

heavily populated. Surrounding ORDER, are entities PART, DATE, SUPPLIER and

SHIPMENT. Each of the surrounding entities will have only a modest number of

occurrences of data. The centre of the star join, ORDER, is called a "fact table". The

surrounding tables are called "dimension tables". The fact table contains unique

identifying data for ORDER, as well as data unique to order itself. The fact table also

contains pre-joined foreign key references to tables surrounding it, the dimension

tables. Derived data frequently needed, is added to the design. This data will be added

to the fact table. Inmon (1996:142) highlights that textual data is located in the

dimension tables, whereas numeric data is located in the fact table.

The above step should produce a physical database design of the data warehouse. The

entire data warehouse needs not to be designed in detail. It is entirely acceptable to

initially design the major structures of the data warehouse, and then fill in the detail at a

later point in time (Inmon, 1996:340).

135

Chapter 5 - Data Warehouse Development

5.3.2.6. Source system analysis

In this activity, one should define the system of record. The so-called system of record

is defined as "nothing more than the identification of the "best" data the corporation has"

(Inmon, 1996:276). The "best" source of data is determined by the following criteria in

the existing systems environment (Inmon, 1996:276):

• What data is the most complete?

• What data is the most timely?

• What data is the most accurate?

• What data is the closest to the source of entry into the existing systems

environment?

• What data conforms closest to the structure of the data model in terms of keys,

attributes, or groupings of data attributes together?

This is also the point where issues of integration are addressed. These issues include

(Inmon, 1996:341):

• Key structure/key resolution for the data that passes from the operational

environment to the DSS environment.

• Attributes:

o How to choose from multiple sources.

o How to handle situations where no sources are available to choose from.

o How to transform selected data for the DSS environment.

o What transformations are needed e.g. encoding/decoding, conversions,

etc, or must be made as data is selected for transport to the DSS

environment?

• How the time variance will be created from current data.

• How the DSS structure will be created from the operational structure.

• How operational relationships will show in the DSS environment.

136

Chapter 5 - Data Warehouse Development

The activity discussed, will provide a mapping of data from the operational environment

to the DSS environment.

5.3.2.7. Specifications

Once the interface between the operational environment and the DSS environment has

been outlined, the next step is to formalise it in terms of programming specifications.

Some of the major issues include the following: (Inmon, 1996:342)

• Which operational data should be scanned?

o Is the operational data time stamped?

o Is there a delta file?

o Are there system logs/audit logs that can be used?

o Can existing source code and data structure be changed to create a delta

file?

o Do before- and after image files have to be rubbed together?

• How should the output be stored once scanned?

o Is the DSS data reallocated, preformatted?

o Is data appended?

o Is data replaced?

o Are updates in the DSS environment made?

Inmon (1996:342) advises that the output from this step is the actual program

specifications that will be used to bring data over from the operational environment to

the data warehouse.

5.3.2.8. Programming

Once the source system analysis is completed and the actual program specifications

are gathered, one can commence with the programming phase. According to Inmon,

this includes activities such as the following (Inmon, 1996:343):

• Development of pseudo code

• Coding

137

Chapter 5 - Data Warehouse Development

• Compilation

• Walkthroughs

• Testing

5.3.2.9. Population

In population, the programs previously developed for the DSS are executed. Inmon

(1996:281) recommends that the smaller subject area should be populated first, whilst

the larger subject area should be partially populated. It is done because of a significant

possibility that the requirements may change. The population of subject areas typically

works in the feedback loop process. Figure 5-16 is an illustration of the feedback loop.

Data warehouse
1

Existing systems environment

Data architect

Figure 5-16 The feedback loop (Inmon, 1996:283)

The following issues are addressed in the feedback loop. (Inmon, 1996:283)

• "Frequency of population.

• Purging populated data.

• Aging populated data (i.e. running tally summary programs).

• Managing multiple levels of granularity.

138

Chapter 5 - Data Warehouse Development

• Refreshing living sample data (if living sample tables have been built)."

The result of this phase should provide a populated functional data warehouse.

5.4. Summary

This chapter covered the development approaches used in data warehouse

development.

Although these approaches seem to be quite contrasting, Kimball et al. (1998:18)

respond by stating that they do not believe there are two "contrasting" points of view

about top-down and bottom-up data warehouses.

According to Kimball et al. (1998) the extreme top-down perspective is a completely

centralised, tightly designed master database that must be completed before the parts

are summarised and published as individual data marts.

The second approach mentioned by Kimball et al. (1998) is that the extreme bottom-up

perspective is an enterprise data warehouse that can be assembled from disparate and

unrelated data marts. The authors also state that neither of these approaches taken to

the limit is feasible and that the only workable solution is to blend the two.

139

Chapter 6 - Data Warehouse and the Object Oriented Approach

Chapter 6 - Data Warehouse and the Object Oriented
Approach

6.1. Introduction

This chapter illustrates how to develop data warehouses by using (00) concepts, tools

and techniques where possible.

In Chapter 4, 0 0 analysis as the first phase of 0 0 development was discussed. Booch

(1994:155) states that analysis is to model the world by discovering the classes and

objects that form the vocabulary of the problem domain. In design, one invents the

abstraction and mechanisms that provide the behaviour the model requires.

The data warehouse (DW) business dimensional lifecycle approach (Kimball et a/.,

1998:33) starts with the business requirements definition in an attempt to gather the

requirements needed for the development. The business dimensional lifecycle approach

is a requirements-based methodology.

The DW data-driven methodology (Inmon, 1996:291) on the other hand starts with the

data and does not follow a requirements-driven approach in its development

methodology. The fact that the data-driven methodology is not requirements-driven

does not necessarily mean that it is not compatible with 0 0 development methodology.

6.2. The OO model

Chapter 4 covered the OOA, OOSP, RUP and OMT methodologies. It concluded with a

comparison between the different methodologies and the commonalities found between

them. Figure 6-1 is an illustration of the common activities found in each phase.

140

Chapter 6 - Data Warehouse and the Object Oriented Approach

Phase Activity

E

cr

I i
ffl g,

C 9 |

• Essential Use Case Diagram
• Essential Use Case
• User Interface Prototyping
• Domain Modelling
• Supplementary Documentation E

cr

■Si • Use Case Scenario Testing
• User Interface Walkthrough
• Requirements Review

to
<n

!

6
I o

• System Use Case
• Sequence Diagram
• Conceptual Class Modelling
• Activity Diagram
• User Interface Prototyping
• Supplementary Specifications
• User Documentation
• Organise Packages

en
'tn o Q

§
6
■G

<D

O

• Class Modelling
• State Chart Modelling
• Collaboration Modelling
• Component Modelling
• Deployment Modelling

Relational Persistence Modelling
User Interface Design

-a tz £ o
a a
o |
If
8M

• Code development
• Component packaging
• Deploy packages

O
bj

ec
t

O
rie

nt
ed

Te

st
in

g

• Unit test components

Figure 6-1 Summary of requirements, analysis, design, implementation and testing.

This chapter describes the phases of the DW lifecycle following an OO approach. The

0 0 approach is based on the phases and techniques illustrated in Figure 6-1.

6.3. Data warehouse (DW) development using the Business
dimensional lifecycle approach phases and an OO approach.

The objective of this discussion is to describe how a data warehouse (DW) is built,

should one use the approach of Kimball et al. (1998) and implement it in an 0 0 fashion.

141

Chapter 6 - Data Warehouse and the Object Oriented Approach

The Business Dimensional Lifecycle of Kimball et al. (1998, 33) is illustrated in Figure

6-2. The figure also shows the paragraph numbers of the following discussion.

6.3.1
Business

Requirements
Definition

6.3.3 * Product

6.3.1
Business

Requirements
Definition

Technical
Architecture

Design

*
Selection&
Installation

6.3.1
Business

Requirements
Definition

Technical
Architecture

Design
6.3.1

Business
Requirements

Definition

6.3.1
Business

Requirements
Definition

1
Project

Planning 4 ►

6.3.1
Business

Requirements
Definition

6.3.2
Dimensional

Modeling
—

6.3.4
Physical
Design

» 6.3.5
Data staging

design &
development

6.3.7
Deployment

►
6.3.8

Maintenance
and growth

Project
Planning 4 ►

6.3.1
Business

Requirements
Definition

6.3.2
Dimensional

Modeling
—

6.3.4
Physical
Design

» 6.3.5
Data staging

design &
development

6.3.7
Deployment

►
6.3.8

Maintenance
and growth

6.3.1
Business

Requirements
Definition

6.3.2
Dimensional

Modeling
—

6.3.4
Physical
Design

» 6.3.5
Data staging

design &
development

6.3.8
Maintenance
and growth

6.3.1
Business

Requirements
Definition

6.3.5
Data staging

design &
development

6.3.1
Business

Requirements
Definition

6.3.1
Business

Requirements
Definition

6.3.6

End-User
Application

Specification

6.3.6

End-User
Application

Development

6.3.1
Business

Requirements
Definition

6.3.6

End-User
Application

Specification

6.3.6

End-User
Application

Development

6.3.6

End-User
Application

Specification

6.3.6

End-User
Application

Development

Figure 6-2 Business Dimensional Lifecycle diagram (Kimball etal., 1998:33)

The discussion on project planning and project management given by Kimball et al.

(1998) is generic and not focused on DW projects exclusively. This chapter focuses on

DW-specific development techniques from an 0 0 perspective, therefore project

planning is omitted from this discussion.

The discussion of building a DW using the Kimball et al. (1998) approach and

implementing it in an 0 0 fashion follows the structure illustrated in Figure 6-2.

The first part of the discussion (section 6.3.1) concentrates on 0 0 methods for

acquiring the business requirements needed to build the DW. This is followed by a

discussion on 0 0 methods used to analyse and design the DW dimensional models

(section 6.3.2) and the technical architecture (section 6.3.3) relevant to the defined

business requirements. Following on, are discussions on the physical design of the DW

(section 6.3.4) and the design, implementation and testing of the data staging area

(section 6.3.5). The section is concluded by short discussions on the full development

lifecycle of the end user applications (section 6.3.6), deployment of the DW (section

6.3.7), as well as its maintenance and growth DW (section 6.3.8).

142

Chapter 6 - Data Warehouse and the Object Oriented Approach

6.3.1. Business Requirements Definition

The Business Requirements Definition determines:

• Data that should be available in the DW.

• How it should be organised.

• How often it should be refreshed (Kimball et al., 1998:95).

In 0 0 terms, gathering the business requirements starts with a requirements modelling

team (Ambler, 2001:34). An interview team (Kimball et al., 1998:98) is used to gather

requirements for the DW. From a DW perspective, both these terms focus on

generating business requirements information.

Requirements gathering techniques are:

• Interviewing

• Facilitated sessions

• Brainstorming

In conjunction with interviewing and brainstorming, techniques in the requirements

model derived in chapter 4, can be applied. Figure 6-3 is an illustration of these

techniques.

Phase Activity

£

E

IT
a)

" 3-
a:

• Essential Use Case Diagram
• Essential Use Case
• User Interface Prototyping
• Domain Modelling
• Supplementary Documentation

£

E

IT
a)

<n

a:

• Use Case Scenario Testing
• User Interface Walkthrough
• Requirements Review

Figure 6-3 Requirements Model in OOD

143

Chapter 6 - Data Warehouse and the Object Oriented Approach

The requirements phase in object orient development (OOD) consists of two sub-

phases, namely:

• Requirements gathering

• Requirements validation

The following discussion will explain each technique in the requirements model, as well

as an application of the technique in terms of data warehouse development.

6.3.1.1. Essential use case diagram

An essential use case diagram is a technology-independent view of behavioural

requirements and describes the details between the user and the system (Ambler,

2001:44). As discussed in chapter 4, its function is to illustrate the interaction between

actors and concepts in the problem domain.

A DW is a system that allows the user to access the "bigger picture" of the business

data. To make DW development achievable, limits must be set to what should be

included in the "bigger picture", as well as to the inputs and outputs of components that

make up the "bigger picture".

The essential use case diagram can be altered to illustrate which components of the

"bigger picture" are represented in the data warehouse, and who will use what

information. To avoid confusion between the essential use case diagram representing a

specific business problem domain and the essential use case diagram used to

represent the "bigger picture" of the business, they will be referred to as the business

process use case diagram and the data warehouse use case diagram respectively.

Figure 6-4 is an example of a data warehouse use case diagram.

144

Chapter 6 - Data Warehouse and the Object Oriented Approach

Figure 6-4 Data warehouse use case diagram

The ellipses in the data warehouse use case diagram represent the different

departments within the organisation. An analysis is done on the departments in order to

identify specific business processes that will be supported by the data warehouse. The

actors on the left hand side of the diagram represent the parties responsible for

generating the information. The information technology (IT) department is excluded as

the responsibility of this department is to process information, not to generate it. In

cases where the IT department is responsible for generating information, it will be

included. The actors on the right hand side represent the parties who need to receive

the information from the data warehouse. They will typically include the manager of the

respective departments and in some cases the board of directors, depending on how

the company is structured. The concept of the data warehouse use case diagram is to

create a picture of the different business units (departments), indicating who is

responsible for generating inputs for a business unit and who is using the output of a

business unit (users). Table 6-1 is an example of the use cases generated from the data

warehouse use case diagram.

145

Chapter 6 - Data Warehouse and the Object Oriented Approach

DW Use Case
Number

Department Party Responsible for
providing information

Users

DWUC01 Product modelling Product modelling staff Product modelling
manager

DWUC02 Sales Sales staff Product modelling
manager, Sales
manager, Marketing
manager and Finance
manager.

DWUC03 Marketing Marketing staff Marketing manager
DWUC04 Claims Claims staff Claims manager,

Finance manager
DWUC05 Finance Finance staff Finance manager
DWUC06 Billing Billing staff Finance manager and

Billing manager
Table 6-1 Example of a list of data warehouse use cases generated from the data warehouse use

case diagram.

Each of the DW use cases contains one or multiple business processes. The business

essential use case diagram represents these business processes. Figure 6-5 illustrates

an example of an essential business process use case diagram representing the

process of quoting for insurance cover for an insurance company.

Figure 6-5 Essential business process use case diagram example for an insurance company

146

Chapter 6 - Data Warehouse and the Object Oriented Approach

The link between the actor and the ellipse in the diagram represents an interaction.

From this interaction one is able to create an essential use case. Essential use cases

are created for every interaction in the diagram

Use case number Description
UC01 Broker requests a quote for insurance policy for a

prospective policy holder
UC02 Broker receives commission for a successful

application
UC03 Prospective policyholder accepts insurance policy

quote
UC04 Prospective policyholder declines insurance policy

quote
UC05 Insurance company bills policyholder for monthly

premiums
UC06 Policyholder claims against policy
UC08 Assessor assesses policy claim
Table 6-2 Example of a list of essential use cases generated from the use case diagram

Table 6-2 illustrates the use cases that can be generated from the essential use case

diagram. The idea of the essential use case diagram is to make the requirements team

aware of all possible use cases within the problem domain.

The essential use case diagram illustrated in Figure 6-5 represents the business from a

production point of view. The purpose of this illustration is to identify the core business

processes, as well as the actors involved in these processes.

6.3.1.2. Essential use case

The essential use case is also divided into a business essential use case containing the

derived information from the business process use case diagram and a data warehouse

essential use case derived from the data warehouse use case diagram.

Data warehouse essential use case

Data warehouse essential use case contains the name, description, inputs, outputs and

the grain needed for this use case. Figure 6-66 is an example of a DW use case.

147

Chapter 6 - Data Warehouse and the Object Oriented Approach

Name: DWUC 02 Sales

Description: Sales department responsible for sales of a product

Basic inputs
Sales staff should provide the following:

1. Sales of each product

2. Possible dates of sold product

3. Possible regions of sold product

4. Possible brokers responsible for sales in regions

Basic outputs
1. Regional sales figures

Possible grain(s)
1. The sale of a product.

Figure 6-6 Data warehouse use case example for sales department

The inputs and outputs are derived from the DW use case diagram. The possible grain

heading is added to the DW essential use case to serve as an indication of the lowest

level of information contributing to the core function of the department.

For example, the grain in Figure 6-66 is recorded as the sale of a product, thus one sale

of one item equals the grain. If all of the items sold are added up, they will make up the

total sales. Grain is a DW-specific addition to the standard use case definition.

Business essential use case

The business essential use case contains the name of the use case, the description of

the use case, the precondition, post conditions and the course of action. Action

between components in the use case is hereby explained. Figure 6-7 illustrates the

business essential use case for a member requesting a quote for insurance purposes.

148

Chapter 6 - Data Warehouse and the Object Oriented Approach

Name: UC 01 Quote for insurance.

Description: Broker requests a quote for insurance policy for a prospective policy holder

Preconditions (Business rules):

Policyholder must be older than 21 years

Policyholder must be female for maternity products

Policyholder can only have one life assurance product

Policyholder must be quoted via an accredited broker

Post conditions:
Member accepts the quote and the application moves to underwriting

Member rejects quote

Basic course of action
1. Broker requests quote for product on behalf of the policyholder

2. Broker selects the product

3. System requests member details according to product specification and rules

4. Broker enters the required information and requests the monthly premium for a sum assured

amount

5. System validates the information and returns a quote

6. If the policyholder accepts the quote, the quote is moved to the underwriters

7. The use case ends

Alternative Course A:
1. Member rejects the quote

2. The use case ends

Figure 6-7 Use case example for quoting business

6.3.1.3. Data warehouse user interface prototyping

In terms of 0 0 , the user interface serves as the visual interface between the system

and the user, whereas in DW the user interface is in the form of outputs from the data

warehouse to a downstream system. Most of the use interfaces are based on the

outputs of the different DW use cases.

149

Chapter 6 - Data Warehouse and the Object Oriented Approach

The user interfaces that should be prototyped are:

• Reports (departmental)

• End user desktop applications

• Data mining models

• Downstream operational systems

Reports are typically information on business processes received by managers (or

users) of the different departments, or generated from a reporting platform. This

reporting platform is an end user system built on top of the data warehouse. The

purpose is to model the report according to the needs of the manager or user of the

department in question. A typical example of a report would be a sales report containing

relevant elements, such as product name, date of sale, quantities of the product sold

and the region where it is sold.

An end user desktop application only needs specified types of data. The department

using the specific application should provide the requirements for that application. Data

mining models also depend on specific data available, the correct data requirements to

be provided by the mining modeller.

The same logic as with desktop application and mining models can be applied to the

downstream application requirements. User interface prototyping should provide an idea

of what information is needed by the different parties. After all the interfaces are

prototyped, the domain modelling can start.

6.3.1.4. Domain Modelling

Domain modelling seeks to identify classes and objects common to all applications

within the domain (Booch, 1991:157). Concepts (classes) are derived from nouns and

noun phrases in the 0 0 business essential use cases.

150

Chapter 6 - Data Warehouse and the Object Oriented Approach

Class Responsibility Collaborator Cards (CRC) is a useful technique for discovering the

classes that represent concepts. The technique, which should be used in a

brainstorming session, is explained in Chapter 4.

In normal 0 0 development, three types of classes are created:

• Actor classes « A c t o r »

• Business classes

• User interface classes « U I »

The above types of classes can be used in conjunction with the following classes to

model the DW domain:

• Reports « R e p o r t »

• End user desktop applications «End user a p p »

• Data mining models «Data mining»

• Downstream operational system interfaces «Downstream O p s »

Figure 6-8 provides an example of these types of classes. The CRC domain is called

the DW CRC model in order to avoid confusion with the operational CRC domain

model. Figure 6-8 is an example of the DW CRC cards involved in quoting for

insurance.

151

Chapter 6 - Data Warehouse and the Object Oriented Approach

Policyholder

Name
Surname
Age
Gender
Smoking Status
Address

(No Actions)

Broker « A c t o r »

•Provider
information of self
•Provider
information of
policyholder
•Request for quote

Quote Application

Sales Department « A c t o r »

•Request Report
•Request Model

Quote Report
Policyholder Model

Quote Report « R e p o r t »

•Get total Products
quoted for member
•Get total Products
quote for term

Quote Record.

Quote Record.

Policyholder Model «Data Mining»

•Get potential
member credentials

Policyholder

Quote Appl ica t ions l »

•Get broker info
•Get policyholder info
•Get product and
sum assured
•Request quote

Broker
Policyholder

Product
Quote Record

Product name
Benefit
Premiums

Quote Record

Policyholder
Broker
Product
Sum assured
Premium

Broker

(No Actions)

(No Actions)

Name
Surname
Broker number
Commission received

(No Actions)

Figure 6-8 Example of a DW CRC model

Figure 6-8 illustrates the business classes as follows:

• Broker - contains the information about the broker

• Policyholder - contains the information about the policyholder

• Product - contains the information about the product

• Quote Record - contains the information about the actual quote

Responsibilities in the business classes are candidates for attributes in the class, which

in turn is also a potential dimensional model.

The actor classes are:

• Broker - the individual who requests the quote

• Sales Department - the department who requests the reports and data mining

model

152

Chapter 6 - Data Warehouse and the Object Oriented Approach

The actor classes' responsibilities collaborate with the Quote Report, Policyholder

model and the Quote Application classes. The actor cards initiate the process.

The user interface classes are:

• Quote Report of class report - the information displayed by the report

• Policyholder Model of class data mining model - the information needed by the

model

• Quote Application of class user interface - the information displayed on the user

interface

6.3.1.5. Supplementary Documentation

The specification documentation forms part of the requirements phase. The following is

an overview of these documents, while a detailed discussion will follow at a later stage.

The specification documentation should contain the following:

• Business rules

• Outline of the data warehouse maintenance and growth

• Initial project plan

• Outline of the technical architecture design

Business rules

Business rules documentation contains the rules for the business, as well as for the

product. Table 6-3 illustrates the rules that are specified in Figure 6-7.
Rule no Description
BR01 Policyholder must be older than 21 years
BR02 Policyholder must be female for maternity products
BR03 Policyholder can only have one life assurance product
BR04 Policyholder must be quoted via an accredited broker

Table 6-3 Business rules

153

Chapter 6 - Data Warehouse and the Object Oriented Approach

The business rules serve as a base on which the Extract-Transform-Load (ETL)

process will be built.

Outline of the data warehouse maintenance and growth.

The document on data warehouse maintenance and growth should specify the

department or group responsible for the maintenance and development of the data

warehouse. The document should also specify the formal procedure for maintaining

change control (Figure 6-9).

Data warehouse maintenance and growth

The maintenance and growth of the data warehouse is the responsibility of the data warehouse
department within the information technology (IT) department.

Task definition: Debugging, enhancements, maintenance.

Debugging

A defect must be logged via a logging system.

Enhancement

An enhancement request must be logged via the same logging system

Maintenance

The data warehouse department will maintain the data warehouse.

Figure 6-9 Documentation on data warehouse maintenance and growth

Initial project plan.

The initial project plan should contain the tasks needed by the development- and

infrastructure teams, as well as estimations for these tasks.

Outline of the technical architecture design.

This documentation should contain the initial requirements needed by the technical

architecture design team. It should contain detail of the following:

• Data staging

• Deployment

154

Chapter 6 - Data Warehouse and the Object Oriented Approach

Data Staging

Documentation on the software and the source systems available are needed. For

example, the database management system will be written in Oracle on a UNIX

platform. The extract, transform and load tool will be a tool called Data Stage.

The available sources for data staging are:

• Policy administration application

• Billing and payment application

• Policy quote application.

Deployment

Physical requirements will include the procedure for deployment and a description of the

environments. The requirements gathering phase is an iterative phase; as development

proceeds, new requirements are discovered and documentation amended accordingly.

6.3.1.6. Requirements validation

Once the requirements are gathered, it should be validated. This can be done using the

following techniques (discussed in chapter 4):

• Use case scenario testing

• User interface walkthroughs

• Requirements reviews

After validation of the requirements, the analysis of technical architecture, dimensional

modelling and end user applications can be done.

The section on DW requirements concludes with a discussion on the suitability of 0 0

techniques for DW requirements.

155

Chapter 6 - Data Warehouse and the Object Oriented Approach

6.3.1.7. The Data Warehouse requirements based on 0 0 approach

In terms of the requirements phase, the difference between the traditional Kimball et al.

(1998) data warehouse development and the Object-Oriented Data Warehouse

(OODW) is the following:

• OODW uses the technique of a normal 0 0 essential use case diagram and the

DW use case diagram to provide the detail, as well as the bigger picture of the

company.

• OODW uses the technique of a normal 0 0 essential use case and the DW

essential use case which explain the inputs, outputs and the grain of the

department.

• OODW uses the technique of user interface prototyping to form ideas of what is

needed from the data warehouse in terms of DW outputs.

• OODW uses the technique of domain modelling to define the different objects

and classes that will be used in the DW.

Traditional Kimball et al. (1998) DW development does not use any of the above

techniques for gathering requirements.

6.3.2. Dimensional modeling

Dimensional modelling is defined as "a logical design technique that seeks to present

the data in a standard framework that is intuitive and allows for high performance

access. It is inherently dimensional and adheres to a discipline that uses relational

model with some important restrictions" (Kimball et al., 1998:144).

The dimensional modelling phase should allow for an analysis and design activity in

order to follow a typical 0 0 development approach.

The discussion will concentrate firstly on the analysis of the dimensional modelling and

thereafter on the design thereof.

156

Chapter 6 - Data Warehouse and the Object Oriented Approach

Figure 6-10 illustrates an outline of the activities in 0 0 analysis.

Phase Activity
System Use Case

0) Sequence Diagram
m .» Conceptual Class Modelling

■£ CO

t3 c
Activity Diagram ■£ CO

t3 c User Interface Prototyping
Q) < Supplementary Specifications
O ■ User Documentation

Organise Packages

Figure 6-10 Object Oriented Analysis activities

6.3.2.1. Dimensional modelling analysis - DW System use case

Up to this point two types of use cases were developed, namely:

• Business process essential use cases

• Data warehouse essential use cases

As with essential use cases, the system use case is also divided into a business

process system use case and a DW system use case. Both the business and DW

system use cases are evolved from their respective essential use cases.

The DW system use case follows the same pattern as the DW essential use case,

except that it entails more specific information with regard to inputs, outputs and the

grain of the department. It also specifies the users and their requirements.

Figure 6-11 is an example of a DW system use case for the sales department.

157

Chapter 6 - Data Warehouse and the Object Oriented Approach

Name: DWUC 02 Sales

Description: Sales department is responsible for the sales of a product

Basic inputs
Sales staff should provide the following:

1. 1st line managers provide sales figures via sales_mm_dd_yyyy.mdb file on network drive

2. sales_mm_dd_yyyy.mdb contains the following information:

a. Sales of each product (unit in each)

b. Dates of sold product (format dd-mm-yyyy)

c. Regions of sold products

d. Brokers responsible for sales in regions (format: Title Name Surname)

Basic outputs
1. Regional sales figures (RPT_S01)

2. Broker sales quota (RPT_S02)

3. Quarter sales (RPT_S03)

Possible grain(s)
1. The sale of a product

Users
1. Product modelling manager requires the following - (RPT_S01, RPT_S03)

2. Sales manager requires the following - (RPT_S01 ,RPT_S02,RPT_S03)

3. Finance manager requires the following - (RPT_S01, RPT_S03)

Figure 6-11 Data warehouse system use case example for sales department

6.3.2.2. Dimensional modelling analysis - Business process system use
case

The business process system use case is similar to the business process essential use

case with the exception that it includes high-level implementation decisions, such as

screen numbers and properties, such as includes, extends and inherits.

Figure 6-12 is an example of a business process system use case

158

Chapter 6 - Data Warehouse and the Object Oriented Approach

Name: Quote for insurance

Identifier: UC01

Description: Broker requests a quote for insurance policy for a prospective policy holder

Preconditions:

Post conditions:
Member accepts the quote and the application moves to underwriting

Member rejects the quote

Extends: -
Includes: -
Inherits from: -

Basic course of action
1. Broker requests quote for product on behalf of the policyholder via "UI01 Request quote for

insurance"

2. System requests member details according to product specification and rules according

business rules BR01 - Policyholder must be older than 21 years

3. Broker enters the required information and requests the monthly premium for a sum assured

amount

4. System validates the information and returns a quote with the business rules BR02 - BR04

5. If the policyholder accepts the quote, the quote is moved to the underwriters

6. The use case ends

Alternative Course A:
3. Member rejects the quote

4. The use case ends

Figure 6-12 Business process system use case example for quoting business

6.3.2.3. Dimensional modelling analysis - Sequence diagrams

Sequence diagrams are developed from use cases. Jacobson et al. (2001:251) states

that the function of sequence diagrams is to model the logic of usage scenarios. A

usage scenario is a description of a potential way the system can be used; this may

include use cases or alternative courses. It provides a bridge between the business

system use cases and the class models.

159

Chapter 6 - Data Warehouse and the Object Oriented Approach

Figure 6-13 is an example of a sequence diagram derived from the business process

system use case in Figure 6-12.

Description

Broker

«Ac to r>>

Broker prepare quote Inr

policyhoWcr

Broker enters broker and

policyViolderdelails

Broker enters amount of

cover and requests premium

Quote App
« c o n t r o l l e r »

Quote App

« U I »

Product and cover Em.

,<-^ ~w

verifyPoliGyfioIde/flusin

provitJeListorproduclsAndBe

calculateMcnlhlyPremiums policytiolder, product)

Policyholder

Figure 6-13 Sequence diagram for quoting for insurance

In terms of interaction, the sequence diagram (Figure 6-13) illustrates that there is an

interaction between:

• The broker

• The policyholder

• The policy

• The quote record

The significance of this interaction will be explained in the following discussion.

The function of the data warehouse use cases is to provide an overview of the "big

picture" of the company as opposed to the process flow in the business. It therefore will

be senseless to create a sequence diagram from the data warehouse use cases, as the

function of a sequence diagram is to model the interaction between classes in a

process.

For purpose of the dimensional modelling, the logic flow is not all that important, but

rather important to discover which classes interact with one another and what that

interaction entails.

Product

1.

2.

3.

160

Chapter 6 - Data Warehouse and the Object Oriented Approach

6.3.2.4. Dimensional modelling analysis - The Data Warehouse Bus

Architecture Matrix

The Data Warehouse Bus Architecture Matrix is a tool introduced by Kimball (et al.,

1998:271) to decide which dimensional models to build. The matrix forces to name all

the data marts that can possibly be built, as well as the dimensions implied by those

data marts.

The business process system use case contains the concepts entailed in the business,

thus giving an indication of the possible data marts and dimensions on hand.

For the purpose of creating a data warehouse bus matrix, the sequence diagram serves

as an indicator of which classes interact with one another.

The following discussion illustrates how to create a data warehouse bus matrix from the

DW system use case, business process system use case and the sequence diagram.

Identifying the data marts and dimensions

The department column in Table 6-1 lists the potential data marts that can be used for

the matrix. In some cases the department name can be too encompassing and should

be divided into smaller units. This should be highlighted by the business essential use

case in its business processes.

To gain a better understanding of the company, a table should be created combining

the DW use cases with the business use cases. Table 6-4 is an example of such a

table.

161

Chapter 6 - Data Warehouse and the Object Oriented Approach

DW Use Case
Number

Department Business Use Case
Number

Business Process

DWUC01 Product modelling
DWUC02 Sales UC01 Quote
DWUC03 Marketing
DWUC04 Claims UC05 Claim on policy

UC06 Assessment of policy
DWUC05 Finance UC02 Commission paid to

broker
DWUC06 Billing UC04 Billing of policy

premiums
Table 6-4 Combination of the DW use cases with the business use cases

From Table 6-4, the following can be derived:

• DWUC01 does not contain any business use cases that match the DW use case.

One can therefore do a future analysis on this department to be included in the

DW, or it can be left out of the development scope of the DW.

• DWUC02 contains only the quoting business process.

• DWUC03 is similar to DWUC01; it can be investigated further of left out for now.

• DWUC04 contains two business processes, namely claiming against the policy

(UC05) and assessment of the policy (UC06). These business processes can be

grouped together in the data mart.

• DWUC05 contains only the commission business process.

• DWUC06 contains only the billing business process.

The conclusions above will serve as the subject areas in the data warehouse matrix.

The next step is to identify the dimensions of the data warehouse matrix. The following

example illustrates the evaluation process for finding dimensions. The business classes

identified in the insurance company example are:

• Policyholder

• Product

• Quote Record

162

Chapter 6 - Data Warehouse and the Object Oriented Approach

• Broker

The actor classes are:

• Broker

• Sales Department

The user interface models are:

• Quote Report « R e p o r t »

• Policyholder Model «Data Mininn»

• Quote Application « U I »

These classes are potential dimensions for the data warehouse. The sequence diagram

created in Figure 6-13 illustrates the sequence of tasks for the quoting process. It

interacts with the following classes:

• Policyholder

• Product

• Quote Record

• Broker

• Broker « A c t o r »

• Sales Department « A c t o r »

• Quote Report « U I »

• Policyholder Model « U I »

Each class describing the process can qualify as a dimension. These classes should

also be specified in the sequencing diagram. The following classes qualify as

dimensions:

• Policyholder - describes the policyholder in terms of the quote process

• Product - describes the policyholder in terms of the quote process

• Broker - describes the policyholder in terms of the quote process

163

Chapter 6 - Data Warehouse and the Object Oriented Approach

The following classes do not qualify as dimensions:

• Quote Record - does not qualify as it does not tie the classes together; it does

not describe the quote process implicitly or data mart

• Broker « A c t o r » - does not qualify as it does not identify the processes and

does not describe the quote process or data mart implicitly

• Sales Department « A c t o r » - does not qualify as it does not describe the quote

process or data mart

• Policyholder Model « A c t o r » - does not qualify as it does not describe the

quote process or data mart

An evaluation process should be completed for every process or data mart. A time

dimension, indicating when a certain process occurred, should be added.

A data warehouse bus matrix is created with the data marts and dimensions derived

from the evaluation process. The dimensions are listed as columns and the data marts

as rows.

164

Chapter 6 - Data Warehouse and the Object Oriented Approach

Figure 6-14 is an example of a data warehouse matrix created for the insurance

company.

E
h

&
o

CL
2
00

o
3

s
CL
I ■a

3
Quote V V V <
Underwrite V V ^ V

Commissions V V A/ V

Billing V V V

Claims V V V v
Figure 6-14 The Data Warehouse Bus Architecture matrix for the insurance

company example.

As previously discussed, the sequence diagram indicates which processes interact with

which classes. This information can be used to derive which data marts interact with

which dimensions. The interaction is indicated by the tick in the matrix.

Once all the potential data marts and dimensions are identified, the four-step method of

Kimball et a/. (1998:273) can be applied to develop dimensional models. The theory on

the four-step method for designing an individual fact table was discussed in chapter 5

(Section 5.1.2.1).

The following illustrates the four-step method applied for one data mart.

Step 1: Choose the Data Mart

The data mart selected is the quote data mart. For the insurance company example, the

quote data mart is selected.

Step 2: Declare the Grain

The grain specifies the level of detail of the model; the grain for the dimensional model

will be a one record per quote transaction. This is defined as a record with details of the

broker, policyholder, the product quoted on, the sum assured and the premiums.

165

Chapter 6 - Data Warehouse and the Object Oriented Approach

Step 3: Choose the Dimensions

The data mart selected in the data warehouse bus architecture matrix will indicate which

dimensions can be used. According to Figure 5-6 the quote data mart should have the

following dimensions:

• Time

• Policyholder

• Broker

• Product

Step 4: Choose the facts

Facts in the fact table are usually numerical values. The numerical values in the quote

record, in Figure 6-8 is the premiums and the sum assured values. The numerical value

in the attributes of the classes in the CRC diagram serves as a starting point, as many

facts should be generated within the context of the grain. Based on the four-step

method, a dimensional model can be developed.

At this stage it is advisable to do an analysis on the technical architecture, the reason

being that the dimensional model and technical design closely correlate with one

another. A discussion on the analysis of the technical architecture will follow after

design of the dimensional models has been dealt with.

6.3.2.5. Dimensional modelling analysis - Dimension table detail

The dimension table diagram needs to be completed for each single dimension. It

illustrates the grain of each dimension, as well as the cardinality of each dimension

attribute, with a top down view of all the hierarchies (Kimball et a/., 1998:281). Figure

6-15 is an example of a dimension table detail diagram for the time dimension.

166

Chapter 6 - Data Warehouse and the Object Oriented Approach

Multiple
Hierarchies

Future

(1) Fiscal Year

(2) Fiscal
Quarter

(12) Fiscal Month

>'
(52) Fiscal Week

(365)

(14) Holiday Day

Possible Future
Dimension Grain

Attributes

Day of Week

(52)

P)

Dimension Grain

(8,760)

Figure 6-15 Dimension table diagram (Kimball etal., 1998:281)

In Figure 6-15, the rectangles represent the attributes specified for the dimension, while

the cardinality is shown in parentheses. The arrows between the rectangles represent

the drill paths for the hierarchy. Post-dated attributes can also be specified on the

diagram. In the above case, one can follow the hierarchy Fiscal Year -» Fiscal Quarter

-> Fiscal Month -> Fiscal Week -> >ay, oo rhe eierarchy yalendar rear r- >alendar

Quarter -> Calendar Month -> Day.

Alongside the diagram is the attribute detail description. Figure 6-16 is an example of an

attribute detail description for the time dimension table diagram.

167

Chapter 6 - Data Warehouse and the Object Oriented Approach

Attribute Name Attribute Description Cardinality Slowly Changing
Dimension Policy

Sample Values

Day Represents [he specific date. 365 Not Updated 01/14/1998

Holiday Represents calendar holidays. 14 Overwritten Easter, Thanksgiving

Day of Week Name of the day in the week. 7 Not Updated Thursday

Calendar Week Represents the week ending Saturdays. 53 Not Updated WE01/17/1998

Calendar Month Represents the calendar month. 12 Not Updated 1998/01, 1998/02

Calendar Quarter Represents the calendar quarter. 4 Not Updated 1998/Q1, 1998/Q2

Calendar Year Calendar Year. 1 Not Updated 1998

Fiscal Week Collection of days by week ending Sundays, as defined by
the corporate calendar.

53 Not Updated F01/18/1998,
F01/25/1998

Fiscal Month Collection of fiscal weeks rolled up to fiscal months as
defined by the corporate calendar. Follows a 4-4-5 pattern.

12 Not Updated F1998/01,
F1998/02

Fiscal Quarter The collection of three fiscal months that are reported as
corporate quarters.

4 Not Updated F1998Q1,
F1998 Q2

Fiscal Year The collection of fiscal quarters that are reported as the
corporate year.

1 Not Updated F1998

Figure 6-16 Dimension attribute detail description (Kimball etal., 1998:283)

The attribute detail description consists of five columns:

• Attribute name - official name of the attribute.

• Attribute description - a description of the attribute.

• Cardinality - an estimation of the distinct values of the attribute.

• Slowly changing policy - is the type of slowly changing attribute, e.g. Type 1 -

overwritten, Type 2 - new version of the attribute and Type 0 - the value is never

updated.

• Sample data - Sample value of the attribute.

6.3.2.6. Dimensional modelling analysis - Fact table diagram

Figure 6-17 is an example of a fact table diagram for the quote fact. The fact table

diagram illustrates the specific fact table within its own context and also serves as an

overview of all the dimensions that have been identified. The names and descriptions of

these dimensions are shown (Kimball et a/., 1998:277).

168

Chapter 6 - Data Warehouse and the Object Oriented Approach

Figure 6-17 Quote fact table diagram

All dimensions are illustrated in the fact table diagram. Only those dimension tables that

interact with the fact table are connected to the latter, the others not.

Once the fact table diagrams are done for each fact, the fact table details can be

created. Figure 6-18 illustrates the fact table detail for quote; it includes the keys and

the facts. The fact with an asterisk represents a derived fact.

Quote line item fact

Product_Key
Policyholder_key
Underwriter_key
Broker_key
lnsured_Amount
Monthly_Premium
Loading_Amount
Rider_Benefit_Amount
Total Premium*

Figure 6-18 Fact table detail for quote fact table.

The following illustrates how the attributes are generated for fact table detail (Figure

6-18).

Product_key ^ derived from the fact table diagram (key for product dimension)

Policyholder_key ■* derived from the fact table diagram (key for policyholder dimension)

Underwriter_key -* derived from the fact table diagram (key for underwriter dimension)

Broker_key -* derived from the fact table diagram (key for broker dimension)

lnsured_Amount ■* derived from DW CRC model (Sum Assured in Figure 6-8 quote

record)

169

Chapter 6 - Data Warehouse and the Object Oriented Approach

Monthly_Premium -> derived from DW CRC model (Premium in Figure 6-8 quote

record)

Loading -> derived from DW CRC model (Premium in Figure 6-8 quote record)

Rider_Benefit_Amount -* derived from DW CRC model (Premium in Figure 6-8 quote

record)

Total_Premium is a derived premium that sums the monthly loading and rider benefit

premiums.

6.3.2.7. Dimensional modelling analysis - Identify sources

Two types of data sources need to be identified (Kimball et a/., 1998:296):

• Informal sources - Data captured on a user's database

• Formal sources - Data maintained by IS

Both sources are subject to a process of cleaning and manipulation before they can be

stored in the data warehouse. A data source list also needs to be created.

Figure 6-19 is an example of such a source list.

Source Business Owner IS Owner Platform Location Description

Billings Tom Owens Alison Jones Unix JHB Customer Billing

Sales Sandra Phillips None Windows CPT Sales figures on policies.

Intermediaries Sylvia York None Windows CPT Details on all intermediaries.

Policy Administration Craig Bennet Steve Dill Unix JHB All information regarding the policyholders
and beneficiaries.

Figure 6-19 Data source definition

The data source list contains the following (Kimball etal., 1998:298):

• Source - name of the source system

• Business owner - the primary contact person responsible for this information

• IS Owner - the contact person responsible for the source system

• Platform - the operating system on which the system runs

• Location - the location of the system

• Description - a brief description of the system

170

Chapter 6 - Data Warehouse and the Object Oriented Approach

Once the data source definition list is available, it can be investigated and analysed.

From this, a source-to-target mapping is created, indicating which fields in what sources

need to go to which dimension table field.Figure 6-20 is a source-to-target data map

example for the period, product and quote dimensions.
Table
Name

Column Name Data
Type

Len Target Column Description Source
System

Source Table /
File

Source
Column /
Field

Data
Transform

Period
Dimension

PERIOD_KEY Date - The unique primary key for
the period dimension table

New New New New

Product
Dimension

PROD_KEY Int 8 The unique primary key for
the product dimension table.

PA PRODJNFO SH_ID Get
member
Number

Product
Dimension

PROD_DESC CHAR 255 Description of the product PA PRODJNFO DESC Direct

Quote Fact QUOTE_KEY Int - The unique primary key for
each quote generated.

PQS QUOTEJNFO QUOTEJD Direct

Quote Fact QUOTE_DATE Date - The date that the quote was
generated

PQS QUOTEJNFO Q_DATE Direct

Figure 6-20 Source-to-target data map

The source-to-target data map contains the following columns (Kimball et al.,

1998:305):

• Table name - the name of the logical table in the data warehouse.

• Column name - the name of the logical column in the data warehouse.

• Data type - the data type of the column in the data warehouse.

• Length - the length of the field of the column.

• Target column description - a description of the target column.

• Source table / file - the name of the source system where data feeds the target

column.

• Source column / field - the name of the specific column within the source table

where the data feeds from.

• Data transform - any information needed to translate the source information to the

format of the target system.

6.3.2.8. Dimensional modelling design - Development of dimensional
tables

The development of the dimensional tables requires the following analysis documents:

171

Chapter 6 - Data Warehouse and the Object Oriented Approach

• Data warehouse matrix - illustration of the data marts and the dimensions

available for the specific data mart.

• Fact table diagram - illustration of the fact table detail within its context.

• Dimensional table detail - illustration of the hierarchies in the dimension tables.

• Sources detail - a list of available source data and the owners of the data.

• Source-to-target mapping - mapping from the source data to the target

dimensional tables.

On completion of the documents, a dimensional model can be created, as illustrated in

Figure 6-21.
Dim_Time

Dale Key, int(PK)
Fiscal Year, inl
Fiscal-Quarter Inl
FiscafMonth int
FiscafWaek'int
Calendar Year int
Calendar Quarter int
Catenear Month int
S e n Z w e e k i n t
n a „ ™ Stepklnl
Da^archar^O)

Dimensional Model for Quote

Dim_Producl
ProductJ<ey,int(PK)
Product Class, varchar(20)
ProducfName,varchar(20)

FacLQuote
Date Key, int(FK)
ProducUfey,int(FK)
Policyriolder_key, int (FK)
Broker_ksy, int (FK)
Insuredjlmount, numeric
MonthlyJ=remium, numeric
Loading_Amount, numeric
Rider Benefit_Amount,numeric
TolaLPremium*, numeric

Dim Policyholder
Policyholderj<ey,int(PK)
Policyholder_Name, varchar(20)
Policyholder Lastname,varchar(20)
Daie_ofJjirth,date
Identitynumber, uarchar(20)
Gender, varchar(2)
Telephone_No, varchar(20)
AddressJI,varchar(20)
Address__2,uarchar(20)
Address_3,varchar(20)

Dim_Broker
Broker Key, int (PK)
Broksr"Name,varchar<20)
Broker~Lastname,varchar(20)
RegionT varchar(20)
City, «archar(20)
Company_Name, varchar(20)

Figure 6-21 Quote dimensional model

Figure 6-21 is a dimensional model for the quote data mart and contains four

dimensions with the attributes (being the design of the dimensional model). The

dimensions created for the quote fact table corresponds with the ticked data warehouse

matrix (Figure 6-14). A dimensional model for each data mart listed in the data

warehouse matrix should be created.

Kimball et al. (1998:309) recommends that a modelling tool should be used to develop

the data model, the reasons for this being:

. Consistency in naming.

• Documentation can be created from the objects.

172

Chapter 6 - Data Warehouse and the Object Oriented Approach

• Generation of the physical data definition language (DDL).

• Supportive user interface.

This section on DW modelling concludes with a discussion on the applicability of 0 0

techniques for DW modelling.

6.3.2.9. The Data Warehouse dimensional modelling based on an 0 0

approach

In terms of the dimensional phase in data warehouse development, the difference

between the traditional Kimball et a/. (1998) data warehouse development and the 0 0

Data Warehouse (OODW) is the following:

• OODW splits the dimensional modelling into two sub-phases, namely the

analysis of the dimensional model and the design of the dimensional model.

• In the analysis phase of the OODW dimensional model, the DW essential use

cases and the business essential uses cases are combined to obtain the

potential subject areas for the DW. Traditional Kimball DW development does not

use a technique to derive the subject areas. Instead, it analyses the business

processes and based on these results, they are grouped into subject areas.

• In the analysis phase of the OODW dimensional model, the selected essential

use case classes are used as the dimensions. These are combined with the

subject areas to create the DW matrix. Traditional Kimball DW development does

not use a technique to derive the dimensions.

• OODW uses the same design techniques than for traditional Kimball DW

development, as it is advisable to adhere to traditional DW designs in line with

industry standards.

6.3.3. Technical Architecture modelling

Technical architecture modelling comprises an analysis and design phase. Based on

the 0 0 activities listed in Figure 6-1, the activities shown in Figure 6-22 will be carried

out.

173

Chapter 6 - Data Warehouse and the Object Oriented Approach

Phase Activity

1!
1-5 -O

O

System Use Case
Sequence Diagram
Conceptual Class Modelling
Activity Diagram
User Interface Prototyping
Supplementary Specifications
User Documentation
Organise Packages

Activity
Class Modelling
State Chart Modelling
Collaboration Modelling
Component Modelling
Deployment Modelling
Relational Persistence
Modelling
User Interface Design

Figure 6-22 Object Oriented analysis and design

Figure 6-23 illustrates a high-level technical architecture of a typical data warehouse.

The Back Room The Front Room

Data
Staging

Services

- Extract
-Transform
-Load
-Job Control

□ Kent
' 7 J Service

Element

Metadata

Catalog

Presentation Servers

Dimensional Data Marts with
Only Aggregated Data

Query
Services

-Warehouse Browsing
- Access and Security
- Query Management
- Standard Reporting
-Activity Monitor

r^LQ

The Data
Warehouse

Bus I Conformed
Dimensions &
Conformed
Facts

Dimensional Data Marts
Including Atomic Data

v^G

Standard Reporting
Tools

0 Desktop Data
Access Tools

o =■=
Application Models

Downstream /
Operational Systems

Figure 6-23 High-level technical architecture model (Kimball era/., 1998:329)

The model provides for a logical separation between the internal working of the

warehouse and the user front end (Kimball et a/., 1998:329). The analysis and design of

174

Chapter 6 - Data Warehouse and the Object Oriented Approach

such architecture should therefore be separated according to the back and front room of

the model.

The analysis and design of the back room entail the following activities:

• Source system analysis

• Data staging services analysis

• Data staging services design

The analysis and design of the front room consist mainly of the query services.

6.3.3.1. Technical Architecture back room 0 0 analysis - Source systems

The analysis needed for the architecture is done during the identification of sources for

the dimensional models. The sources of the different dimensional models should be

consolidated and used in the data staging area development.

6.3.3.2. Technical Architecture back room OO analysis - Data staging
services

The data staging services consist mainly of the services listed below. The 0 0

development of these services is discussed in section 6.3.5.

• Extract

• Transform

• Load

• Job control

Extract

The analysis of the extraction of data requires the following analysis documents

(Kimball & Caserta, 2004:55):

• Source-to-target mapping for all the dimensions

• Entity relational (ER) model of the source data

• Business rules that influence the Extract-Transform-Load (ETL) process

175

Chapter 6 - Data Warehouse and the Object Oriented Approach

The source-to-target mapping is done during the dimensional model analysis. This list

should be consolidated into a master list. The entity relationship model of the source

systems must be obtained and analysed, in order to determine how the data will be

extracted from the database. However, data can also be extracted from flat files.

The purpose of the source system ER model is to understand what that source data

looks like and to determine what the system of record is. Kimball and Caserta,

(2004:66) simply defines the system of record as the originating source of data. Figure

6-24 is an example of an ER model of a database.

TBl-_POUCl"JNFO

Policy Issue Di
Policy C M «
LasLModitied.On

TBL.POUCY. OFFERING. INFO

SH Mcmhor ID
Policy 10
Oftetiwq ID

Offering Tyiie
Of fc r ing lsU.D!
OffeniKj_Encl_DI
Shafe_Quaniity
LasLModified_On
Audit ID
limesTamp
IS MIGRATED DATA

SH Member |D
Policy ID
Ottering ID
Tun ID

Offering Type
Biz KoTlD
TxrTTypc
Offering Quantity
Effective _Qumwly
AND
Age Mfeclive Dt
Txn~D.
Effactivo Ot
PH User
Last M o d i f i e d ^
Aud,i>

IS_M)GRATED_DATA
Version
ROLLED BACK TXN ID
Share Cemp Ind ""
PohcylTyps "

TOL_TXNJsftEMIUMj;BSTORY

Rate
Membership ID
Basic Premium
Effect ives
End DI
UsfMod.fied

TBL»EMBER_PORTFOUO

Po|if.v ID

Last_Modlfied_On

IS_MIGRATED_DATA

T8LJ.1EMBERSH1P.D71

Membership ID
Start Dt
End 5r
U«Ll*DdHlo<l_On

Figure 6-24 Entity Relationship model of a sample database

Based on the ER model in Figure 6-24, the source of record is the policy offering table.

The beginning of the dataflow starts with the policy entry.

During the requirements phase, the business rules are defined. The rules identified

should be investigated, as this can have an influence on the formatting of data. Table

6-5 is an example of such rules.

176

Chapter 6 - Data Warehouse and the Object Oriented Approach

Rule no Description
BR05 Dates are in the format of YYYY-MM-DD.
BR06 I The member has a stakeholder ID that is converted to a member number.

Table 6-5 Technical Business rules

Kimball and Caserta (2004:63) uses a so-called "source system tracking report" to list

the different source systems, the function of the source data and the parties involved. A

similar report is generated during the identification of a data source in dimensional

modelling analysis.

Transform

Transformation requires two types of documents:

• Basic high level data stage schema plan

• Detailed plan

• List of derived facts

• List for changing dimensions

The basic level data stage schema plan illustrated in Figure 6-25, shows the sources

(top) and the targets (bottom). The lines between the sources and the targets represent

transformations. The major issues associated with a transformation are described in the

rectangle on the line.
Sources

Billing
Master (ROBMS)

Intermediary
Master (RDBMS) P o l i c y A d m i n Sales

(MSAccosa)

1 /I I \
Slonrfy changing
on [tomographies
and account status

Slonrfy changing
on [tomographies
and account status

15000
Future end dates

are specified need
to check policy V Slonrfy changing

on [tomographies
and account status

15000
Future end dates

are specified need
to check policy

\ Old (pre-1972) Policy
Numbers are In
di lre rent format

Slonrfy changing
on [tomographies
and account status

Future end dates
are specified need

to check policy

\ Old (pre-1972) Policy
Numbers are In
di lre rent format 1 I

Old (pre-1972) Policy
Numbers are In
di lre rent format 1 Process 750 k

Policies 1

Old (pre-1972) Policy
Numbers are In
di lre rent format

2 M Customers.

changed customer
pef rnonlh

Process 750 k
Policies 1

Old (pre-1972) Policy
Numbers are In
di lre rent format

2 M Customers.

changed customer
pef rnonlh /

Process 750 k
Policies 1 2 M Customers.

changed customer
pef rnonlh

Check
GPI

. / Labels need

\ . / \ \
CUSTOMER CUSTOMER CUSTOMER

Q u o t e
G e o g r a p h y

Q u o t e
G e o g r a p h y

Figure 6-25 High level data stage schema plan

177

Chapter 6 - Data Warehouse and the Object Oriented Approach

A detail plan should be created for each flow of data (from source to target) in the high

level plan. Figure 6-26 is an illustration of such a detail plan. The source is shown in the

top left hand corner, and the major transformation issues are listed as indicated by the

arrows. In the bottom right hand corner, the final fact /dimension table, to where the

data should be loaded, is shown. The tests on the lines contain critical processing

information.

Sales
(MS Access)

•Use ODBC to extract data
from file
•File format
sales_MMYYYY.mdb

ftp files
- * sales MMYYYY.mdb

Fact Stage 2
•Includes geographical
surrogate key

Sort by
customer
lookup
key

Sort by
geo­
graphical
lookup
key

Fact Stage 1
•Fields needed for fact table
with surrogate keys

Fact Stage 3
•Customer surrogate keys

Sort by
date
lookup
key

-*n Fact Stage 4
•Includes date surrogate key

Bulk load into
Sales Fact

Figure 6-26 Detail schematic plan for fact table load

The list of derived facts is gathered during the analysis of the dimensional tables. The

same is done for the list of slowly changing dimensions, also gathered during the

dimensional table analysis. Both these lists should be consolidated for the design of the

extract.

Load

For loading of data into the data warehouse, there are three kinds of loading processes

(Kimballef a/., 2000:358):

• Incremental loads - involves processing monthly snapshots of the source system

and uploading this information.

• Transaction events - involves processing the transactions one by one as it

happens.

• Full refresh - involves taking the whole source database, processing and

uploading it.

178

Chapter 6 - Data Warehouse and the Object Oriented Approach

The source definition in conjunction with the dimensional table should provide the

analysis with the type of upload needed. A list of sources and types of upload should

be created (Figure 6-27).

Source Upload Type Platform Description

Billings Transactional Unix Customer Billing

Sales Transactions Windows Sales figures on policies.

Intermediaries Full refresh Windows Details on all intermediaries.

Policy Administration Full refresh Unix All information regarding the policyholders and beneficiaries.

Figure 6-27 List of sources with the upload type

Job control

The job control services of the ETL process ensures that it is properly managed. Kimball

etal. (1998:364) recommends that it should include the following:

• Job definition - definition of the series of steps needed to perform the job.

• Job scheduling - scheduling of the job should be done. This can be time or event

based.

• Monitoring - ways to monitor the system while the ETL process is in progress.

• Logging - ways to collect information about the entire ETL process.

• Exception handling - ways to determine whether some of the processes failed.

6.3.3.3. Technical Architecture back room 0 0 design - Data staging

services

The analysis documents (gathered for the back room architecture) give the developer

clear instructions as to how this architecture should perform. The design can be done by

employing integrated ETL design tools, which will be discussed in section 6.3.5.

6.3.3.4. Technical Architecture front room 0 0 analysis - Query services

The front room is a vital part of the model, as this is the part the users see and use to

access the data warehouse (Kimball et al., 1998:409). The types of users and interfaces

are determined during the user interface prototyping and grouped into use cases. These

use cases should be analysed to determine the common front end interfaces.

179

Chapter 6 - Data Warehouse and the Object Oriented Approach

6.3.3.5. Technical Architecture front room OO design - Query services

The design of the front room architecture should be of such a nature that it supports the

front end application. An appropriate development methodology therefore would depend

on the nature of the front end. For example, if the front end is a customer desktop utility

that is being developed, the design should follow an OO methodology.

This section on DW technical architecture concludes with a discussion on the

applicability of OO techniques to DW technical architecture.

6.3.3.6. The Data Warehouse technical architecture based on an OO

approach

In terms of the technical architecture phase in data warehouse development, the

differences between the traditional Kimball ef a/. (1998) data warehouse development

and the Object Oriented Data Warehouse (OODW) are the following:

• OODW splits the modelling of each of the services in the technical architecture

into two sub-phases, namely analysis and design.

• The technical architecture model itself does not differ from the traditional Kimball

model, but the method used to analyse and design the technical architecture

differs. OODW uses an OO approach to the analysis and design of the technical

architecture, whereas Kimball does not.

6.3.4. Physical Design

The physical design involves the design of the logical database, as well as its

implementation. The process is as follows:

• Define naming standards

• Design physical tables and columns

• Estimate database size and index plan

• Develop aggregation plan

180

Chapter 6 - Data Warehouse and the Object Oriented Approach

6.3.4.1. Physical Design - Define standards

A document explaining the naming standards for tables, attributes, synonyms and file

locations should be created. The type of platform should also be documented.

Examples of naming standards are displayed in Table 6-6.
Standard No Description
SR01 All dimensional tables should start with "Dim_".
SR02 All fact tables should start with "Fact_".

Table 6-6 Standards with descriptions

The design of the physical model should follow the standards document.

6.3.4.2. Physical Design - Design physical tables and columns

The dimensional table design serves as a logical model for the physical design. The

physical design should be as close as possible to the logical model, except for the

inclusion of the physical database specification and naming standards. Figure 6-28 is a

physical data model based on the quote dimensional model.
Physical Database Design

Table/Column
name Data Type

Permit
nulls?

Prim.
Key Comment

Dim Product Product dimension
Product Kev Integer N 1 Surroqatekey
Product_Class Varchar(20) N Descriptive name of the class of the

product
Product Name Varchar(20) N Descriptive name of the product

Table /Column name Data Type
Permit
nulls?

Prim.
Key Comment

Fact_Quote Fact table with quotes by insured
amount, monthly premium,
loading premium and total
premium

Date_key Integer N 1 Foreign key to
Dim Product.Date Kev

Product_key Integer N 2 Foreign key to
Dim Product.Praduct Key

Policyholder_key Integer N 3 Foreign key to
Dim Policvholder.Policyholder Key

Broker_key Integer N 4 Foreign key to
Dim Broker.Broker Key

lnsured_Amount Numeric
(18,2)

N The amount insured for the quote

Monthly_Premium Numeric
(18.2)

N The premium for the quote

Loading_Amount Numeric
(18,2)

N The loading amount on the quote

Rider_Benefit_Amount Numeric
(18,2)

N The rider benefit amount on the
quote

TotaLPremium Numeric
(18,2)

N Total premium payable on the quote

Figure 6-28 Partial physical model for quote

181

Chapter 6 - Data Warehouse and the Object Oriented Approach

The naming standards should reflect in the physical model. Examples of these are the

names of tables starting with "Dim" for dimension and "Fact" for fact, as well as the

suffix "key" for key attributes.

The physical model contains the names of the attributes, the data types, null values and

the combination of the primary key.

6.3.4.3. Physical Design - Estimate database size and index plan

An estimation of the correct database size is not easy and should be done by a qualified

database administrator (DBA). Indexing of the table should also be done by the DBA.

Thereafter, the DBA should produce a plan similar to Figure 6-29.

Database size and Index Plan

Table Name Initial row
count

Grows with Estimated Initial
table Size

Table Size
(6 months)

Comment

Dim_Time 1,826 Static 0 0.2 MB 0.2 MB

Dim_Product 24 New products 0 0.2 MB 0.2 MB

Dim_Policyholder 4,000 New
policyholders

5% 250 MB 370 MB

Dim_Broker 2,500 New brokers 1% 100 MB 106 MB

Fact_Quote

Consists of

SourceSysl 2,143,322 For each quote 5% 5 GB 6.5 GB Keep one year history

SourceSys2 2,323,430 For each quote 3% 3 GB 3.5 GB Keep one year history

All Tables 8.354 GB 10.480 GB

Fact table indexes Key
Indexes

Dimjrimejdx 1 0.1MB 0.1MB

Dim_ProduclJdx 1 0.1MB 0.1MB

Dim_Policyholderjdx 1 50 MB 65 MB

Dim_BrokGr_idx 1 10 MB 11MB

Facl_Quotejdx 4 1GB 1.1GB

Total Indexes 1,06 GB 1.176 GB

Temp space needed 2 GB 2.5 GB

Total Space 11.414 GB 14.156 GB

Figure 6-29 Database size and index plan

The database size and index plan reflects the following:

• Names of the tables in the data warehouse

• Estimated rows

182

Chapter 6 - Data Warehouse and the Object Oriented Approach

• Potential growth

• Growth rate

• Initial size

• Estimated size over 6 months

Indexes and their estimates figure in the bottom half of the list. Partitioning information

can also be included in the database size and index plan.

6.3.4.4. Physical Design - Develop aggregation plan

The business requirements that were gathered should highlight what needs to be

aggregated. Based on this, a separate physical model similar to Figure 6-28 should be

created with the necessary aggregate fields. It also should be sized and indexed, as

was done for the atomic data table in Figure 6-29.

6.3.4.5. The Object Oriented Data Warehouse physical design

Owing to the nature of relational databases, OODW uses the same physical design as

traditional Kimball DW development.

6.3.5. Data staging

Kimball et al. (1998:610) follows the under-mentioned ten-step overview when planning

and implementing a data staging environment:

Plan:

1. Create one page source-to-target schematic flow

2. Test, choose and implement data staging tool

3. Create schematic plan to illustrate complex data restructuring and transformation

and job sequencing

Dimension loads:

4. Build and test static dimension load

5. Build and test the slowly changing process

6. Build and test the remaining dimension

183

Chapter 6 - Data Warehouse and the Object Oriented Approach

Fact table and automation:

7. Build and test historical fact table loads

8. Build and test the incremental load process

9. Build and test the aggregate table loads

10. Design, build and test the staging application automation"

In order to use the ten-step overview, the following main 0 0 phases should be

investigated:

• Requirements gathering

• Requirements analysis

• Design

• Implementation

• Testing

The requirements are gathered at the beginning of the project, followed by the analyses

thereof. The latter is done during the dimensional modelling and technical architecture

modelling stages.

The analysis of the backroom architecture serves as the planning part for the ten-step

overview (steps 1 - 4). It provides the developers with the one page schematic flow, the

strategy of the data stage tool to be implemented and a detail schematic plan of the

data restructuring and transformation process.

In terms of 0 0 phases, the dimension loads (step 4 -)) and the fact table and

automation (steps 7 - 1 0) consist of a design-, implementation-, and testing phase.

Data staging in terms of 0 0 phases will be discussed in the in the rest of section 6.3.5.

6.3.5.1. Data Staging - OO Design

The data staging environment has two major design areas:

• Dimension table loading

184

Chapter 6 - Data Warehouse and the Object Oriented Approach

• Fact table loading and automation

The analysis documents available for the designs are:

• Dimension model designs

• Entity Relationship models of the source systems

• High level schematic plan

• Detail schematic plans

• Business rules

Based on the analysis documents listed above, the following need to be created for

each dimensional load and fact table load in the data staging area:

• State chart model

• Entity relationship model

• Collaboration model between ETL processes

The state chart model should illustrate extraction of the data from its starting point (the

source) to the transformation and from its conditions to the end point (the dimensions or

fact tables). Figure 6-30 is an example of a state chart diagram for one dimension.

185

Chapter 6 - Data Warehouse and the Object Oriented Approach

I
Extract Sales (MS Access)
Sales_mmyyyy.mdb

Populate table
#temp_Sales

SC01 -Use case01
Slale Chart for Sales extract
for Dim_Broker

Notes
* This ETL prepares
fact Quote stage 1 this is a
depindancyfor
fact_quote_stage 2

. Verify Broker details with
~ * Policy Admin system

Add broker region details
from Policy admin
ftftemp Broker)

Write broker details into
failed results table
Blemp Exception Table

Process slowly changing
dimension for broker region
(*lemp_Broker)

Process slowly changing
dimension for broker city
(#temp Broker)

Process slowly changing
dimension for broker
Company Name
(«emp_Broker)

*Populate sales figures (o
table «emp_Sales_Slg1

Populate Dim_Broker with
surrogate keys

Figure 6-30 State chart model (SC01) extract for broker dimension (part of use case 01)

Figure 6-30 illustrates one ETL process that is derived from the detail schematic plan in

Figure 6-26. The latter illustrates the source (Extract Sales (MS Access)) and different

processes applied to the data up to the doughnut mark (bottom right hand corner). The

"* populate sales figures to table #temp_Sales_stg1" process is a preparation for a next

ETL process.

Accompanied with the state chart model, is an entity relationship model that illustrates

the underling structure supporting the ETL. Figure 6-31 is an example of the ER model

required to support the state chart model in Figure 6-30.

186

Chapter 6 - Data Warehouse and the Object Oriented Approach

#emp_Broker

PK IB

BrokerNumber
FirstName
MiddieName
LastName
IDNumber

#temp_Sales

PK JC

BrokerNumber
PolicyholderNumber
ProductNumber
InsuredAmount
SumAssuredAmount
LoadingAmount
RiderBenefilAmount
DateOfSale
EffectiveDateOfPolicy

«emp_Exception_Table

PK JB

Description
DateTime

aempJ>ollcyhotder

PK 1Q

FirstName
MiddleName
LaslName
DOB
IDNumber
Gender

#temp_Sates_Stg1

PK JE

SalesBrokerFKID
PolicySoldToPolicyholderFKID
ProductSoldFKID
InsuredAmount
SumAssuredAmount
LoadingAmount
RiderBenefitAmount
DateOlSale
EffectiveDateOfPolicy

:#temBj^licyDesortpUori

PK.FK1 JQ

DescriptiveName
MinimumAmount
MaxAmount
MinPoiicyholderAge
MaxPolicyholderAge

«emp_Po l fcyj;iasses

IE
PolicyName
PolicyClass

Figure 6-31 ER Model for staging environment for sales ETL

The reasons why an OODW uses a relational database system are the following:

• 0 0 databases are not used commercially, while relational databases are mostly

used.

• To create a flat file system is less appealing, as a file management system is

needed for this. Relational databases come with very robust database management

systems.

• A relational database uses industry standard query languages (SQL) and drives to

access information, 0 0 databases do not.

The collaboration model is created once a\\ state chart models and entity relationship

models are done for each dimension and fact table. The collaboration model provides a

graphical representation of the interaction between the ETL processes and their

dependencies. Figure 6-32 is an example of a collaboration diagram for a data

warehouse.

PK

187

Chapter 6 - Data Warehouse and the Object Oriented Approach

Gel premium
fads Extract

Billing

Generated
DirnTime

Figure 6-32 Collaboration diagram on the ETL for the data warehouse

Figure 6-32 illustrates that the Sales fact table is dependent on the following tables:

. Temp_sales_stage_1

• Temp_sales_stage_2

• DimJ3roker

• Dim_Pollcyholder

• Dim_Product

• Dim Time

The flow of data is from left to right therefore tables listed on the right hand side of the

collaboration diagram is dependant on tables connected to its left. The above tables

(except for Dimjime) in turn are dependent on the sales extract and the policy admin

extract. The Monthly premium fact table is dependent on all of the listed tables (except

for the sales fact tables) and the billing extract. This gives the developer a clear

indication of the dependency and priority of each ETL job.

188

Chapter 6 - Data Warehouse and the Object Oriented Approach

6.3.5.2. Data Staging - 0 0 Implementation

The implementation of the dimension and fact table loads is supported by the state

chart and ER model designs created. The ER model is implemented by using structured

query language (SQL) scripts. Figure 6-33 is an example of a piece of SQL script that

implements the #tempJ>roker table.

Z~Z P r. -t ~ - i

3~r -.- r „ 3Z- ** - v <- ■ - : ■ : : : „ . .

F t - T « . Z

' - -Z ! _ ' -
_J^~~ A. "

- r^'^2" r>

Figure 6-33 Example of SQL script to create the #temp_broker table

The state chart model and the ER model can be implemented by employing a data

manipulation tool, such as data transformation services (DTS) in Microsoft SQL Server,

or shell scripting in UNIX.

Figure 6-34 is a typical DTS screen shot used to populate a dimension or fact table. The

DTS package is implemented according to the designs of Figure 6-30 (state chart

model) and Figure 6-31 (ER model).

189

Chapter 6 - Data Warehouse and the Object Oriented Approach

Connectjon T a * Workflow E? 1 na © *> Jb ; 5g P.

Connection

Task

OjOfflff l

= =tsrep_S...

§ -

Mtcrossf: Ex-el 97,..

Prepare~teir>p_£...

I * "
Process SioswCH... populate Dm.BroMr

Figure 6-34 DTS Example for populating dimension broker

Kimball et a/.(1998:617) recommends that the static dimensions should be implemented

firstly, followed by the remaining dimensions and the fact table.

6.3.5.3. Data Staging - 0 0 Testing

Kimball et a/.(1998:631) suggests that audit statistics should be kept on all loads, thus

allowing the following techniques to be applied for data quality assurance (Kimball et al.

1998:658):

• Cross footing - different queries are executed against the source system at

different levels to compare the results

• Manual examination - consolidate data from different systems and investigate

critical data points for acceptable ranges or exceptions

• Process validation - involves investigating the process flow of the data in the

data warehouse

The testing can be done in phases with each load serving as a phase.

This section on DW data staging concludes with a discussion on the applicability of 0 0

techniques to DW data staging.

190

Chapter 6 - Data Warehouse and the Object Oriented Approach

6.3.5.4. The Data Warehouse data staging based on an 0 0 approach

In terms of the data staging phase, the differences between the traditional Kimball et al.

(1998) data warehouse development and the Object Oriented Data Warehouse

(OODW) are the following:

• OODW splits the modelling of data staging into three phases, namely 0 0 design,

0 0 implementation and 0 0 testing.

• OODW uses 0 0 techniques such as state chart modelling and collaboration

modelling to design the ETL loads.

Traditional Kimball DW development does not make use of the above in developing

data warehouses. However, like in Kimball DW development, OODW also uses the

following techniques:

• Dimensional models, ER models of the source systems, high level schematic

plans, detail schematic plans and business rules.

• Testing, which in OODW is seen explicitly as a separate sub-phase, whereas in

traditional Kimball DW, it forms an integrated part of the data staging

development.

6.3.6. End use application

The end user application supports the front end query services of the data warehouse.

These services are:

• Warehouse browsing

• Access and security

• Query management

• Reporting

The requirements of the end user applications are gathered within the business

requirements definition phase. This determines whether a custom development or an

off-the-shelf product is viable for implementation.

191

Chapter 6 - Data Warehouse and the Object Oriented Approach

Not all requirements can be met with an off-the-shelf product. In such cases, a custom

development is preferable. The development should follow the normal 0 0 pattern, as it

is regarded a project within its own right (Figure 6-1). These applications use the data

warehouse as an input source to provide a service to the end user.

6.3.7. Deployment

According to the 0 0 model defined in section 6.2. , the implementation phase involves

the activities listed in Figure 6-35.

Phase Activity

1.9
§ 5
c c
O jjj
o-i

• Code development
• Component packaging
• Deploy packages

Figure 6-35 Implementation model

The code development involves creating the scripts that support the data warehouse.

These scripts are packaged into components. The components should correspond to

the use cases, thus allowing the use case facilitating the quote business process, to

contain all the code involved in implementing the latter.

The deployment of these packages should be implemented by using different

environments. For example, the development should first be done on a development

platform and on completion, promoted to a quality assurance (QA) environment for

thorough testing. Once the package has passed all necessary tests, it can be promoted

to the production data warehouse.

6.3.8. Maintenance and growth

Kimball et a/. (1998:718) stresses that the data warehouse should serve the needs of

the business users for it to be successful. This statement implies that the data

warehouse lifecycle should follow a spiral approach to its development. 0 0

development also follows an iterative lifecycle approach. Figure 6-36 is an illustration

suggesting the life cycle of developing a DW using 0 0 techniques.

192

Chapter 6 - Data Warehouse and the Object Oriented Approach

Revised business
Requirement

Gather Business
Requirements

Use the initial business requirements
to analyse /design DM

Initial DM design (Analysis/
Design)
•Choose DM
•Design Dimension tables
•Design Facts table
•Design and populate star diagram.

Revise feasibly of business
requirement

Assess the analysis/design against the
technical environment

Repeat DM Analysis / Design
•Choose DM
•Design Dimension tables
•Design Facts table
•Design and populate star
diagram.

Assess the revised
analysis/designs against the
technical environment Technical Environment

•Check available data
•Check data frequency
•Check data granularity
•Check data platform

Revise the analysis/designs to comply
with the technical environment

Figure 6-36 Lifecycle of a data mart development

Figure 6-36 suggests that the lifecycle start with the requirements gathering phase.

Thereafter the analysis is done. Based on the assessment of the technical environment

the design is done. This step is not a once off step and is iteratively done until the

design is compatible with the technical environment. In some cases if the design is not

technically feasible one should reconsider some of the business requirements.

This section concludes with a discussion on the business dimensional lifecycle

approach and the applicability of 0 0 techniques to the methodology in question.

193

Chapter 6 - Data Warehouse and the Object Oriented Approach

6.3.9. Summary: The business dimensional lifecycle approach based

on an 0 0 approach

The business dimensional lifecycle approach is a top down approach, starting with the

requirements and working towards a solution. This concept works well with the 0 0

model defined, as this model follows a similar lifecycle.

The techniques of the requirements phase of the 0 0 model can as such be

implemented in the business requirements definition phase of the business dimensional

lifecycle. The 0 0 techniques working with the business requirements definition are:

• Essential use case diagram

• Essential use case model

• User interface prototyping

• Domain modelling

• Supplementary documentation

The concepts of an essential use case diagram and model can be altered to

accommodate two levels of analysis. The first type of use case can be seen as a data

warehouse use case containing the inputs, departments or units of business and users

of the business. Each of the departments or units of business contains one or multiple

processes of business documented in the process use case diagram and process use

case model.

The 0 0 techniques used in the dimensional modelling phase of the Business

dimensional lifecycle are more discrete. The dimensional modelling phase can be used

during the analysis and design phases. The following 0 0 techniques are recommended

for the analysis phase of dimensional modelling:

• System use case

• Sequence diagram

194

Chapter 6 - Data Warehouse and the Object Oriented Approach

The system use cases can also be used to create a DW system use case and a

business system use case. The DW system use case contains the technical

specification for the inputs, outputs and the grain of the use case. The business system

use case contains high-level implementation decisions, such as the screen numbers

and properties needed in the use case.

From here onwards, the following analysis techniques in the business dimensional

lifecycle are used:

• Data warehouse bus architecture matrix (derived from the DW use case list and

business process use case list)

• Fact table diagram

• Dimension table detail

• Identify source data

Based on the above analysis techniques, the dimensional tables are developed.

The technical architecture model can be implemented in an analysis and design

fashion. The technical architecture model is divided into two parts, i.e. the back room

architecture and the front room architecture.

The back room architecture of the technical architecture model involves the analysis of

the following:

• Source systems

• Data staging services

Based on the analysis, the backroom designs can be done. Most of these designs are

done during the physical design phase of the business dimensional lifecycle.

195

Chapter 6 - Data Warehouse and the Object Oriented Approach

The analysis of the front room architecture of the technical architecture model is based

on the business requirements definition. Depending on the requirement of the business,

the front room architecture application can involve a full 0 0 development lifecycle. The

same argument is valid for the design of the front room architecture applications.

The physical design phase in the business dimensional lifecycle approach is

implemented by using a design, implementation and testing phase. The design involves

the design of the data warehouse, as well as the design of the data staging area.

The design of the data warehouse entails the following:

• Defining standards

• Designing physical tables and columns

• Estimating database size and index plan

• Designing aggregates

The design of the data staging area entails the following:

• Designing a state chart diagram based on the analysis of the data staging

services in the technical architecture

• Designing an ER model that supports the state chart model

• Designing a collaboration model that depicts the overall ETL schema

The implementation of the data warehouse and the data staging involves coding of the

designs created.

The testing of the data staging phase follows the same approach than the 0 0

approach. The testing of ETL jobs are done in phases suggesting that it is unit tested.

Audit statistics is used to test the data staging.

196

Chapter 6 - Data Warehouse and the Object Oriented Approach

The end user application supports the front end of the technical architecture design. As

previously indicated, a complete 0 0 model can be applied to the development of these

applications.

Deployment of the Business dimensional lifecycle approach follows a similar approach

than the 0 0 model. The implementation is done in phases and not in total.

6.4. Data warehouse development using the d ata-driven

methodology phases

The objective of this discussion is to describe how a data warehouse should be built if

the approach of Inmon (1996) is implemented in an object-oriented mariner.

The data-driven methodology (Inmon, 1996) illustrated in Figure 6-37 is discussed in the

following section.

For each subject

programming Population

Technical
assessment

Technical environment
preparation

Figure 6-37 Data driven methodology (Inmon, 1996:344)

Unlike the business dimensional lifecycle approach (Kimball et a/., 1998) which follows

a requirements-driven approach, the data-driven methodology does not start with the

business requirements for a data warehouse, but with the data from the operational

systems.

197

Chapter 6 - Data Warehouse and the Object Oriented Approach

The lifecycle of 0 0 development follows the following phases sequentially and

iteratively:

Requirements -> Analysing requirements -► Designing solution -► Implementing

solution -H. Testing golution.

In terms of 0 0 phases, the data-driven approach can be assumed to follow the phases

in the following sequence:

Analysis (of the environment) -► Techhicaa requirements gathering* -► ►esigning

solution -H. Implementinn golutioo -► Testing solution.

Technical requirements gathering is regarded as the requirements needed to build the

data warehouse and not the requirements needed from the end user.

The rest of the discussion will elaborate on the sequence of the data-driven

methodology.

6.4.1. Data model analysis

Inmon (1996:81) argues that there are three types of data models applying to the

architectural environment:

• Corporate data model - the model containing the primitive data elements used

within the corporate.

• Operational data model - the model based on the corporate data model with

operational data included.

• Data warehouse model - the model based on the corporate data model with

added elements, such as:

o Time

o Derived data where needed

o Artefacts for relationships

198

—l 4^~ /^K;«^t r»r iQr . tor l A n n m a r h

Chapter 6 - Data Warehouse and the Object Oriented Approach

The data-driven methodology assumes the existence of a corporate model and an

operational data model on which the data warehouse can be developed.

Inmon (1996:85) also argues that a data model has three levels:

• High-level model - the entity relational model (ER) highlighting the entities and

the relationship between these entities in the corporation.

• Mid-level model - the data item set model (DIS) detailing the major subject

areas.

• Low-level model - the physical model, based on the DIS model and containing

relational tables and keys.

The rest of the discussion will be based on the corporate ER model illustrated in Figure

6-38.

Figure 6-38 Corporate entity relationship diagram for insurance company example

The above ER model can be transformed into a UML class diagram. Figure 6-39 is an

example of such a transformed class model.

199

Chapter 6 - Data Warehouse and the Object Oriented Approach

Policyholder Policyholder
Broker Broker

-c I

V

Policy Quote <

/ V

r
Product

/

Underwriter

/

Figure 6-39 UML class diagram

From Figure 6-38, the following subject areas or entities can be identified:

• Policyholder

• Broker

• Quote

• Underwriter

• Policy

• Product

A subject area should be treated as a use case, and therefore a list of possible use

cases should be created (refer Table 6-2 Example of a list of essential use cases

generated from the use case diagram). The description of the use case should provide

more detailed information on what the subject area entails. Each subject area has a DIS

defined. Figure 6-40 is an example of a DIS for the product entity.

200

Chapter 6 - Data Warehouse and the Object Oriented Approach

Life

Product Type
Sum Assured
Premium

Product Type
Beneficiaries
Max life assurance limit
Ceded
Loading -

Product Type
Beneficiaries
Max life assurance limit
Ceded
Loading Product 1— -

Product Type
Beneficiaries
Max life assurance limit
Ceded
Loading --

Health
Entity Type 1

Name |
ProducLType

Hospital rate
Exclusion
Loading

ProducLType
Hospital rate
Exclusion
Loading

Personal

Entity Type
First name
Middle name
Surname
Age

Group

Entity Type
Insured first name
Insured middle name
Insured last name
Insured age
Policyholder first name
Policyholder middle name
Policyholder last name

Figure 6-40 Corporate data item set for product

The product entity in Figure 6-40 serves as the key. The primary grouping of the product

entity is the product type and the secondary grouping is the entity type. The product

type can be a life product or a health product. The entity type can be a personal type or

group type. For the purpose of this discussion, the DIS for all the entities or subject

areas will not be expanded.

The physical model is based on the DIS of each entity of a subject area. Figure 6-41 is

an example of the physical data model for the product DIS.

201

Chapter 6 - Data Warehouse and the Object Oriented Approach

Life

Product Type Life product table
Beneficiaries
Max life assurance limit
Ceded
Loading

Beneficiaries = Sue
Max life assurance limit= R 5m
Ceded = yes
Loading = Oc

Health
Health product table Product Type

Hospital rate
Exclusion
Loading

Health product table Product Type
Hospital rate
Exclusion
Loading

Hospital rate = R200 p/d
Exclusions = none
Loading = 0c

Personal

Entity Type Personal table
First name
Middle name
Surname
Age

First name = Ben
Middle name = Joe
Surname = Smart
Age = 35

Group

Entity Type
Insured first name
Insured middle name
Insured last name
Insured age
Policyholder first name
Policyholder middle name
Policyholder last name

Insured first name = Ben
Insured middle name = Joe
Insured last name = Smart
Insured age = 35
Policyholder first name = Sue
Policyholder last name = Smart

Insured first name
Insured middle name
Insured last name
Insured age
Policyholder first name
Policyholder middle name
Policyholder last name

Figure 6-41 Physical data model for product DIS

The product type table contains an example of the two types of products, i.e. life and

health. The entity type table reflects entries for both personal and group types of cover.

Each of the table types (life, health, personal and group) contains sample data.

The purpose of the data model analysis is to identify the major subject areas. For each

subject area, the following should be identified (Inmon, 1996:335):

• Sub-types

• Attributes

• Groupings of data

• Keys

Based on the corporate ER model shown in Figure 6-38, the subject areas can be

defined as quote and policy, as these entities contain the information of a process. The

function of the DIS model is to define the sub-types, groupings, attributes and keys.

202

Chapter 6 - Data Warehouse and the Object Oriented Approach

For the purpose of data model analysis, it is not possible to apply an 0 0 technique, but

the analysis can be categorised to become part of an 0 0 analysis phase.

6.4.1.1. Breadbox analysis

The function of the breadbox analysis is to estimate the required level of granularity of

data in the data warehouse (Inmon, 1996:336).

A document (database index and sizing), similar to the one illustrated in Figure 6-29,

should be created. The main difference between the data-driven approach and the

business dimensional lifecycle approach is that tables listed in the document will not

contain tables for the data warehouse, but tables listed in the corporate data model.

This analysis should produce a document specifying that grain of the data. Figure 6-42

is an example of such a document.

Item Number Subject Description

1 Quote All quotes up to one year old should contain one transaction per quote

2 Quote All quote transactions older than one year up to 5 years should be grouped by
month

3 Quote All quotes older than 5 years should be grouped by year.

Figure 6-42 Document containing the different grains needed for the subject area

6.4.1.2. Technical assessment

The technical assessment involves investigating the requirements for managing the

following (Inmon, 1996:337):

• Large volumes of data

• Access to data

• Sending and receiving of data to a wide variety of technologies

• Data loading and manipulation

• Access to a set of data

203

Chapter 6 - Data Warehouse and the Object Oriented Approach

Managing large volumes of data ~ 00 Analysis

The database index and sizing document (Figure 6-29), in conjunction with the

breadbox analysis document (Figure 6-42) should facilitate an estimation of the data

volumes of the different subjects. The main difference between the database index and

sizing document specified in the business dimensional lifecycle, and the data-driven

methodology, is that specific table names to be used in the data warehouse will not be

detailed. Therefore, only the subject areas specified in the data model should be used.

Managing access to data - 00 Analysis

Managing access to data involves specifying the security level of the different subjects.

For example, it is not advisable for brokers to access policyholders listed under other

brokers. A document specifying users or groups allowed to access specific data should

be created.

Sending and receiving data to a wide variety of technologies - Analysis

This analysis involves specifying the current layout of the organisation's environment,

as well as the flow of data and technologies used. Figure 6-43 is a diagram of the layout

and data flow for the insurance company.
Production system layout

1 — *
Billing engine (Oracle DB)
-Unix *- Billing engine (App server

JBoss) - Unix
End User desktop -
PolBilling 1 — *

Billing engine (Oracle DB)
-Unix *- Billing engine (App server

JBoss) - Unix
End User desktop -
PolBilling

p> Quote system (SQL Server
DB)- Windows <- Billing engine (App server

IIS) - Unix
End user web site -
PolQuote

p> Quote system (SQL Server
DB)- Windows <- Billing engine (App server

IIS) - Unix
End user web site -
PolQuote

Policy Administration
(Oracle DB) - Unix

Policy Administration (App
server JBoss) ~ Unix

End User desktop clients -
PolAdmin

Policy Administration
(Oracle DB) - Unix

Policy Administration (App
server JBoss) ~ Unix

End User desktop clients -
PolAdmin

' > « 1 ^ Reporting DB

Figure 6-43 Example of the production system layout

In Figure 6-43, the data flow specifies three production systems i.e. the billing engine,

the quoting system and the policy administration. All end user applications flow towards

204

Chapter 6 - Data Warehouse and the Object Oriented Approach

these systems. Both the billing and quote system use information entailed in the policy

administration system.

Manage data loading and manipulation - 00 Analysis

This analysis involves specifying the source systems and the extract transformation, as

well as loading of the source data to the data warehouse. For this process, a list of

source systems similar to Figure 6-19 should be defined. Furthermore, a high level

schematic plan similar to Figure 6-23 and based on the source systems and the defined

subject should be created.

Access a set of data - 00 Analysis

This analysis involves specifying the types of tools used to access (interface) the data

warehouse. For this analysis, a requirements definition should be created, specifying

the types of users and the tools used to access the data. Examples of these are the

following:

• Typical report writer - SQL tool to access data

• Manager has a set of reports to access - these reports use the same query to

access data

The same procedure discussed in section 6.4.1 should be followed to create the

analysis documents for data access.

6.4.1.3. Technical environment preparation

The technical assessment serves as the technical design hosting the data warehouse. It

focuses on the following (Inmon, 1996:338):

• Network

• Amount of disk space required

• Operating system

• The interfaces specified for the data warehouse

• Software managing the data warehouse

205

Chapter 6 - Data Warehouse and the Object Oriented Approach

Based on the analysis documents gathered during the technical assessment, a

document containing the technical specifications should be created. The technical

specification document should then be implemented. Figure 6-44 is an example of a

technical specification document.

Technical Specification Document

Network layout
The data warehouse server will be connected on a fiber backbone for fast data transfer
between the operational systems and data warehouse.
Required disk space
According to the database sizing and index plan the average growth expected is 66% and
the initial size is estimated at 10GB. Thus a 100GB will be suitable for 5 years.

Operating system
The operating system will be UNIX
Interfaces
TCP / IP ports and web services.
Database management system (DBMS)
•The required DBMS for the data warehouse will be Oracle 9i.

Figure 6-44 example of a technical specification document

6.4.1.4. Subject area

For each subject area, the following must be done:

• Source system analysis

• Data warehouse design

• Program specification

• Population

Inmon (1996:339) explains that the subject area selected first, should be small enough

to allow easy changes and large enough to be meaningful. This statement implies that

the processes applied to. each subject area will be iterative, while the result of the

population process will serve as a testing environment.

206

Chapter 6 - Data Warehouse and the Object Oriented Approach

Up to this stage, no specific use case was focused on, as the use case should be

chosen during the subject area phase. For the purpose of this discussion, the quote

subject area will be used as in the business dimensional lifecycle approach.

6.4.1.5. Source system analysis

The source system analysis identifies the source data that will be used for the star join.

A source data list identifying all the source data should be created. This list should look

similar to the source data list in Figure 6-27. The ER model of the source data should be

investigated to identify the tables and attributes that form part of the subject area in

question (Figure 6-31).

Once the source data is identified, the design of the star join for the subject can be

created, and this design can then be integrated into the data warehouse design. This

will be discussed in section 6.4.1.6.

6.4.1.6. Data warehouse database design

The data warehouse database design is subject to the design of the subject areas. It

therefore should not be treated as a sequential phase in the development of the subject

areas, but rather be designed iteratively as the design of the subject area progresses.

The analysis documents required for the design of the data warehouse are the following

(Inmon, 1996:339):

• Breadbox analysis

• Source system analysis

• Data model analysis

Inmon explains that the design of the data warehouse should be based on the corporate

data model (Inmon, 1996:81) and should have the following characteristics (Inmon,

1996:339):

• Accommodate different levels of granularity

207

Chapter 6 - Data Warehouse and the Object Oriented Approach

• Subject-oriented

• Contain only primitive and derived data and no operational data

• Time variance on every record

Based on the subject area in question, the star joins should be created. A star join, as

discussed in chapter 4, is the same as a dimensional diagram, both these concepts

making use of dimensional tables (the tables describing the fact) linking to a fact table

(the table containing all the numeric facts). See Figure 6-21 for an example of a star join

or dimensional model.

Based on the logical design of the star join, the physical design is done. A physical data

model is then used (as with the business dimensional lifecycle) to implement the star

joins (Figure 6-28).

The design of the star joins for each subject area in the data warehouse should be the

same grain, as these star joins should be compatible and fit into the data warehouse

architecture. For example, the level of grain of the product subject area is per product. If

the quote subject area is per quote (which contains multiple products), it cannot be

compared on an one to one basis and therefore requires a finer level for such a

comparison.

6.4.1.7. Specification

The specifications phase serves as the analysis and design of the data warehouse ETL

process (Inmon, 1996:342).

Specification - 00 Analysis

The section on managing data loading and manipulation discussed the analysis of

managing the loading of data and also referred to the high-level schematic plan. The

specification analysis details the high-level schematic plan (Figure 6-26) into a detailed

208

Chapter 6 - Data Warehouse and the Object Oriented Approach

6.4.1.9. Population

Inmon defines the population phase as "nothing more than the execution of the decision

support system programs previously developed" (Inmon, 1996:343). This step produces

a fully functional data warehouse.

Population - 00 Testing

Although population is seen as the last phase, it should be considered as the testing

ground. A series of steps is followed to develop a subject area in the data warehouse.

Once the subject area is developed, it should be tested. Testing a specific subject area

at a time ensures unit testing. Unit testing on a subject area can be accomplished by

using audit statistics (section 6.3.5.3.) on the star joins.

6.5. Summary

This chapter deals with the development of data warehouses using 0 0 concepts, tools

and techniques. The phases of the b usiness dimensional lifecycle approach and the

data-driven methodology are used in an 0 0 model derived from chapter 4. For the

purpose of this summary, the derived model will be referred to as the 0 0 model.

The Business dimensional lifecycle approach is a top down approach, starting with the

requirements and working towards a solution. This concept works well with the 0 0

model defined, as the model follows a similar lifecycle.

The techniques of the requirement phase of the 0 0 model can as such be implemented

in the business requirements definition phase of the Business dimensional lifecycle. The

0 0 techniques working with the business requirements definition are:

• Essential use case diagram

• Essential use case model

• User interface prototyping

• Domain modelling

210

Chapter 6 - Data Warehouse and the Object Oriented Approach

• Supplementary documentation

The concepts of an essential use case diagram and model can be altered to

accommodate two levels of analysis. The first type of use case can be seen as a data

warehouse use case containing the inputs, departments or units of business and the

users of the business.

Each of the departments or units of business contains one or multiple processes of

business documented in the process use case diagram and process use case model.

The 0 0 techniques used in the dimensional modelling phase of the Business

dimensional lifecycle are more discrete. The dimensional modelling phase can be used

during the analysis and design phases. The following 0 0 techniques are recommended

in the analysis phase of dimensional modelling:

• System use case

• Sequence diagram

The system use cases can also be used to create a DW system use case and a

business system use case. The DW system use case contains the technical

specification for the inputs, outputs and the grain for the use case. The business system

use case contains high-level implementation decisions, such as the screen numbers

and properties needed in the use case.

From here on, the following analysis techniques in the Business dimensional lifecycle

are used:

• Data warehouse bus architecture matrix (derived from the DW use case list and

business process use case list)

• Fact table diagram

• Dimension table detail

211

Chapter 6 - Data Warehouse and the Object Oriented Approach

plan for the subject area in question. The analysis of the specification also includes

business rules applying to, or affecting the transformation of data.

Specification - 00 Design

The analysis documents available for the specification design are:

• Star joins

• ER models of the sources systems

• High level schematic plan

• Detail schematic plans

• Business rules

Based on the above analysis documents, the specification design for the subject area in

question can be created. The design includes the following documents:

• State chart model for the extract to star joins (Figure 6-30)

• ER model to support the state chart model (Figure 6-31)

Although the specification design focuses only on one subject area at a time, the

possibility of reusing dimensions should be investigated. If dimensions can be reused, a

collaboration model should be created to depict the dependencies of the star joins and

prioritise the ETL (Figure 6-32).

6.4.1.8. Programming

The programming of the specifications mainly involves utilising the technology specified

to implement the designs for the subject area in question. The ER model created for the

state chart model can be implemented by using SQL scripts (Figure 6-33). The state

chart model can be implemented by using DTS packages (Figure 6-34).

The collaboration model (Figure 6-32) serves as a guide to know which ETL jobs to

implement and when it should be done.

209

Chapter 6 - Data Warehouse and the Object Oriented Approach

• Identify source data

Based on the above analysis techniques, the dimensional tables are developed.

The technical architecture model can be implemented in an analysis and design

fashion. The technical architecture model is divided into two parts, i.e. the back room

architecture and the front room architecture.

The back room architecture of the technical architecture model involves the analysis of

the following:

• Source systems

• Data staging services

Based on the analysis, the backroom designs can be done, as most of these designs

are done during the physical design phase of the Business dimensional lifecycle.

The analysis of the front room architecture of the technical architecture model is based

on the business requirements definition. Depending on the requirements of the

business, the front room architecture application can involve a complete 0 0

development lifecycle. The same argument is valid for the design of the front room

architecture applications.

The physical design phase in the Business dimensional lifecycle approach is

implemented using a design, implementation and testing phase. The design involves

the design of the data warehouse, as well as the design of the data staging area.

The design of the data warehouse entails the following:

• Defining standards

• Designing physical tables and columns

212

Chapter 6 - Data Warehouse and the Object Oriented Approach

• Estimating database size and index plan

• Designing aggregates

The design of the data staging area entails the following:

• Designing a state chart diagram based on the analysis of the data staging

services in the technical architecture.

• Designing an ER model supporting the state chart model.

• Designing a collaboration model depicting the overall ETL schema.

The implementation of the data warehouse and the data staging involves the coding of

the designs created.

The testing of the data staging phase uses the same approach than the 0 0 approach.

The testing of ETL jobs are done in phases suggesting that it is unit tested. Audit

statistics is a technique used to test the data staging.

The end user application supports the front end of the technical architecture design, and

a complete 0 0 model can be applied to the development of these applications.

The deployment phase in the Business dimensional lifecycle approach is similar to that

of the 0 0 model. The implementation is done in phases and not in total.

The second methodology to be discussed is the Data-driven methodology. This

methodology is less compatible with the 0 0 model. The main reason for this being that

both the 0 0 model and the Business dimensional lifecycle approach start with and

depend on the requirements defined. The Data-driven methodology on the other hand

does not start with the requirements, but rather focuses on the data available for the

data warehouse as starting point.

213

Chapter 6 - Data Warehouse and the Object Oriented Approach

The following phases in an 0 0 approach can not be used:

• Data model analysis

• Breadbox analysis

• Technical assessment

The above phases focus on the data warehouse design as a whole. Based on these

analysis documents, the technical environment is prepared.

The data model analysis can be used to create a list of use cases to which the subject

areas correspond.

There are certain phases in the Data-driven methodology following the same approach

than the 0 0 model. These are:

• Subject area

• Source system analysis

• Data warehouse design

• Specification analysis

• Programming

• Population

The subject area involves selecting the subject area to be developed. A subject area

can also be regarded as one use case.

The source system analysis phase is a phase identifying the sources needed for the

subject area. This phase does not use any of the techniques in the defined OO model.

The design of the data warehouse follows an 0 0 analysis and design phase. It does not

use the 0 0 analysis and design techniques, but rather techniques specific to databases

and data warehouses, i.e. ER models and star joins (dimensional models).

214

Chapter 6 - Data Warehouse and the Object Oriented Approach

The specifications phase is a design phase specifying how the implementation should

be done. This phase follows a design phase in the defined 0 0 model and uses the

state chart and collaboration techniques.

The programming phase involves implementing the designs for the subject area.

The population phase is the product of all the phases in the Data-driven methodology,

the outcome of which should be used as the testing platform. The testing can follow a

unit testing approach as per 0 0 testing.

215

Chapter 7 - Research design and the IS Prototype

Chapter 7 - Object-oriented implementation of a data
warehouse

7.1. Introduction

In the first part of this chapter the research design for the study is discussed, followed

by the study's action taking in the form of a DW prototype. A short discussion on the

nature of the study follows as this has an impact on the research design. The research

design involves choosing the research method and environment for implementing the

research method. The detail of how the action plan is implemented is covered. The

action plan is in the form of a DW prototype. A report on the research evaluation follows

in the next chapter.

7.2. Research question and scope of study

The aim of the study is to develop a data warehouse using object-oriented techniques in

a data warehouse development methodology. Thus the research question is:

Can a data warehouse be developed using a data warehouse methodology and

incorporating object-oriented techniques?

To answer the above question, the researcher needs to implement the business

development lifecycle approach using object-oriented techniques (discussed in chapter

6). The data-driven methodology can be used for further studies and will not be

implemented for this research.

7.3. Nature of the study

The study focuses on the data warehouse development methodologies with the aim of

incorporating different techniques from object-oriented development. Chapter 6

discussed methods to develop data warehouses using object-oriented concepts, tools

and techniques where possible. Two approaches were covered, i.e. The Business

216

Chapter 7 - Research design and the IS Prototype

Development Lifecycle Approach (Kimball et a/., 1998) and the Data Driven approach

(Inmon, 1996).

Very little literature on the 0 0 development of DW is available. The work presented in

chapter 6 will be used as a guideline for the development of the DW. 0 0 methods will

be explored in every phase of the systems development lifecycle.

7.4. Research method

Based on the nature of the study discussed in the previous section, one can use action

research as a research method. Baskerville (1999:11) explains that the ideal situations

for action research are:

• Research environment where the researcher is actively involved, with the

expectation that both the researcher and the organisational benefits.

• Research environment were the knowledge obtained can be applied

immediately.

• Research environment where research is a process of linking theory and

practice.

The research environment for this study satisfies all of the above situations with the

following reasons.

• The researcher was actively involved in the development lifecycle of the data

warehouse and both the researcher and the organisation's expectations were set

during the requirements meetings.

• The environment was favourable due to the 0 0 development culture in the

organisation and the need for a data warehouse.

• The need for a 0 0 DW requires a study on 0 0 DW as it is not commonly done

in practice.

7.5. Research design

The discussion on the research design is according to the action research cycle in

Figure 7-1. The theory on action research was discussed in chapter 2.

217

Chapter 7 - Research design and the IS Prototype

^__—»(Diagnosing)______^

Specify ing^ / ' A c t i o n
Learning) \. Planning

M Evaluating) (Action Taking jr

Figure 7-1 The Action Research Cycle (Baskerville, 1999:14)

Diagnosing - is the process of identifying the primary reasons why change is needed.

The research question of this study aims to discover the benefits of using OODW to

DW. 0 0 has already proven to be very successful in organisations, although DW

systems are traditionally not based on 0 0 . The diagnosing environment for this

research is discussed in section 7.6.1.

Action Planning - involves the researchers and practitioners to collaborate and produce

actions that should relieve or improve the problems identified. A plan containing the

necessary actions is created and carried out by means of a theoretical framework. The

plan should establish the target and approach for change.

The study serves as the action plan. It starts with a literature study of what a

methodology is and how it can be classified. It then studies common object-oriented

methodologies, as well as common data warehouse methodologies. Based on the

literature studies of object-oriented and data warehouse methodologies, a theory is

created. This theory was discussed in chapter 6 and covered data warehouse

development and the object-oriented methodologies. Therefore, the discussion in

chapter 6, the data warehouse and object-oriented approach, serves as the action plan.

Action Taking - implements the action plan. The action is the proposed methodologies

discussed in chapter 6 (Data warehouse and 0 0 approach). The method of how a data

218

Chapter 7 - Research design and the IS Prototype

warehouse can be created using the business lifecycle approach in an 0 0 environment

will be implemented. This is discussed in detail in section 7.6.

Evaluating - the outcomes of the action plan are evaluated. The evaluation determines

whether the theoretical effects were realised and whether the problems identified are

relieved, or not. If the changes implemented were successful, it must be determined

whether the changes are the sole cause of the success. If the changes implemented

were unsuccessful, a framework for a next iteration should be established. The detailed

discussion on the evaluation of the study follows in chapter 8. The evaluation for the

DW implemented is based on feedback from areas in business, such as service desks

and managers of the affected departments.

Specifying learning - is the knowledge gained from the research. This is detailed in

chapter 8.

7.6. Implementing the business lifecycle approach in an object-
oriented fashion.

This section discusses the process that was followed to implement a data warehouse

using one of the proposed methods described in the study. The development

methodology used to create the data warehouse was described in section 6.3 (Data

warehouse development using the Business dimensional lifecycle approach phases).

7.6.1. Diagnosis and Background to the data warehouse prototype

implemented

The development of the data warehouse (DW) was done for a leading insurance

company based in Johannesburg, South Africa.

The company uses several operational systems for its daily operations and had a need

for a consolidated source of information. The main operational systems are mostly in-

house developed systems using object-oriented (00) methodologies and technologies.

219

Chapter 7 - Research design and the IS Prototype

The company has in excess of 200 000 policyholders and more than 600 000 policies

worth of data. For certain insurance products, such as the Income Protector policy,

transitional data is kept, thereby increasing the volume of data tremendously. The

production systems total around 5 TB of data.

The company in need of a data warehouse and geared towards OO development, lends

itself to being an ideal candidate for implementing the theory created in chapter 6 (Data

warehouse and the object-oriented approach). The DW is implemented to be used as a

reporting platform. This allows report writing, easy access to data and serves as a

medium for running monthly reports, which previously had a negative impact on

production systems.

The DW was developed by the researcher, a business analyst, the manager from the

application support department and various key managers (the users) from different

departments.

Project duration for the core analysis and development was about 6 months, while

further development is planned for the DW.

The requirements for overall functionality of the DW were done by the manager of

application support. The specific requirements for the data marts and reports were

prepared through interviews with relevant parties and by the business analyst and

researcher.

7.6.2. Business requirements definition

As described in section 6.3.1, the business requirements definition determines the
following:

• Which data should be available in the DW?

• How this data should be organised?

• How often it should be refreshed?

The OO techniques described in the same section are illustrated in Figure 7-2.

220

Chapter 7 - Research design and the IS Prototype

Phase Activity

CD

E
CD
t_
' 3
CT
CD

CC

in

ii
CD a)

Si
CC

• Essential Use Case Diagram
• Essential Use Case
• User Interface Prototyping
• Domain Modelling
• Supplementary Documentation

CD

E
CD
t_
' 3
CT
CD

CC

in

II
CD 0

= ^
> CD

cc

• Use Case Scenario Testing
• User Interface Walkthrough
• Requirements Review

Figure 7-2 Requirements Model

The first activity was to create the essential use case diagram.

7.6.2.1. Essential use case diagram

The essential use case diagram is an activity discussed in chapter 4. Its function is to

illustrate the interaction between actors and concepts in the problem domain. For this

case study, the problem domain needed to be established. An in-depth study was done

about the company's structure and the interaction between departments. The structure

of the company is illustrated in Figure 7-3.

221

Chapter 7 - Research design and the IS Prototype

Chief Fteciitiv*
Officer

Genata!Manacer.
Human Resources

Chief Financial
Officer

Mcrtk™! Training
and Development

ProfMSional

Administration

General Manager,

o££2ni

Corpcrate finance

Head of Actuarial

M D^JSL,

iJaliena! Sales
Csrertor

"I Acfjarial/Procticl
Deyelop-nert

Chief Operations
Officer

Martsto-.J

™1''

intem-ediarv
RsliitisnsTip

OMSK™! Manager

Oltef Operations
Officer

oSbyAifminisfeiiScn

1.CBKW services

C ^ ^ K J

Short Term

Onemtons

<£ss;3

Application Support

3peratianil Finance

Figure 7-3 Insurance company organisational structure (human resources department)

Figure 7-3 was supplied by the human resources department. This organisational

structure served as the basis for creating the essential use case diagrams. Section

6.3.1.1 introduces the concept of splitting the essential use case diagram into a data

warehouse use case diagram and a business process use case diagram. The concept

of the data warehouse use case diagram is to illustrate the "big picture".

Data warehouse use case diagram

Leoal Services

222

Chapter 7 - Research design and the IS Prototype

Figure 7-4 shows the data warehouse use case diagram created. This was done with

the help of the organisational structure (Figure 7-3) and by facilitated sessions with a

business analyst in the application support department.

Sales Department - Intermediary Relationship
Consultants

Claims Department- Underwriters

Q -Inputs

A
Investments Department - Investment Consultants

Product Development - Actuarial Consultants,

-InpuJ

Coroporale Finance Department - Staff

Divisional Manager or National Sales Director

Party and Claims Manager or COO

Investments Portfolio Manager or CFO

Product Development Manager or Head of Acturial

Figure 7-4 Data warehouse use case diagram for the insurance company

Figure 7-4 illustrates the following facts:

• The intermediary relationship consultants are responsible for providing the input

to sales. The divisional manager and national sales director use the sales

figures.

• The underwriters are responsible for providing the input to claims. The party and

claims manager and chief of operations director (COO) use the claims figures.

• The investment managers are responsible for providing the input to investments.

The investment portfolio managers and the chief financial officer (CFO) use the

investment figures.

223

Chapter 7 - Research design and the IS Prototype

The actuarial consultants are responsible for providing the input to product

development. The product development manager and head of actuaries use the

product development figures.

The finance clerks are responsible for providing the input to corporate finance.

The chief financial officer (CFO) uses the corporate finance figures.

The above facts are summed in Table 7-1.
DW Use Case
Number

Department Party responsible for
providing information

Users

DWUC01 Sales department intermediary relationship

consultants

Divisional manager and national

sales director

DWUC02 Claims Underwriters Party and claims manager and

chief of operations director (COO)

DWUC03 Investments Investment managers Investment portfolio managers

and the chief financial officer

(CFO)

DWUC04 Claims Actuarial consultants Claims manager, Finance

manager

DWUC05 Finance Product development Product development manager

and head of actuaries

DWUC06 Finance clerks Corporate finance Chief financial officer (CFO)

Table 7-1 List of data warehouse use cases.

A second session was held with the application support department to determine the

scope and phases of the data warehouse. The outcome of this meeting determined the

following:

• The data warehouse should support the following departments and should be

considered as phase 1:

o Sales

• The following departments should be considered as future phases of the data

warehouse development:

o Claims

o Investments

o Product development

224

Chapter 7 - Research design and the IS Prototype

o Corporate finance

Data warehouse essential use case

Resulting from the discussion, the scope of the project was based on data warehouse

use case 1 (DWUC01). The following is the DW use case created from the DW use

case diagram. Table 7-2 illustrates the summary of DWUC01.

DW Use Case: Sales (OWUC01) version 1.3
Brief Description This use case contains the high-level description of the sales department's

inputs and outputs.

Business function Sales department is responsible for the following.

Inputs Item Brief Description Inputs
Product The product name

Inputs

Date The date when product is sold

Inputs

Division The division where the product is sold

Inputs

Division Manager The manager of that division

Inputs

Area The regional office name

Inputs

Area Manager The manager of the regional office

Inputs

Consultant The consultant representing the brokers

Inputs

Broker The broker description

Inputs

Policyholder The policyholder
Outputs • Sales report

Possible grains • The sale of a product, (finest grain)
• The sale per product (rolled up)
• The sale of products per time line (rolled up)
• The sale of products per region (rolled up)
• The sale of products per consultant (rolled up)

Table 7-2 DWUC01 - Sales

The following is a discussion on the business process use case diagram.

Business process use case diagram

The business process use case diagram required facilitated sessions with the manager

of the sales department. Figure 7-5 illustrates the business processes within the sales

department.

225

Chapter 7 - Research design and the IS Prototype

Sales

Divisonal Manager

Poiicyholder / Client

Figure 7-5 Business process diagram for Sales department

Based on the business process use case diagram in Figure 7-5, a list of use cases was

created (illustrated in Table 7-3), which needed to be investigated further.
Use case number Description

UC01 Area managers report to the divisional manager on sales key performance
indicators (KPI).

UC02 Area manager sets annual performance indicators (API) and new head
count per consultant.

UC03 Consultant claw back commission paid to broker based on policy
agreement.

UC04 Consultant pays commission to broker based on policy agreement.

UC05 Consultant provides training and product support to broker.

UC06 Broker quotes the policyholder or client for insurance.

Table 7-3 list of use cases in sales busines process diagram

The following section is a discussion on the business process use cases already listed

in Table 7-1.

Business process use cases

226

Chapter 7 - Research design and the IS Prototype

The following tables (Table 7-4 to Table 7-10) illustrate the business process (BP) use

cases created from the list in Table 7-1.

A typical business process contains information about the business process identified,

as well as information on the supporting mechanisms in the process, i.e. reports.

BP Use Case: Reports To (UC01) version 1.1
Brief Description of

business process

Area managers report to the divisional manager on sales key performance

indicators (KPI).

Actors • Area manager
• Divisional manager

Precondition Report requested

Post condition Report delivered

Basic course of
action

Divisional manager requests performance reports.
The following reports are identified as performance reports.

• Head count report
• API report

Report information • Head count report
- Date
- Division
- Divisional manager
- Area

Area manager
- Consultant
- Head count
- Target
- Target YTD
- Achieved
- Achieved total
- Total

• API report
- Date
- Division
- Divisional manager
- Area

Area manager
- Consultant
- Product
- API count
- Target
- Target YTD
- Achieved
- Achieved total
- Total

Table 7-4 Reports To business process use case

BP Use Case: Set A PI /heads (UC02) version 1.1
Brief Description of

business process

Area manager sets annual performance indicators (API) and new head count per

consultant.

Actors • Area manager
• Consultant

Precondition n/a

Post condition New API and head target set.

Basic course of
action

Area manager defines targets for consultants according to formula.
Reports identified:

• New target report
Table 7-5 Set API / Heads business process use case

227

Chapter 7 - Research design and the IS Prototype

Report information • Head count report • API report
- Date - Date
- Division - Division
- Divisional manager - Divisional manager
- Area - Area

Area manager Area manager
- Consultant - Consultant
- Target achieved - Product
- New target - Target achieved

- New target

Formulas defined • New head target formula
- New target = target achieved * 1.2
- if new consultant then default is 100

• New API target formula
- New target = target achieved * 1.3
- if new consultant then default is 2500

Table 7-6 (Continued) Set API / Heads business process use case

BP Use Case: Claw back Commission (UC03) version 1.1
Brief Description of
business process

Consultant claw back commission paid to broker based on policy agreement.

Actors • Consultant
• Broker

Precondition Policyholder cancels policy within 2 years of the issue date of policy.

Post condition Claw back commission

Basic course of

action
Consultant claw back commission from broker.
Reports identified:

• Claw back report
Report information • Claw back report

- Date
- Division
- Divisional manager
- Area
- Area manager
- Consultant
- Broker
- Policy number
- Product
- Amount

Table 7-7 Claw back commission business process use case

228

Chapter 7 - Research design and the IS Prototype

BP Use Case: Pay Commission (UC04) version 1.1
Brief Description of
business process

Consultant pays commission to broker based on policy agreement.

Actors • Consultant
• Broker

Precondition Policyholder needs to take out a policy.

Post condition Paid commission

Basic course of
action

Consultant pays broker commission
Reports identified:

• Commissions report
Report information • Commissions report Date

- Division
- Divisional manager
- Area

Area manager
- Consultant
- Broker
- Policy number
- Product
- Amountfor Year 1
- Amount for Year 2 (if applicable)

Table 7-8 Pay commission business process use case

BP Use Case: Training (UC05) version 1.1
Brief Description of
business process

Consultant provides training and product support to broker.

Actors • Consultant
• Broker

Precondition Broker needs to be registered with a financial services provider and should
not have any mandates with the insurance company.

Post condition Mandate to sell products

Basic course of
action

Broker needs to register on learning site.
Once registered the broker needs to work through the guides and assignments
The broker needs to pass the required tests on each product to get a mandate to
sell products.

Report identified:
• Broker test report

Report information • Broker test report
- Date
- Broker
- Test number
- Product name
- Score

Table 7-9 Training business process use case

229

Chapter 7 - Research design and the IS Prototype

BP Use Case: Quote (UC06) version 1.1
Brief Description of
business process

Broker quotes the policyholder or client for insurance.

Actors • Broker
• Policyholder

Precondition Broker needs to be registered with a financial services provider and should have
the required mandate with the insurance company.

Post condition Quote for insurance

Basic course of
action

Policyholder request quote for insurance to broker.
The broker uses an online application to quote for the required insurance
The policyholder accepts or rejects the quote.

Reports identified
• Product quote report

Report information • Product quote report Broker
- Date
- Broker
- Product name
- Sum Assured
- Premium

Table 7-10 Quote business process use case

User interface prototyping

Section 6.3.1.3 determines that user interfaces should be prototyped and that they can

be in the form of:

• Reports (on the department)

• End user desktop applications

• Data mining models

• Downstream operational systems

No further user interfaces other than reports were identified in the requirements

sessions. The reports identified are listed in Table (Continued) 7-12.
Report name Report fields

Sales Stats report - Date sold
- Division
- Divisional manager
- Sales area

Sales area manager
- Consultant
- Broker
- Product

Table 7-11 List of reports identified

230

Chapter 7 - Research design and the IS Prototype

Report name Report fields

- API
- New Head
- Target API
- Target Head
- Target API YTD
- Target YTD Head
- Achieved API
- Achieved Head

Claw back report - Claw back date
- Division
- Divisional manager
- Area

Area manager
- Consultant
- Broker
- Policy number
- Product
- Amount

Commission Incentive

report

- Date
- Division
- Divisional manager
- Area

Area manager
- Consultant
- Broker
- Policy number
- Product
- Amount for Year 1
- Amount for Year 2 (if applicable)

Table (Continued) 7-12 List of reports identified

The lists of reports identified above (Table (Continued) 7-12), were documented in the

business process use cases. The next activity was to create the domain model. The

following is a discussion of the domain model.

Domain modelling

As described in section 6.3.1.4, domain modelling seeks to identify classes and objects

common to all applications within the domain (Booch, 1994:157). The concepts are

derived from nouns and noun pareses in the business essential use cases and the data

warehouse user interface prototypes.

231

Chapter 7 - Research design and the IS Prototype

Class Responsibility Collaborator Cards (CRC) is a useful technique for discovering

classes representing concepts. This technique should be used in a brainstorming

session.

It is also explained in section 6.3.1.4 that the CRC for DW development should be

referred to as DW CRC, thereby avoiding confusion between operational systems

(CRC) and DW systems (DW CRC). The business CRCs created, are listed from Table

7-13to Table 7-22.

CRC: Policyholder (or Insured) (Version 1.2)
Class of policyholder (no actions)
Initials
Last name
First names
Date of birth
First Language
Disposable Income
Education level
Employment status
Gender
Marital Status
Ethnicity
Is doer of occupations
Is doer of habit
Is subject of medical conditions
Is subject of assessment results
External reference
Contact Preferences

Table 7-13 Policyholder CRC

CRC: Broker (Version 1.2)
Initials (no actions)
Last name
First names
Date of birth
First Language
Gender
Marital Status
Ethnicity
External reference
Contact Preferences
Reports to consultant

Table 7-14 Broker CRC

232

Chapter 7 - Research design and the IS Prototype

CRC: Consultant (Version 1.1)
Initials (no actions)
Last name
First names
Date of birth
First Language
Gender
Ethnicity
External reference
Contact Preferences
Belongs to area
Reports to area manager
API Target
Head Count Target

Table 7-15 Consultant CRC

CRC: Area Manager (Version 1.1)
Initials (no actions)
Last name
First names
Date of birth
First Language
Gender
Ethnicity
External reference
Contact Preferences
Belongs to division
Reports to divisional manager

Table 7-16 Area Manager CRC

CRC: Divisional Manager (Version 1.1)
Initials (no actions)
Last name
First names
Date of birth
First Language
Gender
Ethnicity
External reference
Contact Preferences
Belongs to insurance company

Table 7-17 Divisional Manager

233

Chapter 7 - Research design and the IS Prototype

CRC: Product (Version 1.4)
Start Date (no actions)
End Date
External reference
Product Kind
Product Components
Product Properties
Product Roles (include the sum assured and
premium)

Table 7-18 Product CRC

Table 7-19 Quote and statement of benefits CRC

Table 7-20 Learn student module CRC

CRC: Commission Paid(Version 1.2)
Broker external reference (no actions)
Policyholder external reference
Product start date
Product external reference
Product kind
Product Sum Assured
Product Premium
Commission Year 1
Commission Year 2

Table 7-21 Commission Paid

234

Chapter 7 - Research design and the IS Prototype

CRC: Commission claw back(Version 1.1)
Broker external reference (no actions)
Policyholder external reference
Product end date
Product external reference
Product kind
Product Sum Assured
Product Premium
Commission Year 1
Commission Year 2

Table 7-22 Commission claw back

The actor CRCs created is illustrated from Table 7-23 to Table 7-26.
Policyholder (or Insured) (Version 1.1) « A c t o r »
Request for Insurance
Provides party information
Apply for insurance
Cancel insurance

Broker
Policyholder

Table 7-23 Policyholder actor CRC

Broker (Version 1.1) «Actor»
Provides party (broker and policyholder) Broker
information Policyholder
Request quote for insurance Quote Application
Request training Training Application
Provide commission incentive received Commission Paid
Do commission claw back Commission claw back
Reports to Consultant

Table 7-24 Broker actor CRC

Consultant (Version 1.0) «Actor»
Provides party (consultant) information
Pays commission incentive
Claw back commission

Consultant
Commission Paid
Commission claw back

Table 7-25 Consultant actor CRC

Area Manager (Version 1.1) «Actor»
Provides party (area manager) information
Set targets
Reports sales stats

Area manager
Consultant
Sales Stats

Table 7-26 Area manager actor CRC

235

Chapter 7 - Research design and the IS Prototype

The user interface CRCs (all in the form of reports), are illustrated in Table 7-27 to
Table 7-29.

Sales Stats (Version 1.3) «Report»
Date sold Pol icy holder
Division Broker
Divisional manager Consultant
Sales area Area manager
Sales area manager Divisional manager
Consultant Quote and Statement of benefits
Broker
Product
API
New Head
Target API
Target Head
Target API YTD
Target YTD Head
Achieved API
Achieved Head

Table 7-27 Sales stats report CRC

Commission Incentive (Version 1.3) «Report»
Date Policyholder
Division Broker
Divisional manager Consultant
Sales area Area manager
Sales area manager Divisional manager
Consultant Quote and Statement of benefits
Broker Commission Incentive paid
Product
Policyholder
Product start date
Product external reference
Product kind
Product Sum Assured
Product Premium
Commission Year 1
Commission Year 2

Table 7-28 Commission incentive report CRC

236

Chapter 7 - Research design and the IS Prototype

Commission claw back (Version 1.4) «Report»
Date Policyholder
Division Broker
Divisional manager Consultant
Sales area Area manager
Sales area manager Divisional manager
Consultant Quote and Statement of benefits
Broker Commission claw back
Product
Policyholder
Product start date
Product end date
Product external reference
Product kind
Product Sum Assured
Product Premium
Commission Year 1
Commission Year 2

Table 7-29 Commission claw back report CRC

Supplementary documentation

Section 6.3.1.5 requires the business rules to be investigated. For this study, only the

business rules applicable to reporting were investigated. Business rules eligible for

members and products were not investigated, as these rules form part of the company's

production line. Table 7-30 to Table 7-34 illustrate the rules applicable to the CRCs

created (Table 7-13 - Table 7-29).

237

Chapter 7 - Research design and the IS Prototype

BRRV01 - External reference
Description of Rule: Determines the nature of the external reference
Test Parameters 1. External reference

Condition for which If external reference start with a numeric number it can be
Rule is True linked to the following:

• Broker agreement
• Consultant agreement
• Area Manager agreement

If external reference start with a date i.e. 20010101 then it
qualifies as a product:

• Sick pay and permanent incapacity product -
follows a 01 after the date and 4 digits, i.e.
20010101011234

• Life assurance follows a 02 after the date and four
digits i.e. 20010101021234

• Health assurance follows a 03 after the date and
four digits i.e. 20010101031234

• Retirement annuity follows a X after the date and
four digits i.e. 20010101X1234

Category Report Validity
Table 7-30 External reference business rule

BRSH01 - Broker validity
Description of Rule: Broker can only report to one consultant
Test Parameters 1. External reference (of broker agreement)

Condition for which
Rule is True

If external reference is a broker

Category Sales hierarchy
Table 7-31 Broker validity business rule

BRSH02 - Consultant validity
Description of Rule: Consultant can only report to one area manager and have
multiple brokers.
Test Parameters 1. External reference (of consultant agreement)
Condition for which
Rule is True

If external reference is a consultant

Category Sales hierarchy
Table 7-32 Consultant validity business rule

238

Chapter 7 - Research design and the IS Prototype

BRSH03 - Area manager validity
Description of Rule: Area manager can only report to one divisional manager and
have multiple consultants.
Test Parameters 1. External reference (of area manager)
Condition for which
Rule is True

If external reference is a area manager

Category Sales hierarchy
Table 7-33 Area manager validity rule

BRSH04 - Area
Description of Rule: Area can have only one area manager
Test Parameters 1. External reference (of area manager agreement)
Condition for which
Rule is True

If area manager then only one assigned area

Category Sales hierarchy
Table 7-34 Area business rule

BRRC01 - Target YTD Calculation
Description of Rule: Target
Test Parameters 1. Month

2. Target
Calculation
definition rule

Target YTD = Target /12 * Month
i.e.
1000/12* 3 (for March) = 250

Category Report Calculation
Table 7-35 Target Year To Date Calculation business rule

BRRC02 - Achieved Calculation
Description of Rule: Target Achieved
Test Parameters 1. Month

2. Target
3. Actual figure (API or Head)

Calculation
definition rule

Actual figure / (Target /12 * Month) * 100
i.e.
200 / (1000 /12 * 3 (for March)) *100 = 80%

Category Report Calculation
Table 7-36 Achieved Calculation business rule

239

Chapter 7 - Research design and the IS Prototype

Outline on the DWmaintenance and growth

DW maintenance and growth determines the protocol followed for maintaining and

developing the DW. In the following sections, DW maintenance and growth is

discussed.

Debugging

Any bug detected on the system should be logged as a bug at the service desk. A

service desk number will be issued. A bug is defined as any existing development not

functioning correctly.

Change Request

Any change request for the system should be logged as a change request at the service

desk. A change request number will be issued. A change request is defined as any new

development needed to change existing functionality or introduce new functionality.

All bugs and change requests need to be tested on the following environments:

• Staging - once the developers involved are happy with the development, it

should be promoted to quality assurance (QA).

• QA - once business testing is completed, it can be promoted to production.

• Production - all production changes will require approval from both the business

owner and application support manager.

Source control

All development will be stored in a repository, while two streams of source control are

used:

• Development stream - contains all the source code and designs for

development.

• Head stream - contains all the source code and designs for development

approved by business and application support.

In the following section, dimensional modelling for the DW is discussed.

240

7 4 1

Chapter 7 - Research design and the IS Prototype

7.6.3. Dimensional modelling

Section 6.3.2 explains the dimensional modelling phase. An analysis and design activity

allows for a typical object-oriented development approach. The following discussion will

concentrate firstly on the analysis and secondly on the design of the dimensional

modelling.

Phase Activity
System Use Case

T3 Sequence Diagram

I» > Conceptual Class Modelling
§ § . Activity Diagram

> User Interface Prototyping
<D < Supplementary Specifications
o ■ User Documentation

■ Organise Packages

Figure 7-6 Object-Oriented Analysis diagram

7.6.3.1. Dimensional modelling analysis - DW System use case

Up to this point two types of use cases have been developed, i.e.:

• Data warehouse essential use cases

• Business process essential use cases

According to Section 6.3.2.1, the DW system use case contains more system

dependent information. This study focused on one DW use case, namely DWUC01

illustrated in Table 6-1. Table 7-38 shows the DW systems use case created for

DWUC01.

DW System Use Case: Sales (System - DWUC01) version 1.3
Brief Description This use case contains the high-level description of the sales department's

inputs and outputs.
Business function Sales department is responsible for the following

Table 7-37 System DWUC01 - Sales

241

Chapter 7 - Research design and the IS Prototype

Inputs Item DataType Brief Description Inputs
Product Product Type The product name

Inputs

Date Date The date when product is sold

Inputs

Division Varchar(255) The division where the
product is sold

Inputs

Divisional Manager PartyType The manager of that division

Inputs

Area Varchar(255) The regional office name

Inputs

Area Manager PartyType The manager of the regional
office

Inputs

Consultant PartyType The consultant representing
the brokers

Inputs

Broker PartyType The broker description

Inputs

Policyholder PartyType The policyholder

Inputs

Money Provision Currency Contains the premium and
sum assured

Input Source Production databases:
• SPF
• PARTY
• FTX

Outputs Sales Stats (Version 1.3)
Commission Incentive (Version 1.3)
Commission claw back (Version 1.4)
Formats for the reports should be in CSV and PDF

Possible grains Product level

Table 7-38 (Continued) System DWUC01 - Sales

The data types illustrated in Table 7-38 contain both primitive and custom data types.
The customer data types are defined as shown in Table 7-39 to Table 7-42.
Data Type Definition - ProductType
Brief Description Contains the product data agreement

ProductType Item DataType Brief Description ProductType
StartDate Date Start date of the product

ProductType

EndDate Date The date when product is sold

ProductType

Kind Varchar(255) Is the kind of product

ProductType

LifeCycleStatus Int Defines that status of the
product.

ProductType

Properties PropertyType[] Array of PropertyType

ProductType

External Reference Varchar(255) External Reference

ProductType

Roles PartyType[] Array of partyType

ProductType

Components ProductType[] Array of ProductType!"]
Table 7-39 Data type del inition of Product! ype

242

Chapter 7 - Research design and the IS Prototype

Data Type Definition - PropertyType
Brief Description Contains the property type data

ProductType Item DataType Brief Description ProductType
Kind Varchar(255) Is the kind of the property

ProductType

Value Varchar(255) Property value
Table 7-40 Data type definition of PropertyType

Data Type Definition - PartyType
Brief Description Contains the party agreement data

ProductType Item DataType Brief Description ProductType
Class Varchar(255) Specifies that class of

party

ProductType

BirthDate Date Date of birth

ProductType

Language Varchar(255) Primary language of party

ProductType

Disposablelncome Double Amount of income.

ProductType

EducationLevel Int Level of education (0-6)

ProductType

EmploymentStatus Varchar(255) Employment status

ProductType

MaritalStatus Varchar(255) Marital status

ProductType

Ethnicity Varchar(255) Ethnicity of party

ProductType

Occupations Varchar[l(255) Occupations of party

ProductType

DefaultName Varchar(255) Default name of party

ProductType

FirstNames Varchar[l(255) Names of party

ProductType

LastName Varchar(255) Last name of party

ProductType

DefaultContactPreference ContactPreference The default contact
preference of party.

ProductType

ContactPreferences ContactPreference[] Array of
ContactPreferences

Table 7-41 Data type c efinition of PartyType

Data Type Definition - ContactPreference
Brief Description Contains the contact preference data type

ProductType Item DataType Brief Description ProductType
Kind Varchar(255) Kind of contact preference

ProductType

Address Varchar(255) If contact preference is an
address.

ProductType

PhoneNumber Varchar(255) If contact preference is a
phone number.

ProductType

EmailAddress Varchar(255) If contact preference is an
email address.

Table 7-42 Data type definition of ContactPrefrence

7.6.3.2. Dimensional modelling analysis - Business process system use

case

Section 6.2.2.2 explains that the business process essential use case model is evolved

into a system use case. It is similar to the business process essential use case with the

243

Chapter 7 - Research design and the IS Prototype

exception that it includes high-level implementation decisions, such as the screen

numbers and properties, as well as includes and inheritance.

The business process systems use cases are defined in Table 7-43 to Table 7-49.

BP Use Case: Reports To (Systems - UC01) version 1.0
Brief Description of
business process

Area managers report to the divisional manager on sales key performance
indicators (KPI).

Actors • Area Manager
• Divisional manager

Precondition Report requested

Post condition Report delivered

Basic course of
action

Divisional manager requests performance reports.
The following reports are identified as performance reports.

• Head count report
• API report

Report information Report defined in Report CRC as Sales Stats (Version 1.3)

Table 7-43 Reports To business process systems use case

BP Use Case: Set API / heads (Systems - UC02) version 1.0
Brief Description of
business process

Area manager sets annual performance indicators (API) and new head count per
consultant.

Actors • Area Manager
• Consultant

Precondition n/a

Post condition New API and head target set.

Basic course of
action

Area manager defines targets for consultants according to formula.
Reports identified:

• New target report
Report information Report defined in Report CRC as Sales Stats (Version 1.3)

Formulas defined New head/API target formula defined in BRRC01

Table 7-44 Set API / Heads business process systems use case

BP Use Case: Claw back Commission (Systems - UC03) version 1.0
Brief Description of
business process

Consultant claw backs commission paid to broker based on policy agreement.

Actors Consultant
Broker

Precondition Policyholder cancels policy within 2 years of the issue date of policy.
Post condition Claw back commission

Table 7-45 Claw back commission business process systems use case

244

Chapter 7 - Research design and the IS Prototype

Basic course of
action

Consultant claw back commission from broker.
Reports identified:

• Claw back report
Report information Report defined as Commission claw back (Version 1.4)

Table 7-46 (Continued) Claw back commission business process systems use case

BP Use Case: Pay Commission (Systems - UC04) version 1.0
Brief Description of
business process

Consultant pays commission to broker based on policy agreement.

Actors • Consultant
• Broker

Precondition Policyholder needs to take out a policy.
Post condition Paid commission
Basic course of
action

Consultant pays broker commission
Reports identified:

• Commissions report
Report information Report defined as Commission Incentive (Version 1.3)

Table 7-47 Pay commission business process systems use case

BP Use Case: Training (Systems - UC05) version 1.0
Brief Description of
business process

Consultant provides training and product support to broker.

Actors • Consultant
• Broker

Precondition Broker needs to be registered with a financial services provider and should
not have any mandates with the insurance company.

Post condition Mandate to sell products
Basic course of
action

Broker needs to register on learning site.
Once registered, the broker needs to work through the guides and assignments
The broker needs to pass the required tests on each product to get a mandate to
sell products.

Report identified:
• Broker test report

Report information • Broker test report
- Date
- Broker
- Test number
- Product name
- Score

Table 7-48 Training business process use case

245

Chapter 7 - Research design and the IS Prototype

BP Use Case: Quote (Systems - UC06) version 1.0
Brief Description of
business process

Broker quotes the policyholder or client for insurance.

Actors • Broker
• Policyholder

Precondition Broker needs to be registered with a financial services provider and should have
the required mandate with the insurance company.

Post condition Quote for insurance
Basic course of
action

Policyholder requests quote for insurance to broker.
The broker uses an online application to quote for the required insurance
The policyholder accepts or rejects the quote.

Reports identified
• Product quote report

Report information • Product quote report Broker
- Date
- Broker
- Product name
- Sum Assured
- Premium

Table 7-49 Quote business process use case

7.6.3.3. Dimensional modelling analysis - Sequence diagrams

Section 6.3.2.3 explains that the function of the data warehouse use cases is to provide

an overview of the company (the "big picture") and not the process flow of the business.

Owing to this, it will be senseless to create a sequence diagram from the data

warehouse use cases, as the function of a sequence diagram is to model the interaction

between classes in a process.

For the purpose of dimensional modelling, the logic flow is not all that important,

however, it is important to discover which classes interact with one another and what

that interaction entails.

246

Chapter 7 - Research design and the IS Prototype

The sequence diagrams are illustrated in Figure 7-7 to Figure 7-10.

Policyholder «Actor> Broker « A c t o r » Quote «Controler>: Policyholder Quote Record

Requests a quote

Request a quote

verifyBroker

theBroker Dker [

providePolicyholderDetails

thePoicy holder [

requestProducts

< 1 .i _H theProducts

requestPremiumAndSumAssured(product) j

Sum Assured AndPremium

< 3i
*--

Figure 7-7 Quote Sequence Diagram

if claw back then alertQuoteApplicationSuccessful(success,Quote) is false and payCommission is a negative.
"N

Broker «Actor>>
Commission «Control ler>

Policyholder Broker Quote Record

?teApplicationSuccessful(success,Quote)
%

getPolicyholder(quote)

thePolicyholder

K
getBroker(quote)

k ----getCalculatedCommissionfquote)
_1

payCommission

calculatedCommission
< 1 1 J

K

Figure 7-8 Commission Sequence Diagram

247

Chapter 7 - Research design and the IS Prototype

Area Manager «Acto i> Set Target ^Controller>
Area Manager

setTarget

gelAreaManager

theAreaManager

* getConsultant

theConsultant

^ getMeas^e'me^TFOTConsultanUconsullant)

theMeasurement

calculateNewTarget(theMeasurement)
X

newTarget [

Measurement can be Head or API

<
newTargel

*

Figure 7-9 Set Target Sequence Diagram

Broker «Actor=-=- Training «Controller> Broker Consultant Learn student Module
Record

requestTrainingOnProduct

getBoker

!«—
theBroker

getConsultant

k k
theConsultant

T
i getModule

£
theModule

getScore(theModule)

theScore

giveScore J 5 - -

$

Figure 7-10 Training Sequence Diagram

7.6.3.4. Dimensional modelling analysis - Data Warehouse Bus
Architecture Matrix

Section 6.3.2.4 explains that the business use cases and the DW use cases should be

combined to get a better understanding of the business. Table 7-50 illustrates the

combination of DWUC01 (DW use case) with the business use cases.

+■ i -

248

Chapter 7 - Research design and the IS Prototype

DW Use Case
Number

Department Business Use Case
Number

Business Process

DWUC01 Sales department UC01 Reports To
UC02 Set API / heads
UC03 Claw back Commission
UC04 Pay Commission
UC05 Training
UC06 Quote

Table 7-50 Combination of the DW use cases with the business use cases

From Table 7-50, one can derive the following conclusions:

• UC01 - Reports To is not a business process that no data can be captured on, thus

it will not be modeled in the data warehouse.

• UC02 - Set API (Annual Performance Indicator)/ heads is a key performance

indicator (KPI) for consultants, thus data needs to capture on this to provide the new

API / head targets for the consultants.

• UC03 - Claw back Commission is done when the policyholder cancels the policy

agreement prematurely. This can be seen as a negative entry on the broker's

commission statement.

• UC04 - Pay Commission: When a policy is sold, a broker is paid a commission

based on the amount of the sum assured of the policy agreement. This can be seen

as a positive entry on the broker's commission statement.

• UC05 - Training should contain the score of the module of the broker.

• UC06 - Quote should contain the product, sum assured and the premiums for the
requested quote.

Based on the above conclusions, the following subject areas can be created:

• Target Annual Performance Incentive (API) / Head

• Commission

• Training

• Quote

Claw back commission and pay commission are modeled together, because they are in

essence the same type of transaction. The one is a negative inventive transaction and

249

Chapter 7 - Research design and the IS Prototype

the other a positive incentive transaction. Training and quote are modeled as own

entities.

The business classes that were identified are:

• Policyholder

• Broker

• Consultant

• Area Manager

• Divisional Manager

• Product

• Quote and Statement of benefits

• Learn student module

• Commission Paid

• Commission claw back

The actor classes that were identified are:

• Policyholder

• Intermediary

• Consultant

• Assistant Manager

The interface models that were identified are:

• Sales Stats « R e p o r t »

• Commission Incentive « R e p o r t »

• Commission claw back « R e p o r t »

Based on the above classes and analysis, the following dimensions were created:

• Policyholder

• Intermediary

• Consultant

250

Chapter 7 - Research design and the IS Prototype

• Actual

• Learn student module (only descriptive information)

Based on the links between the classes in the sequence diagrams created (shown in

Figure 7-7 to Figure 7-10) and the above analysis, Data Warehouse Bus Architect

Matrix can be created. Figure 7-11 represents the Data Warehouse Bus Architect Matrix

for the case study.

Target API / Head

Target API

Target Head

Commission

Training

Quote

Figure 7-11 Data Warehouse Bus Architect Matrix for the case study

While having a bird's eye view of what the data warehouse should contain, business at

this stage decided to narrow the scope for the development of the data warehouse to

only the highlighted subject areas and dimensions. The development of the data marts

followed the lifecycle illustrated in Figure 7-12.

251

Chapter 7 - Research design and the IS Prototype

Revised business
Requirement

Gather Business
Requirements

Use the initial business requirements
to analyse/■design DM

Initial DM design (Analysis/
Design)
•Choose DM
•Design Dimension tables
•Design Facts table
•Design and populate star diagram.

Revise feasibly of business
requirement

Assess the analysis/design against the
technical environment

Repeat DM Analysis/ Design
•Choose DM
•Design Dimension tables
•Design Facts table
•Design and populate star
diagram.

Assess the revised
analysis/designs against the
technical environment Technical Environment

•Check available data
•Check data frequency
•Check data granularity
•Check data platform

Revise the analysis/designs to comply
with the technical environment

Figure 7-12 Lifecycle of a DM development

The first iteration of the analysis and design was based on the initial requirements. From

the analysis / design, an assessment of the technical environment was done to evaluate

the feasibility of the current analysis / design. Based on the evaluation, the analysis /

design was changed accordingly (an iterative process). Some of the requirements,

being the membership type on IAA (source system), had to be reconsidered.

The next section covers the analysis and design for the Target API subject area.

7.6.3.5. Dimensional modelling analysis - Dimension table detail

Section 6.3.2.6 explains that the dimension table diagram needs to be completed for

each dimension. It illustrates the grain of each dimension, as well as the cardinality of

each dimension attribute, with a top down view of all the hierarchies (Kimball et a/.,

1998:281).

The following dimension tables were designed:

• Date

• Policyholder

252

Chapter 7 - Research design and the IS Prototype

• Intermediary

• Consultant

• Actual
Table 7-52 to Table 7-57 indicate the dimension hierarchy and attribute details.

Dimension Table: Date version 1.0
Hierarchy Top Level YEAR Hierarchy

Level 1 SEMESTER
Hierarchy

Level 2 QUARTER

Hierarchy

Level 3 MONTH

Hierarchy

Level 4 DAY

Table 7-51 Time dimension hierarchy and attribute detail

Attribute Detail
Attribute Name Attribute Description Cardinality Slowly

Changing
Dimension
Policy

Sample Value

YEAR Indicates the calendar year 10 Not updated 2007
SEMESTER Indicates the calendar semester 2 Not updated 1
QUARTER Indicates the calendar quarter 4 Not updated 1
MONTH Indicates the calendar month 12 Not updated 1
DAY Indicates the calendar day 365 Not updated 1
DISPLAY DATE Full date in yyyy-mm-dd 365 Not updated 2007-01-01
DATE Full date in datetime format 365 Not updated 2007-01-01
DAY NAME Name of the day 7 Not updated Monday
DAY OF WEEK 1-Monday to 7-Sunday 7 Not updated 1
WEEK OF YEAR Week of the year 1 to 52 52 Not updated 1

Table 7-52 (Continued) Time dimension hierarchy and attribute detail

Dimension Table: Policyholder version 1.0
Hierarchy Top Level N/A

Attribute Detail
Attribute Name Attribute Description Cardinality Slowly

Changing
Dimension
Policy

Sample Value

MEMBER NUMBER Indicates the member number * Type1 1249954
FIRST NAME Indicates the first name * Type1 Ralph
MIDDLE NAMES Indicates the middle names * Type1 Reeves
LAST NAME Indicates the last name * Type1 Kimball
DATE OF BIRTH Indicates the birth date 365 Type1 1950-01-01
LANGUAGE Indicates the language 2 Type1 English
GENDER Indicates the gender 2 Not updated Male
ETHNICITY Indicates the ethnicity 5 Not updated 1

Table 7-53 Policyholder dimension hierarchy and attribute detail

253

Chapter 7 - Research design and the IS Prototype

Dimension Table: Intermediary version 1.0
Hierarchy Top Level N/A

Attribute Detail
Attribute Name Attribute Description Cardinality Slowly

Changing
Dimension
Policy

Sample Value

MEMBER NUMBER Indicates the member number * Type1 1249954
FIRST NAME Indicates the first name * Type1 David
MIDDLE NAMES Indicates the middle names * Type1 Reeves
LAST NAME Indicates the last name * Type1 Avison
DATE OF BIRTH Indicates the birth date 365 Type1 1950-01-01

Table 7-54 Broker dimension hierarchy and attribute detail

LANGUAGE Indicates the language 2 Type1 English
GENDER Indicates the gender 2 Not updated Male
FSP Indicates the financial service

provider company
* Type1 Insurance

Brokers A
PTY(Ltd)

REPORTS_TO Indicates the consultant that
the broker reports to

* Type1 Consultant, B

BELONGS_TO Indicates the region that the
broker works under

* Type1 GAUTENG
NORTH

AGREEMENT_TYPE Type of broker 2 Type1 Insurance
Broker

Table 7-55 (Continued) Broker dimension hierarchy and attribute detail

Dimension Table: Consultant version 1.0
Hierarchy Top Level N/A

Attribute Detail
Attribute Name Attribute Description Cardinality Slowly

Changing
Dimension
Policy

Sample Value

MEMBER NUMBER Indicates the member number * Type1 1249954
FIRST NAME Indicates the first name * Type1 David
MIDDLE NAMES Indicates the middle names * Type1 Reeves
LAST NAME Indicates the last name * Type1 Avison
DATE OF BIRTH Indicates the birth date 365 Type1 1950-01-01
LANGUAGE Indicates the language 2 Type1 English
GENDER Indicates the gender 2 Not updated Male
REPORTS_TO Indicates the area manager that

the consultant reports to
* Type1 Manager, A

BELONGS_TO Indicates the region that the
consultant works under

* Type1 GAUTENG
NORTH

TARGET API Indicates the required API * Type1 10000
TARGET HEAD Indicates the required Head * Type1 200

Table 7-56 Consultant dimension hierarchy and attribute detail

Dimension Table: Actual version 1.0

254

Chapter 7 - Research design and the IS Prototype

Hierarchy Top Level N/A

Attribute Detail
Attribute Name Attribute Description Cardinality Slowly

Changing
Dimension
Policy

Sample Value

PRODUCT_NAME Indicates the name of the
product

* Type1 Life Insurance

PRODUCT_BENEFIT Indicates the benefit taken in
the product.

* Type1 Live Cover

Table 7-57 Product dimension hierarchy and attribute detail

7.6.3.6. Dimensional modelling analysis - Fact table diagram

Section 6.3.2.5 explains that the fact table diagram illustrates the specific fact table and

its context and also serves as an overview of all the dimensions that have been

identified. Figure 7-13 illustrates both the fact table diagram and fact table detail

diagram for the case matrix defined in Figure 7-11.

Fact Table: Target API (version 1.0)
Fact table diagram Fact table detail diagram

Grain:
Line item
target per

quote

FACTAPI

PK ID

FK5 PARTY INTERMEDIARY ID
FK4 PARTY CONSULTANT ID
FK2 DIM DATE
FK3 PARTY AREA MANAGER ID
FK1 ACTUAL ID
FK6 PARTY POLICYHOLDER ID

SOURCE SYSTEM ID
SOURCE SYSTEM EXTRACT DATE
EXTRACT DATE
TRANSACTION AMOUNT
ALLOCATED AMOUNT
MEMBER AGE
COMMISSION TYPE
MONTHS IN FORCE
ORIGINAL REQUEST DATE
REQUESTED DATETIME
TRANSACTION DATE

Figure 7-13 Fact table diagram and detail diagram for FACT_API

255

Chapter 7 - Research design and the IS Prototype

7.6.3.7. Dimensional modelling analysis - Identify sources

The data sources identified for the case study were only formal data sources and as

such maintained by the IS department. Table 7-58 illustrates the data source

information.

Data source definition version 1.1
Source Business owner Platform Description
Sales Logix Application support Windows 2003 / SQL

Server 2000
Contains all sales data of intermediaries and
their consultants.

IAA Application support Windows 2003 / SQL
Server 2000

Maintains all party information and policy
agreement administration.

Portfolio Sales Windows 2000 / XML Quoting and member portfolio system.
Table 7-58 Data source definition for the data warehouse

7.6.3.8. Dimensional modelling analysis - Source to target mapping

Section 6.3.2.7 explains that the source to target mapping should be created once the

data sources are defined. The source to target mapping for this case study is contained

in Table 7-59 to Table 7-64.

256

w n a p i c i / — I N C O C Q I O I I u c o i y n a n u u PC 10 i iou_>i.y|jc

Source to Target Mapping:Fact_API (Version 1.02)
Table Name Column name Data Type Allow

NULL
Target column description Source System Source

DB/Rle
Data
transform

Notes

FACT API ID int NO new gets created for each new entry

FACT API ! PARTY INTERMEDIARY ID int YES DW links to intermediary dimension

FACT API PARTY CONSULTANT ID int YES DW links to consultant dimension

FACT API DIM DATE varchar(8) YES DW links to date dimension

FACT API PARTY AREA MANAGER ID int YES DW (inks to area manager dimension

FACT API ACTUAL ID int YES DW links to the policy agreement dimension

FACT API PARTY POLICYHOLDER ID int YES DW links to the policyholder dimension

FACT API SOURCE SYSTEM ID int YES new
indicator to identify souce system
extract

FACT API SOURCE SYSTEM EXTRACT DATE datetime YES new date of extract

FACT API EXTRACT DATE cfatetime YES SLX no

FACT API TRANSACTION AMOUNT numeric(18,2) YES SLX no

FACT API ALLOCATED AMOUNT numeric(18,2) YES SLX no

FACT API MEMBER AGE int YES SLX no

FACT API COMMISSION TYPE varchar(255) YES SLX no

FACT API MONTHS IN FORCE int YES SLX no

FACT API ORIGINAL REQUEST DATE datetime YES SLX no

FACT API REQUESTED DATETIME datetime YES SLX no

FACT API TRANSACTION DATE datetime YES SLX no

Table 7-59 Source to Target for Fact API

257

>^iiaLuei / - r v c a c a i u i u c o i y n a n u n ic 10 r i u u j i y y o

Source to Target Mapping:DIM_PARTY_POLICYHOLDER (Version 1.06)
Table Name Column name Data Type Allow NULL Target column

description
Source
System

Source DB /
File

Data
transform

Notes

DIM PARTY POLICHOLDER PARTY POLICYHOLDER ID intlDENTITY(1,1) NO new gets created for each new entry

DIM PARTY POLICHOLDER SOURCE SYSTEM ID int YES DW Id of source system

DIM PARTY POLICHOLDER SOURCE SYSTEM REFERENCE varchar(255) YES DW Reference on source system

DIM PARTY POLICHOLDER SOURCE SYSTEM START DT datetime YES DW Record start date of source system

DIM PARTY POLICHOLDER SOURCE SYSTEM END DT datetime YES DW Record end date of source system

DIM PARTY POLICHOLDER SOURCE SYSTEM STATUS varchar(255) YES DW Indicator of source system status

DIM PARTY POLICHOLDER IS CURRENT bit YES DW Indicator for current record

DIM PARTY POLICHOLDER PREVIOUS ID int YES DW Points to previous record

DIM PARTY POLICHOLDER RECORD START DT datetime YES DW Record start date

DIM PARTY POLICHOLDER RECORD END DT datetime YES DW End date of record

DIM PARTY POLICHOLDER EXTERNAL REFERENCE varchar(255) NO IAA PARTY no

DIM PARTY POLICHOLDER ROLEPLAYER ID numeric(19,0) NO IAA PARTY no

DIM PARTY POLICHOLDER ROLEPLAYER VERSION numeric(19,0) NO IAA PARTY no

DIM PARTY POLICHOLDER ROLEPLAYERTYPE ID int YES IAA PARTY no

DIM PARTY POLICHOLDER BIRTH DATE datetime YES IAA PARTY no

DIM PARTY POLICHOLDER ISBIRTHDETIALSESTI MATED chard) YES IAA PARTY no

DIM PARTY POLICHOLDER DISPOSABLE INCOME varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER DISPOSABLE CURRENCYCODE varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER GROSS INCOME varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER GROSS INCOME CURRENCY CODE varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER EMPLOYMENTSTATUS varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER GENDER varchar(255) YES IAA PARTY no

Table 7-60 Source to Target for Dim Party Policyholder

258

W l I W f / V W ! I ■ W W V V ^ I V I I V W V I ^ I . 1^,1 I V VI I W . W , I W W f c J p ^ w

DIM PARTY POLICHOLDER LANGUAGE varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER MARITAL STATUS varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER INITIALS varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER BIRTH NAME ID varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER FIRST NAME varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER LAST NAME varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER MIDDLE NAMES varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER PREFIX TITLES varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER SUFFIX TITLES varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER SHORTFIRSTNAME varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER SALUTATION varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER FULLNAME varchar(1279) YES IAA PARTY no

DIM PARTY POLICHOLDER DESCRIPTION varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER BIRTH NAME START DATE datetime YES IAA PARTY no

DIM PARTY POLICHOLDER BIRTH NAME TYPE ID varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER BIRTH NAME VERSION varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER COUNTRY CODE varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER PASSPORT NUMBER2 varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER PASSPORT NUMBER varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER NATIONAL REGISTRATION ID varchar(255) YES IAA PARTY no

DIM PARTY POLICHOLDER NATIONAL REGISTRATION PARTY ID varchar(255) YES IAA PARTY no

Table 7-61 Source to Target for Dim Party Policyholder (Continued)

259

v^napic i / - u c o c a i u i u c o i y n a n u u ic IVJ i l u i u i y p &

Source to Target Mapping:DIM_PARTY_ INTERMEDIARY (Version 1.04)
Table Name Column name Data Type Allow NULL Target

column
description

Source
System

Source DB
/ File

Data
transform

Notes

DIM PARTY INTERMEDIARY PARTY INTERMEDIARY ID intlDENTITY(1,1) NO new gets created for each new entry

DIM PARTY INTERMEDIARY SOURCE SYSTEM ID int YES DW Id of source system

DIM PARTY INTERMEDIARY SOURCE SYSTEM REFERENCE varchar(255) YES DW Reference on source system

DIM PARTY INTERMEDIARY SOURCE SYSTEM START DT datetime YES DW Record start date of source system

DIM PARTY INTERMEDIARY SOURCE SYSTEM END DT datetime YES DW Record end date of source system

DIM PARTY INTERMEDIARY SOURCE SYSTEM STATUS varchar(9) YES DW Indicator of source system status

DIM PARTY INTERMEDIARY IS CURRENT bit YES DW Indicator for current record

DIM PARTY INTERMEDIARY PREVIOUS ID int YES DW Points to previous record

DIM PARTY INTERMEDIARY RECORD START DT datetime YES DW Record start date

DIM PARTY INTERMEDIARY RECORD END DT datetime YES DW End date of record

DIM PARTY INTERMEDIARY TITLE varchar(255) YES 1AA PARTY no

DIM PARTY INTERMEDIARY FIRST NAME varchar(255) YES IAA PARTY no

DIM PARTY INTERMEDIARY MIDDLE NAMES varchar(255) YES IAA PARTY no

DIM PARTY INTERMEDIARY LAST NAME varchar(255) YES IAA PARTY no

DIM PARTY INTERMEDIARY KIND varchar(32) YES IAA PARTY no Type of intermediary

DIM PARTY INTERMEDIARY KIND ID int YES IAA PARTY no

DIM PARTY INTERMEDIARY FSP varchar(128) YES IAA PARTY no

DIM PARTY INTERMEDIARY FSP ID biqint YES IAA PARTY no

DIM PARTY INTERMEDIARY REPORTS TO varchar(64) YES IAA PARTY no Reports to consultant

DIM PARTY INTERMEDIARY REPORTS TO ID biqint YES IAA PARTY no

DIM PARTY INTERMEDIARY BELONGS TO varchar(64) YES IAA PARTY no Belonqs to area

DIM PARTY INTERMEDIARY BELONGS TO ID biqint YES IAA PARTY no

Table 7-62 Source to Target for Dim Party Intermediary

260

p^ V ^ ^ . . . »-*^ ^ ^ ^ ^ **« ■ ^^ ■ ■ V " ^*- ^p- > ^ ^ » ■ ^** ■ ■ * ^ w ■ >^ ■ ^^" ■ * ^» » * ^ ^ ■ IV ^^

Source to Target Mapping:DIM PARTY_CONSUL-rANT (Version 1.04)
Table Name Column name Data Type Allow NULL Target

column
description

Source
System

Source DB
/File

Data
transform

Notes

DIM PARTY CONSULTANT PARTY CONSULTANT ID intlDENTITY(1,1) NO new gets created for each new entry

DIM PARTY CONSULTANT SOURCE SYSTEM ID int YES DW Id of source system

DIM PARTY CONSULTANT SOURCE SYSTEM REFERENCE varchar{255) YES DW Reference on source system

DIM PARTY CONSULTANT SOURCE SYSTEM START DT datetime YES DW Record start date of source system

DIM PARTY CONSULTANT SOURCE SYSTEM END DT datetime YES DW Record end date of source system

DIM PARTY CONSULTANT SOURCE SYSTEM STATUS varchar{9) YES DW Indicator of source system status

DIM PARTY CONSULTANT IS CURRENT bit YES DW Indicator for current record

DIM PARTY CONSULTANT PREVIOUS ID int YES DW Points to previous record

DIM PARTY CONSULTANT RECORD START DT datetime YES DW Record start date

DIM PARTY CONSULTANT RECORD END DT datetime YES DW End date of record

DIM PARTY CONSULTANT TITLE varchar(255) YES IAA PARTY no

DIM PARTY CONSULTANT FIRST NAME varchar(255) YES IAA PARTY no

DIM PARTY CONSULTANT MIDDLE NAMES varchar(255) YES IAA PARTY no

DIM PARTY CONSULTANT LAST NAME varchar(255) YES IAA PARTY no

DIM PARTY CONSULTANT REPORTS TO varchar(64) YES IAA PARTY no Reports to area manager

DIM PARTY CONSULTANT REPORTS TO ID bigint YES IAA PARTY no

DIM PARTY CONSULTANT BELONGS TO varchar(64) YES IAA PARTY no Belongs to area

DIM PARTY CONSULTANT BELONGS TO ID bigint YES IAA PARTY no

Table 7-63 Source to Target for Dim Party Consultant

261

^ - ' I IClL^LV^I f I W O V U I I y l I U V / O I U I I U l I U LI I O I _/ I I U L U l ¥ L /) . /

Source to Target Mapping:DIM ACTUAL (Version 1.02)
Table Name Column name Data Type Allow NULL Target

column
description

Source
System

Source DB
/File

Data
transform

Notes

DIM ACTUAL ACTUAL ID intlDENTITY(1,1) NO new gets created for each new entry

DIM ACTUAL SOURCE SYSTEM ID int YES DW Id of source system

DIM ACTUAL SOURCE SYSTEM REFERENCE varchar(255) YES DW Reference on source system

DIM ACTUAL SOURCE SYSTEM START DT datetime YES DW Record start date of source system

DIM ACTUAL SOURCE SYSTEM END DT datetime YES DW Record end date of source system

DIM ACTUAL SOURCE SYSTEM STATUS varchar(255) YES DW Indicator of source system status

DIM ACTUAL IS CURRENT bit YES DW Indicator for current record

DIM ACTUAL PREVIOUS ID int YES DW Points to previous record

DIM ACTUAL RECORD START DT datetime YES DW Record start date

DIM ACTUAL RECORD END DT datetime YES DW End date of record

DIM ACTUAL MEMBER EXTERNAL REFERENCE varchar(255) YES IAA SPF no

DIM ACTUAL BUSINESS GROUP varchar(255) YES IAA SPF no Business area group

DIM ACTUAL BENFIT NAME varchar(255) YES IAA SPF no name of benefit

DIM ACTUAL OFFERING varchar(255) YES IAA SPF no name of offering

DIM ACTUAL OFFERING TYPE varchar(255) YES IAA SPF no

DIM ACTUAL PRODUCT TYPE ID int YES IAA SPF no

DIM ACTUAL PRODUCT DESCRIPTION varchar(255) YES IAA SPF no Product description

Table 7-64 Source to Target for Dim Actual

262

Chapter 7 - Research design and the IS Prototype

7.6.3.9. Dimensional modelling design - Develop dimensional tables

Section 7.6.3.8. explains that the development of dimensional tables requires the

following analysis documents:

• Data warehouse matrix - illustration of the data marts and the dimensions

available for the specific data mart (Figure 7-11).

• Fact table diagram - illustration of the fact table detail within its context (Figure

7-13).

• Dimensional table detail - illustration of the hierarchies in the dimension tables

(Table 7-52 to Table 7-57).

• Sources detail - a list of available source data and the owners of the data (Table

7-58).

• Source to target mapping - mapping from the source data to the target

dimensional tables (Table 7-59 to Table 7-64).

Figure 7-14 illustrates the star diagrams for the case study.

Star diagram - Fact Target API (version 1.0)
Links to dimensions:

Dim Time
Dim Consultant
Dim Policyholder
Dim Intermediary
Dim Actual

Dim
Consultant Dim Time V

Dim
Consultant

>
Fact Target

API <
Dim

Policyholder

Fact Target
API <

Dim
Intermediary

Dim
Policyholder

y V Dim
Intermediary

Dim Actual

*Refer to source t o target mapp ingfc >r table detail.
Figure 7-14 Star diagram for Fact Target API

Once all the dimensional models are created, the technical architecture model can be

created.

263

Chapter 7 - Research design and the IS Prototype

7.6.4. Technical Architecture modelling

After completion of the dimensional model, the technical architecture modelling is done.

Figure 7-15 illustrates a high-level technical architecture of a typical data warehouse.

The Back Room The Front Room

Source
Systems

ii
Data

Staging
Area

Data
Staging
Services

-Extract
- Transform
-Load
-Job Control

Metadata
Catalog

Presentation Servers

Key

Dimensional Data Marts with
Only Aggregated Data

Query
Services

-Warehouse Browsing
-Access and Secur'rty
- Query Management
- Standard Reporting
-Activity Monitor

T^LQ

The Data
Warehouse

Bus I Conformed
Dimensions &
Conformed
Facts

Dimensional Data Marts
Including Atomic Data

Standard Reporting
Tools

o Desktop Data
Access Tools

o Application Models

Downstream /
Operational Systems

□ Data ' ' Service
Element ■ \ Element l = >

Figure 7-15 High-level technical architecture model (Kimball etal., 1998:329)

Section 6.3.3 explains that the model (Figure 7-15) provides a logical separation

between the internal working of the warehouse and the user front end. Therefore, the

analysis and design of such architecture should be separated according to the back

room and the front room. The analysis and design of the back room entail the following:

• Source system analysis

• Data staging services analysis

• Data staging services design

7.6.4.1. Technical Architecture back room 0 0 analysis - Source systems

Section 6.3.3.1 indicates that the analysis needed for the architecture is done during the

identification of sources for the dimensional models. The source systems are listed in

Table 7-58.

J

264

Chapter 7 - Research design and the IS Prototype

7.6.4.2. Technical Architecture back room 0 0 analysis - Data staging

services

Section 6.3.3.2 explains that the data staging services mainly consist of the following:

• Extract

• Transform

• Load

• Job control

Extract

Section 6.3.3.2 explains that the following documentation is needed to analyse the

extract design for the data warehouse:

• Source to target mapping for all the dimensions. (Already defined in Table 7-57

to Table 7-64 as part of the discussion)

• Entity relational (ER) model of the source data. (Illustrated in Figure 7-16 to

Figure 7-18)

• Business rules that influence the ETL process. (Already defined in Table 7-30 to
Table 7-34)

265

Mi ill

m

is

iMi

(A

13

u.

0.
(0 £

I
LU

3

i l

CO
CO
CN

I

k_/1 IC4 f-f U W I I I X U U U U I V I I U U O I V j I I U I I U U I U 1 ^ I I W I W L J ^ \ /

Figure 7-17 ER diagram for lAA-Party (Part of IAA database)

267

file:///UuUUIVM

>-M I U f / ^ 1 I — I I O J ^ U I O l I W W W i y i I H I IVJ 1.1 IO l>-> I I w i . w i . j r w w

SALES_STATS

PK SALES STATSID

PROVINCEJD
PROVINCE
PROVMANJD
SALES_MANAGER
REGION
CONSULTANTJD
CONSULTANT
USER_TYPE
SH AS SALES PERSON
CONTACTJD
ADVISER
1NTERMED1ARYJTYPE
F1N_SERV_PR0VIDER
BUS_TYPE
TRX_YEAR
TRX_MONTH
TRX_TYPE
PRODUCT
TARGET_CODEID
TOTALJ'REMIUM
TOTALJ-OADING
VALUE
POINTS

SALES_PERFORMANCE

SALES_EARN!NG

PK SALES EARNINGID

CONTACTID
CREATEUSER
CREATEDATE
MODIFYUSER
MODIFYDATE
COMP_PARAMETERID
TRANSACTION STATUS
COMPETITIONJPAYMENTJD
VAT_AMOUNT
EARNING

COMP_YEAR
PROVINCEJ3ESCRIPTION
USERID
CONSULTANT
CONTACTID
SH_AS_PPS_SALES_PERSON
ADVISER
TOTAL_POINTS
TIER_STATUS
ACTUAL JEARNING
ALTERNATE_EARN1NG
BONUS_COMMISSION
SALES_STATSID

SALESJTYPE

PK SALES TYPEID

CREATEUSER
CREATEDATE
MODIFYUSER
MODIFYDATE
SALE_TYPE_DESCRIPTION
PPS_OFFERING_CODE
MEMBERSHIP_TYPE_CODE
LOT_TYPE_CODE
PPS_BENEFIT_CODE
VAT_CALC_ALLOWED
DONE

SALES_COMPANY

PK SALES COMPANYID

CREATEUSER
CREATEDATE
MODIFYUSER
MODIFYDATE
COMPANYJMAME
SH_AS_SALES_COMPANY

SALES_TRANSACTION

FK2
FK3
FK5

SALES TRANSACTIONS

SALES_EARNINGID
CREATEUSER
CREATEDATE
MODIFYUSER
MODIFYDATE
SH_AS_ENROLLED_MEMBER
MEMBER_APP_FORM_SEO
MEMBER_AGE
TRANSACTION_DATE
DATE_GRANTED
END_DATE
DATE_CANCELLED
MEMBER_AGREEMENT_SEQ
MEMBER_SHARE_SEQ
MEMBER_SHARE_LOT_NUMBER
MEMBER_GL_SEQ
MEMBER_GL_LOT_NUMBER
MEMBERSHIPJTYPE_CODE
PPS_BENEFIT_CODE
PPS_OFFERING_CODE
LOT_TYPE_CODE
PM_AGREEMENT_SEQ
SALE_TYPE_ID
TRANSACTION_QUANTITY
SUM_ASSURED
LOT_END_REASON_CODE
SH_AS_SALES_PERSON
CAMPAIGN_REF_NO
EFFECTIVE_DATE
START_DATE
PROCESSJ3TATUS
PREMIUMJ/ALUE
LOADING_VALUE
TRXID
MEMBER_TITLE
MEMBERJNITIALS
MEMBER_SURNAME
MEMBER_ID_NUMBER
SALES_STATSID
SALES_COMPANYID
SALES_TYPEID

SALES_STATS_ARCHIVE

PK SALES STATSID

PROVINCEJD
PROVINCE
PROVMANJD
SALES_MANAGER
REGION
CONSULTANTJD
CONSULTANT
USERJTYPE
SH_AS_SALES_PERSON
CONTACTJD
ADVISER
BUS_TYPE
TRX.YEAR
TRX_MONTH
TRXJTYPE
PRODUCT
TARGET.CODEID
TOTAL_PREMIUM
TOTALJ-OADING
VALUE
POINTS

SALESJ=AYJ=ER10D

SALES J»AYJ>ERIODID
CREATEUSER
CREATEDATE
MODIFYUSER
MODIFYDATE
PERIODJfEAR
PERIOD JVIONTH
STARTJ3ATE
END DATE

Figure 7-18 ER diagram for SalesLogix

268

PK

FK1

file:///oovui
http://wi.wi.jrww

Chapter 7 - Research design and the IS Prototype

Transform

Transformation requires two types of documents:

• Basic high level data stage schema plan (illustrated in Figure 7-19)

• Detailed plans (illustrated in Figure 7-19 to Figure 7-24)

Policyholder

IAA-SPF IAA-PARTY

J:
3=

Link External
Reference to

SPF id in
Party

User Reports
to kind to
determine

sales
hierarchy

P
u_

Consultant

i_
Inermediary Actual

SalesLogix

Use SPF to
get the Target

API / Head
property

value

Target API /
Head

Filter by
Target kind

Target API Target Head

Figure 7-19 High level data stage schema plan for case study

Link External
Reference to

SPF id in
Party

Link External
Reference to

SPF id in
Party

- IAA-PARTY
IAA-SPF — ►

Link External
Reference to

SPF id in
Party

IAA-PARTY
►

Link External
Reference to

SPF id in
Party

Get personal
details

Get personal
details

Policyholder

Get personal
details

Policyholder

Figure 7-20 Detail level diagram for policyholder dimension extract

v

269

Chapter 7 - Research design and the IS Prototype

IAA-SPF

Link External
Reference to

SPF id in
Party

IAA-PARTY

Get personal
details

Get reports to
with kind id

1032

Get belongs
to with kind id

1031
Intermediary

Figure 7-21 Detail level diagram for intermediary dimension extract

— ^-

Get to level
agreement

from external
reference link

to
components

— ^-

Get to level
agreement

from external
reference link

to
components

IAA-SPF IAA-SPF

Get to level
agreement

from external
reference link

to
components

*" IAA-SPF

Get to level
agreement

from external
reference link

to
components

Get
components
sum assured
and premium

money
provision
elements

Get
components
sum assured
and premium

money
provision
elements

Get
components
sum assured
and premium

money
provision
elements

Actual

Get
components
sum assured
and premium

money
provision
elements

Actual

Get
components
sum assured
and premium

money
provision
elements

Figure 7-22 Detail level diagram for actual dimension extract

Get top level
agreement for

consultant
link to

properties

Get top level
agreement for

consultant
link to

properties

IAA-SPF IAA-SPF

Get top level
agreement for

consultant
link to

properties

► IAA-SPF

Get top level
agreement for

consultant
link to

properties

Get property
kind 1067 &
1068 values

Get property
kind 1067 &
1068 values

Get property
kind 1067 &
1068 values Target API/

Head

Get property
kind 1067 &
1068 values Target API/

Head

Get property
kind 1067 &
1068 values

Figure 7-23 Detail level diagram for Target API/Head fact extract

270

Chapter 7 - Research design and the IS Prototype

^ Link external
reference to

SPFID

IAA-SPF
^ Link external

reference to
SPFID

lAA-Party IAA-SPF Link external
reference to

SPFID

^ lAA-Party Link external
reference to

SPFID

■4
Link to

ContactID
and get

Target type
value

■4 SalesLogix
Link to

ContactID
and get

Target type
value

■4 SalesLogix M
Link to

ContactID
and get

Target type
value '

M
Link to

ContactID
and get

Target type
value

Filter by
Target type

M
Link to

ContactID
and get

Target type
value

Filter by
Target type

Filter by
Target type Target Head

Filter by
Target type Target Head

Filter by
Target type

} '

Target API

Figure 7-24 Detail level diagram for Target API fact and Target Head fact extract

Load

Section 6.3.3.2 explains that the source definition in conjunction with the dimensional

table should give the analysis the type of upload it requires. A list should be created

listing the sources and the type of upload needed. Table 7-65 iilustrates the load type

definitions.

Load type del Finition version 1.0
Source Upload Type Platform Description
Sales Logix Transactional Windows 2003 / SQL

Server 2000
Contains all sales data of intermediaries and
their consultants.

IAA Refresh Windows 2003 / SQL
Server 2000

Maintains all party information and policy
agreement administration.

Table 7-65 Load type definition for DW case study

Job control

The ETL process needs to be managed, thus the job control services of the ETL. This is

done by the deployment team. This team is dedicated toward the following tasks:

• Job scheduling - manage system jobs.

• Monitoring - all databases, application and ETL jobs.

• Logging - faults highlighted are sent to application support.

271

Chapter 7 - Research design and the IS Prototype

7.6.4.3. Technical Architecture back room 0 0 design - Data staging

services

The analysis documents (gathered for the back room architecture) provide a system

independent view of how it should be designed. The design platform used for the data

staging service was Microsoft SQL Server 2005 Integration Services (SSIS). This tool

was used since all the data bases run on SQL Server 2000 and SQL Server 2005.

7.6.4.4. Technical Architecture front room OO analysis - Query services

The front room is a vital part, as this is the part the users see and use to access the

data warehouse (Kimball et a/., 1998:409). The user interfaces are in the form of

reports, the tool used for this being SQL Reporting Services 2005.

7.6.5. Physical designs

The physical design involves the design of the logical database, as well as its

implementation. The process is as follows:

• Define naming standards (Table 7-66)

• Design physical tables and columns (Table 7-68 to Table 7-80)

• Estimate database size and index plan

• Develop aggregation plan

7.6.5.1. Physical Design - Define standards

A document explaining the naming standard for tables, attributes, synonyms and file

locations should was created.

Standard definitions (Version 1.1)
Name Description
SD01 All dimensional tables start with "DIM ".
SD02 All fact tables start with "FACT ".
SD03 All table names are in upper case.
SD04 All varchar data is saved in upper case
SD05 Code page 1562 is used on data bases (default SQL code page)
SD06 All id fields are of data type INT ldentity(1,1)
SD07 All SQL Server data files (MDF and LDF files) should be under E:\DATA
SD08 Table attribute names should be in upper case

Table 7-66 Standards definition for the use case

272

file://E:/DATA

Chapter 7 - Research design and the IS Prototype

7.6.5.2. Physical Design - Design physical tables and columns

The following tables (Table 7-68 to Table 7-80) provide the physical data layout used for

the data warehouse use case.

Physical Data Table Name: IAA_HIERARCHY (Version 1.2)
Note: Used in promote packages to build the reports to and belong to fields
Column Name Data Type Null Allowed
SALESDIV PTY ID BIGINT YES
SALESDIV PTY ROLE ID BIGINT YES
SALESDIV NAME VARCHAR(64) YES
SALESDIV MGR PTY ID BIGINT YES
SALESDIV MGR NAME VARCHAR(64) YES
SALESAREA PTY ID BIGINT YES
SALESAREA PTY ROLE ID BIGINT YES
SALESAREA NAME VARCHAR(64) YES
SALESAREA MGR PTY ID BIGINT YES
SALESAREA MGR NAME VARCHAR(64) YES
SALESOFFICE PTY ID BIGINT YES
SALESOFFICE PARTOF ROLE ID BIGINT YES
SALESOFFICE BELONGSTO ROLE ID BIGINT YES
SALESOFFICE NAME VARCHAR(64) YES
SALESOFFICE MGR SPF ID BIGINT YES
SALESOFFICE MGR NAME VARCHAR(64) YES
SALESUNIT PTY ID BIGINT YES
SALESUNIT NAME VARCHAR(64) YES
SALESUNIT MGR SPF ID BIGINT YES
SALESUNIT MGR NAME VARCHAR(64) YES
CONSULTANT SPF ID BIGINT YES
CONSULTANT NAME VARCHAR(64) YES
CONSULTANT TITLE VARCHAR(12) YES
CONSULTANT FIRSTNAME VARCHAR(32) YES
CONSULTANT LASTNAME VARCHAR(32) YES
CONSULTANT MIDDLENAMES VARCHAR(255) YES
INT SPF ID BIGINT NO
INT TITLE VARCHAR(12) YES
INT INITIALS VARCHAR(12) YES
INT FIRSTNAME VARCHAR(32) YES
INT LASTNAME VARCHAR(32) YES
INT FULLNAME VARCHAR(64) YES

Table 7-67 Physical table layout for IAA_Hierarchy

273

Chapter 7 - Research design and the IS Prototype

INT EXT REF VARCHAR(64) YES
INT RECORD START DATE DATETIME YES
INT RECORD END DATE DATETIME YES
LIFECYCLE ENUM ID INT YES
INT KIND INT YES
INT KIND DESCR VARCHAR(32) YES
FSP SPF ID BIGINT YES
FSP NAME VARCHAR(128) YES
LAST EXTRACT DATE DATETIME YES

Table 7-68 (Continued) Physical table layout for IAA_Hierarchy

Physical Data Table Name: FACT CONSULTANT TARGET PROPERTIES (Version
1.2)
Note: Used for fact consultant target properties
Column Name Data Type Null Allowed
ID INT IDENTITY NO
DIM DATE VARCHAR(8) YES
PARTY AREA MANAGER ID INT YES
PARTY CONSULTANT ID INT YES
PARTY AREA ID INT YES
SOURCE SYSTEM ID INT YES
SOURCE SYSTEM VERSION INT YES
EXTRACT DATE DATETIME YES
API FACTOR DECIMAL(10,2) YES
API PERCENTAGE DECIMAL(10,2) YES
API TARGET DECIMALS 0,2) YES
COMMISSION FACTOR DECIMAL(10,2) YES
INCENTIVE VARIABLE PORTION OF SALARY DECIMAL(10,2) YES
INTERMEDIARY FACTOR DECIMALS 0,2) YES
INTERMEDIARY START DT DECIMAL(10,2) YES
NEW HEAD FACTOR DECIMAL(10,2) YES
NEW HEAD PERCENTAGE DECIMAL(10,2) YES
NEW HEAD TARGET DECIMAL(10,2) YES
REGIONAL FACTOR DECIMAL(10,2) YES
TARGET API AMOUNT DECIMAL(10,2) YES
TARGET NEW HEAD AMOUNT DECIMALS 0,2) YES

Table 7-69 Physical table layout for FACT_CONSULTANT_TARGET_PROPERTIES

274

Chapter 7 - Research design and the IS Prototype

Physical Data Table Name: FACT API (Version 1.2)
Note: Used for fact API
Column Name Data Type Null Allowed
ID INT IDENTITY NO
PARTY INTERMEDIARY ID INT YES
PARTY CONSULTANT ID INT YES
DIM DATE VARCHAR(8) YES
PARTY AREA MANAGER ID INT YES
ACTUAL ID INT YES
PARTY POLICYHOLDER ID INT YES
SOURCE SYSTEM ID INT YES
SOURCE SYSTEM EXTRACT DATE DATETIME YES
EXTRACT DATE DATETIME YES
TRANSACTION AMOUNT NUMERIC(18,2) YES
ALLOCATED AMOUNT NUMERIC(18,2) YES
MEMBER AGE INT YES
COMMISSION TYPE VARCHAR(255) YES
MONTHS IN FORCE INT YES
ORIGINAL REQUEST DATE DATETIME YES
REQUESTED DATETIME DATETIME YES
TRANSACTION DATE DATETIME YES

Table 7-70 Physical table layout for FACT_HEAD

Physical Data Table Name: DIM_PARTYJ»OLICYHOLDER (Version 1.2)
Note: Used for policyholder dimension
Column Name Data Type Null Allowed
PARTY POLICYHOLDER ID INT IDENTITY NO
SOURCE SYSTEM ID INT YES
SOURCE SYSTEM REFERENCE VARCHAR(255) YES
SOURCE SYSTEM START DT DATETIME YES
SOURCE SYSTEM END DT DATETIME YES
SOURCE SYSTEM STATUS VARCHAR(255) YES
IS CURRENT BIT YES
PREVIOUS ID INT YES
RECORD START DT DATETIME YES
RECORD END DT DATETIME YES
EXTERNAL REFERENCE VARCHAR(255) NO
ROLEPLAYER ID NUMERIC(19,0) NO
ROLEPLAYER VERSION NUMERIC(19,0) NO
ROLEPLAYERTYPE ID INT YES

Table 7-71 Physical table layout for DIM_PARTY_POLICYHOLDER

275

Chapter 7 - Research design and the IS Prototype

BIRTH DATE DATETIME YES
ISBIRTHDETIALSESTIMATED CHAR(1) YES
DISPOSABLE INCOME VARCHAR(255) YES
DISPOSABLE CURRENCYCODE VARCHAR(255) YES
GROSS INCOME VARCHAR(255) YES
GROSS INCOME CURRENCY CODE VARCHAR(255) YES
EMPLOYMENTSTATUS VARCHAR(255) YES
GENDER VARCHAR(255) YES
LANGUAGE VARCHAR(255) YES
MARITAL STATUS VARCHAR(255) YES
INITIALS VARCHAR(255) YES
BIRTH NAME ID VARCHAR(255) YES
FIRST NAME VARCHAR(255) YES
LAST NAME VARCHAR(255) YES
MIDDLE NAMES VARCHAR(255) YES
PREFIX TITLES VARCHAR(255) YES
SUFFIX TITLES VARCHAR(255) YES
SHORTFIRSTNAME VARCHAR(255) YES
SALUTATION VARCHAR(255) YES
FULLNAME VARCHAR(1279) YES
DESCRIPTION VARCHAR(255) YES
BIRTH NAME START DATE DATETIME YES
BIRTH NAME TYPE ID VARCHAR(255) YES
BIRTH NAME VERSION VARCHAR(255) YES
COUNTRY CODE VARCHAR(255) YES
PASSPORT NUMBER2 VARCHAR(255) YES
PASSPORT NUMBER VARCHAR(255) YES
NATIONAL REGISTRATION ID VARCHAR(255) YES
NATIONAL REGISTRATION PARTY ID VARCHAR(255) YES

Table 7-72 (Continued) Physical table layou t for DIM_PARTY_POLICYHOLDER

Physical Data Table Name: DIM_PARTY_INTERIV (IEDIARY (Version 1.2)
Note: Used for intermediary dimension
Column Name Data Type Null Allowed
PARTY INTERMEDIARY ID INT IDENTITY NO
SOURCE SYSTEM ID INT YES
SOURCE SYSTEM REFERENCE VARCHAR(255) YES
SOURCE SYSTEM START DT DATETIME YES

Table 7-73 Physical table layout for D IM_PARTY_INTERMEDIARY

276

Chapter 7 - Research design and the IS Prototype

SOURCE SYSTEM END DT DATETIME YES
SOURCE SYSTEM STATUS VARCHAR(9) YES
IS CURRENT BIT YES
PREVIOUS ID INT YES
RECORD START DT DATETIME YES
RECORD END DT DATETIME YES
TITLE VARCHAR(255) YES
FIRST NAME VARCHAR(255) YES
MIDDLE NAMES VARCHAR(255) YES
LAST NAME VARCHAR(255) YES
KIND VARCHAR(32) YES
KIND ID INT YES
FSP VARCHAR(128) YES
FSP ID BIGINT YES
REPORTS TO VARCHAR(64) YES
REPORTS TO ID BIGINT YES
BELONGS TO VARCHAR(64) YES
BELONGS TO ID BIGINT YES

Table 7-74 (Continued) Physical table layout for DIM_PARTY_INTERMEDIARY

Physical Data Table Name: DIM_PARTY_CONSULTANT (Version 1.2)
Note: Used for the consultant dimension

Column Name Data Type Null Allowed
PARTY CONSULTANT ID INT IDENTITY NO
SOURCE SYSTEM ID INT YES
SOURCE SYSTEM REFERENCE VARCHAR(255) YES
SOURCE SYSTEM START DT DATETIME YES
SOURCE SYSTEM END DT DATETIME YES
SOURCE SYSTEM STATUS VARCHAR(9) YES
IS CURRENT BIT YES
PREVIOUS ID INT YES
RECORD START DT DATETIME YES
RECORD END DT DATETIME YES
TITLE VARCHAR(255) YES
FIRST NAME VARCHAR(255) YES
MIDDLE NAMES VARCHAR(255) YES
LAST NAME VARCHAR(255) YES
REPORTS TO VARCHAR(64) YES

Table 7-75 Physical table layout for DIM_PARTY_CONSUU fANT

277

Chapter 7 - Research design and the IS Prototype

REPORTS TO ID BIGINT YES
BELONGS TO VARCHAR(64) YES
BELONGS TO ID BIGINT YES

Table 7-76 (Continued) Physical table layout for DIM_PARTY_CONSULTANT

Physical Data Table Name: DIM DATE (Version 1.2)
Note: Used for the date dimension
Column Name Data Type Null Allowed
DIM DATE VARCHAR(8) NO
YEAR INT YES
MONTH INT YES
MONTH NAME VARCHAR(50) YES
DAY INT YES
DISPLAY DATE VARCHAROO) YES
DATE DATETIME YES
DAY NAME VARCHAR(50) YES
DAY OF WEEK INT YES
WEEK OF YEAR INT YES
SEMESTER INT YES
QUARTER INT YES

Table 7-77 Physical table layout for DIM_DATE

Physical Data Table Name: DIM ACTUAL (Version 1.2)
Note: Used for actual dimension (or agreement
dimension)
Column Name Data Type Null Allowed
ACTUAL ID INT IDENTITY NO
SOURCE SYSTEM ID INT YES
SOURCE SYSTEM REFERENCE VARCHAR(255) YES
SOURCE SYSTEM START DT DATETIME YES
SOURCE SYSTEM END DT DATETIME YES
SOURCE SYSTEM STATUS VARCHAR(255) YES
IS CURRENT BIT YES
PREVIOUS ID INT YES
RECORD START DT DATETIME YES
RECORD END DT DATETIME YES
MEMBER EXTERNAL REFERENCE VARCHAR(255) YES
BUSINESS GROUP VARCHAR(255) YES

Table 7-78 Physical table layout for DIM_ACTUAL

278

Chapter 7 - Research design and the IS Prototype

BENFIT NAME VARCHAR(255) YES
OFFERING VARCHAR(255) YES
OFFERING TYPE VARCHAR(255) YES
PRODUCT TYPE ID INT YES
PRODUCT DESCRIPTION VARCHAR(255) YES

Table 7-79 (Continued) Physical table layout for DIM_ACTUAL

Physical Data Table Name: AUDIT LOG (Version 1.2)
Note: Used for audit logging purposes
Column Name Data Type Null Allowed
ID INT IDENTITY NO
START TIME DATETIME YES
END TIME DATETIME YES
DURATION INT YES
JOB CODE VARCHAR(255) YES
JOB DESCRIPTION VARCHAR(255) YES

Table 7-80 Physical table layout for AUDITJLOG

7.6.5.3. Physical Design - Estimate database size and index plan

Estimating the database size was done with the assistance of the DBA in the

deployment team. The initial sizes were gathered from the database management

system and the growth was estimated by comparing the table sizes after each

dimension and fact table promotion. Table 7-81 illustrates the tables in the DW with the

sizes and row counts for each table. No aggregation plan was created, as there was no

need for this.

279

*—'I I U | ^ I U I i i w u v w i w i i w v w f y u M U M u i v ■ w ■ i ■ v i ^ i i f^'^'

Database size and Index plan for DW

Table Name
Row
Count

Table
Size
(KB)

Data
Space
Used (KB)

Index
Space
Used
(KB)

Unused
Space
(KB)

Growth
Expected
in rows
per ETL

Table
growth
(KB)

Table
Size per
Month
(KB)

Growth with

AUDIT LOG 18 24 16 8 0 18 24 744

Each promotion of
the dimensions
and fact tables.

DIM ACTUAL 245136 46800 37656 9096 48 5000 955 29592
Each new policy
contract

DIM DATE 146099 12808 12696 80 32 0 0 0 Static
DIM PARTY CONSULT
ANT" 88 72 16 16 40 50 41 1268

Each new
consultant

DIM PARTY INTERME
DIARY 7938 1800 1760 16 24 500 113 3515

Each new
intermediary

DIM PARTY POLICYH
OLD~ER ~ 81537 28112 26216 1816 80 2500 862 26720

New policyholder

FACT API 480583 61320 61032 208 80 2500 319 9889
Each new policy
sold

FACT CONSULTANT T
ARGET PROPERTIES 88 72 16 16 40 100.00 82 2536

Each target set on
consultant

FACT HEAD 144019 10808 10696 80 32 2000 150 4653 New policyholder

IAA HIERARCHY 31077 13576 13560 8 8 1000 437 13542

Any change to
intermediary or
consultant

Table 7-81 Database size and index plan for the case study DW

280

Chapter 7 - Research design and the IS Prototype

7.6.6. Data staging

Section 6.3.5 furthermore suggests that the main object-oriented phases be

investigated. These are:

• Gather requirements

• Analyse requirements

• Design

• Implement

• Test

Gather requirements

Requirements were gathered at the beginning of the project (section 7.6.2.)

while analysis took place during dimensional modelling (section 7.6.3.) and

technical architecture modelling (section 7.6.4.).

Analyse requirements

The analysis of the backroom architecture serves as the planning part for the ten

step overview (steps 1-4). The analysis of the backroom provides the developers

with a one page schematic flow, the strategy of the data stage tool to be

implemented and a detailed schematic of the data restructuring and

transformation process. In terms of object-oriented phases, the dimension loads

(step 4 - 6), as well as fact table and automation (steps 7 - 1 0) consist of a

design phase, an implementation phase and a testing phase. The rest of section

7.6.6. will deal with data staging for the case study DW.

7.6.6.1. Data Staging - 0 0 Design

The data staging environment has two major design areas:

• Dimension table loading

• Fact table loading and automation

The analysis documents available for the designs are:

281

Chapter 7 - Research design and the IS Prototype

• Dimension model designs (section 7.6.3.9.)

• Entity Relationship models of the sources systems (section 7.6.3.8.)

• High level schematic plan (section 7.6.4.3.)

• Detail schematic plans (section 7.6.4.3.)

• Business rules (section 7.6.5.1.)

Section 6.3.5.1 explains that based on the analysis documents listed, the

following need to be created for each dimensional load and fact table load in the

data staging area:

• State chart model

• Entity relationship model

• Collaboration model between ETL processes

State chart model

The state chart model should illustrate extraction of the data from its starting

point (the source) to the transformation and its conditions to its end point (the

dimensions or fact tables). Figure 7-25 to Figure 7-30 illustrate the state chart

diagrams used for the data staging logic.

282

Chapter 7 - Research design and the IS Prototype

State chart diagram: SP_BuildJAA_Hierarchy (version 1.0)
Notes:

"
^{S Start Log (0002,BUILD SALES HIERARCHY)

JJL n -
Extract Levell Agents and brokers with the following kind id 1023,1025,1033,1034

-n ^L
Extract Level2 - Reports to builds the sales hierarchy

Z3L
Update table IAA_HIERARCHY

[Stop log (0002) j

Figure 7-25 State chart model for SP_BUILD_IAA_HIERARCHY

State chart diagram: SP_Promote_DIM_ACTUAL (version 1.0)
Notes:

~' ̂ S Start Log (0006.POPULATE DIM ACTUAL) If
Use member numbers and get policynumbers

- >

Remove health insurance policies

V 1 J

^L ̂L
Update DIM_ACTUAL (with reference to old record)

- >

=SL
Insert new records to DIM ACTUAL - >

3 L _
Stop Log (0006)

X

Figure 7-26 State chart model for SP_PROMOTE_ACTUAL

283

Chapter 7 - Research design and the IS Prototype

State chart diagram: SP_Promote_DIM_PARTY CONSULTANT (version 1.0)
Notes:

• - H : Start Log (0004. POPULATE DIM PARTY CONSULTANT)

Get external reference of all consultant (kind id 1032) from sales stats records

_ ^
F>

Link external reference to SPF ID

^L
Link SPF ID to Party DB to get personal detail to)

G
3L

use IAA HIERARCHY to get Reports To and Belongs To information

JL
Compare current records with PARTY CONSULTANT DIMENSION

>[I Insert new records |—,

- >

~ > [Update existing records with reference to old records J*

Stop Log (0004)

Figure 7-27 State chart model for SP_PROMOTE_PARTY_CONSULTANT

State chart diagram: SP Promote DIM PARTY INTERMEDIARY (version 1.0)
Notes:

Start Log (0003, POPULATE DIM PARTY INTERMEDIARY)

Get external reference of all INTERMEDIARY (kind id 1033) from sales stats records
>

Link external reference to SPF ID

Link SPF ID to Party DB to get personal details I

Z3L
Compare current records with PARTY INTERMEDIARY DIMENSION

> [Insert new records]—,

- >

Update existing records with reference to old records 5 P

Stop Log (0003)

Figure 7-28 State chart model for SP_PROMOTE_PARTY_INTERMEDIARY

284

Chapter 7 - Research design and the IS Prototype

State chart diagram: SP_Promote DIM_PARTY_POLICHOLDER (version 1.0)
Notes:

Start Log (0001, POPULATE DIM PARTY POLICYHOLDER)

t Get external reference of all intermediaries (kind id 1033) from sales stats records z
Link external reference to SPF ID

G Link SPF ID to Party DB to get personal details

±
Compare current records with DIM PARTY POLICYHOLDER

^ Insert new records i - ^

Update existing records with reference to old records s K

Stop Log (0001)

Figure 7-29 State chart model for SP_PROMOTE_PARTY_POLICYHOLDER

State chart diagram: SP Promote_FACT_API (version 1.0)
Notes:

K: ^
Start Log (0007, PROMOTE FACT API)

i
Build lookup tables

Link dimensions with lookup tables

2
Insert net facts into FACT API I I

JJL
Stop Log (0007)

Figure 7-30 State chart model for SP_PROMOTE_FACT_API

285

Chapter 7 - Research design and the IS Prototype

Entity relationship model

Accompanied by the state chart models, is an entity relationship model

illustrating the underlying structure that will support the ETL. Figure 7-31 shows

the ER model supporting the ERL processes illustrated in Figure 7-25 to Figure

7-30.

tAAJHIERARCHY

SatesDtv Rv ID
SalasD^Pty Rol. ID
SalssDI,~NaSe
Sala.DN.~Mg. Ply ID

SalaaAre" Ply ID
S.l.aA,.a~Ply~R»i« ID
S.fcaA.a.'N.m.
S.k,aA,..~M0. Pty ID
S*iA™~Mgr~l*u~>
S . l a . O t o P t f ID
Sala.CHtafPaiiof Rola ID
S.k,.O«lc."Bel0»am Rola ID
SaUaOltaTNam.
SatesOffica Mgr SPF ID
SalesOltaTMgr N.ma
Sale.u,«J%JD
SalBsUnlLNamo
SalesUnlt_Mgr_SPFJD
SalesUnlt_Mgr_Nama
Consunant_SPFJD
ConsuRanLNama
Consutlanljitle
ConsuKantFTrstname
ConsuKantUsIaama
ConsuKanLMWdtenames
1nt_SPFJD
lnt_THte
IntJnHaia
M_Flrs!n3n)B

M FuliName
lnl~E» R.l
INf_RE~CORD_START_DATE
1NT_REC0RD_END_DATE
ll(ecycle„enum_kJ
lnl_Klnd
Int Kind Dascr
FSP SPF ID
FSP^Name
Laat_EKtiaa_DalB

1TYJNTERMEOIARY

PK PARTY INTFRMFDIARY ID

TBLJSALESJSTATS

SALES STATSID
PROViNCEJD
PROVINCE
PROVMAN ID
SALES MANAGER
REGION
CONSULTANT ID
CONSULTANT"
USERTYPE
SH AS SALES PERSON
CDNTACTJD "
ADVISER
INTERMEDIARY TYPE
FIN SERV PROVIDER
BUS TYPE
TRX'YEAR
TRXIMONTH
TRK_TYPE
PRODUCT
TARGET CODEID
TOTAL PREMIUM
TOTALJ.OADING

FACT^CQNSULTANTJARGET^PROPERTIES

DIM DATE
PARTY_AREAJJANAGERJD
PARTY_CONSULTANTJD
PARTY_AREAJD
SOURCE SYSTEM ID
SOURCE~SYSTEM~VERSION
EXTRACf DATE "
API FACTOR
ApfPERCENTAGE
APLTARGET
COMMISSION_FACTOR
INCENTIVE VARIABLE PORTION OF SALARY
INTERMEDIARY FACTOR " ""
|NTERMEDIARY~START DT
NEW HEAD FACTOR "
NEWIHEADIPERCENTAGE
NEW_HEAD„TARGET
REGIONAL_FACTOR
TARGETAPL AMOUNT
TARGET_NEW_T1EAD_AMOUNT

SOURCE SYSTEM ID
SOURCE SYSTEM REFERENCE
SOURCE_SYSTEM START OT
SOURCE SYSTEM END DT
SOURCEJ3YSTEM STATUS
IS_CURRENT
PREVIOUSJD
RECORD_START_DT
RECORO END DT
TITLE
FIRST NAME
MIDDLE NAMES
LAST_NAME
KIND
KINDJD
FSP
FSP ID
REPORTS TO
REPORTS"TO ID
BELONGS-TO"
BElONGS~TO ID

DIM_PARTY_CONSULTAKT

PK PARTY CONSIII TftNT m

SOURCEJ5YSTEMJD
SOURCE_SYSTEM_REFERENCE
SOURCEJ5YSTEM_START DT
SOURCEJSYSTEM_ENDJ3T
SOURCE_SYSTEM_STATUS
IS_CURRENT
PREVIOUSJD
RECORD_START DT
RECORD_END_DT
TITLE
FIRST_NAME
MIDDLE_NAMES
LAST_NAME
REPQRTSJTO
REPQRTS_TO_ID
BELONGS _TD
BELONGS_TO_ID

PARTY ARFA in

SOURCE SYSTEM ID
SOURCE"SYSTEM"REFERENCE
SOURCE~SYSTE»fSTART DT
SOURCE~SYSTEM~END DT
SOURCE~SYSTEM~STATUS
IS CURRiNT "
PREVIOUS ID
RECORD START DT
RECDRo"END DT
ORGANISATION NAME

IK
PARTY INTERMEDIARY 10
PARTY_AREA ID
PARTY'CONSULTANT ID
PARTY'AREA MANAGER ID
DIMJJATE "
PARTY„POLICYHOLDER_ID
QTY
MONTHS_IN_FORCE

D1M_PARTY_AREA_MANAGER

PK PARTY ARFA MANACER ID

SOURCE SYSTEM ID
SOURCE~SYSTEM~REFERENCE
SOURCE~SYSTEM~START DT
SOURCE~SYSTEM~ENO DT
SOURCE~SYSTEM~STATUS
1S_CURRENT "
PREVIOUS ID
RECORD START DT
RECORDlEND_Df
TITLE
FIRSTNAME
MIDDLE NAMES
LAST NAME
REPORTS TO
HEPORTS~TO ID
BELONGS~TO~
BELONGS~TO ID
REP0RTS"T0"DMS10N
R E P O R T S ' T O D M S I O N J D
BELONGS"TO"DKISION
BELONGS"TO"OIVISIONJD

YEAR
MONTH
MONTH_NAME
DAY
DISPLAY DATE
DATE
DAY NAME
DAY~0F WEEK
WEEK OF YEAR
SEMESTER
QUATER

ID.
PARTY INTERMEDIARY ID
PARTY"CDNSULTANT iB
DIM DATE
PARTY AREA MANAGER ID
ACTUALJD "
PARTY POLICYHOLDER ID
SOURCE SYSTEM ID "
SOURCE"SYSTEM EXTRACT DATE
EXTRACf DATE
TRANSACTION_AMOUNT
ALLOCATED_AMOUNT
MEMSER_AGE
COMMISSION JTYPE
MONTHS IN FORCE
ORIGINAL REQUEST DATE
REQUESTED OATETME
TRANSACTION JDATE

iTY_POLICYHOLDER

SOURCE SYSTEM ID
SOURCE~SYSTEM~REFERENCE
SOURCE~SYSTEM"START DT
SOURCE~SYSTEM~END DT
SOURCE"SYSTEM_STAtuS
IS CURRENT
PREVIOUS ID
RECORD START DT
RECORD_END DT
EXTERNAL REFERENCE
ROLEPLAYER ID
ROLEPLAYER"VERSION
ROLEPLAYERTYPEJD
BIRTH DATE
ISBIRTHDETIALSESTIMATED
DISPOSABLE INCOME
DISPOSABLElCURRENCYCODE
GROSS INCOME
GROSsTlNCOUE CURHENCY.COOE
EMPLOYMENTSTATUS
GENDER
LANGUAGE
MARITAL_STATUS
INITIALS
BIRTHJ^AMEJD
FIRST NAME
LAST_NAME
MIDDLE NAMES
PREFIX"TITLES
SUFFIX"TITLES
SHORTflRSTNAME
SALUTATION
FULLNAME
DESCRIPTION
BIRTH NAME START DATE
BIRTH.-NAME"TYPE ID
BIRTH~NAME"VERSION
CDUNTHY CODE
PASSPORT NUMBER2
PASSPORT'NUMSER
NATIONALJlEGISTRATIONJD
NATIONAL_REGISTRATION_PARTYJD

SOURCE SYSTEM ID
SOURCE~SYSTEM~REFERENCE
SOURCE"SYSTEM~START DT
S O U R C E ~ S Y S T » T E N D DT
SOURCE"SYSTEM"STATUS
IS CURRENT "
PREVIOUS ID
RECORD START DT
RECORD_END DT
MEMBER~EXTERNAL REFERENCE
BUSINESS GROUP "
BENFIT NAME
OFFERING
OFFERING TYPE
PRODUCT ~TYPE ID
PRODUCTIDESCRIPTION

Figure 7-31 ER Model for staging environment for sales ETL

Collaboration model

The collaboration model is created once all the state chart models and entity

relationship models are done. The collaboration model provides a graphical

PK]0

DIM_PARTy_AR£A

PK

286

http://Sala.DN.~Mg

Chapter 7 - Research design and the IS Prototype

overview of the interaction between the ETL processes and their inter-

dependencies. Figure 7-32 shows the collaboration diagram for the ETL process

in the DW case study.

► Get latest Sales
Stats records

► Promote
Dimension Party
Policyholders

Get latest Sales
Stats records

Promote
Dimension Party
Policyholders

Promote
Dimension Party
Policyholders

Promte
FACT_API
Promte
FACT_API

Promote
Dimension Party
Intermediary

Promote
Dimension Party
Intermediary Promote

FACTJHEAD
Get latest Sales
Stats records

Promote
Dimension Party
Intermediary

Get latest Sales
Stats records Promote

Dimension Party
Consultants

Get latest Sales
Stats records Promote

Dimension Party
Consultants Promote

FACTJARGET

Promote
Dimension Party
Consultants Promote

FACTJARGET

Promote
Dimension Actual

Promote
FACTJARGET

Promote
Dimension Actual

y/
Figure 7-32 Collaboration diagram on the ETL for the data warehouse

7.6.6.2. Data Staging - 0 0 Implementation

The implementation of the dimension and fact table loads is supported by the

state chart and ER model designs created. Each stored procedure is grouped as

a package and coded. The packages are stored on the SQL server itself as

stored procedures.

The flow control of these packages is controlled by another stored procedure that

kicks off the ETL stored procedure according to the collaboration diagram

illustrated in Figure 7-33.

287

Chapter 7 - Research design and the IS Prototype

to,, -^f^mm
j rMsnvteiiKiin&i i iLVi(vif]

*.i r
J*

v-1 - ^ h i K
I — 1 T

v-1 - ^ h i K
I — 1 *.....

v-1 - ^ h i K , s „
! F»Si »/" f*J Five F»Si »/" f*J

**■«

i * t * p J»

/ E / f t * ! -

fyy

i * t * p J» - : (IK ■ ■- • ■

/ E / f t * ! -

L«*
i t i t ■t l E L f t w : , v y ^ ^iHiK»*Hf

-> 4 X
F -t J » -

it
l l*32

s -**«i, Mf-v^rt w *• !>3fii';-*>3 * H AM

fw «. * r *s, ^e
** l r « Ceyrai R : w v s W>"V>,ifviif.*!^ij».-1

* W » J * fO * * »^ r / *NXI {07caeaFS-Dm~t859~
J l f i n « Tf /* i f"* he t <-t c /• MAi

.us *** BACSPW,-*.*

Figure 7-33 SSIS that controls the flow of the stored procedures

7.6.6.3. Data Staging - 0 0 Testing

Unit testing was done on each package by means of the following:

• Duplication testing

• Reconciliation testing, by comparing figures on reports per time frame to

production report figures.

• Changing dimension testing, by changing key fields in the dimension and

investigating whether a new record is created.

7.6.7. End user applications

The end user application for the case study must support the following groups:

• Application support (IT)

• Business (Sales Department)

■, M m * . *

288

Chapter 7 - Research design and the IS Prototype

Application support means the creation of ad hoc queries as requested by

various managers in different departments. Microsoft SQL Management Studio

was used to create and run these queries. Ad hoc queries have to go through a

staging phase, followed by QA and finally production for execution. The results of

the production execution are sent to the business. Figure 7-34 is an illustration of

the tool used by developers to create ad hoc reports.

HMlBiliisiiiiiiii^siilll
^ j ^ ,

not connected oteFactftPI sql ; , 1 ql

\ H TI IT

i FT
.A f TEF EC «F
, H F H F T

, < F H El
,4 FHTIN J

f t ind

I f I E F F FT I I J T E F l I E I I x F _ I I 1 F "FT _ IHTEFI1EI I &F.Y_

II ULTiFIT P « F T _ II 11LT ' J IT_I I 1 F » F T _ II TLTjiNT

i 1 T F J J J l> T I I I_[°TE 1

I IJ -J IA EF F FT _ J < F E J I J J i E F _ I I 1 F " F T _ " F E &_HUJ* EE

j> TH»L » T I I " L _ I [1 1 T I H t L _ I I

F L I H LIEF. F " F T _F L I H LI E F _ I I 1 F - F T _F L I Vf

"LE _ T ' T _ I I TIF E_ TETI_II

E TF ' T _ I J - T E TTF E_3YSTEH_EXTRACT_DATE,

E TF « T_I H.TE -

TF UJ - T I I I_ II iniT

-LLi A T E I _ II TTT-IT

I I E H I E F _ E

Iffll I IIT F'E. L ' J H H I 3 3 I O H _ T Y F E

II IJTH III F P E

"LE L I I B A . I i

a j-LE _ TOT _ I [

"LE T t T ID

, _ S A L E S _ S T A T 3 AA.

BB

B B , S A L E S STATS I D :

I I ! I_F"RTY_CON3ULTAMT T I .

U ULTiMTZ ;, :.M'.:i;

M^

Figure 7-34 SQL Server Manager Studio used by developers

Regular reports as requested, were created using Microsoft SQL Reporting

Services. The report also needs to go though the development life cycle of

staging, QA and production. Once the report is in production, the end user may

visit a web site on the intranet of the company and request the report. Figure

7-35 is an example of an end user report in the case study.

289

Chapter 7 - Research design and the IS Prototype

i —
—' API S lies, Slats Repoi I

w. J__ naagggj

\Pl Sales Stats for 6-2008

FB (I FE I

TEFII "FE

TEFII "FE

| TEFN -FE

TERM -FE

i E I) E

' TEFII "FE

ir TEFII -FE

i TEFII FE

TEFII -FE

I TEFII "FE
I TEFII "FE

' TEFII "FE

! TEPII "FE

i TEFII FE

1 TEPII "FE

TEFN "PE

TEFN -FE

IJ L LE FFI E

F FT ELI ■BETH F E U

F FT ELI BETHRE I

F PT ELI 'BETHFEoI

F FT ELI BETHFE.I

F FT ELI ■BETHRB1

F PTELI ' E E T H F E ^ I

F PTELL■EETHFEbl

F FT ELI BETHFE I

F FT ELI BETHFE. I

F FT ELI BETHFE.I

F FT ELI "EETHPE I

F FT ELI 'BETHFEJ I

F F T E L L " E E T H F E j I

F FT ELI BETH FEU

F PTELI ■BETHFEB

F FT ELI - B E T H P E J

P FT ELI ■BETHFE I

[fc-L "LE

N H L "LE

N^L LE

UPL "LE

n " L r " L E

N L LE

N"L LE

I I L -<LE

N iL -LE

N L <-LE

I I L LE

N L "LE

N H L "LE

N L LE

N"L LE

M-L LE

ft L LE

FFI E

FFI E

FFI E

FFI E

FFI E

FFI E

FFI E

FFI E

FFI E

~FFI E

FFUE

FFI E

EEMI "MF CEEIJ

EEFNH FE EFPlEiLEN

EEFNH F~ EFMEl'LEN

EEFNHMFL EPI lEi 'LB!

EEFNH FE EFP1EMLBI

T FFEHFLE I

T F F L U F L E - I

T FFLUFLE I

T FFDMFLE I

T FFCMFLE I HFI

j - F F

I TH I- -M-II ,_ NCI

I FIEFFE FPEE

I LBEFT FT IN

1 TIM H

I aiX NHEEFLEM

I J IF El E T J EF

lr BFFJJTI EE

I LINE I IJ TT F " I

l E fJNE M FIE L r IB FD

l EIF h E ELENEEF

I TFE F- H F^FT

I I PEN MEF N

l NI

1 I ULLi I

I PIETB H

I ER E FIE E

I L II MIH"N

I M I IEB EHMIE

C E N L ^ L

Figure 7-35 End user app report

7.6.8. Deployment

All end user applications should go through a development stage, i.e. staging,

QA and production. The source files are typically stored on a repository system

called CVS. This repository system supports different streams of development. A

developer needs to checkout code before developing. Once the changes are

done, the developer can check in the code. Figure 7-36 illustrates a CVS's

checkout module used to get the latest copy of source code on the developer's

PC.

290

Chapter 7 - Research design and the IS Prototype

^tt^ îttl̂ ĵî BM^^^ îf^UW^ îMP^^^^^^ m 13
Nudule Revision Options

Module
File Revision | Date

Module
File Revision

: iiaho-iaacvs-Oli/greedo databases/Packages
: !@ho-iaacvs-Cil:,i'greedo databases

j@ho-iaaws-01:/greedo databases/Packages/Reporting
; ;e>ho-iaacvs-01:/greedo databases/SSIS/Reportinq
: ;raho-iaacvs-01:/qreedo databasesj'General Extracts/Extract
! !(Shc-iaacvs-01:/greedo databases/5515
: itSho-iaacvs-01:/greedo databases/General Extracts/Prodircti
i iieho-iaacvs-Olii'greedo databases/EmaiLReport

iiaho-iaacvs-Oli/greedo databases/Phoenix/data-fixes
!©ho-iaacvs-01 ;/greedo databases/Phoenix/stored-piocs/Sta

+ 3 Commission Migration

+ 3 Dialogue XML creation scripts

+ 3 Oocumenturri_Docbase

+ 3 [i5B

+ 3 Email_Peport

+ 3 General Extracts

+ 3 Great Plains

:<: > + _3IHA

+ _J InputFiles : CV5ROOT:

> + _3IHA

+ _J InputFiles

v

+ H naster

+ 3 F ackageConfig Protocol: WSSWStJSESMWsMS v

+ H naster

+ 3 F ackageConfig

Protocol parameters: V + .D Packages

; Server: V
+ JFAC5

+ HFhase2
; Port:

+ JFhoenix

Repository folder: V + 3 Projects

; User name: + 3 ','uantum

+ 3 JalesLogic v ;

CjEdit 3ug number: nodulp ; databases V CjEdit 3ug number:

| Cancel |

Figure 7-36 CVS as repository system for source code

In this case study scripts are used as a mechanism for packaging code. The

code developed, is tested on a staging server. Once the developer is satisfied

with the code, he/she checks this into CVS. A request is logged with the

deployment team to promote the new code to QA. An appointed person in the

relevant business department then signs off the QA code in QA. The deployment

team promotes all signed off changes twice a month from QA to production.

Dates are scheduled when changes are promoted.

7.6.9. Maintenance and growth

The deployment team is responsible for scheduling the required ETL jobs for the

DW. Any defects in the DW or its end user application are reported to application

support's service desk. A service desk call is logged and assigned to the

291

Chapter 7 - Research design and the IS Prototype

responsible person. The code changes need go through the development life

cycle discussed earlier.

All enhancements to the DW are driven by a project manager and plan. All plans

are treated as new development projects.

Currently, there is a need for more information by departments other than the

sales department. Each of these requirements will be treated as a future

development phase.

7.7. Summary

This chapter deals with the research design and implementation of one of the

development methodologies discussed in chapter 6. In the research design, the

research question was to determine whether a data warehouse can be

developed using a data warehouse methodology and incorporating object-

oriented techniques. To answer the above research question, it was necessary to

implement one of the methodologies discussed in chapter 6. This chapter

describes the implementation of 0 0 and the Business dimensional lifecycle

approach to DW development.

An insurance company serves as the research environment requiring multiple

parties for the development of the DW. Based on the methodology

implementation experience, it was found that the following techniques worked

very well in an 0 0 development culture:

• Essential Use case diagram

• User interface prototyping

• Domain modelling

• Supplementary documentation

292

Chapter 7 - Research design and the IS Prototype

Although the concept of a traditional essential use case was altered in chapter 6,

it was still easily understood by business analysts. The rest of the requirements

gathering techniques followed a business and data warehouse structure. Owing

to the nature of the technical environment, as well as analysis and design of the

data marts (described from section 7.6.3.4.), one was forced to repeatedly

reassess the designs of the data marts. In some cases, reassessment of the

requirements was necessary to accommodate the design. One such case was

the change in membership types of the new production system (IAA) to allow for

temporary members and members only. This is evidence of an iterative approach

common to 0 0 development.

The following techniques from the business dimensional lifecycle are used in

implementation:

• Data warehouse bus architecture

• Fact table diagram

• Dimension table detail

• Source identification

Based on the above analysis techniques, the fact and dimensional tables were

developed.

The back room architecture of the technical architecture model involved analysis

of the following:

• Source systems

• Data staging services

The data staging services were based on the source systems identified, as well

as the designs for the star diagrams.

293

Chapter 7 - Research design and the IS Prototype

The front room analysis followed an 0 0 approach on its own, as the reporting

tool used is based on the Microsoft.Net architecture, which is an 0 0 framework.

The physical design phase in the business dimensional lifecycle approach was

implemented using a design, implementation and testing phase. The design

involves the design of the data warehouse, as well as the design of the data

staging area.

The design of the data warehouse entails the following:

• Defining standards

• Designing physical tables and columns

• Estimating database size and index plan

• Designing aggregates - no aggregation tables were defined

The design of the data staging area entails the following:

• Designing a state chart diagram based on the analysis of the data staging

services in the technical architecture

• Designing an ER model supporting the state chart model

• Designing a collaboration model depicting the overall ETL schema

The implementation of the data warehouse and the data staging involved the

coding of the designs created.

The testing of the data staging phase uses the same approach than the 0 0

approach. The testing of ETL jobs was done in phases suggesting that it is unit

tested. Audit statistics is a technique used to test the data staging.

The end user application supports the front end of the technical architecture

design, and a complete 0 0 model can be applied to the development of these

applications.

294

Chapter 8 - Evaluation of the IS Prototype

Chapter 8 - Evaluation of the IS Prototype

8.1. Introduction

Baskerville (1999:13) explains that part of the approach to action research is to

evaluate and specify what is learned from the action plan implemented.

Therefore, this chapter will deal with the evaluation and specification of

knowledge gained from the implementation of the data warehouse (DW)

described in chapter 6.

The aim of the evaluation is to determine whether the techniques used to

implement the DW in the insurance company were successful. The evaluation

was done by investigating the incident requests and change requests logged at

the application support service desk of the business. Interviews were also

conducted with the business analyst and the application support manager to

obtain their perception of the techniques used.

The evaluation process is summarised, followed by a discussion on specified

learning based on the feedback received. The specified learning discussion

focuses on each object-oriented (00) phase, detailing each technique in the

phase used.

8.2. The research question and the evaluation

This section deals with the evaluation of the DW implemented. It forms part of the

evaluation phase of action research as explained in Baskerville (1999:13) and

illustrated in Figure 8-1.

295

Chapter 8 - Evaluation of the IS Prototype

^ _ — 5 { Diagnosing \

Specifying^ fAction
Learning J \̂ Planning

MEvaluat ing) (Action Taking)<

Figure 8-1 Evaluation in the Action Research Cycle (Baskerville, 1999:14)

The previous chapter dealt with the development of a DW, using a DW

methodology and jointly incorporating object-oriented (00) techniques.

To measure the success of the above-mentioned implemented DW, the following

key areas need to be defined:

• User acceptance testing

• Incident requests from application support

• Change requests from application support

• Evaluation of 0 0 techniques and DW methods

8.2.1. User acceptance testing

The sponsor of the DW project came from the application support department of

the insurance company. User acceptance testing (UAT) is done by the manager

and assigned testers of that department.

UAT testing involves the following:

• Evaluating reports generated from the DW

• Evaluating ad hoc SQL results and comparing these to existing results in

the current production environment.

Normal evaluation is done by means of test packs. A test pack is a set of tests

developed by the testers to evaluate the functionality of the application. No test

packs were available for the DW, as the latter was introduced to the company.

296

Chapter 8 - Evaluation of the IS Prototype

Test packs will be developed at a later stage. Currently, testing is done by

comparing results from the DW in the quality assurance (QA) environment to

those from the DW in the production environment, or in some cases the reporting

system in the production environment. The QA environment is an environment

similar to the production environment but, used for evaluation purposes only.

Each release of the DW is referred to as a build. A build is released to QA where

testers need to sign off or reject the build. A version number is assigned to each

build released to QA. This version number corresponds to the build notes and is

used to track the changes made to the DW.

Build notes typically contain two types of changes:

• Incident requests

• Change requests

An incident request refers to a defect in the DW build in production and will be

discussed in detail in the following section. A change request is an enhancement

request to the DW build in production. A discussion on this follows in section

8.2.3.

8.2.2. Incident requests

One of the controls in the application support department is incident requests.

This request is logged by a user, if he/she experiences problems with a specific

application (in this case the DW implemented). The request is forwarded to the

appropriate business analyst, who will evaluate the problem and pass it on to the

developer responsible. From here the developer applies the necessary changes

to correct the error and submit them to the deployment process where the

required user acceptance testing is done.

297

Chapter 8 - Evaluation of the IS Prototype

The following is a list of general incidents logged at the service desk:

• Report on API did not display the correct API count. This was applicable to
any time period

• Head count report did not display correct head count on certain
consultants

• Claw back commission report displayed incorrect amounts

The following is a discussion on the use of 0 0 techniques for the DW and the

above logged incident requests.

8.2.2.1. Incident requests and traditional DW methodology

This section explores the possibility of whether the incidents (listed in the

previous section) result from using 0 0 techniques to develop the DW, or not.

The first common incident is a report on API that did not display the correct API

count. This was valid for any time period. The cause of the incident was due to a

party type not loaded in the intermediary dimension. The initial requirements only

highlighted one "broker" type, with the second broker type, "agent", never catered

for. The above incident was resolved by including the missing broker type "agent"

in the extract transform and loading (ETL). The root cause of the above incident

was due to a missing kind id (referring to the "agent" type) in the state chart

diagram document for the promote sp_promote_DIM_PARTY_INTERMEDIARY

ETL. The requirements collection was done correctly, as the physical data table

DIM_PARTY_INTERMEDIARY has a kind and kindjd field. This indicates that

the design of the above ETL was faulty. As the requirements and the analysis

were done correctly, one cannot state that this type of error is a result of using

0 0 techniques. The chance of getting a similar incident when using another DW

methodology would be greater, as requirements collection techniques in 0 0

interrogate the business processes. In this case, the requirements collection was

done successfully (as proved by the existence of the fields in the required table),

but the design was overseen.

298

Chapter 8 - Evaluation of the IS Prototype

The second common incident was a head count report not reporting the correct

head count on certain consultants. The cause of the incident was due to a

duplication of policyholder details found in the policyholder dimension table, as

the ETL did not cater for scenarios where a policyholder has cancelled his/hers

membership and then started a new membership thereafter.

The above incident was resolved by catering for the above scenario in the ETL.

The root cause of the above incident was due to incomplete analysis. This

possibility was not discussed during the requirements gathering as this was not

evident in the requirements documentation. The analysis of the requirements

should have explored the possibility of the above member lifecycle behaviour.

Owing to the missing information on this type of behaviour in the analysis

documentation, the design never catered for it. However, the dimensional tables

in the DW needed no change to accommodate the above behaviour. This

incident could not result from using 0 0 techniques in DW, as the dimensional

tables did make provision for such a scenario.

The last common incident was the claw back commission report reporting

incorrect amounts. The cause of the incident was missing policyholder details,

such as the id number, gender, birth date, or incorrect contact preferences. This

was largely due to corruption of data during previous production system

migrations. Although controls were set to bar incorrect data, some of it still got

promoted to the DW. No changes were needed in the DW presentation layer to

accommodate missing data. Most of the changes were made in the ETL for the

dimensions. This incident will occur with any DW methodology because of the

nature of migrated data. Common migration problems were identified during the

analysis of the ETL to cater for scenarios, but not all scenarios are always

identifiable. Therefore, this incident did not occur as a result of using 0 0

techniques.

299

Chapter 8 - Evaluation of the IS Prototype

8.2.3. Change requests

A change request is an enhancement request logged by a manager of the

requesting department. This request is forwarded to the application support

manager who decides whether the change is needed, and if so, assigns it to a

business analyst. The business analyst gathers the requirements from the

relevant department and supplies the developer with a change request

specification document. This document is a signed-off agreement between the

application support department and the requesting department for the changes

needed.

The only change request was to add a function to the Target API to group it by

division. No changes were needed on the DW, as it already contained the

division in the dimension consultant (this is referred to as "belongs to"). The

changes were needed in the scripts to generate the report.

Figure 8-2 is an illustration of the application used to manage change and

incident requests.

300

Chapter 8 - Evaluation of the IS Prototype

i * * * - \J ':' (rr.p /''/.icer.ter/CAisd/pdrwveb.e^

H t d l ^ - frg^l-ail-f-d U lv t Headlines . I Customize Lml.5 '. Free Hotmail i Windows Marketplace J[Windows Media J Windows

FF I j a r <■ W r-b Untcenter Service Desk

ifil-

ReauesJ X Status Open Date ▼

^ 7 i - i » a Open 26/11/2006 11:47 am
Summary: IT- PP3 Adviseurs web probleem - Hardus Jar.se van Rensburg 2202224

? 5 7 3 3 3 Open
Summary: Jacques Can you look at this for me.

?JiZlXl Open
Summary; Portolio Error - 802414

^ Z M £ Cpen

25/11/2008 11:14 am

25/11/2008 08:22 am

24/11/2008 05:01 prn

24/11/2003 05:00 pm

24/11/2008 04:53 pm

24/11/2008 01:57 pm

Summary: PPS JH Eita : 124329654

Z.51115.5 Open
Summary: PPS: .'A Schneider : 11*7470

. ? A ? » U Open
Summary: B Peering ; 1093838

2 . S M M Open
Summary: Portfolio error - assistance required

2S.SSS.S. Waiting 20/11/2008 04:13 pm
Summary: PPS: M Qeggs : 803.340
2,SS2/i Open 19/11/2008 01:24 pm
Summary: LA continuation option on Portfolio

ZS.ASfcf Waiting 19/11/2003 08:29 am
Summary; members not showing in portfolio but ■re in IAA

iLSaSJJ. Open 14/11/2008 02:58 pm
Summary: New Standalone Disabllity product

15 1

a , FF rrr 1 4

Summary; 124332707

Summary; Valuations DataMart
ZSJUM. Waiting 07/10/2008 03:37 pm
Summary; Sales Report into SQL Reporting
.32MA Waiting 28/09/2008 03:26 am
Summary; Subject: 1234 30019

?.?$M6 Waiting 25/08/2006 01:37 pm
Summary: I need a enhancement to be made to portfolio to allow for multiple a.j iv

37

Waiting 14/11/2006 01:47 pm

Waiting 11/11/2008 02:02 pm

Open HV11/?rnlF. 03:53 pm

portfolio

Waiting 05/11/2008 04:07 pm

Waiting 08/10/2008 10:02 am

Open Q7/1Q/2Q08 03-.40 pm

Priority

None

Group

PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

Nnne PPS Application Support RPT

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

None PPS Application Support EPI

N rp
r Jlii-plr- liN-

FF Application Support EPI
o f 3nd for members with

Customer

Pantso, Beverley

McKernan, f--andy

Van der Spuy, Rossou*/.i

van Wyk. Retha

van Wyk, Retha

van W/k , Retha

van der Walt, Dirk

Esterhuyse, Jacques

Quitowitz-Broad, Colin

Quitc.wits-E.road, Colin

BabuUII, Nitasha

Mosime, Sedi

Quitowit i-Broad, Colin

Jacobs, Johar.

van Wyk, Retha

Jenner, Scott

McKern&n, M*ndy

Mckernan, Mandy

Jenner, Scott

Jenner, Scott

Assignee

ASsignee; Esterhuyse, Jacques

Assignee: Esterhuyse, Jacques

Assignee: Esterhuyse, Jacques

ASsignee: Esterhuyse, Jacques

Assignee: Esterhuyse, Jacques

Assignee: Esterhuyse, Jacques

As.ignee: Esterhuyse, Jacques

Assignee: Esterhuyse, Jacques

Assignee: Esterhuyse, Jacques

Assignee: Esterhuyse, Jacques

Assignee: Esterhuy55, Jacques

As•ignee: Esterhuyse, Jacques

Assignee: Esterhuyse, Jacques

Assignpe: Fsrerriuyse, lar.qiie.

Assignee: Esterhuyse. Jacques

ACsignee: Esterhuyse, Jacques

Assignee: Esterhuyse. Jacques

Assignee: Esterhu-se, Jacques

Assignee: Esterhuyse, Jacques

Assignee: Esterhu-se, Jacques

1-20 of 2C
D>n-

Figure 8-2 Application used to manage incidents and change requests

8.2.4. Evaluation of OO and DW

The parties involved in the development of the DW were the following:

• A developer (the researcher)

• A business analyst

• Application support manager

The above mentioned parties had a good understanding of OO development with

only the developer understanding DW techniques. Therefore, one of the

challenges was to create a DW allowing for individuals with OO background to

understand the methodology.

y

1 4 4

1 44

301

http://Jar.se
http://Quitc.wits-E.road

Chapter 8 - Evaluation of the IS Prototype

Table 8-2 to Table 8-7 represent an interview with the business analyst and the

application support manager to ascertain how they understood the methodology

followed in chapter 7.

Question Business Analyst Application support manager
Requirements gathering

Was the concept of the
DW use case diagram
used properly?

"The DW use case diagram allows
one to define the different areas to
focus on when deciding to develop
a system. In this case it was
successful."

From a business point of view, the
DW use case is a very effective
way of communicating with the
different business units and the
people responsible for certain
departments.

In some sense it also illustrates the
collaboration between certain
departments and their managers.

In this sense, the DW use case
diagram did achieve to illustrate
the different areas of the business,
and compared to the DW use case
used in normal development this
diagram did not differ.

Was the concept of the
DW use cases used
properly?

"The DW use cases did differ
slightly from what is used normally
in use cases. A normal DW use
case describes a process in a
sequence of steps.

This seems to provide information
of what data there could be. If the
idea of a DW use case is to define
what information is available, then
it was used successfully."

The grain is not a concept used in
normal use cases but "defining the
so-called grain of the use case is a
new concept, but understandable."

The reasoning of the grain makes
sense, as this seems to be the
"driving force" of the process or
business department that is being
interviewed.

"Defining each input for a
department is somewhat
unnecessary, as this can become
very large and not always useful."

"Defining the grain is a way of
determining what data is used or
generated for the relevant
department's job."

The use case diagram "highlighted
the different areas that one can
focus on for developing data
marts", and one can easily identify
the relation between the DW use
case diagram and the DW matrix.

Table 8-1 Requirements gathering on development of the DW using OO techniques

302

Chapter 8 - Evaluation of the IS Prototype

Is the concept of a
business process use
case diagram useful?

The business process use case
diagram "seems like another name
for a normal use case diagram."

The idea of a use case diagram is
to (as previously mentioned)
capture the sequence of steps of a
process.

"This technique does seem to do
fust that."

The business process use case
diagram "is an excellent tool to
convey what the department does.

It is also a very good starting point
to determine which reports are
needed and what is needed on
these reports."

Was CRC a
meaningful technique
to determine the
problem domain?

"CRC is not a tool that is
commonly used in the
development culture of this
company. Some of the domain
objects were defined but there are
other ways to do this as well."

N/A

Was the
supplementary
documentation
meaningful?

Yes it was. "Nothing out of the
ordinary."

N/A

Did you understand
the techniques used?

"Mostly yes, as many of these
techniques are based on the
normal development ones."

The only technique that differed is
"the DW use case diagram and the
DW use cases though similar to
the normal use case".

"Defining the grain for the DW use
case is a new concept."

"Yes, these techniques were
successful as a communication
tool between colleagues", "1 was
able to identify the different
business areas and the key
stakeholders within the
departments."

Table 8-2 (Continued) Requirements gathering on development of the DW using 0 0

techniques

303

Chapter 8 - Evaluation of the IS Prototype

Question Business Analyst Application support manager
Analysis of requirements

Any comments on the
system use cases
used?

"This was similar to the essential
use cases with only system
requirements added." The DW
systems use cases "seems to be
an unnecessary step, it had only
the data type added, the rest was
exactly the same."

Most of the technical detail could
have been added during the
essential DW use case.

"It is understandable that the
system use cases are done
separately from the essential use
cases, but one should consider
creating a hybrid type of use case
to save some time."

"Probably the main reason for the
feeling of using one use case is
because in other projects only one
use case is created. The data
types are defined in a data
extraction definition (DED)
document. The DED is
accompanied by the use case."

Was the sequence
diagram meaningful?

"No not really, the idea of a
sequence diagram in general is to
describe the follow of a process
and the objects between it. This is
normally down to a systems level
where the objects are defined and
the steps are clearly laid out. This
sequence diagram seemed to
attempt to describe what the link
is between that steps and its
objects, but the level is too high.

N/A

What is your
comments on the data
warehouse bus
architect matrix

"It does seem that the DW use
case with the common objects
identified complements the DW
matrix."

The matrix was not correct the first
time, but was completed with an
iterative approach between the
object identified and the
dimensions defined in the matrix.

"The matrix does make you think
about what information is really
available for the DW and how this
information corresponds to what
needs to be modelled, in other
words, should dimension x be
available for data mart y."

"This is an excellent way to
provide a bigger picture of the
project. The matrix helped with
defining project scope, modules for
the DW and indicates the
dependencies between the data
marts (departments in the
business) and the common
concepts in the business, such as
a broker or a policyholder, etc."

The matrix also serves as a mean
to test the correctness of the
analysis, for example "to check if
there is interaction between a
policyholder and the product
learning data mart."

Any comments on the
dimensional table
analysis?

It had to be changed (as used in
chapter 7) to be more descriptive
and meaningful.

N/A

Any comments on the
fact table analysis?

"Not really, was straight forward,
the facts were easily identifiable."

N/A

Table 8-3 Analysis phase on development of the DW using OO techniques

304

Chapter 8 - Evaluation of the IS Prototype

Any comments on the
hierarchy analysis and
design?

"In terms of the business it was
clear what needed a hierarchy."

N/A

Any comments on the
technical architecture
modelling analysis?

N/A N/A

In terms of 0 0 , were
the techniques used
meaningful?

"Yes, because the system use
cases are definitely used in
traditional 0 0 development. The
sequence diagrams are not used
in the correct way as it should be
used. The reason is because
sequence diagrams describe
objects in a process This was not
exactly the case as.there was no
real process in the DW
presentation to describe.
The DW bi is matrix iq a nirp

technioue to aet a too down view

feve^Tmpl^understeS"

N/A

Table 8-4 (Continued) Analysis phase on development of the DW using 0 0 techniques

From the researcher's point of view, the dimensional model, fact table and

hierarchy analysis documents provided enough information to implement the

physical tables on the database (DB), although no 0 0 concepts were used. The

technical architecture was purely DW based and did not incorporate any 0 0

concepts.
Question Business Analyst Application support manager

Design
What are your "The dimensional model provides a N/A
comments on the clear presentation of a business
dimensional model process."
techniques used?

The concept of having a table
(dimension) for each entity that
describes a fact helps to "answer
business questions, as well as to
ask new questions about
information in a certain business
process that business never asked
before."

Table 8-5 Design phase on development of the DW using 0 0 techniques

305

Chapter 8 - Evaluation of the IS Prototype

How did you find the
techniques used to
design the ETL in the
data staging services?

The "extract is defined very well
with the help of the source to target
mapping, ER and the business
rules."

The approach to use a high level to
detail level diagram extract helped
to provide an understanding of
what processes need to go into the
state chart diagram.

"The application of the state chart
diagram to an ETL process came
very naturally and was not
confusing at all."

"The same can be said about the
collaboration model that was
created for the DW."

N/A

Table 8-6 (Continued) Design phase on development of the DW using 0 0 techniques

From the researcher's point of view, the dimensional model techniques provided

enough information for development. As with all 00 development, a form of

iteration was used between the analysis and the design phase. An iterative

development lifecycle approach is a typical characteristic of 00 development.

The design techniques used in the ETL, such as the state chart diagrams, entity

relational (ER) diagrams and collaboration diagrams are typical techniques used

in normal 0 0 development. The above mentioned techniques were well suited to

effectively designing the DW.

The implementation of the DW did not involve the business analyst or the

application support manager. Therefore, the discussion on the implementation is

based on the researcher's experience. The implementation of the DW presented

no problems. The design documents provided sufficient information for

implementation. Unit testing was possible, as the DW implementation was

306

Chapter 8 - Evaluation of the IS Prototype

grouped in packages. These packages were defined from the DW matrix and the

state chart diagram.
| Business Analyst Question Application support manager

Testing
What are your
comments on the
testing of the DW?

"Testing was possible on the
outputs of the DW. Outputs in this
case are the reports and ah hoc
SQL query results. Each report
was tested by comparing it to a
similar report running production.
Only ad hoc queries that are
frequently used in the current
reporting environment were
testable. Unfortunately, ad hoc
queries that did not have a similar
report were not comparable. These
queries were tested using different
approaches where applicable."

"Currently, most of the production
systems have test packs to test the
functionality of the application.
Because the DW is a new system,
test packs still need to be created.
These test packs will automate the
testing method mentioned earlier."

"00 has different testing
strategies for code testing. The
only type of testing that was
evident was unit testing. This did
work well."

N/A

Table 8-7 Testing phase on development of the DW using 0 0 techniques

8.2.5. Conclusion on the evaluation of the data warehouse

Based on user acceptance testing, incident requests and change requests

generated by application support, there is evidence of the DW being used, while

change requests also ensuring its growth. The following is a summary of the

evaluation of the development approach focusing on the subjects below:

• Requirements gathering

• Analysis of the requirements

• Design

307

Chapter 8 - Evaluation of the IS Prototype

• Implementation

• Testing

8.2.5.1. Requirements gathering

Essential use case diagram

The perception of the essential use case diagram was favourable, as it provided

a high-level overview of the business components available. The parties involved

in requirements gathering were familiar with essential use case diagrams,

therefore very little was needed to explain the concept of DW and business

process (BP) use case diagrams.

Essential use cases

The DW and BP use cases were easily understood from the respective

diagrams. Documentation on inputs and outputs, as well as possible grain

needed by the DW use case, revealed no issues. There was also no difference

between the BP use case and the normal 0 0 development use case.

CRC diagram

CRC diagramming was not perceived favourably as use case diagrams. This

technique was successful in identifying objects in the domain and the relationship

requirements between these objects, but the general feeling was that there are

better techniques available for identifying the domain objects and their

relationships.

Gathering supplementary requirements

The documents gathered as supplementary requirements were no different from

that of normal 0 0 development.

308

Chapter 8 - Evaluation of the IS Prototype

Conclusion on requirements gathering

The use case diagram and use cases with the concept of splitting them into DW

and BP use cases worked very well. This is largely due to the fact that the

participants had background knowledge of 0 0 development.

Some negative feedback on the use of CRC as a tool to define the domain model

was received. This however, can be changed by using another domain model

technique. The supplementary documentation used was standard to 0 0

development. In general, the 0 0 requirements gathering techniques worked very

well for acquiring the necessary DW analysis information.

8.2.5.2. Analysis

System use cases

Like essential use cases, the systems use cases also followed the structure of

DW and BP systems use cases. This also worked very well with the only

negative feedback that the process of creating an essential use case and then a

systems use case is time consuming.

Sequence diagramming

The sequence diagrams were not perceived as very favourable. The general

feeling was that this technique was not suited to this type of analysis. The aim

was to discover relationships and interaction between objects.

The data warehouse bus architecture

The use of data warehouse bus architecture matrix followed easily with the help

of the objects identified (added as dimensions) and the DW use cases (added as

subject areas). To a certain degree, the sequence diagram identified the

interaction between the dimensions and the subject areas in the DW bus

architecture matrix. It can therefore be concluded that the identified domain

309

Chapter 8 - Evaluation of the IS Prototype

objects, the use cases and sequence diagrams (all of which are 0 0 techniques)

complement the development of the DW bus architecture matrix.

The dimensional table analysis

The dimensional table analysis is a DW technique and uses the DW bus

architecture matrix as a starting point. 0 0 concepts such as inheritance or

polymorphism cannot be applied to the dimensional table analysis, as the

industry standard for DB is relational and not 00 based.

The fact table analysis

The fact table analysis is also a DW technique using the DW bus architecture

matrix as a starting point. No 0 0 concepts can be applied, for the same reason

as for dimensional table analysis.

The hierarchy analysis

The dimensional table analysis is a DW technique, but hierarchies are identified

during the BP system use cases. It can therefore be stated that the hierarchies

are identified by the BP system use cases and the dimensional table analysis.

Technical architecture analysis

The technical architecture analysis consists of DW techniques only, none of

which is 0 0 based. This could be due to the type of DB the DW runs on, which is

a relational DB and not 0 0 based.

Conclusion on the analysis of requirements

Systems use cases and sequence diagrams were used to create the DW

architecture bus matrix. Hierarchies were also created by using the systems use

case and dimensional table. This suggests that the flow of analysis starts with

0 0 techniques and ends with DW techniques. Owing to the nature of relational

DB, it is not possible to implement 0 0 concepts in the DW.

310

Chapter 8 - Evaluation of the IS Prototype

8.2.5.3. Design

Table designs

The design of the DW's physical tables is not 0 0 based, since the type of DB

used. It is therefore imperative to comply with relational DB table designs. No

comment can be made about the DB size and index plan, as these are used for

operational purposes and not for development. The 0 0 concept of iteration was

done between analysis and design and even the requirements of the DW.

Data staging designs

Based on the information of the analysis documents (dimensional and fact table

designs, ER model and schematic plans), it was possible to design the data

staging with 0 0 techniques, such as state chart models and collaboration

models. Also ER models were used to achieve this. The combination of these

techniques was favoured and proved successful.

Conclusion on the designs

The use of 0 0 concepts in the design of a DW running on a relational DB is not

always possible. However, in data staging, 0 0 techniques can be used to

describe the process of the ETL package, although relational DB techniques are

still required to describe the storage format.

8.2.5.4. Implementation

Implementation of the code was possible with the design documents provided.

The code was implemented in a packaged fashion. This allowed unit testing and

some form of reuse. Reuse forms, such as polymorphism, extends and

inheritance were not possible due to the type of DB used.

311

Chapter 8 - Evaluation of the IS Prototype

8.2.5.5. Testing

Unit testing was possible, as each unit test consisted of duplication testing,

reconciliation testing (where applicable) and changing dimension testing (where

applicable).

Based on the evaluation and feedback of parties involved, the implementation of

the DW may be considered a success.

8.3. Specifying learning

This section deals with specifying learning during evaluation of the DW. This

forms part of the specifying learning phase of action research as explained in

Baskerville (1999:13) and illustrated in Figure 8-3.

Figure 8-3 Specifying learning in the Action Research Cycle (Baskerville, 1999:14)

The following is a discussion on specifying learning, focusing on the following:

• Requirements gathering

• Analysis of the requirements

• Design

• Implementation

• Testing

312

Chapter 8 - Evaluation of the IS Prototype

8.3.1. Requirements gathering

The introduction of a DW use case diagram and DW use cases appeared to be

successful. A comment was made about the necessity of DW systems use

cases, the perception being that the information contained in the DW systems

use case is the same as in the essential DW systems use case, only with data

type definitions still to be added to the essential systems use case. For future

iterations, one may consider executing the DW systems use case in the way

commented on, but bearing in mind that both the essential use case and the

systems use case are systems dependent.

Another comment on the DW essential use case was that it did not describe a

sequence of events, but rather the data existing in the use case. The concept

behind the DW essential use case is to discover which information is available

and at what level. Although it worked very well, for future iterations consideration

should be given to using another technique portraying what information is

available within the scope of the business unit.

The concept of a business process use case diagram appeared to be working

well, as this is essentially a normal 0 0 use case diagram with the function of

discovering the business processes within the department. For future iterations,

this should be kept unchanged.

Some negative feedback was received regarding the use of CRC as a tool for

defining the domain model. However, it should also be borne in mind that the

insurance company does not use CRC as a domain modelling tool and that this

could be the reason for rejection. For future iterations, consideration should be

given to using another domain modelling technique, or to improve on educating

the parties involved.

313

Chapter 8 - Evaluation of the IS Prototype

The supplementary documentation that was used is standard to 0 0

development. In general, 0 0 requirements gathering techniques worked very

well for acquiring necessary DW analysis information and should be used for

future iterations of the study.

The general perception was that the requirements gathering techniques were

successful, even with negative feedback on the CRC technique.

8.3.2. Analysis of the requirements

As discussed above, the DW systems use case was perceived as tedious.

Negative feedback was received on the sequence diagrams. The general

perception was that it is not suitable for this type of analysis. The interview

suggested that the idea of a sequence diagram is to describe the flow of a

process and the interaction between the defined objects on a systems level. A

comment was made that the sequence diagrams created in this study were on a

higher level. For future iterations, another process technique linking the objects

and the process steps may be considered.

The DW bus architecture matrix was perceived to be successful. The fact that it

is done iteratively, suggested an 0 0 approach to the development of the DW bus

architecture matrix. It was also stated that the DW bus architecture matrix was

complemented by the 0 0 techniques used for requirements gathering and

analysis. These techniques should be used for future iterations.

The dimensional table, fact table, hierarchy analysis and technical architecture

were perceived to be successful, but did not incorporate any 0 0 techniques. The

main reason for this being the underlying relational based DB system, preventing

the application of 0 0 concepts to the techniques used. If available, an 0 0 DB

should be considered for the next iteration of the study.

314

Chapter 8 - Evaluation of the IS Prototype

In general, the 0 0 techniques did complement the analysis of the DW. A

transition from 0 0 structure (the use cases and sequence diagrams) to a more

relational structure (dimensional tables, fact tables and hierarchy analysis) was

perceived.

8.3.3. Design

As with dimensional modelling, design was purely relational-based, mainly

because of the underlying platform (DB) being relational. Therefore, incorporation

of any 0 0 techniques could not be expected. Owing to its non-availability, an

0 0 DB could not be used for this study, but may be considered for future

iterations.

The design of the ETL was complemented by the state chart diagrams, ER

diagrams and collaboration diagrams as it represents a process of transformation

of data between two systems. These techniques should be used for future

iterations of the study.

8.3.4. Implementation

Feedback on the implementation of the DW is based on the researcher's

experience. The implementation was possible with the requirements and analysis

documents received. A form of iteration was present between implementation

and analysis and sometimes the requirements documents. This is characteristic

of 0 0 development.

The implementation process cannot be changed, but it can be made more

efficient by means of optimising the analysis documents. Therefore, the

implementation phase will be the same for future iterations.

8.3.5. Testing

Testing was completed by the business analyst, the interview suggesting that

unit testing was possible and that automated testing can be applied to outputs of

315

Chapter 8 - Evaluation of the IS Prototype

the DW. The only shortcoming during the testing phase was that the results of

new ad hoc queries were not verifiable. Unit testing is a form of an 0 0

technique, but more testing techniques should be considered for future iterations.

8.3.6. Future iterations of the study

Future iterations of the study are possible, but for financial reasons not feasible.

Information systems, especially DW systems, are expensive to develop, however

this study can be used for future research.

8.4. Conclusion

The research question considered in this study was to determine whether a data

warehouse can be developed by using a data warehouse methodology and

incorporating object-oriented techniques.

The development of the DW generally appeared to be successful.

The following are findings of the research question, as well as an evaluation

thereof, as discussed in this chapter.

The use of 0 0 requirements gathering techniques generally proves to be

successful. The use case diagram and use cases with the concept of splitting

them into DW and business process use cases worked very well. This is largely

due to the fact that the participants had background knowledge of 0 0

development.

An analysis flow starting with 0 0 techniques and ending with DW techniques

was suggested. The systems use cases and sequence diagrams were used to

create the DW architecture bus matrix. Hierarchies were also created by using

the systems use case and dimensional table.

316

Chapter 8 - Evaluation of the IS Prototype

The use of 0 0 concepts in the design of a DW running on a relational database

is not always possible. However, in the data staging process 0 0 techniques can

be used to describe the process of the ETL package, although relational DB

techniques are still required to describe the storage format.

The only concepts of 0 0 in the implementation process were the modular

implementation of the code developed and the reuse (exact reuse). Other 0 0

concepts, such as extends, inherits and polymorphism could not be introduced

as the DW was developed on a relational DB.

The only concept of 0 0 testing possible, was unit testing, but automated testing

can be done.

The 0 0 concept of iteration was done between analysis and design and even

the requirements of the DW.

The use of a relational DB restricted 0 0 in the design and implementation

phases of DW development. Researching the use of 0 0 DB management

systems in DW development may therefore be considered.

One limitation was that the results obtained from this study were based on the

experience of the parties involved. With no 0 0 background available, the result

could have been different.

8.5. Summary

The aim of the study was to explore the use of object-oriented methodologies in

data warehouse development. The study followed a qualitative research

approach and action research as the research method. Chapters 3, 4 and 5

discussed the literature needed for this study.

317

Chapter 8 - Evaluation of the IS Prototype

Chapter 3 explained what information systems development methodologies are.

These are defined as a combination of systems development approaches

(ISDA), systems development process models, systems development methods

(ISDM) and systems development techniques.

A discussion on general 0 0 methodologies followed in chapter 4. The following

methodologies were discussed in detail:

• Object-Oriented Analysis (OOA)

• Object-Oriented Software Process (OOSP)

• Rational Unified Process (RUP)

• Object Modeling Technique (OMT)

A table was derived from common techniques and phases in methodologies

listed above.

Chapter 5 was a literature study on the development methodologies for data

warehouses. This chapter covered the business development lifecycle approach

to data warehouse development (Kimball et a/., 1998) and data driven

methodologies (Inmon, 1996).

The remainder of the chapters was structured around the Action Research Cycle

(Baskerville, 1999), illustrated in Figure 8-4.

'Diagnosing)______

Chapter a /

f Specifying ^
\ ^ Learning J

Reported in
Chapter 7

\
f Action > v
V. Planning\J

Ichapter6

^ { Evaluating) (Action Taking Je

C h a p t e r 8 ~ ~ I < ^ Z . J^ 'Chapter 7

Figure 8-4 Chapters according to the Action Research Cycle (Baskerville, 1999:14)

318

Chapter 8 - Evaluation of the IS Prototype

Chapter 6 focused on the action planning phase of the Action Research Cycle.

This chapter attempted to create a method for implementing a data warehouse

by using methods and techniques available in both object-oriented

methodologies and data warehouse methodologies.

Chapter 7 represented the action taking phase of the Action Research Cycle.

This chapter was an interpretive experiment discussing the implementation of the

method created in chapter 6.

The first part of chapter 8 depicted the evaluating phase of the Action Research

Cycle. This part attempted to discover the perception of techniques used to

implement the DW (chapter 7).

The second part of chapter 8 served as the specified learning phase of the Action

Research Cycle. This part discussed the knowledge gained from the study, as

well as possible recommendations for future iterations. Chapter 8 ended with the

conclusion on the study.

319

References
AMBLER, W.P. 2001. The Object Primer 2nd ed.: New York: Cambridge

University Press.

ANONYMOUS. 2007. Design of the data warehouse: Kimball Vs Inmon. [Web:]

http://www.exforsys.com/tutorials/msas/data-warehouse-design-kimball-vs-

inmon.html [Date of use 31 July 2007]

ANONYMOUS. 2006. Data Warehouse portal basics.

[Web:] http://www.dmreview.com/channels/dw_basics.html [Date of use 1 July

2006]

ANAHORY, S. & MURRAY, D. 1997. Data warehousing in the real world: a

practical guide for building decision support systems. Harlow, England; Reading,

Mass: Addison-Wesley.

AVISON, D.E. & FITZGERALD, G. 2003. Information Systems Development 3rd

Edition: Mc-Graw Hill.

BASKERVILLE, R.L. 1999. Investigating information systems with action

research. Communications oftheAIS, vol 2 article 19.

BOAHENE, M. 1999. Information systems development methodologies: Are you

being served? Proceedings of 1999 Australasian Conference on Information

Systems. Wellington, New Zealand, p.88-99.

BOOCH, G. 1994. Object Oriented Design with Applications (2nd ed.): Benjamin-

Cummings.

320

http://www.exforsys.com/tutorials/msas/data-warehouse-design-kimball-vsinmon.html
http://www.exforsys.com/tutorials/msas/data-warehouse-design-kimball-vsinmon.html
http://www.dmreview.com/channels/dw_basics.html

BOOCH, G., RUMBAUGH, J. & JACOBSON, I. 2001. The Unified Modelling

Language Reference Manual: Addison Wesley Longman.

BRINKKEMPER, S., LYYTINEN, K. & WELKE, R.J. 1996. Methood engineering:

Principals of Construction and Tools Support. London: Chapman & Hall,

BURRELL, G. & MORGAN, G. 1979. Sociological paradigms and organizational

analysis. London: Heinemann.

CHUA, W.F. 1986. Radical Developments in Accounting thought. The Accounting

Review, 61:615

COAD, P. & YOURDON, E. 1991. Object oriented analysis, 2nd Edition. New

Jersey: Prentice Hall, England Cliffs.

HARVEY, L. 1990. Critical social research. London: Unwin Hyman.

HUISMAN, M. & IIVARI, J. 2003. Systems development methodology use in

South Africa. Ninth Americas Conference on Information Systems, 1040-1052

IIVARI, J., HIRSCHHEIM, R. & KLEIN H.K.1998. A Paradigmatic Analysis

Contrasting Information Systems Development Approaches and Methodologies.

Information Systems Research, vol. 9. no 2

IIVARI, J., HIRSCHHEIM, R. & KLEIN, H.K. 1999. Beyond Methodologies:

Keeping up with Information Systems Development Approaches through

Dynamic Classification. Proceedings of the 32nd Hawaii Conference on Systems

Sciences

321

IIVARI, J., HIRSCHHEIM, R. & KLEIN, H.K. 2000. A Dynamic Framework for

Classifying Information Systems Development Methodologies and Approaches.

Journal of Management Information Systems, 17(3): 179-218

INMON, W.H. 1996. Building the data warehouse 2nd edition: John Wiley and

sons.

JACOBSON, I., BOOCH, G. & RUMBAUGH, J. 2001.The Unified Software

Development Process. Boston: Addison Wesley.

KAPLAN, B. & MAXWELL, J.A. 1994. Qualitative Research Methods for

Evaluating Computer Information Systems. (In, ANDERSON, J.G. AYDIN, C.E. &

JAY, S.J. (eds.). 1994. Evaluating Health Care Information Systems: Methods

and Applications. CA: Sage, Thousand Oaks. p. 45-68.)

KIMBALL, R. & CASERTA, J. 2004. The Data Warehouse ETL Toolkit.

Indianapolis: Willey.

KIMBALL, R., REEVES, L, ROSS, M. & THORNTHWAITE, W. 1998. The data

warehouse lifecycle toolkit. New York: Wiley.

KLEIN, H.K. & MYERS D.M. 1999. A Set of Principles for Conducting and

Evaluating Interpretive Field Studies in Information Systems. MIS Quarterly,

23(1):67-94.

KUHN, T.S. 1970. The structure of Scientific Revolutions, 2nd edition. Chicago:
University of Chicago Press.

322

LEEDY, P.D. & ORMOND, J.E. 2005. Practical research: planning and design:

Pearson/Merrill Prentice Hall

MARCH, S. & SMITH, G. 1995. Design and Natural Science Research on

Information Technology. Decision support systems 15(4):251-266.

MARTIN, P.Y. & TURNER, B.A. 1986. Grounded Theory and Organizational

Research. The Journal of Applied Behavioral Science, 22(2):141-157.

MOORE, J.M. & BAILIN, S.C. 1988. Position paper on domain analysis. Lauerel,

MD: CTA

MYERS, M.D. 1997. Qualitative Research in Information Systems. MIS

Quarterly, 21(2):241-242. [Web:] http://www.misq.org/discovery/MISQD_isworld/.

[Date of use 8 December 2008]

ORLIKOWSKI, W.J. & BAROUDI, J.J. 1991. Studying Information Technology in

Organizations: Research Approaches and Assumptions. Information Systems

Research 2:1 -28.

RAMAKRISHNAN, R. & GEHRKE, J. 2003. Database Management Systems

(third edition): McGraw Hill.

RAPOPORT, R.N. 1970. Three Dilemmas in Action Research. Human Relations,

23(6): 499-513.

ROB, P. & CORONEL, C. 2002. Database Systems Design, Implementation, and

Design (5th Edition): Course Technology

323

http://www.misq.org/discovery/MISQD_isworld/

RUMBAUGH, J., BLAHA, J., PREMERLANI, W., EDDY, F. & LORENSEN, W.

1991. Object-Oriented Modelling and Design. Englewood Cliffs, NJ: Prentice

Hall.

SEN, A. & SINHA, A.P. 2005. A Comparison of using Data Warehousing

Methodologies. Communications of the ACM, 48(3):79-84.

WALSHAM, G. 1993. Interpreting Information Systems in Organizations. London:

Wiley.

WYNEKOOP, J.L. & RUSSO, N.L. 1993. Systems Development Methodologies:

Unanswered questions and the research-practice gap. {In DEGROSS, J.I.

BOSTROM, R. ROBEY, D. (ed.) 1993. Proceedings of the Fourteenth

International Conference on Information Systems, Orlando, FL. p. 181-190.)

324

