The use of object oriented systems development methodologies in data
warehouse development

Esterhuyse, J
12247219

Dissertation in partial fulfilment of the requirements for the degree Master of

Science at the Potchefstroom campus of the North-West University.

Supervisor: Dr. R Goede

Co-supervisor: Prof. HM Huisman

Nov 2008

Abstract

CANDIDATE: Jacques Esterhuyse

PROMOTOR: Dr. R Goede / Prof. HM Huisman

DEPARTMENT: Computer Science

DEGREE: Master of Science (Information Technology)

KEYWORDS: Object oriented, data warehousing, decision support systems,
data warehousing, information systems development

methodologies.

Research has shown that data warehouses potentially offer great investment
opportunities to business. To benefit from this, business needs to invest large
sums of money. Such investments are very risky, as no guarantee of the success
of these ventures can be given.

Object-oriented development has proved successful for developing operational
systems in industry. This study researches object-oriented techniques to discover

whether these techniques could be used successfully in data warehousing.

A literature study focuses on the definition of an information systems
development methodology and defines the components of such methodology. A
further literature study on four popular object-oriented methodologies determines
the commonalities of these methodologies. In conclusion, a literature study on
data warehouse methodologies is done to discover the phases and techniques
used in developing data warehouses.

Based on the literature, a method is proposed to build a data warehouse
harnessing object-oriented phases and techniques. The proposed method is
applied as an interpretive experiment, followed by an evaluation of the data
warehouse implemented.

Opsomming

KANDIDAAT: Jacques Esterhuyse

PROMOTOR: Dr. R Goede / Prof. HM Huisman
DEPARTEMENT: Rekenaar wetenskap

GRAAD: Meesters in wetenskap (Inligtingstegnologie)

SLEUTEL WOORDE: Objek georiénteerde ontwerp, data pakhuise, besluit steun
stelsels, informasie stelsel ontwerp metodologie

Navorsing het getoon dat data pakhuise moontlik groot beleggings geleenthede

beskikbaar stel aan besighede. Om die voordeel hiervan te realiseer moet

besighede groot somme geld belé. Sulke beleggings is riskant aangesien die

sukses hiervan nie gewaarborg kan word nie.

Objek georiénteerde ontwerp se sukses in die ontwikkeling van operasionele
stelsels is reeds bewys in industrie. Met hierdie studie word navorsing gedoen na
objek georiénteerde tegnieke om uit te vind of hierdie tegnieke suksesvol gebruik
kan word in die ontwerp en skepping van data pakhuise.

‘n Literatuurstude fokus op die definisie van ‘n inligtingstelsel ontwikkelings
metodologie en definieer die komponente van sb ‘n metodologie. ‘n Verdere
literatuurstudie is gedoen op vier populére objek georiénteerde metodologié om
die ooreenkomste 'te bepaal tussen die metodologié. Ten slotte is ‘n
literatuurstudie gedoen na data pakhuis metodologié om uit te vind watter fases
en tegnieke gebruik kan word in die ontwikkeling van data pakhuise.

Gebasseer op die literatuurstudie, word ‘n metode voorgestel vir die bou van ‘n
data pakhuis deur middel van objek georiénteerde fases en tegnieke. Die
voorgestelde metode is toegepas as ‘n interpratiewe eksperiment gevolg deur ‘n

evaluasie van die data pakhuis implementasie.

Table of contents

Chapter 1 - INtroduction e 1
1.1 INEFOAUCHION. ...ttt 1
1.2. Background e 1
1.3. Motivation fOr StUAYcoeeeriiiiii i 2
1.4. Problem statement ... 6
1.5. MethOdOIOGYeveieiiiiii e 6
1.6. Limitations of the study ... 7
1.7. Provisional chapter allocation...............cccuuveeeiiiceiiiiiiiiiieeeeee e 8

Chapter 2 - Research methodology...........cccouimmicnicnnnni s 9
1228 I 131 (e T [T (1] o TS O SO SO PP 9
2.2. Overview of quantitative and qualitative researchccccoceeeee 9
2.3. Philosophical perspectivescccc.uvvuivieiiiiemieeeiiieeeeeeeeeeeeeeeeteer e eneee s 10
2.4. Qualitative research methods...............cci e 11
2.5. ACtiON rESEAICH ..o e 12
2.6. Research considerations for this study.........cccccco i 14
2.7 SUMMATY ...ttt ettt e e e s e s et e s s e e e n e et e e e e s srnnenbtaaeeeasan 15

Chapter 3 - Systems development methodologies.......ccccccoovmmrerrrvecicnnenennnn. 16
K 20 IR 4] 0 Le [oa 1o o O PRSP 16
3.2. Systems development approachccccocciiviiiiiviieiieeeeeeeeeeer e 17
3.3. Systems development process model...........cccocovviiiiieicenecciie e, 21
3.4. Information systems development method...........ccccoeciviriiiiierccieeec e, 23
3.5. Systems development teChNIQUESoccviieeiciiiee e 24
3.6. Dynamic classification framework for classifying ISDM (livariet al.) 25
3.7 SUMIMAIY ..ottt et e st e e e s s e e e e e assaaesesssabaeeeesnsreasssssaeaseraeeenesn 30

Chapter 4 - Object-Oriented Approachcccovccecerrervcmrenrssseer s e rssanses 31
3 I (01 (o T 0T ([] TSP 31
4.2. The object-oriented (OO) approach.........cccceerrieiiieieiee e 31

4.2.1. Definition and goal of the OO approach........c.ccccveveciiiiiceciiiie, 31
4.2.2. Guiding principles and beliefS........cccce oo 32
4.2.3. Fundamental CONCEPLS.........coeeiiiiiiieiieeee et 33
4.2.4. Principles of the ISD Processcccceviiiiiii i 34
4.3. The applicability of the OO methodology..........ceveeeeiiiiiiiiiiieeccceeee, 35
4.4. The OO MethodOIOGIES «.euviiieeeeiiceeee et 36
4.4.1. Object-Oriented Analysis (OOA)........c.cccceiiiriieiiiie et 36
4.4.2. Object-Oriented Software Process (OOSP)......cccvoveevciiieeccieneeeee 41
4.4.3. Rational Unified Process (RUP).......cc.cccoeeeeveiiiieieice e 64
4.4.4. Object Modelling Technique (OMT)ccoouiivieeiiiieee e 72
4.5. Comparing the 1ISD MethodolOogi€s..........ccvvveeiieiiireeeee e 81
il

4.5.1. PhilOSOPNY ..coeioiiieeet et 82

I Y. To o = PR 85
4.5.3. Techniques and to0IS.........ccceeeiiii it eeeeaanees 85
A 5.4, SCOPE....ccoeeeetttee ettt e e e e aaaaaaaaeenraan 86
455, OULPUL ...t e e e e e 87
4.5.6. PraCliCe.......ouuuuuiiieee ettt et e ee e e aa e e e eaaeees 87
A5.7. ProduUCT ... e 88
4.6. The general aspects of the comparisonoooe e, 90
4.6.1. Requirements gathering.........cceiiiriiiiiiimiiei e ereeireae e 91
4.6.2. ANAIYSIS ..oiiiiiiiiiii e naaaes 92
4.6.3. DESIGN......ceeiiiiiiiii et e ettt e e e e et e e aaaaeaeeaeaaan 93
4.6.4. Implementationccccccoviiuuirieiir e 94
SR T =T (] o TSSO UUPPPRRUROPN 94
A TH 1 1 = T Y S 95
Chapter 5 - Data Warehouse Development...........mmriiiinrmreeerccnneccneeeneenne 98
5.1, INtrOAUGCHION. ...t a e 98
5.2. The data War€hOUSE...........cooicceiiiiieiei i naenns 98
5.3. The data warehouse development methodologiesccccceieeeccnnnnnnnn. 102
5.3.1. The business dimensional lifecycle approach.............c.cccccccoeee. 102
5.3.2. Data driven methodologycccvveeiiiiiiiciiiiie e, 125
B4, SUMMANY ...t 139
Chapter 6 - Data Warehouse and the Object Oriented Approach............... 140
B.1. INtrodUCHON. ..o ——— 140
6.2. The OO MOAEL......c.ccciiiiie et 140
6.3. Data warehouse (DW) development using the Business dimensional
lifecycle approach phases and an OO approach............cccccooveeecccieineenneen, 141
6.3.1. Business Requirements Definitionooocoov oo 143
6.3.2. Dimensional Modeling.............cccocimiviieeeei i 156
6.3.3. Technical Architecture modelling...............ccocviieiiiiieeecieeee e, 173
6.3.4. PhySiCal DESIQN ...ccciiiieiieee e ettt e e e e 180
6.3.5. Data staging.......ccoooe i 183
6.3.6. End use applicationccccovviiiieeeiie e 191
6.3.7. DEPIOYMENL......coiiiiie e 192
6.3.8. Maintenance and growth.............ccccciiiiiiiiiinnc e 192
6.3.9. Summary: The business dimensional lifecycle approach based on an
OO0 GPPIOBCK ...t e e e et n e e aa e e 194
6.4. Data warehouse development using the Data-driven methodology phases
.. 197
6.4.1. Data model analySiSooooeeiveeiiiii e 198
B.5. SUMMAIY ...ttt bttt e et eeeeeaeeenees 210

Chapter 7 - Object-oriented implementation of a data warehouse.............. 216

7. INIrOAUCHION. .. e 216
7.2. Research question and scope of Studycccooeeeiniicmiecnii, 216
7.3. Nature of the studyccovoii e, 216
7.4. Research Methodcoooiieiieiiiiiiee et 217
7.5. RESEANCH deSIGN . ..uuviviiiiie ettt ettt 217
7.6. Implementing the business lifecycle approach in an object-oriented
FASNION. . e 219
7.6.1. Diagnosis and Background to the data warehouse prototype
IMPIEMENTEA ... 219
7.6.2. Business requirements definitionc..ooo oo, 220
7.6.3. Dimensional modelling.......c.ccoriiiiiiieiin e 241
7.6.4. Technical Architecture modellingoccvieeeri e, 264
7.6.5. Physical deSigNScccoiviiiiiiie e 272
7.6.6. Data Staging....c.....cccueiieeeiieeecieee e 281
7.6.7. End user appliCationsS...........covuvviiieiiir e 288
7.6.8. DEPIOYMENt... ..ot 290
7.6.9. Maintenance and growth..............cccccveeiiii e, 291
O =10 110 2= o7 292
Chapter 8 - Evaluation of the IS Prototypecccococirvccmmnnscmrencce e nnsneens 295
8.1, INtrodUCLION. ... 295
8.2. The research question and the evaluationccviii e, 295
8.2.1. User acceptance testingcccceiiicciiicniiine e 296
8.2.2. INCIent reQUESESooeeiiieeeeeeeee e 297
8.2.3. Change reqUESEScooiiiiriei ittt 300
8.2.4. Evaluation of OO and DW...........cooviiieiiiiiieec e 301
8.2.5. Conclusion on the evaluation of the data warehouse 307
8.3. SpecCifyiNng 1€arningcocoieecriieeie e 312
8.3.1. Requirements gathering........c.c.ccoceeeeieeennen. s 313
8.3.2. Analysis of the requirements.........ccccccoeviieeeciiiiee i 314
B.3.3. DESIGN e 315
8.3.4. Implementationoeooiiiiiiiiiiiee e 315
8.3, 5. TSN e it 315
8.3.6. Future iterations of the studycc..cocviiiiiiiiiiicce e 316
8.4, CONCIUSION....coiiiiiiiii e a e 316
8.5, SUMIMAIY ..o et e e eee s 317
L= =] (= Lo - T O 320

List of figures

Figure 1-1 The Action Research Cycle (Baskerville, 1999:14).................c.coeec 7
Figure 2-1 Underlying epistemology of qualitative research (Myers, 1997) 10
Figure 2-2 The Action Research Cycle (Baskerville, 1999:14).......................... 13
Figure 3-1 Evolutionary development (Avison & Fitzgerald, 2003:86) 22
Figure 3-2 Boehm's sprial model (Avison & Fitzgerald, 2003:88)cc.cc....... 23
Figure 3-3 The dynamic classification framework (livari et al., 2000:189)........... 25
Figure 4-1 The OOSP Methodology (Ambler, 2001:439)cccccorniiiiiiiiinnnnn. 42
Figure 4-2 A use case diagram for a simple university (Ambler, 2001:46).......... 44
Figure 4-3 "Enroll in seminar" as an essential use case (Ambler, 2001:55)........ 45
Figure 4-4 User interface flow diagram (Arnbler, 2001:73)ccooiviiinieeriineeen. 46
Figure 4-5 An example CRC card (Ambler, 2001:76)ccccccoeiiiiiinniieeeniiiiene, 47
Figure 4-6 System use case (Ambler, 2001:187)..........ccccovniiiiiiiiee, 51

Figure 4-7 Sequence diagram for student (Avison & Fitzgeraid, 2000:199)........ 52
Figure 4-8 A UML class diagram based on the CRC model (Ambler,2001:210).53

Figure 4-9 UML activity diagram (Ambler, 2001:230)..........cccceeimveeeeiiiieec e, 54
Figure 4-10 Layering system based on class types (Ambler, 2001:255)............. 57
Figure 4-11 The student and studentnumber design classes (Ambler, 2001:282)
.. 60
Figure 4-12 State chart diagram for student object (Avison & Fitzgerald,
2000254) ... et e e e et ra e e e eaaeae e aenees 61
Figure 4-13 A collaboration diagram (Ambler, 2001:302)c..cccccovvveeeeerinneen.. 62
Figure 4-14 Deployment diagram (Ambler, 2001:313)......cccceiiiieeiviee e, 62
Figure 4-15 The five work flows that takes place over the four phases (Jacobson
EF AL, 2007110) et r e e e e e 65
Figure 4-16 Object model (Rumbaugh et al., 1991:168).........cccccveeviveviieeennn.. 75

Figure 4-17 Example of a function description (Rumbaugh et al., 1991:183)77
Figure 4-18 Outline for the comparative review of methodologies (Avison &
Fitzgerald, 2003:556)cooiiuiiiiiie e 82

Vi

Figure 4-19 The requirements phase........cccccovvveii 92

Figure 4-20 The analysis phase..........cccoveriiiiiii e 93
Figure 4-21 The design Phaseccooiiiiiiiiiiii e 94
Figure 4-22 The implementation phasecccccoiiiiiii e 94
Figure 4-23 The testing Phasecocvveiiiii i 94
Figure 4-24 Summary of requirements, analysis, design, implementation and
L3511 o 1R TSP EEPUR 97
Figure 5-1 Star schema for sales (Rob & Coronel, 2002:647) 100
Figure 5-2 A Typical Data Warehouse Architecture (Ramakrishnan & Gehrke,
2003:870) .. eeeee et e e ea e e e e e e e entreeas 101
Figure 5-3 The business dimensional lifecycle (Kimball et al., 1998:33)........... 103
Figure 5-4 Business requirements impact every aspect of the data warehouse
project (Kimball et al., 1998:96)ccoiimiriieeeee e 106
Figure 5-5 Example of a fact table (Kimball et al., 1998:145) 107
Figure 5-6 The Data Warehouse Bus Architecture matrix for a telephone
company (Kimball et al., 1998:271)........ccccoeeiiiiiii e 111

Figure 5-7 Basic high-level data staging plan schematic (Kimball et al., 1998:613)

Figure 5-8 High-level technical architecture model (Kimball et al., 1998:329) ..117
Figure 5-9 Architecture development process flow chart (Kimball et al., 1998:503)

.. 119
Figure 5-10 The relationship between the éorporate data model and the
operational model and data warehouse model (Inmon, 1996:83)..................... 127
Figure 5-11 Stability Analysis performed on a table (Inmon, 1996:84).............. 129
Figure 5-12 Example of a data item set (Inmon, 1996:89)..............cccooveereennnn.. 130
Figure 5-13 Example of a physical model (Inmon, 1996:93)............ccccoeeveennen.. 131
Figure 5-14 A three dimensional view of data in the data warehouse (Inmon,
1996:140) .. e e e e e 134
Figure 5-15 A star join of the order entity (Inmon, 1996:141)............................ 135

Vii

Figure 5-16 The feedback loop (Inmon, 1996:283)...........coovcvmiriieiriiiinnnnen. 138

Figure 6-1 Summary of requirements, analysis, design, implementation and

LCSE3 1 T S PR 141
Figure 6-2 Business Dimensional Lifecycle diagram (Kimball et al. ,1998:33)..142
Figure 6-3 Requirements Model in OOD...........ccccieeeii e, 143
Figure 6-4 Data warehouse use case diagramcccccovveeeenniinneinn e nnecnnens 145

Figure 6-5 Essential business process use case diagram example for an

INSUFANCE COMIPANY ..cetiiinnuuaiereeeeaereeertruear s s s e e rertrasras st r e e s eeene s bbb aseeseeaseasanessnns 146
Figure 6-6 Data warehouse use case example for sales department................ 148
Figure 6-7 Use case example for quoting businessccoocooiiciinen. 149
Figure 6-8 Example of a DW CRC MOdelccccooiiiiiiiiiiiiiiir e 152
Figure 6-9 Documentation on data warehouse maintenance and growth......... 154
Figure 6-10 Object Oriented Analysis activitiesc.o oo, 157

Figure 6-11 Data warehouse system use case example for sales department. 158
Figure 6-12 Business process system use case example for quoting business159
Figure 6-13 Sequence diagram for quoting for insurance............cc....ccooeuuvnnee... 160

Figure 6-14 The Data Warehouse Bus Architecture matrix for the insurance

COMPANY EXAMPIE. ...ttt e e r et r e e e e e e et e eeeesabbb s e e eeeneeeeereeaeeerees 165
Figure 6-15 Dimension table diagram (Kimball et al., 1998:281) 167
Figure 6-16 Dimension attribute detail description (Kimball et al., 1998:283) ...168
Figure 6-17 Quote fact table diagramccccccooieiiiiiiieie e 169
Figure 6-18 Fact table detail for quote fact table..................c.coooiiiiiiiiin 169
Figure 6-19 Data source definition.............cce e, 170
Figure 6-20 Source-to-target data map........cccccoveeciic e 171
Figure 6-21 Quote dimensional MOdel...........cccociumiiiiieeiiiiieeeee e 172
Figure 6-22 Object Oriented analysis and designc..cccovueeeeeeeiiviiieeeneeeeneee. 174
Figure 6-23 High-level technical architecture model (Kimball et al., 1998:329) 174
Figure 6-24 Entity Relationship model of a sample database............................ 176
Figure 6-25 High level data stage schema plan...............cccocccovveiiiiicciinnneenn, 177

viii

Figure 6-26 Detail schematic plan for fact table loadcccoceiiiinnnen. 178

Figure 6-27 List of sources with the upload type............cooeiriiiiincie e, 179
Figure 6-28 Partial physical model for qUOte...........ooccemiiieei i, 181
Figure 6-29 Database size and index plan..........cccccoiiiiicie e 182
Figure 6-30 State chart model (SC01) extract for broker dimension (part of use
(o721 0 1 T RSP 186
Figure 6-31 ER Model for staging environment for sales ETL 187
Figure 6-32 Collaboration diagram on the ETL for the data warehouse............ 188
Figure 6-33 Example of SQL script to create the #temp_broker table 189
Figure 6-34 DTS Example for populating dimension brokercccc.oceeeee. 190
Figure 6-35 Implementation modelccco i 192
Figure 6-36 Lifecycle of a DM development..........ccoceciiiiiiniiiciiiie e 193
Figure 6-37 Data driven methodology (Inmon, 1996:344)...........ccccccoveiiinnnen. 197
Figure 6-38 Corporate entity relationship diagram for insurance company
123z 10 1]][PSP 199
Figure 6-39 UML class diagram............ccceeeeeeeieiieiiiiiie et 200
Figure 6-40 Corporate data item set for product.............coeiiiiiiiiiiii v, 201
Figure 6-41 Physical data model for product DIS.........ccccoeeiieiiciieiece, 202
Figure 6-42 Document containing the different grains needed for the subject area
.. 203
Figure 6-43 Example of the production system layoutccoovneee 204
Figure 6-44 example of a technical specification document.............................. 206
Figure 7-1 The Action Research Cycle (Baskerville, 1999:14).........ccc.cceeen... 218
Figure 7-2 Requirements Model............ooouuimiiiiiie i 221
Figure 7-3 Insurance company organisational structure (human resources
deParmMENt)o 222
Figure 7-4 Data warehouse use case diagram for the insurance company 223
Figure 7-5 Business process diagram for Sales departmentc..e..... 226
Figure 7-6 Object-Oriented Analysis diagramcccccocoeeeeiiii v, 241
iX

Figure 7-7 Quote Sequence Diagramccccociiciiiiiiinicciiie e 247

Figure 7-8 Commission Sequence Diagramcccociiiieciiinii e 247
Figure 7-9 Set Target Sequence Diagramcccoveiiiiniiiiniiie e 248
Figure 7-10 Training Sequence Diagram..........cccccvieieiiiiiinicc et e 248
Figure 7-11 Data Warehouse Bus Architect Matrix for the case study.............. 251
Figure 7-12 Lifecycle of a DM development.............coeviiiiiiie i 252
Figure 7-13 Fact table diagram and detail diagram for FACT_API 255
Figure 7-14 Star diagram for Fact Target APlccoiriiiie 263
Figure 7-15 High-level technical architecture model (Kimball ef al., 1998:329) 264
Figure 7-16 ER diagram for IAA-SPF (Part of IAA database)cc..c..... 266
Figure 7-17 ER diagram for IAA-Party (Part of IAA database)............cccce.eee. 267
Figure 7-18 ER diagram for SalesLogiXcccovvviiiiiiiiiiiec e 268
Figure 7-19 High level data stage schema plan for case study...........ccocoeu..... 269
Figure 7-20 Detail level diagram for policyholder dimension extract................. 269
Figure 7-21 Detail level diagram for intermediary dimension extract 270
Figure 7-22 Detail level diagram for actual dimension extract 270
Figure 7-23 Detail level diagram for Target APl/Head fact extract.................... 270
Figure 7-24 Detail level diagram for Target API fact and Target Head fact extract

.. 271
Figure 7-25 State chart model for SP_BUILD _IAA HIERARCHYcccccc...... 283

Figure 7-26 State chart model for SP_PROMOTE_ACTUAL
Figure 7-27 State chart model for SP_ PROMOTE_PARTY_CONSULTANT ...284
Figure 7-28 State chart model for SP_PROMOTE_PARTY_INTERMEDIARY.284
Figure 7-29 State chart model for SP_ PROMOTE_PARTY_POLICYHOLDER 285

Figure 7-30 State chart model for SP_ PROMOTE_FACT APlcccvvvevvennen.. 285
Figure 7-31 ER Model for staging environment for sales ETL 286
Figure 7-32 Collaboration diagram on the ETL for the data warehouse............ 287
Figure 7-33 SSIS that controls the flow of the stored procedures..................... 288
Figure 7-34 SQL Server Manager Studio used by developers.......................... 289

Figure 7-35 ENd USEr @pp MePONM ...c.coiiuiiee ettt enee e 290

Figure 7-36 CVS as repository system for source code............cccccvvvnniercrnnnnn. 291
Figure 8-1 Evaluation in the Action Research Cycle (Baskerville, 1999:14)296
Figure 8-2 Application used to manage incidents and change requests........... 301

Figure 8-3 Specifying learning in the Action Research Cycle (Baskerville,

(S LS s T OO UP PR 312
Figure 8-4 Chapters according to the Action Research Cycle (Baskerville,
LRSS L i I ST PRR 318

Xi

List of tables
Table 3-1 Summaries of the five IS development approaches (livari et al.,
LRSI L 1 SO 19
Table 4-1 Comparison of the philosophies of the OO methodologies. 90
Table 5-1 A comparison of data warehouse and operation database
characteristics (Rob & Coronel, 2002:624)cccccoiiiiiiiii e, 99
Table 6-1 Example of a list of data warehouse use cases generated from the
data warehouse use case diagram.coooirieriiiiieiiiie e 146

Table 6-2 Example of a list of essential use cases generated from the use case

o T=To | =1 4 ORI 147
Table 6-3 BUSINESS TUIES «...cooeeieieeee e eceeee e 153
Table 6-4 Combination of the DW use cases with the business use cases 162
Table 6-5 Technical BUSINESS TUIESiiiieiiiiiiiiiiiii e 177
Table 6-6 Standards with descriptionscccoooviiiiiiiiicccce e 181
Table 7-1 List of data warehouse use Cases.......ccccoocvviieiniiiiiiiciiiicies 224
Table 7-2 DWUCOT - SAIES ..cooeeeiiicciieeiieeee ettt ae e e 225
Table 7-3 list of use cases in sales busines process diagramccc......... 226
Table 7-4 Reports To buSINESs ProCess USE CASEccvevuururrurnrrvirennnnnreenannnenans 227
Table 7-5 Set APl / Heads business process USe Casecccccvvvvvevieereeeenne.. 228
Table 7-6 Claw back commission business process use €aseccu.......... 228
Table 7-7 Pay commission business process USE CaSe...........ccceeveveeeeerieeeeeennn. 229
Table 7-8 Training business process USe Case...........ccocvrereeiieriereriieeear i, 229
Table 7-9 Quote business ProCess USE CASEccccevveeeeciiiiceerorseecnaneeaans 230
Table 7-10 List of reports identified............cccoeiii e, 231
Table 7-11 Policyholder CRCuuiiiiiiiiiiiiciiieeeeeeece e rereeecteeseaaseseesseseess 232
Table 7-12 Broker CRCie et aee s eeee e e e eeereeeeeas 232
Table 7-13 Consultant CROC ... 233
Table 7-14 Area Manager CRC ... 233
Table 7-15 Divisional Manageruuuuieeeieiiiiiiiiiniereeiirieeeeeeeeeereeeereaeeeeeeness 233
Xii

Table 7-16 ProducCt CRC ettt eeaatttetvam s st aaansseaarasanasnenaas 234

Table 7-17 Quote and statement of benefits CRC ..., 234
Table 7-18 Learn student module CRCcccooiiiiiiiiiis 234
Table 7-19 Commission Paid..........c..vueeiieiieeiiie e, 234
Table 7-20 Commission claw backccoooiiiiiiiiii 235
Table 7-21 Policyholder actor CRC............coeiiiie e 235
Table 7-22 Broker actor CRC ...t 235
Table 7-23 Consultant actor CRC ..., 235
Table 7-24 Area manager actor CRC ..., 235
Table 7-25 Sales stats report CRCouuiiiiiiiii e, 236
Table 7-26 Commission incentive report CRC ... 236
Table 7-27 Commission claw back report CRC ...y 237
Table 7-28 External reference business rulecccooiieiiiicieii e, 238
Table 7-29 Broker validity buSINESS MUIEcoviiiiiiiiiiiceeee e, 238
Table 7-30 Consultant validity business rule...........ccccceveeieiiiciiicci e, 238
Table 7-31 Area manager validity rulecccccooiiii e, 239
Table 7-32 Area buSINeSS MUIEcccviiii i, 239
Table 7-33 Target Year To Date Calculation business rulecccccvvvvveevnen... 239
Table 7-34 Achieved Calculation business rulecccoeeeeiiienniiccn e, 239
Table 7-35 System DWUCOT - Sal€S.....o i 242
Table 7-36 Data type definition of ProductType......cccoecoeiiiiiieee e 242
Table 7-37 Data type definition of PropertyType.........cocooeiiiiiieiniinee e, 243
Table 7-38 Data type definition of PartyType..........ccoovvecieiieiiie e, 243
Table 7-39 Data type definition of ContactPrefrenceccccccoeeiiiieciiiinnnnn.. 243
Table 7-40 Reports To business process systems use €aseccccccccoueeeee.. 244
Table 7-41 Set API / Heads business process systems use case 244
Table 7-42 Claw back commission business process systems use case 245
Table 7-43 Pay commission business process systems use case.................... 245
Table 7-44 Training business process USe CaSe...........ccceveevvrreeeeenvieeeee e, 245

Xiii

Table 7-45 Quote bUSINESS ProCEeSS USE CASE ...evvvvrrrreiiiireerriiciiteriniereeeeeeaaeeen s 246

Table 7-46 Combination of the DW use cases with the business use cases249

Table 7-47 Time dimension hierarchy and attribute detail 253
Table 7-48 Policyholder dimension hierarchy and attribute detail..................... 253
Table 7-49 Broker dimension hierarchy and attribute detail.............................. 254
Table 7-50 Consultant dimension hierarchy and attribute detail 254
Table 7-51 Product dimension hierarchy and attribute detail 255
Table 7-52 Data source definition for the data warehouse...............ccccccoevee 256
Table 7-53 Source to Target for Fact APlccvveeiiiiiiic e, 257
Table 7-54 Source to Target for Dim Party Policyholder............ccc.ccooieriinnn. 259
Table 7-55 Source to Target for Dim Party Intermediarycccccvvvvvieeninnneeen. 260
Table 7-56 Source to Target for Dim Party Consultantccccooieiiienn. 261
Table 7-57 Source to Target for Dim Actual...........ccccccvvvvviiiiiiiiiiiiieeieeeeeeeeeee, 262
Table 7-58 Load type definition for DW case study.............ccooveeeeiiiieiiiiiiee, 271
Table 7-59 Standards definition for the use case.........c.ccccco i, 272
Table 7-60 Physical table layout for IAA_Hierarchy..............cccccoooiiineiiiinenn, 274
Table 7-61 Physical table layout for
FACT_CONSULTANT_TARGET_PROPERTIES.....ccccciiiieiiiiie e 274
Table 7-62 Physical tabie layout for FACT HEAD............ccvvvieiiiiiiieceiee e, 275
Table 7-63 Physical table layout for DIM_PARTY_POLICYHOLDER............... 276
Table 7-64 Physical table layout for DIM_PARTY INTERMEDIARY................. 277
Table 7-65 Physical table layout for DIM_PARTY_CONSULTANT 278
Table 7-66 Physical table layout for DIM_DATEcccc..oooiiiieiiiiiee e, 278
Table 7-67 Physical table layout for DIM_ACTUALovvveeeieiiiiieeeeeee, 279
Table 7-68 Physical table layout for AUDIT LOG.....cc.cc.coviuieeeiiiiceeeireeee e, 279
Table 7-69 Database size and index plan for the case study DW..................... 280
Table 8-1 Requirements gathering on development of the DW using OO
EECNNIQUES ..o et e e e e e eaeens 303

Table 8-2 Analysis phase on development of the DW using OO techniques....305

Xiv

Table 8-3 Design phase on development of the DW using OO techniques
Table 8-4 Testing phase on development of the DW using OO techniques

306
307

XV

Chapter 1 - Introduction

Chapter 1 - Introduction

1.1. Introduction

This chapter serves as an introduction to the study. It starts with a discussion on the
underlying background and motivation for the study. Thereafter, the problem statement
is established, followed by the methodology and limitations of the study. It concludes

with the chapter allocation.

1.2. Background

“In today’s world, the competitive edge is coming less from optimisation and more from
the proactive use of information that these systems have been collecting over the years.
Companies are beginning to realise the vast potential of the information that they hold in
their organisations. If they can tap into this information, they can significantly improve
the quality of their decision making and the profitability of the organisation through
focused actions. The problem for most companies, though, is that their operational
systems were never designed to support this kind of business activity, and probably
never can be.” (Anahory & Murray, 1997: 3). This statement proves that the information
a company holds is potentially a great investment, but that money needs to be invested

to reap the benefits thereof.

According to Anonymous (2006) in “Data Warehouse Portal Basics”, a data warehouse
(DW) is a tool to support the managing and the controlling business data. This is a
system which is often at the heart of the strategic reporting systems. Its function is to
consolidate and reconcile information from across disparate business units and IT
systems and provide a means for reporting on, and analysing corporate performance

management, profitability and consolidated financials compliance.

Anahory and Murray (1997:4) state that over the past 20 years, more than $1 trillion

have been invested in new computer systems to gain competitive edge. This proves

Chapter 1 - Introduction

that developing an information system is a costly exercise, and one surely doesn’t want

it to be unsuccessful.

1.3. Motivation for study

Information systems methodologies are used to aid in information systems
development. Boahene (1999) found that the use of methodologies enables the
following when developing information systems:
¢ Provides background knowledge of the development — this includes the
underlying assumptions, beliefs and values, as well as the nature of information
systems
¢ Group development activities in process steps
¢ Provides transformation management - this is the needs of a client transformed
into targeted information systems
e Techniques and methods to enforce standards and procedures used in the

development of information systems

One such methodology is object-oriented (OO) development. Owing to its advantages,
this methodology has grown very popular in software development. Avison and
Fitzgerald (2003:247) point out that OO has the following advantages:
¢ |t leads to a controlled environment due to concepts such as inheritance
e The organisation develops a library of object classes dealing with all the basic
activities the organisation undertakes
o Classes get tested thoroughly in the component development phase, thus
providing immediate industrial strength applications

¢ OO techniques are robust, error-free, quicker and cheaper

Ambler (2001:12) claims that the use of OO as a development methodology increases

the chance of success for the following reasons:

Chapter 1 - Introduction

Provides models as a communication medium between users and the
development team

The use of models in turn allows one to work closely with the users of the system
The time invested in defining the requirements and models pays off in the long
run

OO provides reusability for a wide variety of artefacts, such as code, models and

components

Unfortunately, not all system environments are favourable for object-oriented approach.

Ambler (2001:451) advises against object-oriented techniques for the following system

environments:

Systems for which structured techniques are ideal — It is argued that these
systems are specifically built to fulfil only a certain role and no other

Systems which cannot use OO throughout the entire development lifecycle — the
reason for this being that the benefits of OO are achieved throughout the
development lifecycle. Ambler warns that OO techniques should not be applied if

the programming language does not support OO

From the above, it can be derived that OO is a very powerful methodology effectively

managing risks in operational software development, though with certain limitations.

The second concept this study focuses on is data warehouses. Research has shown

that data warehouse solutions are different to operational systems for the following

reasons.

Evolution and growth as business requirements for information change over a
period of time (Anahory & Murray, 1997:8)

Concepts of time variance and non-volatility essential for a data warehouse (Sen
& Sinha, 2005:80)

Chapter 1 - Introduction

Anahory and Murray (1997:8) point out that in practice, data warehouses must be
designed to change constantly. They state that the main content of the data warehouse
might be known, but it is unlikely to know all the detail required, the real problem being
that the business itself may not be aware of its future information requirements. From
the above, it can be derived that if a data warehouse solution is different from an
operational solution, the development of such system should also be different from that
of operational systems. This reflects in Anahory and Murray (1997:8) “in order to
provide a flexible solution, one needs to look at the process that delivers a data
warehouse, this process has to be fundamentally different from a traditional waterfall

method”

Inmon (1996:260) advises against the use of the classical Systems Development Life
Cycle (SDLC), also known as the waterfall approach.

From this, it can be assumed that the SDLC methodology will not produce the desired
results in terms of developing a data warehouse, however there are methodologies
other than the traditional information systems development methodologies (ISDMs)

suitable for this purpose.

The above-mentioned methodologies are examined in Sen and Sinha (2005),
comparing eight data warehouse methodologies. Sen and Sinha noted that as yet,
none of the methodologies reviewed has achieved the status of a widely recognised
standard, but two approaches well known in the development of data warehouses, are
mentioned, i.e. the work of Inmon (1996) and Kimball et al. (1998).

Inmon’s (1996:290) approach advocates the reverse of SDLC. Instead of starting from
requirements, data warehouse development should be driven by data. Data is first
gathered, integrated, and tested. Next, programs are written against the data and the
results analysed. Finally, the requirements are formulated. The approach is iterative in

nature. According to Anonymous (2006), the structure of the data warehouse is also

Chapter 1 - Introduction

different to Kimball's structure. Inmon follows a dependant mart structure, the top down
approach. This approach transfers the data from diverse OLTP into a centralised area
(the data warehouse). In this area, the data is organised into subject-oriented,
integrated, non-volatile and time variant structures. The data marts are treated as
subsets of the data warehouse and each data mart is built for an individual department.
Once the data warehouse aggregation and summaries process is complete, it gets
transferred to the staging area and a subset of transformations is done according to the
departments’ requirements. On completion of this process the OLAP environment gets

refreshed.

The second approach is that of Kimball et al. (1998), the business dimensional lifecycle
approach. This approach differs significantly from more traditional, data driven
requirements analysis, and the focus is on analytic requirements elicited from business
managers/executives to design dimensional data marts. The lifecycle approach starts
with project planning, followed by business requirements definition, dimensional
modelling, architecture design, physical design, deployment and other phases. Kimball's
data warehouse structure follows what Anonymous (2006) calls the data warehouse bus
structure, the bottom-up approach. The data marts are connected using a bus structure;
this structure contains all the common elements used by data marts, such as conformed
dimensions, measures, etc. defined for the enterprise and allowing one to query all data
marts together. Kimball et al. (1998:19) defines the data warehouse as “nothing more
than the union of all constituent data marts”. The data flow in the Kimball's (1998)
approach starts with extraction of data from operational databases into the staging area
where it is processed and consolidated and thereafter loaded into the operational data
store (ODS). Once the ODS is refreshed, the current data is once more extracted into
the staging area and processed for the Data mart structure. Thereafter, the data from
the Data mart is extracted to the staging area, aggregated, summarised and loaded into

the Data Warehouse, from where it is made available to the end user for analysis.

Chapter 1 - Introduction

From the above, it is clear that a data warehouse is a unique system, as it follows a
unique development methodology and architecture. Object-oriented development, on
the other hand, proved successful in industry, owing to characteristics such as
reusability, polymorphism and inheritance. These characteristics provide great
advantages, such as a better controlled environment, more robust solutions and a

healthier financial outcome.

The study aims to investigate the applicability of object-oriented systems development

methodologies and their techniques in the development of data warehousing systems.

1.4. Problem statement

The problem statement is to investigate the applicability of object-oriented information
systems development methodologies and techniques in the development of data

warehouses.

1.5. Methodology

Before focusing on the object-oriented data warehouse development objective, the key
concepts of ISDMs need to be investigated and more specifically, the components of a
methodology identified. Thereafter, an investigation into the object-oriented
development approaches, as well as the approaches to a built data warehouse should
be carried out. To compare methodologies and link data warehouse approaches to
ISDMs, a proposed framework should be established. livari ef al. (1999) proposes such
a framework.

The study aims to understand data warehouse development methodologies and object-
oriented development methodologies, in order to apply general object-oriented concepts
in data warehouse development methodologies. Therefore the study will follow the

action research approach illustrated in Figure 1-1.

Chapter 1 - Introduction

Action
Planning

Specifying
Learning

Action Taking

Figure 1-1 The Action Research Cycle (Baskerville, 1999:14)

This study will follow a qualitative research approach with an interpretive philosophy as

the research methodology and secondly, follow action research as the research method

Information systems (IS) prototypes will be conducted in the form of an interpretive
experiment by developing a data warehouse using an object-oriented approach. It will
follow the development lifecycle of an object-oriented approach. The outcome of the
case study should be to provide detailed information on components and concepts of
OO successfully applied to the development of a data warehouse, as well as
components and concepts not suited to this. This should also provide the possible
advantages of developing a data warehouse in OO fashion, as well as the

disadvantages of using such methodology.

1.6. Limitations of the study

The present-day data warehouse industry follows several approaches in data
warehouse development. However, Sen and Sinha (2005) discovered that the
approaches of Inmon (1996) and Kimball et al. (1998) are widely recognised in the
development of data warehouses. Therefore, this study will concentrate on these data
warehouse development approaches only. On the subject of object-oriented methods
the study will focus on Object-Oriented Analysis (OOA), Object-Oriented Software
Process (OOSP), Rational Unified Process (RUP) and Object Modelling Technique
(OMT).

Chapter 1 - Introduction

1.7. Provisional chapter allocation

Chapter 1 serves as an introduction to the study.

Chapter 2 provides a detailed discussion on the research methodology used in the

context of information systems research.

Chapter 3 reports on a literature study covering information systems development
methodologies. It focuses primarily on the components of systems development
methodologies, such as philosophy, methodology, methods and techniques. Attention is
given to a proposed classification system for information systems development

methodologies.

Chapter 4 reports on literature relevant to object-oriented information systems
development methodology. The focus of this chapter is on defining the components of
object-oriented development, as well as reporting on most commonly used object-

oriented methods.

Chapter 5 covers a literature study on data warehousing and reports on common

development approaches used in data warehousing development.

Chapter 6 describes how to build data warehouses using object-oriented concepts and

also serves as the research plan of the study.

Chapter 7 describes the implementation of the data warehouse as an interpretive

experiment and serves as the action taking phase of the study.

Chapter 8 reports on the findings of the experiment and serves as the evaluation and

specified learning of the study.

Chapter 2 — Research methodology

Chapter 2 - Research methodology

2.1. Introduction

The purpose of this chapter is to focus attention on the research methodology used in
the study. It explains the commonly available research methodologies, as well as the

reasons why the specific research methodology will be followed.

2.2. Overview of quantitative and qualitative research

Leedy and Ormond (2005:94) define quantitative research as an approach identifying
relationships among measured variables with the purpose of explaining, predicting and

controlling the phenomena.

In contrast, qualitative research is an approach that identifies the complex nature of a
phenomenon with the purpose to describe or understand the phenomena from the

participant’s point of view.

Myers (1997:241) states that the reasoning behind preferring qualitative research over
quantitative research is that qualitative methods are designed to help researchers

understand people and the social and cultural contexts within which they live.

Kaplan and Maxwell (1994) also argue that the goal of understanding a phenomenon
from the point of view of the participant and his/hers particular social and institutional
context, is largely lost when textual data is quantified. Due to this reasoning, the study

will follow a qualitative approach.

Chapter 2 — Research methodology

2.3. Philosophical perspectives

Myers (1997) argues that qualitative research consists of three subordinate

philosophical epistemologies, illustrated in Figure 2-1.

Qualitative Fesearch

/TN

influences/ gumdes

Underlying — -
l Fosltivist ’ Interpretve ’] Critical

epistemclogy

Figure 2-1 Underlying epistemology of qualitative research (Myers, 1997)

The underling philosophical epistemologies are:

Positivist — This is stated to be when an attempt is made to test a theory.
Orlikowski and Baroudi (1991:5) classify research as positivist if there was
evidence of formal propositions, quantifiable measures of variables, hypothesis
testing and the drawing of inferences about a phenomenon from the sample to a
stated population.
Interpretive — This is stated to be when an attempt is made to understand
phenomena through the meaning people assign to them. Walsham (1993:4)
defines interpretive research in information systems as “aimed at producing an
understanding of the context on the information system, and the process
whereby the information system influences and is influenced by the context”.
Klein and Myers (1999:72) suggest a set of principles for the conduct and
evaluation of interpretive research, these being:

o The fundamental principle of the hermeneutic circle.

o The principle of contextualisation.

o The principle of interaction between the researchers and the subjects.

o The principle of abstraction and generalisation.

10

Chapter 2 — Research methodology

o The principle of dialogical reasoning.

o The principle of multiple interpretation.

o The principle of suspicion.
Critical — This is stated to be when an attempt is made to criticise a theory, in
which the restrictive and alienating conditions of the status quo are brought to
light. Harvey (1990:19) identifies the following shared elements in different critical
methods: abstraction, totality, essence, praxis, ideology, structure, history, and

deconstruction and reconstruction.

2.4. Qualitative research methods

Myers (1997) identifies four methods used when qualitative research is conducted.

These are:

Action research — This method is defined by Rapoport (1970:499) as a method
that “aims to contribute both to the practical concerns of people in an immediate
problematic situation and to the goals of social science by joint collaboration
within a mutually acceptable ethical framework”. As participative change is key to
action research, it is often viewed as belonging to the critical social theory
paradigm.

Case study — This method describes a unit of analysis or a research method. A
case study is an empirical inquiry that investigates a phenomenon within a real
life context where the boundaries between phenomenon and context are not
clear. Case study research methods are particularly well suited to IS research, as
the focus is on information systems within the organisation.

Ethnography — In this method, one is required to spend a significant amount of
time in the field in order to study the phenomenon in its social and cultural
context.

Grounded theory — In this method, it is sought to develop theory that is grounded
in data which is systematically gathered and analysed. Martin and Turner (1986)

11

Chapter 2 — Research methodology

define this as “an inductive, theory discovery methodology that allows the
researcher to develop a theoretical account of the general features of a topic
while simultaneously grounding the account in empirical observations or data."
According to Myers (1997), the major difference between grounded theory and
other methods is that its specific approach to the development suggests a

continuous interplay between data collection and analysis.

Owing to the experimental nature of the study, it is recommended to use action

research as a method for qualitative research.

2.5. Action research

Baskerville (1999:6) defines action research as a two step process:
¢ Diagnostic stage — defined as a collaborative analysis of the social situation by
the researcher and the subjects of the research. During this stage, theories are
formulated.
e Therapeutic stage — defined as a collaborative change experiment. The changes

are introduced and the causes studied.

The following discussion is based on Baskerville (1999) and explains the approach to

action research.

Most common action research approaches require a research environment and consist

of a five phase cyclical process. Figure 2-2 shows the five respective processes.

12

Chapter 2 — Research methodology

Specifying
Leaming

Action
Planning
Action Taking

Figure 2-2 The Action Research Cycle (Baskerville, 1999:14)

The five processes are:

Diagnosing — is the process of identifying the primary reasons why change is necessary
in the organisation. It involves self interpretation of the problem and should be done in a
holistic fashion and not through reduction and simplification. The diagnosis should

develop certain theoretical assumptions about the problem domain.

Action Planning — involves the researchers and practitioners to collaborate and produce
actions that should relieve or improve the problems identified. A plan containing the
necessary actions is created and executed by means of a theoretical framework. The

plan should establish the target and approach for change.

Action Taking — implements the action plan. This causes changes in the organisation.

Evaluating — the outcomes of the plan implemented is evaluated. The evaluation
determines whether the theoretical effects were realised and whether the problems
identified are relieved or not. If the changes implemented were successful, it must be
determined whether the changes were the sole cause of the success. If the changes
implemented were unsuccessful, a framework for the next iteration should be
established.

13

Chapter 2 — Research methodology

Specifying learning — is the knowledge gained from the research and may stem from the

following sources:

e “Double-loop learning” ~ the knowledge gained from the restructuring of
organisational norms to reflect new knowledge gained by the organisation during

the research.

e If unsuccessful, the additional knowledge may provide a further foundation for
diagnosis in preparation of further action research.

e The theoretical framework providing important knowledge for dealing with future

research settings.

The action research cycle can continue irrespective of whether the action is successful

or not.

Baskerville (1999:11) further explains that the ideal conditions for executing action
research are:

o Settings where the researcher is actively involved, with the expectation of both

the researcher and organisation benefiting
¢ Settings where knowledge obtained can be applied immediately

e Settings where research is a process of linking theory and practice

All the above conditions are applicable to the researchers study.

2.6. Research considerations for this study

The study aims to understand data warehouse development methodologies and object-
oriented development methodologies, in order to apply common object-oriented

concepts in data warehouse development methodologies.

Action research from a qualitative perspective will be used as research methodology.

14

Chapter 2 — Research methodology

As action research is applied, the study will follow the following research plan:
o Literature studies on systems development methodologies, object-oriented
methodologies and data warehouse development methodologies
e Development and implementation of a data warehouse methodology
incorporating object-oriented concepts and techniques
e Evaluation of the implemented data warehouse to determine whether the theory

iS a success

2.7. Summary

This chapter describes the type of research methodologies available. It starts with the
difference between qualitative and quantitative research. The different types of

philosophies found in qualitative research are positivist, interpretive and critical.

The qualitative research methods available are action research, case study,
ethnography and grounded theory. Action research is discussed in more detail, as this
is the preferred method for the researcher, while research considerations for this study
are also covered.

15

Chapter 3 — Systems development methodologies

Chapter 3 - Systems development methodologies

3.1. Introduction

This chapter introduces systems development methodologies. The main objective is to

explain what is meant by a methodology and its components.

Methodologies do not have a universal definition, and this matter is regularly discussed

by the information systems community (Avison & Fitzgerald, 2003:527).

Avison and Fitzgerald (2003:528) suggest that a methodology comprises of a number of
components that specifies:

¢ How the project is broken down into stages.

¢ What tasks are to be carried out at each stage.

e What outputs are to be produced.

e When and under what circumstances, methodologies are to be carried

out.
¢ What constraints are to be applied.
¢ Which people should be managed and controlled.

¢ What support tools may be utilised.

The authors also state that a methodology addresses the critical issue of a ‘philosophy’.
It is argued that this ‘philosophy’ gives methodology underlying theories and
assumptions that shape the development of the methodologies. It gives a methodology
unwritten aspects and beliefs that make the methodology effective in information

systems development (ISD).

Huisman and livari (2003:1014) define a methodology as a combination of the following:

e A systems development approach(es):

16

Chapter 3 — Systems development methodologies

This represents the philosophical view on which the methodology is built. It is
the set of goals, guiding principles and beliefs, fundamental concepts and
principles of the systems development process that drives interpretations and
actions in systems development.

¢ A systems development process model(s):
A process model as a representation of the sequences of stages through which
a system evolves.

¢ A systems development method(s):
A method is a systematic approach to conducting at least one complete phase
of systems development, consisting of a set of guidelines, activities, techniques
and tools, based on a particular philosophy of systems development and the
target system.

e A systems development technique(s):
Systems development techniques can be defined as a procedure, possibly with

a prescribed notation, to perform a development activity.

Further study will be based on the definition of a methodology by Huisman and livari

(2003). Components of the methodology will be dealt with in the following sections.

3.2. Systems development approach

According to (livari et al., 2000:181), an information systems development approach
(ISDA) is a class of methodologies which shares the fundamental concepts and
principles for information systems development. On a more specific note, they define an
ISDA as a set of related features that drives interpretation and action in information
systems development (ISD). As previously discussed, an ISDA is a set of features:
Goals, guiding principles and beliefs, fundamental concepts and principles for the ISD

process. This can be described as follows:

e Goal - specifies the general purpose of the ISDA.

17

Chapter 3 — Systems development methodologies

Guiding principles and beliefs — form the common philosophy of the ISDA, which
ensures that its information systems development methodology (ISDM) instances
form coherent wholes.

Fundamental concepts — largely define the nature of an information system (IS)
implicit in the approach,; the focus and unit of analysis in ISD.

Principles for the ISD process — express the essential aspects of the ISD process
in the ISDA.

Table 3-1 illustrates the feature of different ISDAs (livari et al., 1999:4)

Structured Approach Information Socio- technical Object-Oriented SSM Approach
Modelling Approach Approach
Goals To provide an To provide an To provide an To provide an To provide a
approach that helps to | approach for approach for 1ISD approach which learning
produce high quality enterprise-wide that enables future | helps to ensure that | methodology to
(reliable and development of users to play a the products are support debate on
maintainable) software | information systems | major part in the delivered to the user | desirable and
in a productive way (databases) which design of the on time and within feasible changes.
enables co- system. To cater budget, that the
ordinated for job satisfaction products meet user
development of objectives in requirements, that
integrated addition to more user requests to
application systems technical and modify the system
and their long-term operational and/or fix bugs are
evolution objectives, and to responded toin a
ensure that the timely fashion, that
new technical increasingly
systems is sophisticated
surrounded by a products are offered
compatibie weli- SO as to keep a
functioning competitive edge,
organisational that the changes in
system. standards and
delivery technology
are kept up and that
the project team
feels motivated and
successful.

Table 3-1 Summaries of the five IS development approaches (livari et al., 1999:4)

18

Chapter 3 — Systems development methodologies

Structured Approach Information Socio- technical Object-Oriented SSM Approach
Modelling Approach Approach
Guiding Separation of the Data for a stable Self-design of a Seamless analysis, User of notional
principles | essential model from basis for information | work system; design and system modules
and b the implementation systems. Separation | Minimal critical implementation; called ‘human
eliefs model; Careful of conceptual and specification; Encapsulation; activity systems’ to
documentation to make | internal schemas. Open-ended Information illuminate different
the development The conceptual design process; Fit | (implementation) Weltanschauunge
process visible; schema forms the between the social | hiding. n which may be
Graphical notations; core model for an and technical sub applied to any
Top-down partition information system. systems; Joint social system; An
able transformations / Applications are built | optimisation; information system
process models to hide | on top of the Redundant is a system to
complexity; conceptual schema. | functions. support the truly
Unambiguous, IS development relevant human
minimally redundant should be based on activity system,
graphic specification; an engineering
Balancing of models; rigorous
Design modules with methodology.
high cohesion and
weak coupling
Fund- Essential model vs. Universe of Technical Problem domain vs. | Weltanschauung;
amental Implementation model; | discourse. systems; Social Implementation Human Activity
con-cepts | Transformation; Data Information systems; domain; Object and Systems; Root
flow; Data store; database; Variance; Unit class; definition;
Terminator; Module; Conceptual schema; | operation; Encapsulation; Relevant system.
Cohesion; Coupling. Extemal schema; Technical needs; Information hiding;
Entity Relationship; Social needs (job Inheritance;
Attribute satisfaction) Polymorphism;
Communication
between objects
Princi- A step by step process | Incremental User participation; | lterative and Stream of cultural
ples for at the detailed level of conceptual schema Socio- technical incremental analysis; Stream
the ISD analysis and design design; View design; Evolution. development; Re- of logic-based
process activities. Situation integration. use analysis.

dependent at the
“strategic level”
(waterfall or concurrent

prototyping }

Table 3-2 (Continued) Summaries of the five

IS development approaches (livari et al., 1999:4)

19

Chapter 3 ~ Systems development methodologies

To illustrate what is meant by the statement “an ISDA is a class of methodologies
sharing fundamental concepts and principles”, one can for instance examine the goals,
guiding principles and beliefs, fundamental concepts and principles of object-oriented

methodologies.

From the table above, the following features of an Object-Oriented Approach can be
derived:

e The goal - To provide an approach which helps to ensure that products are
delivered to the user on time and within budget, that the products meet user
requirements, that user requests to modify the system and/or fix bugs are
responded to in a timely fashion, that increasingly sophisticated products are
offered so as to keep a competitive edge, that changes in standards and delivery
technology are kept up and that the project team feels motivated and successful.

e Guiding principles — Seamless analysis, design and implementation;
Encapsulation; Information (implementation) hiding.

e Fundamental concepts — Problem domain vs Implementation domain; Object and
class; Encapsulation; Information hiding; Inheritance; Polymorphism;
Communication between objects

e Principles for the ISD process — lterative and incremental development; Re-use

Object-oriented analysis and design (OOAD) (Coad & Yourdon, 1991), Object Modelling
Technique (OMT) (Rumbaugh et al., 1991) and Rational Unified Process (RUP)
(Jacobson et al., 2001) essentially share the same attributes in terms of the goal,
guiding principles, fundamental concepts and principles of the ISD process. These
methodologies can be classified as methodologies based on the object-oriented

approach.

livari ef al. (1998:166) argues that ISDA may exist without any (methodology) instances

and that it may serve as a template for deriving concrete ISDM instances.

20

Chapter 3 — Systems development methodologies

3.3. Systems development process model

A software process model is a process of the sequence of stages through which a
software product developed (Wynekoop & Russo, 1993:182). An example of this is
illustrated in the system development life cycle (SDLC). The SDLC has many variants
but follows the following basic structure and is executed in a sequential order (Avison &
Fitzgerald, 2003:27):

e Feasibility study — This stage examines the present system and its
intended requirements, the problems facing these requirements, new
requirements and the investigation of alternatives.

e Systems investigation — This stage represents a fact finding mission. The
following are examined: Functional requirements of the existing system
and whether these requirements are being met. Requirements of the new
system, constraints, exceptions and problems with the current working
method. These facts are obtained through means of observation,
interviews, questionnaires, searching of records and documentation and
sampling.

e Systems analysis — Once the above facts are obtained, the analyst asks
questions such as:

= Why do these problems exist?

= Why were certain methods of work adopted?
* Are there alternative methods?

» What are the likely growth rates of data?

e Systems design — This stage involves the design of both the computer and
manual parts of the system. '

e Implementation — In this phase the following aspects are addressed:
quality control, education and training, documentation, such as operation
and user manuals, and security. All of these need to be in place before

implementation of the new system is allowed.

21

Chapter 3 — Systems development methodologies

e Review and maintenance — This is done while the system is operational.

The system is being evaluated for improvements on the current system.

Another example of a process model is the incremental approach (Avison & Fitzgerald,
2003:85). The first implementation is not seen as the main objective, but forms part of

the continuing evolution and improvement of the original requirements.

Each iteration consists of a requirements-, analysis-, designh- and implementation
phase, all of which are repeated. The second iteration evolves iteration one and
integrates it into the requirements of iteration two. The third iteration may reflect
changes such as government imposed rules and mandatory changes. This iteration
should result in a large portion of the requirements to be fulfilled. Figure 3-1 is a

representation of the evolutionary development.

Iteration 1

& & : :
& | \«f ! ' lteration 2
i Learning |

! Experience ! e &
: :e'*‘x il K

™,

lteration 3

AP

100 Iteration 3

lteration 2
Iteratidn 1 I
0 J

Figure 3-1 Evolutionary development (Avison & Fitzgerald, 2003:86)

Percentage of total
requirements
fulfilled

According to Avison and Fitzgerald (2003:87) the spiral approach is a further attempt to
combine the SDLC with the evolutionary process. Figure 3-2 illustrates the spiral

process. The model adopts the concept of a series of incremental developments or

22

Chapter 3 — Systems development methodologies

releases. The development spirals outwards from the centre in a clockwise direction
with each cycle of the spiral resuiting in successive refinements of the system. The main

activities in the spiral are planning (bottom left quadrant), determination of objectives

(top left quadrant), risk analysis (top right quadrant) and development (bottom right

quadrant). The model includes a risk phase to easily detect potential problems early in

the process, before development is started.

Determine
objectives,
alternatives,
constraints

Commitment

e

Cumulative
cost

Progress
though
steps

Evaluate alternatives;
identify, resolve risks

Risk Analysis

Operational
prototype

Partition

Plan next phases

Requirementd =~ ==~ =
lan Llfecycle

lan

lan

Integratio
and test

2 Benchmarks
operatiop/” [TTTw~po____

Software Detailed

product
design

Design validationand
verification

]
'lntegration

| and test 1
1

AcceptanceI 1

test |
1
1

Implemen-1
tation

Develop, verify

]
1
H next-level product

Figure 3-2 Boehm's spiral model (Avison & Fitzgerald, 2003:88)

3.4. Information systems development method

According to Wynekoop and Russo (1993:182) a method is a systematic approach to

conducting at least one complete phase of systems development.

23

Chapter 3 — Systems development methodologies

Typical examples of such phases are the design and testing of software, consisting of a
set of guidelines, activities, techniques and tools of systems development pertaining to

the target system.

From the above definition, one can derive that a method consists of a process model
such as the SDLC, or an incremental or spiral process and, secondly, a set of tools and
techniques. Examples of these are Object-Oriented Analysis and Design (method) and

Soft Systems Methodology (method).

3.5. Systems development techniques

A systems development technique is a procedure with prescribed notation to perform a
development activity. Brinkkemper et al.(1996:276) states that commonly, notations are
referred to as techniques, but as in electrical engineering, there are standardised
notations for transistors, resistors and the like. The application of these must follow a
specific design of some structured plan. The same applies to software development. A

technique relates to the type of development it supports.

As seen in Avison and Fitzgerald (2003:353), techniques are not necessarily unique in
sets of methodologies, but can be shared across different methodologies, for example
dataflow diagrams that are used in STRADIS and YSM. Another example is the use
case technique that is used in Object-Oriented Analysis and Design (OOAD) and in
Rational Unified Process (RUP) (Avison & Fitzgerald, 2003:413).

livari et al. (2000:180) argues that in order to cope with the confusion created by the
proliferation of ISDMs, it is desirable to construct an organising structure that reduces
the complexity of the myriad of ISDMs. This construct, the so-called dynamic
classification framework, is discussed in a series of papers (livari et al., 1998, 1999 and
2000).

24

Chapter 3 — Systems development methodologies

3.6. Dynamic classification framework for classifying ISDM

The dynamic framework for classifying information systems development methodologies

is illustrated in Figure 3-3 (livari et al.,2000).

150 Paradigms

Creology
Epistemotogy
Methodology

Ethics

S N N .
L Functignalism (Sovial Relativism ‘ Neohumanism Radical strechuratism [

| v
reanee) LNCNCNE B * IR 1)
IR e - \
{ NN \
\, AN N N, : !
| N
i \ 180 Approaches
) \ \ Goals
Suiding Principals \
Fundamantal concepis
\ Principtes of the 1S0 process \
\ \\ - \

!

|

i
RS N \
s \
!

1SD Methodolegies

Relationships between
Terhniqies
\ Detailes 18D process

o g DAt B

= ZARNNS St

S 1 QO
4 & 1 a S o] o]
5 ¢ 1} v A A s N
M | a L4 [P I v
o Lo
< :

>\/ /)

150 Techniques

Dutailed Concepls
Notations

MQ_-“M ’J’r"!‘!ﬂ.!

//zf / / V\ /\ \/\
e
i 0 08 Use O 1 CAT Rich M Mack Future
R l Loy s D Case M D OWOL Prewres ¢ up workshaop

000 0 A

Figure 3-3 The dynamic classification framework (livari et al., 2000:189)

25

Chapter 3 — Systems development methodologies

This is a four tiered framework that concentrates on paradigmatic analysis rather than
doing an analysis on the methodology level. It is stated that one should think of an
ISDM as merely one instantiation of a more general abstract class, and that this class
has the basic features that are inherited by all the ISDMs belonging to it. livari et al.
(2000:181) argues that on the top level of the framework, one should find a set of
philosophical (paradigmatic) assumptions and beliefs underlying every ISDA and ISDM.
This makes it possible to group ISDM into paradigmatic positions.

It is also argued that there is a critical difference between Burrell and Morgan’s (1979)
and Kuhn's (1970) use of a paradigm. Kuhn uses it to describe the historical
developments of natural science, whereas Burrell and Morgan use it to describe social
sciences (livari et al., 1998:171). The difference is that social sciences capture the basic
assumptions of coexistent theories, whereas natural sciences capture the assumptions
of historically successive theories. Information Systems (IS) research is more similar to
social sciences than it is to natural sciences, and to differentiate livari et al. (1998:172)
named it IS science. This indicates its paradigmatic status as an academic discipline
rather like social sciences than natural sciences. It is also argued that IS science

concentrates on three levels of analysis, namely individuals, organisations and society.

According to livari et al. (1998:172) the paradigmatic assumptions can be divided into
four groups, namely:

e Ontology — This is assumed to be the nature of IS. It is proposed that the
ontology of IS research is concerned with information and data, information
systems, human beings in their different roles of IS development, the use of IS
technology in the organisation, as well as the society. From this, one can infer
what is to be the ontology assumption. livari ef al. (1998:172) states that there
are two types of ontology views, namely realism and idealism. Realism looks
upon data as describing facts, information systems as consisting of technological

structures, human beings as subject to casual laws and organisations as

26

Chapter 3 — Systems development methodologies

relatively stable structures. Idealism sees data as socially constructed meanings
that signify intentions, information systems as a form of social systems realising
human intentions, human beings as voluntaristic systems with consciousness
and free will, technology as flexible structures subject to social and human choice
and organisations as interaction systems or socially constructed systems.

e Epistemology — This is what human knowledge entails and how it can be
acquired. There are two contrasting elements in epistemology according to
Burrell and Morgan (1979), namely positivism and antipositivism. Positivism
seeks to “explain and predict what happens in the social world by searching for
regularities, casual relationships between its constituent elements”. On the other
hand, antipositivism “can only be understood from the point of view of the
individuals who are directly involved in the activities which are to be studied.
Antipositivism rejects the standpoint of the ‘observer’, which characterises
positivist epistemology as a valid vantage point for understanding human
activities. They maintain that one can only ‘understand’ by occupying the frame
of reference of the participant in action. One has to understand from the inside
rather than the outside” (livari et al., 1999:5). Thus, according to livari et al.
(1998:174), positivism views are scientific knowledge that consists of regularities,
casual laws and explanations, whereas antipositivism emphasises human
interpretation and understanding as constituents of scientific knowledge.

¢ Research methodology — livari et al. (1998:174) uses research methodologies in
a context that refers to procedures used to acquire knowledge about ISDAs and
related ISDMs methods and tools. The knowledge they refer to, is in the context
of ISDAs consisting of rules and principles needed to elaborate and refine the
ISDA. livari et al. (1998:175) divides research methods into three types, the first
being constructive methods. This research method is concerned with the
engineering of artefacts which may be purely conceptual artefacts, or more
technical artefacts with a physical realisation. This method is highly emphasised

in the 1S- and computer science by March and Smith (1995), because it does not

27

Chapter 3 — Systems development methodologies

describe existing reality, but rather create new ones. The second type is
nomothetic methods. This includes format mathematical analysis, experimental
methods and non experimental methods, such as surveys and field studies. The
last type is idiographic methods where case studies and action research place
“considerable stress upon getting close to one’s subject and exploring its detailed
background and life history (Burrell & Morgan, 1979:6)

¢ Ethics of research — This refers to the assumptions about the responsibility of the
researcher for the consequences of his/her research approach and its results.
livari et al. (1998:175) focuses on IS science as an applied discipline and IS as a
practice. It distinguishes between two interrelated aspects; the role of IS as an
academic discipline and the value of IS research. Three potential roles for IS
science is identified: means-end oriented, interpretive and critical. In the first
case, it is stated that the scientist aims at providing knowledge about means for
achieving given goals, this without questioning the legitimacy of the goals. In the
second case, the aim of an “interpretive scientist is to enrich peoples
understanding of their action,” “how social order is produced and reproduced”
(Chua, 1986:615). Lastly, the critical scientist insists that research has “a critical
imperative: the identification and removal of domination and ideological practice”.
livari et al. (1998:175) also states that when considering the value of IS research,
one has to analyse whose and which values dominate the IS research, with the
understanding that research may openly or latently serve the interests of
particular groups. These groups could be top management, IS professionals, IS

users and stakeholders.

The second level of the framework depicts the ISD approaches (ISDAs). livari et al.
(2000:186) defines an ISDA as “a class of specific ISDMs that share a number of
common features”. The features of an ISDA are the following:

o (Goals — specify the general purpose of the ISDA.

28

Chapter 3 — Systems development methodologies

e Guiding principles and beliefs — form the common philosophy of the ISDA that
ensures that its ISDM instances form coherent wholes.

e Fundamental concepts — define the nature of an IS implicit in the approach, this
is the focus and unit of analysis in the 1SD.

e Principles for the ISD process — express the essential aspects of the ISD process
in the ISDA.

The third level of the framework represents the ISD methodologies (ISDM). From the
framework two features are evident, one of which is the detailed ISD process. The
definition of livari et al. (2000:186) fits this description. The definition defines an ISDM
as “a codified set of goal-oriented procedures that guide the work and co-operation of
the various parties (stakeholders) involved in the building of an IS application. These
procedures are usually supported by a set of preferred techniques and tools, and
guiding principles”.

The second feature is the relationship between techniques. livari et al. (2000:186)
explains it as a sequence of elementary operations that more or less guarantee the

achievement of certain outcomes if executed correctly.

ISDMs share the specific goals, guiding principles, fundamental concepts and principles
of their respective approach (ISDA) (livari et al. 2000:188).

The last tier of the framework concentrates on the ISD techniques. As explained above,

these are the techniques used in the ISDM. They are also seen as the lowest level of

the framework.

The title of the study, “The use of object-oriented systems development methodologies
in data warehouse development”, suggests that object-oriented development

methodologies will be used. From the framework follows that one of the four products of

29

Chapter 3 — Systems development methodologies

the first tier (ISD paradigms) is functionalism and that one of the approaches in the
functionalism paradigm is the object-oriented approach. Departing from here, the object-
oriented approach and methodologies falling within it will be discussed in the next

chapter.

3.7. Summary

This chapter introduced systems development methodologies. Information systems
development methodologies were defined as a combination of systems development
approaches (ISDA), systems development process models, systems development

methods (ISDM) and systems development techniques.

The framework introduces the components of different methodologies. From the ISD
paradigms tier, it is clear that the functionalism paradigm is one of the four paradigms
illustrated. The object-oriented approach is part of this paradigm and the object-oriented

methodologies part of the object-oriented approach.

In the following chapter, the object-oriented approach, as well as the methodologies
falling within this approach, will be discussed. The chapter also compares the different
object-oriented methodologies in an attempt to find a general use of object-oriented
methodologies. This in turn will be used to map the object-oriented methodology to the

different data warehouse development methodologies.

30

Chapter 4 — Object Orient Approach

Chapter 4 - Object-Oriented Approach

4.1. Introduction

The purpose of this chapter is to focus attention on object-oriented (OO) approaches

and methodologies. The chapter will start with a discussion on the OO approach.

The previous chapter introduced the features of systems development methodologies,
as well as a framework for classifying methodologies. From the dynamic classification
framework, it was determined that OO development is an approach to which OO
methodologies belong. A literature study found that the Object-Oriented Analysis
(OOA), Object-Oriented Software Process (OOSP), Rational Unified Process (RUP) and
Object Modelling Technique (OMT) are popular OO methodologies. This chapter will
therefore focus on these methodologies. The chapter also includes a comparison of

these methodologies to find commonalities.

4.2. The object-oriented (OO) approach

The discussion is based on the lay-out of the dynamic classification framework (livari et
al., 2000) discussed in the previous chapter. The aspects of the methodology that will
be discussed are the following:

¢ Definition and goal of the OO approach.

e The guiding principles and beliefs.

¢ Fundamental concepts.

e Principles of the ISD process.

4.2.1. Definition and goal of the OO approach
The goals of the OO approach are described by livari et al. (1999:4) as an approach
which helps to ensure that
e products are delivered to the user on time and within budget.

e products meet user requirements.

31

Chapter 4 — Object Orient Approach

e increasingly sophisticated products are offered to keep a competitive edge.
e the changes in standards and delivery technology are kept up.

e the project team feels motivated and successful.

4.2.2. Guiding principles and beliefs
The key points that livari et al. (1999:4) provides under guiding principles and beliefs

are seamless analysis, design and implementation.

Avison and Fitzgerald (2003:247) explain that in OO one makes use of the unified
modelling language (UML) to achieve this seamless analysis, design and
implementation. UML is a set of rules and semantics that is used to specify the structure

and logic of a system.
Booch et al. (2001:94) defines two categories for UML diagrams.

The first category is structural diagrams comprising the following:

e Class diagram — illustrates a set of classes, interfaces and collaborations and
their relationships.

e Object diagram — illustrates a set of objects and their relationships. This serves to
illustrate the data structures and static snapshots of instances of the objects
found in class diagrams. ,

e Component diagram - illustrates a set of components and their relationships.
This is used to illustrate the static implementation view of a system.

e Deployment diagram - illustrates a set of nodes and their relationships. It is used

to illustrate the static deployment view of the architecture.

The second category of diagrams is dynamic behaviour diagrams. (Booch et al.,
2001:97). These are:

32

Chapter 4 — Object Orient Approach

Use case diagram - illustrates a set of use cases and actors and their
relationships. This is used to illustrate the static view of a system. It is also used
to organise and model behaviours of a system.

Sequence diagram — an interaction diagram that emphasises the time ordering of
messages. It shows a set of objects and the messages sent and received by
these objects. This is used to illustrate the dynamic view of a system.
Collaboration diagram — an interaction diagram that emphasises the structural
organisation of the objects that send and receive messages. A collaboration
diagram illustrates a set of objects, links among these objects and messages
send and received by these objects.

State chart diagram — illustrates a state machine, consisting of states, transitions,
events and activities. State chart diagrams emphasise the event ordered
behaviour of an object.

Activity diagram - illustrates the flow from activity to activity within a system. An
activity illustrates a set of activities, the sequential flow from activity to activity, as
well as the object that acts and is acted upon. Activity diagrams are important for

modelling the function of a system.

4.2.3. Fundamental Concepts

livari ef al. (1999:4) identifies the following concepts as part of the OO approach:

Problem domain vs. implementation domain — Ambler (2001:208) explains this as
the problem space vs. solution space. Conceptual models are used to depict the
detailed understanding of the problem space of the system. During the design,
these conceptual models are evolved and furthered into classes that address the
solution space and the problem space.

Object and class — Booch (1994:83) defines an object as an entity that has a
state, behaviour and identity. The structure and behaviour of similar objects are
defined in their common class; the terms instance and object are

interchangeable.

33

Chapter 4 — Object Orient Approach

e Encapsulation information hiding — Booch (1994:50) defines encapsulation as the
process of compartmentalising the elements of an abstraction that constitute its
structure and behaviour; encapsulation serves to separate the contractual
interface and an abstraction and its implementation.

e Inheritance — Ambler (2001:95) states that inheritance is a representation of an
“‘is @”, “is like” or “is kind of” relationship between classes. Avison and Fitzgerald
(2003:243) argue that inheritance implies that the relationship is such that the
hierarchy goes from classes of a general type down to classes of a more specific
type.

e Polymorphism — Ambler (2001:173) explains that polymorphism enables objects
to collaborate with other objects without knowing their type in advance.

e Communication between objects — (Ambler, 2001:161) Communication between
objects is achieved by means of messaging; a message from one object to

another object can be a request for information, or to execute a task.

4.2.4. Principles of the ISD Process

livari et al. (1999:4) states that the OO approach is iterative and incremental in its

development process.

Ambler (2001:432) concurs with these principles by explaining that the waterfall
approach does not truly reflect how software is developed and that a spiral approach is
more realistic. The reason for this is that the spiral approach promotes iterative and
incremental development. This allows development to be more suitable for changing
business environments and getting portions of the development out quicker. The
biggest disadvantage (Ambler, 2001:435) of iterative development is that it complicates

the process of defining deadlines.

A second principle stated by livari et al. (1999:4) is re-use. This principle is found in

concepts such as inheritance (Avison & Fitzgerald, 2003:247) and polymorphism. Once

34

Chapter 4 — Object Orient Approach

a class is created, it can be re-used time and again, thus avoiding ‘reinventing the
wheel’ (Avison & Fitzgerald, 2003:146).

4.3. The applicability of the OO methodology

Ambler (2001:450) highlights the following system environments as an indication of

when one should use OO development:

Complex systems — it is argued that the easiest way to deal with complexity is to
break it down into smaller components, and then deal with each component in
turn. The OO paradigm is based on the concept of defining systems based on a
collection of interacting objects. This strategy enables one to break down a
complex system into smaller components.

Systems that are prone to change — When the system is in its development
stage, it is prone to change. It is argued that OO development leads to systems
that are extensible.

Systems with graphical user interface (GUI).

Systems that are based on the client/server model.

Systems that are integrated — With OO techniques one is able to develop
wrappers around non-object technology. In OO style, this can be integrated with

the organisation’s overall system.

Not all system environments are favourable for OO approach Ambler (2001:451)

advises against OO development for the following system environments:

Systems for which structured techniques are ideal — It is argued that these
systems are specifically built to fulfil a certain role.

Systems which cannot use OO throughout the entire development lifecycle.

Avison Fitzgerald (2003:247) points out that OO has the following advantages:

It leads to a controlled environment due to concepts such as inheritance.

35

Chapter 4 — Object Orient Approach

e The organisation develops a library of object classes that deals with all the basic
activities the organisation undertakes.

e Classes get tested thoroughly in the component development phase and
therefore provide immediate industrial-strength applications.

e OO techniques are robust, error-free, quicker and cheaper.

4.4. The OO methodologies

There are numerous methodologies available, and it is not practical to discuss all of
them. A literature study showed that the following OO methodologies are popular:

¢ Object-Oriented Analysis (OOA) (Coad & Yourdon, 1991).

¢ Object-Oriented Software Process (OOSP) (Ambler, 2001).

¢ Rational Unified Process (RUP) (Jacobson ef al., 1991).

e Object Modelling Techniques (OMT) (Rumbaugh et al., 1991).

The following discussion will focus on the methodologies highlighted above.

4.4.1. Object-Oriented Analysis (OOA)
Coad and Yourdon (1991) are the original authors of the OOA methodology. The

methodology was created before the unified modelling language (UML) existed and
uses its own notation to describe objects and classes. This discussion will follow the

original notation.

Coad and Yourdon (1991:178) define OOA as a method of analysis that identifies and
defines the classes and objects found in the vocabulary of the problem domain.
The methodology consists of the following activities (Coad & Yourdon, 1991:34):

¢ Finding classes and objects.

¢ I|dentifying structures.

¢ |dentifying subjects.

36

Chapter 4 — Object Orient Approach

e Defining attributes.

e Defining services.

It is further explained that these steps should not be used as sequential steps, but
regarded as the common overall approach. These activities, as discussed below, should

be used iteratively.

4.4.1.1. Finding class and object

Booch (1994) expanded on the concepts of Coad and Yourdon (1991) for finding
classes and objects. Booch (1994:155) explains three different approaches to find

classes and objects, namely:
e classical approach.
e behaviour analysis.

e domain analysis.

The above approaches are discussed below:

Classical Approach

The classical approach is derived from principles of classical categorisation (Booch,
1994:155). Booch uses the work of Coad and Yourdon (1991) as an example of
providing a source for potential objects. These are:

e Structure —the “Is a” and “part of” relationship.

e Other systems — an external system the application interacts with.

e Devices — devices the application interacts with.

e Event remembered — an historical event that must be recorded.

¢ Roles played — the different roles played in interacting with the system.

e Locations — the physical locations such as offices and sites important to the

application.

e Organisational units — groups to which users belong.

37

Chapter 4 — Object Orient Approach

Behaviour analysis

Behaviour analysis focuses on dynamic behaviour as the primary source of classes and
objects (Booch, 1994:156). This is the knowledge the object maintains and the actions it
performs.

The responsibilities of the object convey its purpose in the system. Classes are objects,

grouped according to common responsibilities; this also forms hierarchies of classes.

Domain analysis

Domain analysis seeks to identify classes and objects common to all applications within
the domain. Booch (1994:157) claims that domain analysis works well, except for
unique kinds of software.

Moore and Bailin (1988:2) suggest the following steps for domain analysis:

e “Construct a straw man generic model of the domain by consulting with domain
experts.

o [Examine existing systems within the domain and present this understanding in a
common format.

» ldentify similarities and differences between the systems by consulting with
domain experts.

* Refine the generic model to accommodate existing systems”

Booch (1994:158) explains that the domain expert can be the users of the system or
their manager, but this will ultimately be the individual who uses the vocabulary of the
problem domain.

4.4.1.2. Identifying structures

Coad and Yourdon (1991:79) define structure as an expression representing both the

problem domain and the system’s responsibilities. The term “structure” is used as an

38

Chapter 4 — Object Orient Approach

overall term to describe both generalisation-specialisation, or “gen-spec’- and “whole-
part” structures.

The purpose of the structure is to focus on complexity of the problem and to uncover
additional classes and objects that might not have been discovered (Coad & Yourdon,

1991:80). The gen-spec structure reflects a hierarchy of classes.

Coad and Yourdon (1991:84) suggest that, on the lower level classes, one should
consider the following questions as a strategy for testing the gen-spec structure:

e Isitin the problem domain?

e s it within the system responsibilities?

¢ Will there be inheritance?

¢ Will the specialisations meet the “what to consider and challenge” criteria?

The “whole-part” structure is hierarchies of objects indicating that one object is

composed of, or made up from a series of sub-objects.

Coad and Yourdon (1991:90) suggest that one should consider three types of whole-
part structures:

e The “assembly and it's constitute parts”-type, i.e. an organisation and its
departments.
e The “container and its contents™-type, i.e. a lecture hall and its seats.

¢ The “collection and its members’-type i.e. the football club and its players and
helpers.

The set of criteria for testing the whole-part structure is similar to the test used for the

gen-spec structure, with the exception that one does not test for inheritance in whole-
part structures.

39

Chapter 4 — Object Orient Approach

4.4.1.3. ldentifying subject

Subjects are defined as a mechanism for guiding the reader (analyst, problem domain
expert, manager and client) through a large, complex mode. Subjects are also helpful
for organising work packages on larger projects, based upon initial OOA investigations
(Coad & Yourdon, 1991:106).

As explained by Avison and Fitzgerald (2000:420), this is a bottom-up process with a
top-down view. Grouping may be based on any criteria relevant to the area of concern;
this can involve traditional, functional decomposition, but could also be based on

problems or issues emerging from the problem domain.

One can use the example of a university problem domain. The subject layer can be
admissions, courses, examinations and appeals. Admissions can be classes concerning

applications, criteria, acceptance, references and payments.

4.4.1.4, Defining attributes

Coad and Yourdon (1991:119) define attributes as a form of data for which each object
in a class has its own value. Coad and Yourdon (1991:121) suggest that the following
steps be followed to identify attributes:
o |dentify the attributes — Identify what the object in a class is responsible for
knowing the value.
o Position attributes — Position which best describes the attribute within the class
and object.
¢ Identify instance connections — This models the association between classes to
manage complexity.
* Check for special cases — Special cases such as the following, need to be
considered:

o Check the attribute for a value of “not applicable”.

40

Chapter 4 — Object Orient Approach

o Check each class and attribute with just one attribute — should the class
be considered or not?
o Check each attribute for repeating values.
¢ Specify the attribute — Name the attribute according to the vocabulary used in the
problem domain and the system’s responsibility domain. Add descriptions for

each attribute. Additional constraints will add to the description of the attribute.

4.4.1.5. Defining services

Coad and Yourdon (1991:143) explain that a service in an object is a specific behaviour
that an object is responsible for exhibiting. The strategy used by Coad and Yourdon
(1991:144), is to:

¢ Identify object states.

¢ |dentify the requested services.

¢ Identify message connections.

e Specify the services.

¢ Put the OOA documentation set together.

OOA only focuses on the analysis phases of the solution and not on the design and
implementation phases (Coad & Yourdon, 1991:178).

4.4.2. Object-Oriented Software Process (OOSP)
Ambler (2001:27) describes the OOSP methodology as a collection of process patterns.

When brought together, these process patterns describe a complete process for

developing, maintaining and supporting software.

OOSP uses the concept that large-scale, mission-critical, software development is serial
in the large and iterative in the small. This leads to delivery of incremental releases of

software on time.

41

Chapter 4 — Object Orient Approach

Figure 4-1 is an overview of the interaction between techniques used in the OOSP

methodology.

Usef intedface H
Flow Dlagram ‘
Ty o e o e s s o
H

P, y
¥

H
H
3
H
H
H
P
H
H
3

Essential
User Interface
Pralotype

User Inferface

: :
Prololype Component Deploymenl N
Dlagram Diagram H
i f
%
i

Change: Essential Use
Cases Case Model

1 [

Business
CRC Modet R
Nonfunctional Constrains
Requirements [€)

P R el UNRRENY WD DI

Figure 4-1 The OOSP Methodology (Ambler, 2001:439)

OOSP starts off by gathering the user requirements (Ambler, 2001:27) for the system
and validating the requirements found (Ambler, 2001:110). This is shown in the left
block in Figure 4-1. The requirements are analysed (Ambler, 2001:182), as illustrated by
the middie block in Figure 4-1. The product of the analysis is then used for the design
phase (Ambler, 2001:250), as indicated in the upper right block in Figure 4-1. Finally,

the designs are implemented, as shown in the lower right block in Figure 4-1.

4.4.2.1, Gather requirements

The following discussion is based on Ambler (2001). The method starts with gathering
the requirements for the system to be developed. A so-called requirement modelling

team is put together. The team comprises subject matter experts (SME).

The SMEs are the individuals who are:
e Direct users of the system

e A customer / payer of the system

42

Chapter 4 — Object Orient Approach

o Affected by the output of the system
¢ Required to approve the system

e Required to support the system

The purpose of the SMEs is to provide the analyst with the necessary requirements.
Different techniques, such as interviewing or brainstorming, are used as gathering
techniques.

The activities used for gathering requirements, are:
¢ Essential use case modelling
o Essential user interface prototyping

e Domain modelling

These activities are discussed in the following section.

Essential Use Case Modelling

Jacobson et al. (2001:122) distinguishes between two types of use case models:
o Firstly, an essential business, or abstract use case model. This is a technology-
independent view of the behavioural requirements.
o Secondly, a system concrete, or detailed use case model. The function of this is

to analyse the behavioural requirements describing in detail how users will
interact with the system.

The essential use cases are firstly identified, and from these the system use cases are
developed.

This discussion will focus only on essential use cases, as the function of these is to
identify the essence of the problem in a technology-free, idealised and abstract
environment (Ambler, 2001:52).

43

Chapter 4 — Object Orient Approach

Figure 4-2 is an example of an essential use case model. The purpose of an essential
use case model is to identify actions that provide measurable value to actors within a

boundary and to depict the rellationship between these entities.

The ellipse in Figure 4-2 represents a class. The link between the actor and the class is
the relationship between the two entities and is described by a use case (Ambler,
2001:46).

Student \ Distribute /

transcriptions

Grade Administrator
S N

Registar

Figure 4-2 A use case diagram for a simple university (Ambler, 2001:46)

An actor represents anything that interacts with the system. To identify actors, one can

follow the following questions:
e Who is the main customer of the system?
¢ Who obtains information from this system?
¢ Who provides information to the system?
¢ Who installs the system?
¢ Who operates the system?
¢ Who shuts down the system?
¢ What other systems interact with this system?

¢ Does anything happen automatically at a given time?

44

Chapter 4 — Object Orient Approach

e Who will supply, use, or remove information from the system?

e Where does the system get information?

Once the essential diagram is completed, the essential use cases can be documented.
A sample is illustrated in Figure 4-3.

Name: Enroll in Seminar

Description: Enroll an existing student in a seminar for which she is
eligible.

Preconditions: The Student is registered at the University
Postconditions: The Student will be enrolled in the course she wants if
she is eligible and room is available.

Basic Course of Action:

1. Astudent wants to enroll in a seminar.

2. The student submits his name and student number to the registrar.

3. The registrar verifies the student is eligible to enroll in seminars at the
university according to business rule “BR129 Determine Eligibility to
Enroll.”

4. The student indicates, from the list of available seminars, the seminar
in which he wants to enroll.

5. The registrar validates the student is eligible to enroll in the seminar
according to the business rule “BR130 Determine Student Eligibility

. to Enroll in a Seminar.”

6. The registrar validates the seminar fits into the existing schedule of
the student, according to the business rule “BR143 Validate Student
Seminar Schedule.”

7. The registrar caiculates the fees for the seminar, based on the fee
published in the course catalog, applicable student fees, and
applicable taxes. Apply business rules “BR180 Calculate Student
Fees” and “BR45 Calculate Taxes for Seminar.”

8. The registrar informs the student of the fees.

9. The registrar verifies the student still wants to enroll in the seminar.

10. The student indicates he wants to enroll in the seminar.

11. The registrar enrolls the student in the seminar.

12. The registrar adds the appropriate fees to the student’s bill according
to business rule “BR100 Bill student for Seminar.”

13. The registrar provides the student with a confirmation that he is
enrolled.

14. The use case ends.

Figure 4-3 "Enroll in seminar" as an essential use case (Ambler, 2001:55)

One way of identifying essential use cases, is to identify potential services by asking the
SME the following questions from the actors’ point of view:
e What are the users in this role trying to accomplish?

e To fulfil this role, what must users be able to do?

45

Chapter 4 — Object Orient Approach

e What are the main tasks of users in this role?
o What information do users in this role need to examine, create or change?
o What do users in this role need to be informed of by the system?

¢ What do users in this role need to inform the system about?

Once all use cases are identified, they can be grouped into packages. This simplifies

the complex diagrams.

Essential User Interface Prototyping

Essential user interface (Ul) prototypes are Uls that are technology-independent, the
purpose being to understand the requirements. The prototypes are done by using basic

drawings.

Once all the Uls and the major components of the Uls are identified, a Ul flow diagram
is created. This diagram models the interactions between the users and the system for
a certain use case, and it helps the analyst in getting a high level understanding of the

Ul for the system. Figure 4-4 is an example of a user interface flow diagram.

:Main Menu

use use
Enroliment Transcript
Requester Requester
'd N
. ; . . use
:Enrollin *Obtain Transcript :Transcript
Seminar Transcript Requester

I

use use
Professor Prerequisite
Information Details

Requester Requester \

use
:Professor Seminar :Seminar

or L on 2
Information Information Information
Requester

Figure 4-4 User interface flow diagram (Ambler, 2001:73)

46

Chapter 4 — Object Orient Approach

Domain Modelling

The function of domain modelling is to define the problem space. The problem space
typically consists of classes representing the things and concepts within the domain in

question.

Class Responsibility Collaborators (CRC) cards is a tool used to model classes. This
tool is a collection of standard index cards divided into three sections:

e Class name — a collection of similar objects.

¢ Responsibilities — something that a class knows.

¢ Collaborators — what the other class needs to fulfil its responsibilities.

Figure 4-5 is a typical example of a CRC card. This example illustrates that the class is
the Student, and its responsibilities are the student number, name, address, phone
number, enrol in a seminar, drop a seminar and request transcripts. The collaborator for

the student class is the seminar class.

Student

Student number Seminar
Name

Address

Phone Number
Enroll in a seminar
Drop a seminar
Request transscripts

Figure 4-5 An example CRC card (Ambler, 2001:76)

The domain modelling should be executed iteratively. The steps are:
¢ Find classes.
o Find responsibilities.
¢ Determine collaborators.

e Define use cases.

47

Chapter 4 — Object Orient Approach

e Move the cards around according to the responsibilities.

There are three types of classes that exist, namely:
e Actor classes — representing the actors in the use case model and indicated by
using “<<Actor>>" after the class name.
e Business classes ~ representing the places, things, concepts and events in the
business.
e User interface classes — representing the screens and the menus in the system

and indicated by using “<<UI|>>" after the class name.

Develop a supplementary specification

The supplementary specification is a document containing all the requirements not
specified in the use case model, user interface model, or the domain model. This

document typically includes constraints, business rules and non-functional
requirements.

Identify change cases

The change cases motivate the new requirements that have come forth, or the changes

that need to be applied to the existing requirements. These changes should be
documented.

Once the requirements are gathered, they should be validated to ensure that they are
correct.

4.4.2.2. Validating the requirements

Ambler (2001:111) explains that the requirements can be misunderstood by the user,
the analyst, or the designer. This is why requirements should be validated, thus
ensuring accuracy.

48

Chapter 4 — Object Orient Approach

It is recommended that testing should be done early and often to avoid problem fixing at

a later stage, as this can be a costly exercise (Ambler, 2001:111).

The following discussion is based on Ambler (2001). The requirements can be tested by

using the following techniques:

Use case scenario testing.
User interface walkthroughs.

Requirements reviews.

Use case scenario testing

This is a technique that tests the domain model, the CRC model, or a class model. The

process is as follows:

Perform domain modelling — create a CRC model, or an analysis class mode that
represents the domain.

Create the use case scenario — it describes the situation which the system may,
or may not be able to handle. The use case scenario is different to the use cases
in the sense that it describes the logic, including the basic and alternative course
of action.

Assign classes to SMEs — one or more classes should be assigned to each SME
in order to spread the functionality of the system to every SME.

Act out a scenario — the SMEs act on the rolls of the cards given to them. This
serves to describe the business logic of the responsibilities of each use case. A
ball is used to indicate that the class or SME is busy processing; the ball is
passed on to the next class or SME, it is collaborating with.

Update the domain model — during testing, the missing responsibilities will be

highlighted, thereby allowing updating of the domain model.

49

Chapter 4 — Object Orient Approach

User interface walkthroughs

The user interface walkthroughs are similar to the user case walkthroughs, the only
difference being the Uls are tested and not the domain models. The SMEs describe

which screen and component on this screen will be used when a scenario is acted out.

Requirements review

The requirements review is a process in which a facilitator reviews the requirements
gathered by the stakeholders responsible for the system. This is to verify that the

requirements gathered, are correct and that the needs of the users are fulfilled.

Once the requirements are verified, the analysis of the requirements can be executed.

4.4.2.3. Object-oriented analysis (OOA)

One should to keep in mind that the OOA used in OOSP, is used in the context of a
phase. This phase is based on the OO methodology originally developed by Coad and
Yourdon (1991) as discussed in section 4.4.1

Ambler (2001:182) explains that the purpose of analysis is to understand what needs to
be developed. Analysis is an iterative process that is highly interrelated to requirements
gathering. The essential models created in the requirements gathering are evolved into

their corresponding analysis artefacts. The following is based on Ambler (2001:185).

System use case modelling

The essential use case model is evolved into a system use case. It is sirnilar to the
essential use case with the exception that it includes high-level implementation

decisions, such as the screen numbers and properties, for example “extends”, inherited.

Figure 4-6 is an example of the essential use case “Enroll in seminar” evolved into a

system use case.

50

Chapter 4 — Object Orient Approach

Name: Enroll in Seminar

Identifier: UC17

Description: Enroll an existing student in a seminar for which she is eligible.

Preconditions: The Student is registered at the University

Postconditions: The Student will be enrolled in the course she wants if she

is eligible and room is available.

Extends: -

Includes: -

Inherits From: -

Basic Course of Action:

1. Astudent wants to enroll in a seminar.

2. The student inputs his name and student number into the system via
“UI123 Security Login Screen.”

3. The system verifies the student is eligible to enroll in seminars at the
university according to business rule “BR129 Determine Eligibility to
Enroll.”

4. The systems displays “U!132 Seminar Selection Screen,” which indicates
the available seminars.

5. The student indicates the seminar in which he wants to enroll.

6. The system validates the student is eligible to enroll in the seminar,
according to the business rule “BR130 Determine Student Eligibility to
Enroll in a Seminar”

7. The system validates the seminar fits into the existing schedule of the
student, according to the business rule “BR143 Validate Student
Seminar Schedule.”

8. The system calculates the fees for the seminar, based on the fee
published in the course catalog, applicable student fees, and applicable
taxes. Apply business rules “BR180 Calculate Student Fees” and “BR45
Calculate Taxes for Seminar.”

9. The system displays the fees via “UI33 Display Seminar Fees Screen.”

10. The systems asks the student whether he still wants to enroll in the
seminar.

11. The student indicates he wants to enroll in the seminar.

12. The system enroils the student in the seminar.

13. The system informs the student the enrollment was successful via
“U188 Seminar Enroliment Summary Screen.”

14. The system bills the student for the seminar, according to business rule
“BR100 Bill student for Seminar.”

15. The system asks the student if he wants a printed statement of the
enroliment.

16. The student indicates he wants a printed statement.

17. The system prints the enrollment statement “U189 Enrollment Summary
Report.”

18. The use case ends when the student takes the printed statement.

Figure 4-6 System use case (Ambler, 2001:187)

51

Chapter 4 — Object Orient Approach

Sequence diagram

Sequence diagrams are developed from the use cases. Jacobson et al. (2001:251)
states that the function of sequence diagrams is to model the logic of usage scenarios.
A usage scenario is a description of a potential way in which the system can be used.

This may include use cases or alternative courses and provides a bridge between the
use cases and the class models.

Figure 4-7 shows a typical sequence diagram. The boxes at the top represent classifiers
or instances, which can be use cases, objects, classes or actors. The lines from the top
boxes represent object lifelines, meaning the life span of the object during the scenario
being modelled. The long thin boxes on the lifelines are method-invocation boxes. They

indicate that a process is being performed on the given object to fulfii a message.
Messages are represented by labelled arrows.

<<husiness>> <<business>> <<business>> <<business>> <<business>>
VvalidApp ValidApp ValldApp VvalidApp ValidApp

Check applicatio

Offer generation GenerateOffer 3]
Confirmation GradesOK

RegPackPfeparation

Prepeare reg pack

Accespt student

Figure 4-7 Sequence diagram for student (Avison & Fitzgerald, 2000:199)
Conceptual modelling

Class diagrams represent the conceptual model. The function of class diagrams is to
model the classes of the system, the relationships between them, as well as their
operations and attributes. The conceptual model is used to depict a detailed

understanding of the problem space. During the design phase, the model is evolved to
include classes that address the solution space.

The class model contains the following elements:

e C(Classes

52

Chapter 4 — Object Orient Approach

e Methods

e Attributes

e Associations

e Dependencies

¢ Inheritance relationships
e Aggregation associations

e Association classes

Figure 4-8 illustrates a typical UML class diagram.

Securitylogon EnrolimentRecord
<>
Fnrolled marksReceived
in
acceptStudent() ~ el A ToD
AcceptStudentName() \\\ e \-\ getF_verlr-lNg|e : ate()
validateStudent() S /" S getFinalMark() _EanEd
N ~ in
>l Student Sa
- name
Transcript o
<<UP>> . address e
, “v) phoneNumber
Il TR i A
N >| emailAddress On waiting list S Seminar
getStudent() . studentNumber S
getSeminars() o averageMark \‘.,J name
determineAverage() ‘\\ isEligible (name, :eminarNumber
Output{) studetNumber) ees
N getSeminarsTaken() waitingList
------------- 3 addstudent(student)
PrT dropStudent(student)
~ I’
EnrollinSeminar . o
<<UI>> e
heszpommmmmmmmme 7T S Professor instructs
searchForseminars() | TTmeeali s name
displaySeminarlist) | TTTTeeel « | address
displaySeminarFees() | TTTees B phoneNumber
displayProfessor{) emailAddress
salary
getinformation{)

Figure 4-8 A UML class diagram based on the CRC model (Ambler,2001:210)

Each rectangle represents a class, with its name on top. Below the class name is the
stereo type indicated by “<<” and ">>" signs. The middle part reflects the attributes of

the class and the bottom section the methods of the class. The dashed lines between

53

Chapter 4 — Object Orient Approach

the classes (rectangles) represent a dependency, while the solid lines represent an

association with a description of the association.

Activity diagramming

The activity diagram’s function is to model high-level business processes, or the

transitions between states of a class.

Figure 4-9 shows an activity diagram. In the activity diagram, the filled circle at the top
indicates the starting point of the activity diagram. The rounded rectangles represent
processes, or an activity that is performed. The text on the arrows represents conditions
that must be fulfilled. The diamond represents decision points. The thick bars represent
the start and end of potentially parallel processes. The filled circle at the bottom

represents an ending point.

*+

D ——
Fill out Enroliment (incorrect] Obtain Help to Fill
Forms Out Forms
| S—

[correct]

Enroll in Univesity |’
)

Enrolling in the University
for the first time
AD #: 007

Attend University

Overview
Make Initial Tuition
Payments

Presentation

Enroll in Seminar(s)

[accept]

[reject}

Figure 4-9 UML activity diagram (Ambler, 2001:230)

54

Chapter 4 — Object Orient Approach

User interface prototyping

User interface prototyping is an activity in which users are actively involved in the
making-up of the system’s user interface. The purpose of this is to explore the problem
space the system needs to address and to allow for the exploration of the solution
space from the users’ point of view. It also allows for a vehicle to communicate possible
user interface designs.

The process is an iterative process consisting of the following steps:
¢ Determine the needs of the users.
e Build the prototype.

¢ Evaluate the prototype.

The above process is repeated until no further new ideas can be generated from the

prototype.

Evolving the supplementary specification

During the analysis phase, one’s understanding of the content of the supplementary
specification evolves. It reflects mainly on the constraints, business rules and non-
functional requirements identified during the requirements defining phase. It is likely that
information originally specified, does not always contain enough detail and therefore
should be detailed further.

User documentation

Due to the complexity of the systems, it is recommended that they should be well
documented. It is imperative to furnish the following documentation:

e Tutorial manual

¢ Reference manual

e User manual

e Support user guide.

55

Chapter 4 — Object Orient Approach

4.4.2.4. Object-Oriented Design (OOD)

Coad and Yourdon (1991:3) distinguish between object-oriented analysis (OOA) and
object-oriented design (OOD) in object-oriented approach. OOA models the problem
domain and the system'’s responsibilities. The OOD is an implementation of an OOA
model (Coad & Yourdon, 1991:178).

Ambler (2001:250) explains that the function of modelling a design is to determine how
the system should be built and to obtain the information required to drive the
implementation of the system.

Before designing the system, the following should be considered: (Ambler, 2001:250):

e To design using a pure object-oriented solution or to design using a component
based solution. An object-oriented solution is built from a collection of classes,
while a component based solution is built from a collection of components. These
components can be a non-object-oriented technology.

o To design using a common business architecture; the business architecture can
be implemented straight through, or partially.

¢ Which non-functional requirements and constraints will be supported and to what
extent.

The following discussion is based on Ambler (2001).

Layering models

Layering is to organise the sofiware design into different collections of classes, or
components that fulfii a common purpose. This increases the extensibility,
maintainability and portability of systems created. Figure 4-10 illustrates the layering on
class types.

56

Chapter 4 — Object Orient Approach

User Interface Classes

Ul

Controller /
Process Classes

4 4

User Interface Classes

il

Persistence Classes

System
Classes

-

Persistence Store(s)

Figure 4-10 Layering system based on class types (Ambler, 2001:255)

From Figure 4-10, it is evident that the arrows all point downwards, illustrating that the

flow of messages can only go in this direction.

The components are grouped as follows:

e User interface classes — These classes contains all the code needed for the

graphics user interface to function.

¢ Controller/Process Classes — These classes implement the business logic.

e Business/Domain Classes — these classes encapsulate the basic business

functionality.

e Persistence Classes — These classes provide the infrastructure to store and

retrieve information.

e System Layer — This provides access to the operating system.

Class Modelling

The function of class modelling is to model the static structure according to which the

software will be built. This structure typically focuses on the solution space and is more

specific to the technical environment.

57

Chapter 4 — Object Orient Approach

The following is modelled by using class modelling:
¢ Inheritance classes
¢ Association and dependency of classes
¢ Aggregation and composition of classes

e Attributes of classes

Rumbauch et al. (1991:168) rounds off class modelling by grouping the classes into

modules, these sub-sets should capture some logical sub-sets of the entire model.

Inheritance classes

Rumbauch et al. (1991:163) explains that inheritance in classes share a common
structure. This can be added in two directions: one is to generalise common aspects of
existing classes into a super class (bottom-up), or to refine existing classes into
specialised subclasses (top-down). To generalise common aspects, one needs to
search for classes with similar attributes, associations, or operations, and define a super

class that shares a common feature.

To refine existing classes into subclasses, a search for noun phrases composed of

various adjectives on the class name should be conducted.

Association and dependency of classes

Rumbauch et al. (1991:31) explains that associations indicate the class sharing the

information in subclasses. OO uses pointers to indicate associations.

According to Booch (1994:109), there are three types of cardinality in associations.
These are:

e One toone
e One to many

e Many to many

58

Chapter 4 — Object Orient Approach

An association also indicates the dependencies of classes on one another (Booch,
1994:109).

Aggregation and composition of classes

Booch (1994:128) states that aggregation relationships among classes have a direct
parallel to aggregation relationships among the objects corresponding to these classes.
This means that when two classes are coupled tightly together, the one class will
always instantiate with the other class and cannot be dealt with independently.
Rumbauch et al. (1991:36) explains this as a “part-whole” or “a-part-of’ relationship
between the components. Two kinds of aggregations are illustrated, aggregation as

containment by value and aggregation as containment by reference.

Modelling attributes of classes

The attribute’s name should indicate what it represents; this should be in the format of

“attributeName”.

The second factor of significance is the attribute’s visibility. UML supports three types of
attribute visibility, namely public, protected and private. Ambler suggests that all

attributes in a class should be declared private, as this promotes information hiding.

Thirdly, all attributes should be documented for any developer to understand its
purpose. The documentation should contain the description of the attribute, the
applicable invariants, being the conditions under which the attribute is true, as well as
the examples and visibility decisions explaining the reasons why the given attribute is
declared as such.

The following approach should be followed when designing attributes:
e Assign private visibility to all attributes.
¢ Update an attribute only in its setter methods.
¢ Directly access an attribute only in its getter methods.

e Always invoke a setter method for an attribute to update its value.

59

Chapter 4 — Object Orient Approach

e Always invoke a getter method for an attribute to obtain its value.

e Implement simple validation logic for an attribute in its setter method.

o Implement complex validation logic in separate methods.
Figure 4-11 is an exarnple of the class design for two classes, i.e. student and
studentNumber. The “+” sign means the attribute is public and the “” means the

attribute is private. A “#” means the attribute is protected (Ambler, 2001:284).

The arrow from the student to the studentNumber indicates the cardinality of the class.

Student

-name: string

-phoneNumber: PhoneNumber
-emailAddress:EmailAddress 1 1 StudentNumber
-studentNumbe_r:StudentNumber _Number:int

-averageMarkiling -nextStudentNumber:int

+isElegibile(name:string, studentNumber: StudentNumber]: boolean

+Student({studentNumber: StudentNumber):Student <<constructor>> +StudentNumber(): StudentNumber <<constructor>>

+getSeminarsTaken(): Vector
+purchasesParkingPass()
+getAverageMark():long
-setAverageMark({newAverageMark:long

Figure 4-11 The student and studentnumber design classes (Ambler, 2001:282)

State chart modelling
Avison and Fitzgerald (2003:253) explain that the function of a state chart diagram is to

illustrate the various permitted states an object may be in.

Figure 4-12 is an example of a state chart diagram, also known as a state diagram. The
state is a particular set of values of the attributes of an object at a particular time. When

these values change, the state also changes.

60

Chapter 4 — Object Orient Approach

Student
Start

Student suspends/
setsuspend

Completes

1

Fails Reinstated

Reinstates

Suspend

PR

Fail j [Graduate]

[A

rchive

Withdraws

Figure 4-12 State chart diagram for student object (Avison & Fitzgerald, 2000:254)

The states of an object (like the student object example above) are represented by
rectangles labelled with that state. Transitions are represented by the arrows associated

with the name of the event that triggers the change.

The solid black dot represents the starting point and the bull's eye the end of the flow of
states.

Collaboration modelling

Collaboration models provide a bird’s eye view of the collection of collaborating objects.
This model shows the message flow between objects in an OO application and also

implies the basic association between the classes.

The rectangles represent the classes and the lines connecting the rectangles represent
the association. The descriptions above the association lines are methods used to

complete the association.

61

Chapter 4 — Object Orient Approach

Figure 4-13 is an example of a collaboration diagram.

Seminar
Details
<>

1: name := getName()
2: getDescription{()

3: getlocation(}

4: getSeatsLeft()

5: getStudentList()
—_—>

5.1: getinfof) l’

5.1.1: getinfo(} l,

:Seminar

1.1: getName(}
1.2; getNumber{()

1.3: getDescription{}
>

:Course

=3 5.n:getinfo()

enrollmentl enrolimentN
:Enroliment :Envoliment
Record Record
l’ 5.n.1: getinfo{}
student1 studentN
:Student :Student

Figure 4-13 A collaboration diagram (Ambler, 2001:302)

Deployment modelling

Deployment modelling depicts a static view of the run-time configuration of processing

nodes and the components running on those nodes. This diagram is essential in cases

where the system is deployed onto several machines.

Figure 4-14 illustrates a UML deployment diagram. The three-dimensional boxes

represent a node, which can be a computer or a switch. The connection is represented

by a dotted line between the boxes.

Cllent: browser

S tudent
Administration
<<applications>

| e me———

appServer:SunSolaris

Student

Seminar

Schedule

T

T Persistence
y j<<infrastructure>>
," /|
L \
e / 3
: H
I 1
;
/ i
/

i
\
H
1
'
'
i
'
¥
108}

Figure 4-14 Deployment diagram (Ambler, 2001:313)

62

Chapter 4 — Object Orient Approach

User interface design

User interface design concludes OOD. This activity is based on the use interface

prototyping done during analysis.

The application of common user interface design principles and techniques is required.
It is recommended that the following principles be kept in mind when designing
interfaces:
e Structure ~ the interface should be designed purposefully in meaningful and
useful ways to be clear, consistent and recognisable.
e Simple — the design should be simple to use.
e Visibility — options should be visible without any redundant distractions.
e Feedback - the users should be informed constantly of the actions of the system.
e Tolerance — the design should be flexible and tolerant to reduce the cost of
mistakes and misuse.

e Re-use — the design should re-use external and internal components and

behaviours to maintain consistency.

During the user interface design, the flow will also be modelled. This is done by using

the interface flow diagram.

Once the design is finished, development of the solution may start. The artefacts
required for the implementation, (Ambler, 2001:348), are the following:

¢ User interface prototype

e State chart diagram

e Class model

e Collaboration Diagram

¢ Business rules

63

Chapter 4 — Object Orient Approach

4.4.3. Rational Unified Process (RUP)

Jacobson et al. (2001:4) explains that the rational unified process (RUP) is a use case
driven, architecture-centric and iterative process that uses the unified modelling

language (UML) to produce its blueprints for a software system.

The use case is used to capture the system’s requirements and the combination of all
use cases makes up the use case model. This describes the complete functionality of

the system.

The use cases drive the system’s architecture and the system’s architecture in turn
influences the selection of use cases. The maturity of these components is driven by the

life cycle.

The architecture is cast in a so-called form. This form is based on the key use cases
explaining the core functionality of the system. As the lifecycle continues, the

architecture grows until it is deemed stable.

RUP is an incremental and iterative process. This means that the user requirements
cannot be determined all at once. Every iteration identifies and specifies the relevant

use cases.

The above-mentioned three concepts provide the structure according to which RUP

works and are interdependent.

4.4.3.1. Life cycle of RUP
RUP’s life cycle repeats a series of cycles that makes up the life cycle of the system.
Every cycle is seen as a release, divided into the following phases:
e Inception

o Elaboration

64

Chapter 4 — Object Orient Approach

e Construction

o Transition

Each phase has a workflow, defined as a sequence of activities producing a visible
result (Avison & Fitzgerald, 2003:426). Due to RUP’s popularity and flexibility, multiple
variances in terms of the workflows are found. This discussion will be based on the
original RUP (Jacobson et al., 2001).

Every release is a product ready for delivery and includes the requirements, use cases,

non-functional requirements and test cases (Jacobson ef al., 2001:9).

Figure 4-15 llustrates the core workflows, i.e. requirements, analysis, design,
implementation and testing. These workflows take place over the four phases
(inception, elaboration, construction and transition). The curves are approximations of

the extent to which each workflow is carried out over a particular phase.

Phases
Core Workflows Inception | Elaboration | Constructﬁion Transition
: i S : z '
i : g ‘) ; '
Requirements ‘ o 1 o N ; Antiteration in
' I AR ‘ —> the elaboration
Analysis ' i g i~ -~} phase
' 3) i i) ;
R 1 } A i : ' '
Design ' b v A !
i B IR i i 1 ;
! 5 S vz e 51 ¢
Implementation : L b o : b ' B
: 1 : i £ : 1 ;
; 1 ‘ | , : b H
Test i } e i : o E i
ter. | lter. . . . o | ter. lter.
#1 | #2 #1 41

Iterations

Figure 4-15 The five work flows that takes place over the four phases (Jacobson ef al., 2001:11)

65

Chapter 4 — Object Orient Approach

Requirements workflow

The discussion on the requirements workflow is based on the work of Jacobson et al.
(2001). It starts with the development of the business models. These techniques
describe the business processes of the organisation. The result of the modelling is the

domain model.

The activity is supported by two kinds of UML models:

e Business use case models being the same concept as essential use case
models, described in OOSP.

e A business object model describing how each business use case is realised.

The domain model sets the context of the system, while the use case model captures
the functional requirements and the individual use cases the non-functional

requirements.

The use case model is described as a whole, a set of diagrams and a detailed

description of each use case (similar to the essential use case description in OOSP).

User interface prototypes are produced for each actor representing the user interfaces.
A supplementary requirements specification is created for generic requirements not

specific to a particular use case.

Analysis workflow

The discussion on the analysis workflow is based on Jacobson et al. (2001).

The analysis workflow produces an analysis model, which is a conceptual model

analysing the requirements through refinement and structure. The model includes the
following:

e Analysis classes

66

Chapter 4 — Object Orient Approach

o Use case realisations
» Analysis packages
¢ Service packages

e The architecture description

Analysis classes focus on the abstraction of classes, or subsystems in the design. They
contain the following:

e Responsibilities

s Attributes

¢ Relationships

e Special requirements

The three existing types of classes are:

o Boundary class — models interaction between the system and the actors. It is
involved in receiving and requesting information from external systems and
users. This is similar to the user interface classes in OOSP.

» Control class — co-ordinates sequence, transacts and controls other objects. It is
used to encapsulate control of a specific use case. This is similar to the business
classes in OOSP.

o Entity class — models information that is persistent. It includes the information
about the entity and its associated behaviour. This is similar to the actor classes
in OOSP.

Use case realisation analysis collaborates within the analysis model. It describes how
use cases are realised and performed in terms of the analysis classes. It provides a
trace to a specific use case in the use case model. A typical artefact used for this, is a
collaboration diagram. Analysis packages can be used to organise the artefacts of the
analysis model into manageable pieces. These artefacts, which are in the use case

realisation, are the analysis classes that are grouped together. The packages should be

67

Chapter 4 — Object Orient Approach

cohesive and loosely coupled. Services offered by the system, are grouped together by

service packages.

The architecture description contains the architecture view of the analysis model. It
furnishes a decomposition of the analysis model into its analysis packages and their
dependencies. It also contains the key analysis classes, such as the entity-, boundary-
and control classes. Furthermore, it contains the use case realisations that realise the

important and critical functionality of the system.

The output of the analysis workflow will be used for the design workflow. The analysis-
and service packages will impact on the design of the analysis- and service

subsystems.

Analysis classes will be used as specifications for designing classes. Use case
realisation analysis is the technique that will create more precise specifications for the
use cases. It will also serve as an input to designing the design use cases.

The architecture view of the analysis model will serve as an input to the architecture

view of the design model.

Design workflow

The discussion on the design workflow is based on Jacobson et al., (2001). This
workflow produces the designs that serve as a blueprint for the implementation of the

system.

The processes executed, are design class, use case realisation design, design

subsystem, interfaces, deployment diagram and a description of the architecture.

The design class follows the same method for defining classes, as previously discussed

in OOSP, and also makes use of a class diagram. The use case realisation is the

68

Chapter 4 — Object Orient Approach

design process describing the events of a class diagram (called a system use case in

OOSP) and an interaction diagram (called a sequence diagram in OOSP).

The subsystem process is a mean of organising the design model into manageable
pieces. It consists of:
e Design classes

e Use case realisation — desjgns and interfaces.

As in the case of the analysis subsystem, it should be cohesive and loosely coupled.
Service subsystems fulfil the same function as previously discussed for other service
subsystems.

The user interface design is also done in this workflow and is executed in the same
fashion as for OOSP. The architecture description contains the architecture view of the
design model. It also contains a decomposition of the design model into the design
packages and their dependencies. Lastly, it should contain the use case realisations;
designs that need to be developed for the system. The key design classes trace back

to the key analysis classes.

The deployment model is a model that describes the network configurations, nodes, the
active mapping between the classes and the nodes and an architectural view of the

deployment model.

The output of the design workflow will be used in the implementation workflow. The
design- and service subsystems will be implemented by the implementation

subsystems. The design classes will be implemented by the file components.

69

Chapter 4 — Object Orient Approach

The use case realisation designs will be used by way of small steps that produce

“builds”. Lastly, the deployment model and the network configurations will be used to

distribute the exceptionable components onto the nodes.

Implementation workflow

The discussion on the implementation workflow is based on Jacobson ef al. (2001).

This workflow produces the implementation model required for the implementation of

the design model. It also describes the organisation of the component and its structure,

as well as the dependencies of the components in terms of the implementation

environment.

The implementation workflow produces:

Components
Implementation subsystems
Interfaces

Implementations
Architecture descriptions

Integration “build” plans

A component is a physical package of model elements, the model elements being

typically the design classes in the design model. Components can be one of the

following stereo types:

<<executable>> - indicates a program that can be executed.
<<file>> - indicates a file that contains source code.
<<library>> - indicates a static or dynamic library.

<<table>> - indicates a database table.

<<document>> - indicates a document.

70

Chapter 4 — Object Orient Approach

Implementation subsystems provide a mean to organise the design artefacts into more
manageable pieces. This can be a combination of components, interfaces and other

subsystems.

Interfaces in the component should implement all the operations defined by the
interface, and the dependencies supporting these operations should be available. Code

is used to create these interfaces.

The architecture description of the implementation workflow contains the architecture
view of the implementation model. It also contains a decomposition of the
implementation model into the design packages and their dependencies. The key
components trace back to the key design classes, executable components, and

components central to other components dependent on them.

Every “build” is a step that is released and tested for integration and the system’s test.
Every “build” is version-controlled, thus enabling rollback in case of a faulty new
release. Every “build” is subject to a standard of testing. The test workflow focuses on
this.

Test workflow

The discussion on the test workflow is based on Jacobson et al. (2001).
This workflow produces a test model, consisting of:

e Testcases

Test procedures

Test plan

Test evaluation

Test components

71

Chapter 4 — Object Orient Approach

Test cases specify a way of testing the system. This includes what need to be tested,
with which inputs or results, and under which conditions. Test procedures specify how
to perform one or several test cases, or parts thereof. This can be an instruction of how

to test manually, or how to use an automated testing tool.

Test components automate one or more test procedures, or parts thereof. The test plan
describes the testing strategies, resources and schedules. It also includes the type of

tests to be performed and the objects for these tests.

A defect is produced when a system anomaly is found; this is tracked and resolved.
Evaluation tests are the results of test efforts, such as test-cases coverage, code

coverage and the status of defects.

4.4.4. Object Modelling Technique (OMT)

A literature study showed that Rumbaugh et al. (1991) are the original authors of the
OMT methodology. The methodology was created before unified modelling language
(UML) existed and uses its own notation to describe objects and classes. This

discussion will follow the original notation.

The OMT methodology consists of three phases (Rumbaugh et al.,1991:145):
e Analysis
e System Design

e Obiject Design

4.4.4.1. Analysis

The following discussion is based on Rumbaugh et al. (1991).The analysis phase
concentrates on the understanding and the modelling of the application and the problem
domain. It starts with a problem statement. This is an information statement to be

refined by the analyst at a later stage.

72

Chapter 4 — Object Orient Approach

The requirements document typically contains the following:
e Problem scope
e What is needed
e Application context
e Assumptions

e Performance needs

Once the initial requirements are finalised, the analysis of the requirements can be
done. The models created during the analysis, are the following:

e Object model

e Dynamic model

e Functional model

Object model

The object model models a static structure of the objects in the problem domain and

organises this into workable pieces.

The information for this model comes from the problem statement and expert
knowledge. The steps in object modelling are the following:
¢ l|dentify objects and classes — nouns in the problem domain are usually classes,
while entities are usually objects.
e Prepare a data dictionary — a description of the objects, the scope of the class
and the restriction on the object or class usage.
¢ Identify associations and aggregations between objects — usually correspond to
verbs or verb phrases. These verb phrases should be documented first (from the
problem statement).
e |dentify attributes of objects and links — correspond to possessive nouns, e.g.
“the collector of the car”. The adjective frequently represents the enumerated.

attribute value. The attributes do not necessarily come from the problem

73

Chapter 4 — Object Orient Approach

statement, and one should make use of knowledge of the problem domain. A link
attribute is a link between two objects, e.g. the many-to-many association of the
objects stockholder and company, is a number of shares.

e Organise and simplify object classes with inheritance — done by searching for
classes with similar attributes, associations or operations. It can be accomplished
in two directions: generalising common aspects of existing classes into a super
class, or refining existing classes into specialised subclasses.

o Verify that access paths exist for likely queries — done by testing access paths
with meaningful questions. For example, what identifies a bank account, or can
one access more than one bank account from an ATM.

e |terate and refine the model — the first iteration is only a start. Models are
identified and modified by each iteration.

e Group classes into modules — classes that are tightly coupled, need to be
grouped together into modules. A module captures a logical subset of the entire

model.

Figure 4-16 illustrates an example of an object model. The rectangles in Figure 4-16
represent the objects and classes. The name of the class is on top, with its attribute(s)
listed below the name. The association between classes is depicted by a line between

the classes. These associations are verbs and represent action taken.

Once the object model is defined, the dynamic model can be modelled.

74

Chapter 4 — Object Orient Approach

l Transaction

Entered on date-time Consists of

Update
amount
kind

Entry Cashier Remote
station t i i

Entered by Concerns

i Cashier
ATM Cashier Started by

cash on hand station
dispensed

Employs

QOwns Owns
Issues

3 Card
Customer H authorisation
as
name password
address limit

Identifies

stalion
code

ank
code

Has

Consists of Cash Card

bank-code
card-code
serial number

Account
balance
Holds credit limit
type

Accesses

Figure 4-16 Object model (Rumbaugh et al., 1991:168)

Dynamic model

The dynamic model models the time dependency behaviour of the system. This
analysis searches for events and summarises the event sequence by using a state

diagram.

Static data does not contain events, therefore no models are created for these systems.
Dynamic models are more suitable for interactive systems. To construct a dynamic
model, the following steps need to be performed:

e Prepare scenarios of typical interaction sequences — a scenario is a description
of the sequence of events. This is similar to a use case scenario used in OOSP
and RUP.

¢ Indentify events between objects — the use scenarios identify the events. An

event is anything that needs interaction from the external world.

75

Chapter 4 — Object Orient Approach

Prepare an event trace for each scenario — a list of events among the objects.
This is similar to a sequence diagram.

Build a state diagram - this is similar to a state chart diagram used in OOSP and
RUP.

Match events between objects to verify consistency — by checking for

completeness and consistency with the state diagram for all the objects.

Functional model

Functional models show how values are computed. This model does not take the

sequencing and structure of objects into consideration. Data flow diagrams are used to

show the functional dependencies. Functions are expressed in the form pseudo code,

natural language, or mathematical equations.

The following steps are performed to create the functional model:

Identify input and output values — the values needed for an event. The problem
statement is a good source for defining inputs and outputs.

Build data flow diagram showing functional dependencies — a diagram that
illustrates which outputs connect to which inputs. The data flow diagram is
created in layers, each detailing into deeper levels of the model.

Describe functions — once the dataflow diagram is sufficiently refined, the
function can be described by means of natural language, mathematical
equations, pseudo code, or decision tables.

Identify constraints — identify functional dependences between objects not related
by an input-output dependency.

Specify optimisation criteria — values that need to be maximised, minimised or

optimised. For example, messages sent between different ATM sites.

Figure 4-17 is an example of a function description.

76

Chapter 4 — Object Orient Approach

Update account (account, amount, transaction-kind) -> cash, receipt, message

if the amount on a withdrawal exceeds the current account balance,
reject the transaction and dispense no cash.

if the amount on a withdrawal does not exceed the current amount balance,
debit the account and dispense the amount requested

if the transaction is a deposit
credit the account and dispense no cash

if the transaction is a status request
dispense no cash

In any case,
the receipt shows ATM number, date, time, account number,
transaction-kind, amount transacted (if any), and new balance

Figure 4-17 Example of a function description (Rumbaugh et al., 1991:183)

The analysis phase is an iterative process. The model serves as a specification of the

problem and the problem domain, without introducing an implementation.

The analysis document is the problem statement, object models, dynamic models and

the functional models.

4.4.4.2. System Design

The following discussion is based on Rumbaugh et al. (1991).

Analysis is required for determining what needs to be done with regard to a problem of
the system. Design is required for determining how the solution should be performed.
During the system’s design, the overall structure is decided. This forms the architecture,
which is the organisation of the system into components known as subsystems. The
architecture serves as the context within which the detailed decisions are made during
the systems design. The decisions to be made are the following:

e Organise the system into subsystems — package of classes that represents a
well defined service interfacing with the system. Each subsystem can be divided
into smaller pieces known as modules.

e Identify concurrency inherited in the problem — not all software objects are
concurrent. One needs to identify which objects can be used together and which

need to be mutually exclusive.

77

Chapter 4 — Object Orient Approach

e Allocate subsystems to processors and tasks — concurrent subsystems must be
allocated to a hardware unit, which can be a general purpose processor, or a
specialised functional unit.

e Choose an approach for management of data stores — this can be in the form of
files, or in the form of database management systems (DBMS).

e Handle access to global resources — global resources, such as processors, tape
drives, disks, etc. need to be identified. A lock is an object that handles the
object. These locks need to be defined.

e Choose the implementation of control in software — analysis shows interactions
as events among objects. The designer must decide on ways to implement
control on these interactions. Two types of control exist:

o External control — flow of externally visible events among the objects of a
system.
o Internal control — flow of control within a process.

e Handle boundary conditions — the designer must provide for the following three
types of boundary conditions that exist:

o Initialisation — the system must be brought from a quiescent initial state to
a sustainable steady state.

o Termination — the system object is abandoned.

o Failure - the unplanned termination of a system.

e Set trade-off priorities — the design must provide for a decision to be made
between desirable, but incompatible goals. These, for instance, may affect the
performance of a development, or event, where a decision is required as to
whether certain functions should be dropped in order to complete the

development on time.

The system design document consists of the structure of the basic architecture of the

system and the high level strategy decisions.

78

Chapter 4 — Object Orient Approach

4.4.4.3. Object Design

The following discussion is based on Rumbaugh et al. (1991). The analysis phase
determines what the implementation needs to fulfil, the system’s design determines how
this will be accomplished. The object design determines the full definition of classes and
associations used in the implementation, as well as the interfaces and algorithms.
During this phase, the analysis model is refined and detailed. The steps used in the
object design phase, are:

e Combine the three models to obtain the operations and classes — the actions and
activities of the dynamic model and the processes of the functional model are
converted into operations attached to the classes in the object model. This is the
mapping of the logical structure into a physical organisation of an application.

¢ Design the algorithms to implement operations — each operation specified in the
functional model, must be formulated as an algorithm; the algorithm tells how a
certain process should be done.

e Optimise access paths to data — the analysis model can be optimised for greater
performance, the trade-off being between an optimised or less optimised model
and a non-optimised generic model. For optimisation, the designer can apply one
of the following to the analysis model:

o Add redundant associations to minimise access cost and maximise
convenience.

o Re-arrange the computation for greater efficiency.

o Save derived attributes to avoid recompilation of complicated expressions.

e Implement control for external interactions — the strategy for implementing the
state-event models present in the dynamic model, must be refined. In the system
design, a strategy is taken on the implementation control in the software. In the
object design, the designer needs to flesh out this strategy by means of the
following approaches:

o Procedure-driven system approach — to use the location within the

program to hold the state of the program.

79

Chapter 4 — Object Orient Approach

O

Event-driven system approach — to use a direct implementation of a state
machine mechanism, such as a state engine determining the next state of
objects.

Control as current tasks — an object can be implemented as a task.

Adjust class structure to increase inheritance — as the design progresses, more

classes and operations appear. The designer can follow the under-mentioned

approaches to increase the amount of inheritance in the system:

O

O

O

Re-arrange and adjust classes and operations.
Abstract common behaviour from classes.
Use delegation to share behaviour in cases where inheritance is

semantically not valid.

Design associations — provide access paths to objects. During object design, a

strategy is formulated for implementing associations. The designer needs to

analyse the associations to make use of the following association techniques:

o

One-way associations — an association that is only traverse in one
direction.

Two-way associations — an association that is traverse in both directions.
Link attributes — are used for implementation of multiplicity associations of
an object.

Determine objects attribute representation — the designer must choose when to

use primitive types in representing an object and when to combine groups of

related objects.

Package classes and association into modules — this involves the following tasks:

O

Information hiding — the goal is to treat classes as “black boxes” to which
the interfaces are public but the internal details are hidden.
Coherence of entities — to organise entities such as classes, operations or

modules to fit together towards a common goal.

80

Chapter 4 — Object Orient Approach

o Constructing physical modules ~ the initial organisation of modules may
not be optimal. Modules need to be defined in such a way that the

interfaces are minimal and well defined.

The object design document consists of the detailed object models, detailed dynamic
models and the detailed functional models. The implementation of the system is the

translation of the analysis models into code.

Rumbaugh (1991:279) states that a non-object-oriented language can be used to
implement the analysis model, but an object-oriented language greatly improves the

concepts used in the analysis model.

From the methodologies discussed, it becomes evident that comparison of these
methodologies is not exactly straight forward, the problem being that the dynamic

classification framework is not a comparison framework, but a classification framework.

The next discussion explains a proposed framework that will be used to compare the
methodologies discussed.

4.5. Comparing the ISD Methodologies
So far, this chapter concentrated on describing the OOA, OOSP, RUP and OMT

methodologies. The following discussion will focus on comparing these methodologies

in an attempt to find commonalities among them.

A literature study indicated that there are several techniques for comparing
methodologies. In this discussion however, the technique described by Avison and
Fitsgerald (2003:555) will be used. Figure 4-18 outlines the comparative review
framework.

81

Chapter 4 — Object Orient Approach

1. Philosophy
a. Paradigm
b. Objectives
¢. Domain
d. Target
2. Model
3. Techniques and tools
4. Scope
5. Outputs
6. Practice
a. Background
b. User base
c. Participants
L 7. Products

Figure 4-18 Outline for the comparative review of methodologies (Avison & Fitzgerald, 2003:556)

4.5.1. Philosophy

The first element discussed in the comparison framework, is philosophy. Avison and
Fitzgerald (2003:557) explain that a philosophy is a set of principles underlying the
methodologies.

From the methodologies discussed, one can derive that all methodologies use object-
oriented concepts in an iterative fashion. The methodologies work in phases of the

development, with some methodologies fo cusing on one phase only (OOA).

The components of the philosophy are paradigm, objectives, domain and target.

4.5.1.1. Paradigm
Avison and Fitzgerald (2003:557) identify two paradigms of relevance:

e The science paradigm - consists of reductionism, repeatability and refutation.
This implies that the breakdown of the problem domain into parts does not
disrupt the system of which it is a part.

e The systems paradigm — is a holistic approach concerned with the whole picture,

the emergent properties and the interrelationships between parts of the whole.

82

Chapter 4 — Object Orient Approach

Both hard and soft systems approaches are usually associated with this

paradigm.

The paradigm of OOA follows a “divide and conquer” approach to solve the problem.
This is a form of reductionism. The same argument can be applied to OOSP, RUP and
OMT.

All of these methodologies are iterative in their development approach, which is a form

of repeatability.

The phases of each methodology concentrate on a specific goal, e.g. the analysis
phase found in OOA, OOSP, RUP and OMT concentrates on modelling the problem
domain in a platform-free environment. This eliminates the restrictions posed by a

platform. Elimination is a form of refutation.

The OOA, OOSP, RUP and OMT methodologies concentrate on the problem given and

break it down into parts. These parts are modelled in terms of objects.

From the discussion above, one can derive that the OOA, OOSP, RUP and OMT

models are all based on the scientific paradigm.

4.5.1.2. Objectives

The second component of philosophy is the objectives of the methodology. Avison and
Fitzgerald (2003:557) explain that the objective of some methodologies is to develop a
computerised system, while for others the objective is to determine whether an
information system is really needed. This component determines the boundaries of the

area of concern.

The objective of the Object-Oriented Analysis (OOA) methodology is to concentrate on

the analysis of the problem domain and to model the problem domain in terms of

83

Chapter 4 — Object Orient Approach

objects. This methodology does not give any guidance as to gathering the
requirements, designing the system, or implementing the system. It only concentrates

on the analysis of the system.

The Object Modelling Technique (OMT) is a methodology that concentrates on more
aspects in the development lifecycle. It includes the analysis phase and the designing
phase, which are the system design and object design phases. However, it does not
give any guidance on requirements gathering, other than a problem statement. There
are no testing phases built into this methodology, and implementation is based on
common object-oriented concepts.

The Object-Oriented Software Process (OOSP) is a methodology concentrating on
requirements gathering, requirements validation, followed by the analysis of the
requirements, systems design and the implementation of the system. The methodology
does not include a testing phase, but makes use of another methodology, namely Full
Life Object-Oriented Testing (FLOOT), to complete its testing.

The Rational Unified Process (RUP) is a methodology focusing on requirements
gathering, analysis, design, implementation and testing. This methodology covers all

areas of developing a solution.

All of the methodologies concentrate on developing a computerised system.

4.5.1.3. Domain

Avison and Fitzgerald (2003:560) state that systems and problems interrelate and that
the solution to a number of interrelated problems is different to the sum of the solutions
to the individual problems, viewed in isolation. They state that this led to a number of
methodologies adopting a different philosophy. It caused methodologies to take on a
much wider view of their starting point and is not looking to solve particular problems.

They argue that, in view of the above for solving individual problems, it is necessary to

84

Chapter 4 — Object Orient Approach

analyse the organisation as a whole, devise an overall IS strategy, sort out the data and
resources of the organisation and identify the overlapping areas and the areas that

need to be integrated.

OOA, OOSP, RUP and OMT are methodologies specific to problem solving. They do
not focus on identifying the systems required, but assume that a specific problem needs

to be addressed.

4.5.1.4. Target

The last component in philosophy is the target. Avison and Fitzgerald (2003:560)
explain that target focuses on the applicability of the methodology. Methodologies are

targeted at particular types of problems, environment, type, or size of an organisation.

OOA concentrates only on analysing the requirements, thus solving the analysis phase.
OOSP, RUP and OMT focus on a software solution aimed at fulfilling a business
requirement.

4.5.2. Model

The second element in the framework is concerned with the analysis of the model the
methodology adheres to (Avison & Fitzgerald, 2003:561). This is the basis of the
methodological view, and can be seen as an abstraction and a representation of the
important factors of the information system. There are four distinct types of models, i.e.

verbal, analytic or mathematical, pictorial and simulation models.

All of the methodologies use diagrams to communicate designs. It can therefore be

classified as pictorial models.

4.5.3. Techniques and tools

Techniques and tools are those used in a particular methodology (Avison & Fitzgerald
(2003:561).

85

Chapter 4 — Object Orient Approach

The techniques and tools used in OOA, are mainly class, object and gen-spec structure.

OOSP uses essential use case models, change cases, essential use interface
prototypes, CRC models for domain modelling, user interface flow diagramming, user
interface prototypes, use case models, sequence diagram, class model (analysis),
activity diagrams, state chart diagrams, component diagrams, deployment diagrams,

collaboration diagrams and class models (design).

RUP uses use case models, use case realisations analysis and design, interface
analysis and design, architectural view of the analysis and designs, analysis and design
classes, analysis and design packages, design subsystems, deployment models, test

cases, test procedures and test components.

OMT uses problem statements, object models, dynamic models and function models.
From these, an investigation is carried out on the system, and a systems design
document is produced. The object design phase is concerned with adding platform

considerations to the object design document.

4.5.4. Scope

The scope of a methodology is an indication of the stages in the life cycle (Avison &
Fitzgerald, 2003:561). The scope of OOA is the analysis phase.

OOSP gathers the requirements, validates the requirements, analyses the
requirements, designs the analysed requirements and implements the designs. The

methodology follows a spiral life cycle approach.

RUP gathers the requirements, analyses the requirements, designs the analysed
requirements, implements the designs and tests the implementation. This methodology

also uses a spiral life cycle approach.

86

Chapter 4 — Object Orient Approach

OMT gathers the requirements, analyses the requirements, designs the analysed

requirements and implements the designs. It also uses a spiral life cycle approach.

4.5.5. Output

This component is concerned with the deliverables of the methodology at each stage

and most importantly, the final deliverable (Avison & Fitzgerald, 2003:562).

In terms of output, the OOA methodology produces an analysed class and object
model.

OOSP’s requirements phase produces the functional and non-functional requirements
for the problem domain. The validation phase produces change cases, if needed. The
analysis phase produces an analysis model, used for the designs. The design phase

produces the design model, used for the implementation phase.

RUP follows a similar output. The requirements mode is used for the analysis model,
which in turn is used for the design mode and thereafter for the implementation model.

The result of the implementation is tested in the test model.

OMT also produces the same output as RUP and OOSP. The analysis phase produces
an analysis document, the systems design phase produces a systems design
document, and these documents are used to produce an object design document. The

object design document is used for the implementation phase.

4.5.6. Practice

The practice component in the framework is measured according to the following
(Avison & Fitzgerald, 2003:562):
e The methodology’s background in commercial or academic terms.

e The user base (not part of the discussion).

87

Chapter 4 — Object Orient Approach

e The participants in the methodology and the required skills level. The practice
should also include an assessment of difficulties and problems encountered, as
well as perceptions of success and failure.

e |t should be done by the users of the methodology. The results will be subjective,

depending on who is consulted.

The background for OOA, OOSP, RUP and OMT is mainly based on object-oriented

principles that have evolved into a full life cycle.

The OOA methodology is a methodology (Coad & Yourdon, 1991) that focuses on one
aspect only. The principals used in OOA, are imbedded in OOSP, RUP and OMT in the

analysis phase.

OOSP, RUP and OMT cater for a development full life cycle. The user base for OOA is
the designers. The output, is utilised by them. The OOSP, RUP and OMT user base
caters for architects, analysts, designers, programmers and testers, responsible for

producing a full working software solution.

The participants in OOA are mainly the analysts, whereas in OOSP and RUP, the user

base and business are included.

4.5.7. Product

Product is the last component in the framework, and as the name implies, this is the
final deliverable of the methodology. It can range from a software product to a telephone
help service (Avison & Fitzgerald, 2003:562). The product falls outside the scope of this
study and will not be discussed.

88

Chapter 4 — Obiject Orient Approach

Table 4-2 is a summary of the discussion on the comparative framework of Avison and
Fitzgerald (2003).

00A O0SP RUP OMT
Philosophy Iterative, Iterative, incremental, lterative, incremental, | Iterative,
incremental, object | object oriented object oriented incremental, object
oriented oriented
Paradigm Scientific Scientific Scientific Scientific
Objectives To analyse the To determine the To determine the To determine the
requirements of requirements needed for a | requirements needed | requirements
the system. system, analyse the for a system, analyse | needed for a system,
requirements, design the the requirements, analyse the
system and build it. design the system, requirements, design
build it and test the the system, build the
system. system.
Domain Only the analysis Only on the software Only on the software Only on the software
domain solution domain. solution domain. solution domain.
Target Analysis of the Software solution of the Software solution of Software solution of
problem. business problem domain. | the business problem | the business
domain. problem domain.
Model Pictorial Pictorial Pictorial Pictorial

Techniques and

Tools

Class and object
diagrams and gen-

spec diagrams

Essential use case
models, change cases,

essential use interface

prototypes, CRC models

for domain modelling,
user interface flow

diagramming, user

interface prototypes, use

case models, sequence
diagram, class model
(analysis), activity
diagrams, state chart
diagrams, component
diagrams, deployment
diagrams, collaboration
diagrams and class

models (design)

Use case models,
use case realisations
analysis and design,
interface analysis and
design, architectural
view of the analysis
and designs, analysis
and design classes,
analysis and design
packages, design
subsystems,
deployment models,
test cases, test
procedures and test

components

Problem statements,
object models,
dynamic models and
function models from
this an investigation
is made on the
system and a
systems design
document is
produced. The object
design phase
concerns itself with
adding platform
considerations to the
object design

document.

Table 4-1 Comparison of the philosophies of the OO methodologies.

89

Chapter 4 — Object Orient Approach

Scope Analysis Gather requirements, Gather requirements, | Gathers the
requirements validate requirements, analyse requirements,
analyse requirements, requirements, design analyses the
design analysed analysed requirements, design
requirements, lastly requirements, the analysed
implement designs, spiral implements designs, requirements and
life cycle tests implementation implements the
spiral life cycle. designs, spiral life
cycle.
O0A OOSP RUP OMT
Outputs Analysed class Requirements phase Requirements model, | The analysis phase
and object model produces the functional analyse model, produces an analysis
and non functional design model, document, the
requirements, change implementation systems design
cases in validation, model and test phase produces a
analysis models for model. systems design
design and design models document and these
for implementation documents are used
to produce an object
design document.
The object design
document is used for
the implementation
phase.
Practice Based on OO Based on OO caters fora | Based on OO caters Based on OO caters
(Background) principles, caters full development life cycle. | for a full development | for a full
for analysis life cycle. development life
cycle.
Practice (User N/A N/A N/A N/A
base)
Practice Analysts Architects, analysts, Architects, analysts, Architects, analysts,
(Participants) designers, programmer, designers, designers.
testers and business programmer , testers
and business
Product N/A N/A N/A N/A

Table 4-2 (Continued) Comparison of the philosophies of the OO methodologies.

4.6. The general aspects of the comparison

In the previous paragraph, OOA, OOSP, RUP and OMT were compared to one another.

The goal was to find commonalities among these methodologies.

90

Chapter 4 — Object Orient Approach

From a philosophical perspective, the OOA, OOSP, RUP and OMT methodologies use

object to explain reality.

The scope of OOA is to analyse the requirements, whereas in OOSP, RUP and OMT,

the analysis phase is one of several phases.

All of these methodologies communicate by means of diagrams. The common phases
highlighted, are:
¢ Requirements gathering — All methodologies cover a part of requirements
gathering, except OOA, which assumes that requirements have already been
dealt with and consequently starts with the analysis thereof.
¢ Requirements validating — highlighted only in OOSP, but of great importance to
get a clear understanding of the problem.
e Analysis — All methodologies focus on analysing the problem.
e Design — All methodologies (except OOA) focus on design based on the
analysis.
e Implementation — All methodologies (except OOA) focus on implementing the
designs.
o Testing — All methodologies (except OOA and OOSP) focus on testing. OOSP

uses a different methodology to test the implementation.

4.6.1. Requirements gathering

The main tool used for requirements gathering, is based on use cases. The use case
diagram highlights the interaction between the actors and the processes

(users/systems). Each relationship between the actor and the process is a use case.

For every relationship there must be an interface, the mean of linking the actor and

process. From this, a domain is modelled on which requirements are based. The

91

Chapter 4 — Object Orient Approach

business has rules and processes, which are captured by using supplementary
documentation.

Figure 4-19 represents the different activities in the requirements phase. The
requirements phase is subdivided into two, the requirements gathering phase and the

requirements validating phase.

Phase Activity

Essential Use Case Diagram
Essential Use Case

User Interface Prototyping
Domain Modelling
Supplementary Documentation

Gathering

Reguirements

Use Case Scenario Testing
User Interface Walkthrough
Requirements Review

Validating
Requirements | Requirements

Figure 4-19 The requirements phase

4.6.2. Analysis

The analysis phase uses as input, the artefacts produced by the requirements phase. It
starts with a more detailed use case, called a systems use case in OOSP and a use

case realisation — analysis in RUP. OMT uses a functional description, which is a form
of a use case.

From the above, a sequence model is built, specifying the interactions among the

classes. A class model is built, while most of the concepts of OOA are used in OOSP,
RUP and OMT.

The class model provides the detail that will be contained in the class. An activity
diagram is created to explain the operation of a use case or method. The user

interfaces captured in the requirements, are evolved into more specific detail. Next, the

92

Chapter 4 — Object Orient Approach

supplementary documentation and the user documentation are evolved and lastly, all
components are organised into more manageable packages

All of these diagrams are platform non-specific. Figure 4-20 indicates the activities
included in the analysis phase.

Y]
=
[
7]
(]

Activity
System Use Case
Sequence Diagram
Conceptual Class Modelling
Activity Diagram
User Interface Prototyping
Supplementary Specifications
User Documentation
Organise Packages

Object Oriented
Analysis

Figure 4-20 The analysis phase
4.6.3. Design

The design phase aims at being more platform-specific. The class model is designed

according to the rules of the programming platform, while a state chart diagram is used
to illustrate the state of the object.

From the above, a collaboration diagram is created to trace the relationship between the

class diagram and the sequence diagram. Component modelling is done to group the
use cases, interfaces and class diagrams together.

A deployment diagram is created to illustrate the dependencies, as well as to specify
the platform specifics.

Rational persistence modelling is done to model the persistence layer of the system.

Lastly, the user interface is designed by making use of the platform specifics.

Figure 4-21 illustrates the design phase.

93

Chapter 4 — Object Orient Approach

Y
=
[
7
]

Activity

Class Modelling

+ State Chart Modelling

+ Collaboration Modelling
Component Modelling
Deployment Modelling
Relational Persistence
Modelling

+ User Interface Design

Object Oriented
Design

Figure 4-21 The design phase

4.6.4. Implementation

The implementation phase focuses on the actual code development in accordance with
the design phase. In this phase, all the classes are created according to the class

design. The logic of the state charts and the user interfaces are coded.

The implementation is packaged according to the component design. The deployment

environment is set up and the packages deployed. Figure 4-22 illustrates the
implementation phase.

Y
-
g
7]
D>

Activity

Code development
Component packaging
Deploy packages

Object Oriented
Implementation

Figure 4-22 The implementation phase

4.6.5. Testing

The testing phase tests the implementation in various ways and is completed by unit-

testing every component. Figure 4-23 illustrates the testing phase.

Phase Activity
Unit test components

Object
Oriented
Testing

Figure 4-23 The testing phase

94

Chapter 4 — Object Orient Approach

4.7. Summary

This chapter dealt with the detail of object-oriented systems development

methodologies. It explained that the goal of OO is to ensure that:

products are delivered to the user on time and within budget

products meet user requirements

increasingly sophisticated products are offered to keep a competitive edge
the changes in standards and delivery technology are kept up

the project team feels motivated and successful

The guiding principles and beliefs of the object-oriented development process is a

seamless analysis, design and implementation process. The fundamental concepts of

object-oriented development discussed, are:

Problem domain vs. implementation domain
Object and class

Encapsulation

Inheritance

Polymorphism

Communication among objects.

The lifecycle approach of object-oriented development is found to be iterative and

incremental in nature.

The chapter also included a detailed discussion on four object-oriented development

methodologies:

Object Oriented Analysis (OOA)

Object Oriented Software Process (OOSP)
Rational Unified Process (RUP)

Object Modelling Technique (OMT)

95

Chapter 4 — Object Orient Approach

The second part of the chapter compared the four methodologies by using the

comparison framework of Avison and Fitzgerald (2003).

The framework focuses on various aspects of a systems development methodology,

such as:

Philosophy

Model

Technique and tools
Scope

Output

Practice

Product

A summary of the discussion on the four methodologies and the framework is outlined

in Figure 4-24. The figure represents the following six phases commonly found in

object-oriented development:

Requirements gathering
Requirements validating
Analysis

Design

Implementation

Testing

96

Chapter 4 — Object Orient Approach

Phase Activity
‘2 + Essential Use Case Diagram
2 g |+ Essential Use Case
" 8 G|+ Userlnterface Prototyping
c k- 'g » Domain Modelling
% o gl Supplementary Documentation
£
o [
& ot .
£ g * Use Case Scenario Testing
8 o | « Userlinterface Walkthrough
® 2| * Requirements Review
Sz q
1a
2 + System Use Case
= + Sequence Diagram
g + Conceptual Class Modelling
o * Activity Diagram
b * User Interface Prototyping
2 + Supplementary Specifications
o + User Documentation
3 - Organise Packages
e
(e}
S » Class Modelling
@ + State Chart Modelling
o » Collaboration Modelling
8 + Component Modelling
5 + Deployment Modelling
S + Relational Persistence Modelling
*g * User Interface Design
2
O
T Cc
29
'5‘1:_) .g * Code development
o g + Component packaging
S o + Deploy packages
£
oE
°
- D (e)]
3= £ + Unit test components
290 9
(@] 6 -

Figure 4-24 Summary of requirements, analysis, design, implementation and testing.

The next chapter will focus on the common data warehouse methodologies, and the

matrix created in this chapter will be mapped to these methodologies.

97

Chapter 5 — Data Warehouse Development

Chapter 5 - Data Warehouse Development

5.1. Introduction

The purpose of this chapter is to focus attention on the data warehouse (DW) and its

development methodologies.

Ramakrishnan and Gehrke (2003:848) explain that organisational decision making
requires a comprehensive view of all aspects in the enterprise. For this reason, many
organisations create data warehouses that contain data drawn from operational
databases by difference business units, together with historical and summary

information.

The previous chapter focused on object-oriented approaches and methodologies which
are used in the development of operational systems. Little literature exists on object
oriented data warehousing. This chapter introduces data warehousing as an addition to

operational systems.

This chapter will focus on the following:
o Data warehouse development as a decision support system

e Differences between operational database systems and the data warehouse

e Data warehouse methodologies

5.2. The data warehouse

It is necessary to understand that the data warehouse serves a different purpose than

the operational database system in the organisation.

Ramakrishnan and Gehrke (2003:847) explain that operational database systems
maintain operational data. Operational data represents the day to day operations of the

business.

98

Chapter 5 — Data Warehouse Development

Database systems typically execute small changes to data with a large number of
transactions. They are optimised to perform more effectively for specific applications.
Ramakrishnan and Gehrke (2003:847) further explain that there was a need in

organisations to analyse the data. This is done through a data warehouse.

A typical data warehouse contains historical data that is analysed and explored. |t
identifies useful trends and creates summaries of data to support high level decision
making. A data warehouse is also referred to as a type of Decision Support System
(DSS).

The characteristics of data in data warehouses compared to operational database
systems, also differ (Rob & Coronel, 2002:624). Table 5-1 lists the differences in

characteristics of data in a data warehouse and data in an operational database.

Characteristic Operational database data Data warehouse data
Integrated Similar data can have different | Provide a unified view of all
representations or meanings data elements with a common

definition and representation
for all business units.
Subject-oriented Data are stored with a functional, | Data are stored with a subject-
or process orientation. orientation that facilitates
multiple views of the data and
facilitates decision making.
Time-variant Data are recorded as current | Data are stored with a
transactions. historical perspective in mind.
Therefore, a time dimension is
added to facilitate data
analysis and various time

comparisons.
Characteristic Operational database data Data warehouse data
Non-volatile Data updates are frequent and | Data cannot be changed. Data
common. are added only periodically

from historical systems. Once
the data are properly stored,
no changes are allowed.
Therefore, the data
environment is relatively static.
Table 5-1 (Continued) A comparison of data warehouse and operation database characteristics

(Rob & Coronel, 2002:624)

99

Chapter 5 — Data Warehouse Development

The design model of a data warehouse is also unique; it makes use of the so-called star

schema design. Rob and Coronel (2002:641) explain that the star schema design

allows the dimensional model to be mapped to a relational database.

The star schema comprises of the following components:

down / roll-up data analysis.

Facts — numeric measurements that represent a specific aspect of an activity.
Dimensions — characteristics that provide additional perspectives to a given fact.
Attributes — descriptions that are found in a dimension.

Attribute hierarchies — provide a top-dbwn data organisation; this is used for drill-

The fact table relates to each dimension in a many-to-one relationship.

Figure 5-1 is a representation of the sales fact and illustrates the different dimensions

(location, customer, time and product) and the fact (sales). Each entity can have

different record totals.

LOCATION

LOC_ID
LOC_DESCRIPTION
REGION_ID
LOC_STATE
LOC_CITY

25 records

M SALES

m| cusT.D

CUSTOMER

CUST_ID
CUST_LNAME
CUST_FNAME
CUST_INITIAL
CUST DOB

125 records

TIME_ID
LOC_ID

PROD_ID M
SALES_QUANTITY
SALES_PRICE
SALES_TOTAL

3,000,000 records

Daily sales aggregates by
store, customer, and product

TIME

TIME_ID
TIME_YEAR
TIME_QUATER
TIME_MONTH
TIME_DAY
TIME_CLOCKTIME

365 records

PRODUCT

PROD_ID
PROD_DESCRIPTION
PROD_TYPE_ID
PROD_BRAND
PROD_COLOR
PROD_SIZE
PROD_PACKAGE
PROD_PRICE

3,000 records

Figure 5-1 Star schema for sales (Rob & Coronel, 2002:647)

100

Chapter 5 — Data Warehouse Development

Advanced analysis tools utilise the data warehouse for their analysis processes.
Ramakrishnan and Gehrke (2003:847) explain that one can find three classes of
analysis tools:

e Online analytic processing (OLAP) — these tools typically support group by
aggregation of data and complex boolean condition queries.

e Traditional structured query language (SQL) - some database management
systems (DBMS) have built-in support for SQL queries that utilise OLAP
performance.

e Trends and patterns search — exploratory data analysis and data mining are used
on top of the data warehouse to find interesting patterns and behaviours in the
data.

Typical data warehouse architecture will follow the concepts explained in Figure 5-2.

Visualisation

External Data Sources /\/\/
Clean

Metadata Repository
Transform
Load Serves OLAP
Refresh
) Data Warehouse
Operational Databases

Data Mining

Extract

Figure 5-2 A Typical Data Warehouse Architecture (Ramakrishnan & Gehrke, 2003:870)

Figure 5-2 illustrates the sources (the operational databases) to the left. These sources
are extracted, cleaned, transformed and loaded through an interface to the data
warehouse. To the right are the reporting tools served by the data warehouse. The data
warehouse is situated between the source systems and the reporting tools. From the
above, one can derive that the data warehouse serves as a decision support system.
This is a unique system compared to operational systems, where only the operational

aspect of the business is supported.

101

Chapter 5 — Data Warehouse Development

The development methodology of data warehouses differs from that of traditional
operational systems. The following discussion will focus on the different methodologies

used in developing data warehouse solutions.

5.3. The data warehouse development methodologies

A literature study by Sen and Sinha (2005) found that the most recognised
methodologies used in data warehouse development are those of Kimball et al. (1998)
and Inmon (1996).

The methodology of Kimball et al. (1998) will be discussed before that of Inmon (1996)

since it is the more important to the main argument of this dissertation.

5.3.1. The business dimensional lifecycle approach

Kimball et al. (1998:19) defines the data warehouse as “nothing more than the union of
all constituent data marts. A data warehouse is fed from the data staging area “and a
“queryable source of data in the enterprise”.

To fully understand the above definition, one should investigate the following:

e Data Mart — Kimball et al. (1998:18) states that this can be seen as a local sub-
set of the complete data warehouse. A data mart is defined as a restriction of the
data warehouse to a single business process, or to a group of related business
processes targeted toward a particular business group.

e Data staging area — Kimball et al. (1998:16) defines this as “a storage area and
a set of processes that clean, transform, combine, de-duplicate, household,
archive and prepare source data for use in the data warehouse.” This is

everything between the source system and the presentation server.

102

Chapter 5 — Data Warehouse Development

Kimball et al. (1998) uses the business dimensional lifecycle approach to develop data
warehouses. This is illustrated in Figure 5-3.

Technical Product
> Architecture [Selection &
Design Instailation
l Business " . i l
Project i Dimensional Physical Data staging Deployment Maintenance
8 Requirements 3 > >
Planning N Definition Modeling [Design design & and growth
development
End-User End-User
Application Application [
Specification Development
4" Project Management |

Figure 5-3 The business dimensional lifecycle (Kimball et al., 1998:33)

The business dimensional lifecycle is a sequence of high level tasks required for
effective data warehouse design, development and deployment. Three tracks, namely

data-, technology- and application tracks are executed in parallel.

5.3.1.1. Project Planning

This phase addresses the definition and scoping of the data warehouse project,
including readiness assessment and business justification. Kimball et al. (1998:33)
states that project planning focuses on resource- and skill-level staffing requirements,
linked with task assignments, duration and sequencing. The resulting integrated project
plan identifies all tasks associated with the “Business Dimensional Lifecycle” and
indicates the parties involved. It serves as the corner stone for the ongoing
management of a data warehouse project. Project planning is dependent on the
business requirements. This dependency is illustrated by the two-way arrow between

project planning and business requirements in Figure 5-3.

The rest of the discussion on projection planning is based on the work of Kimball et al.
(1998). To gain a more in depth understanding of the authors’ methodology, one should

examine the following aspects:

103

Chapter 5 — Data Warehouse Development

¢ Project definition and scoping

+ Project planning

Project definition and scoping

Before a data warehouse or a data mart project is commenced, one has ensure that
there is a demand and where the demand is coming from. If there are no strong

business sponsor(s), and/or eager users, the project should be postponed.

The following five factors should be present before detailed work on the design and
development of the data warehouse begins:

e Strong business management sponsor

e Compelling business motivation

e Is/business partnership

e Current analytic culture

o Feasibility
It is recommended that after the above assessment has been done, a preliminary scope
should be developed. This preliminary scope should be based on business
requirements.

Another aspect of project planning is business justification, which includes the following
tasks:

¢ Determine the financial investments and costs
¢ Determine the financial returns and benefits

e Combination of the investments and returns, to calculate return on investment.

Project planning

Once the project is defined and approved, planning of the project may commence.

This entails the following:

104

Chapter 5 — Data Warehouse Development

e Establishment of project identity — giving the project a name.

o Staffing of the project — a data warehouse project requires a number of different
roles and skills from both the business and IS communities. The authors illustrate
the various roles by comparing them to a professional sports team:

o “Front office: sponsors and drivers”
o “Coaches: project managers and leads” — this consists of the following:
¢ The project manager
e Business project lead
o “Regular project lead” — this consists of the following:
e Business systems analyst
e Data modeller
e Data warehouse database adrninistrator
e Data staging systems designer
e End user application developers.
e Data warehouse educator
o “Special teams” - these members contribute on a very specialised basis,
including the following:
e Technical/security architect
e Technical support specialists
e Data staging programmer
¢ Data steward
e Data warehouse quality assurance analyst

e Developing the project plan — two key words should be kept in mind when

describing a project plan, namely ‘integrated’ and ‘detailed’. The reason for this is

that most data warehouse teams have multiple project plans that do not tie up.

5.3.1.2. Business Requirement Definition

The business requirements definition is the next phase in the business dimensional

lifecycle approach. According to Kimball ef al. (1998:95), this step is regarded as the

105

Chapter 5 — Data Warehouse Development

centre of the “data warehouse universe”. Figure 5-4 illustrates that business
requirements have an impact on every aspect of the data warehouse project. To
determine the business requirements, one should start by interviewing business users.
A series of interviews must be conducted with each level of management in the
organisation. The next step is to determine the success criteria, after which the
preparation and publishing of deliverables follow. On completion of the above, the IS-

and business teams should reach an agreement on the scope of the project (Kimball et
al., 1998:132).

Technical
Architecture
Design

Dimensional
Modeling

Project
Planning &
management

Physical
Design

Business
Requirements

Maintenance &

Data staging
Growth

design

Deployment
Planning

End user
Application
Specification

Figure 5-4 Business requirements impact every aspect of the data warehouse project (Kimball et
al., 1998:96)

This phase entails the foundation for the three parallel tracks focusing on technology,
data and end user applications as depicted in Figure 5-3 (Kimball et al., 1998:34).

5.3.1.3. Data Track: Dimensional Modelling

Once the business requirements are firmly established, the next step is to design the
dimensional modelling.

106

Chapter 5 — Data Warehouse Development

Dimensional modelling is defined as “a logical design technique that seeks to present
the data in a standard framework that is intuitive and allows for high performance
access. It is inherently dimensional and adheres to a discipline that uses relational
model with some important restrictions” (Kimball et al., 1998:144).

Kimbali et al. (1998:27) strongly believes that dimensional modelling should be part of
the presentation phase of the data warehouse, as compared to entity-relationship (E/R)
modelling, it yields better predictable and understandable designs, which can be used
and assimilated by users and which can be queried effectively. Unlike E/R modelling,
dimensional modelling does not require the database to be restructured, or queries to
be rewritten when new data is introduced into the data warehouse. Lastly, a
dimensional data mart does not need to anticipate the user's queries and is very
resilient to changes in user analysis patterns. The explanation of dimension modelling is
aided by Figure 5-5.

Time Dimension
Product Dimension

time_key(PK}
SQL_date

day_of week

product_key(PK)
SKU

description
brand

category
package_type

size

week_number
month

etc.

flavor

ete.

Store Dimension

Customer Dimension
store_key(PK)

L tme_key(FK)
store_ID L{ product_key(FK) b—— customer_key(PK)
store_name store_key(FIK) customer_name
addross customer_key(FK) r_‘ purchase_profile
district clerk_key(FK) credit_profite
floar_type promation_key(FK) demographic_type
efc. dollars_sold address
units_sold ete.

doflars_cost

Clerk Dimension " . .
Promotion Dimension

clerk_key(PK)

promolion_key(PK)
clerk_ID

promotion_name
price_type
ad_type
display_type

etc.

clerk_name
clerk_grade
ete,

Figure 5-5 Example of a fact table (Kimball et al., 1998:145)

107

Chapter 5 — Data Warehouse Development

Kimball et al. (1998:144) explains that this model consists of one table with a multipart
key, called the fact table, and a set of similar tables, called dimensional tables. A
dimensional table contains a single part primary key that corresponds to one of the
components of the multipart key in the fact table. The fact table also contains one or
more numerical facts. The authors (Kimball et al., 1998:146) explain that the key to
understanding the relationship between dimensional modelling and E/R modelling, is to
take a single E/R diagram and break it down into multiple fact table diagrams. One then
needs to select the many-to-may relationships in the E/R model containing numeric and
additive non-key facts, and designate them as fact tables. Lastly, all the remairing
tables need to be de-normalised into flat tables with single-part keys that connect
directly to the fact tables. These tables become the dimension tables.

The master dimensional model of a data warehouse for a large enterprise will consists
of 10 to 25 similar star-join schemas (Kimball et al., 1998:146).

Dimensional modelling has five major strengths (Kimball et al., 1998:147):
¢ A dimensional model has a predictable, standard framework, thus providing
strong assumptions about the model and making interfaces more
understandable.
e The predictable framework of the star join schema withstands unexpected
changes in user behaviour
o Extensibility to accommodate unexpected new data elements and new design
decisions. In summary, the following can be added:
o New unanticipated facts that are consistent with the fundamental grain of
the existing fact table.
o New dimensions, for which a default value of that dimension is defined for
the existing fact tables.

o New unanticipated dimensional attributes.

108

Chapter 5 — Data Warehouse Development

o Lastly, existing dimensional records taken down to a lower level of
granularity from a certain point in time forward.

e A standard of approaches available for handling common modelling situations.
These situations include:

o Slowly changing dimensions — “constant” dimension that evolves
asynchronously. Dimensional modelling provides specific techniques for
handling slowly changing dimensions, depending on the business
environment.

o Heterogeneous products — for example, a bank needs to track a number
of attributes and facts, but simultaneously needs to describe and measure
the individual lines of business in highly idiosyncratic ways using
incompatible facts.

o Pay-in-advance databases — transactions of a business are not revenue,
but the business needs to look at both the individual transactions, as well
as reports on revenue on a regular basis.

o Event-handling databases — the fact table is “factless”.

e Growing strength of administrative utilities and software processes that manage
the use of aggregates.

When creating a data warehouse, Kimball et al. (1998:156) advises that a set of
standards must be formed. This set of standards is handled by the so-called Data
Warehouse Bus Architecture, a master suite of conformed dimensions and standardised

definitions of facts.

The authors recommend that the following should be kept in mind when creating
conformed dimensions (Kimball et al., 1998:156):

e Conformed dimension — dimension that produces the same meaning with every
possible fact table to which it can be joined.

109

Chapter 5 — Data Warehouse Development

e Data warehouse design team — the responsible team to establish, publish,
maintain, and enforce the conformed dimensions.

e Strict adherence to conformed dimensions — needed for the data warehouse to

function as an integrated whole.

Conformed dimensions allow the following (Kimball et al., 1998:157):
¢ A ssingle dimension table to be used against multiple fact tables.
o User interfaces and data content to be consistent whenever a dimension is used.

e A consistent interpretation of attributes and therefore the ability to do rollups

across data marts.

110

Chapter 5 — Data Warehouse Development

The Data Warehouse Bus Architecture matrix (Figure 5-6) is a tool to decide which

dimensional model to build. The matrix requires the naming of all the data marts that

can possibly be built, as well as the dimensions implied by those data marts (Kimball ef

al., 1998:271).

Calling Party

Called Party

Internal Organization

Employee

Equipment Type

Supplier

Item Supplied

\Weather

Customer Billing

<|Rate Category

Service Orders

Trouble Reports

< =-| <|Service

<[<[<|Local Service Provider

=| < <[Long-Distance Provider

<]

<_|

< | <

Yellow Page Ads

Customer Inquiries

Promotions & Comm‘n

< | 2| <] <] <

Billing Call Detail

Network Call Detail

2| < 2 2 < <

Customer Inventory

< | <2 < 2| <] <] < < <‘Cust0mer

< <) <2l 2 <] <2

2 2| <] < =<

< | 2| < <] <

| A | A |) 2] 2] <lAccount Status

Network inventory

2| | 2l 2| <] <.

2| 2| <] <] <

P I - N

Real Estate

< 2 < | < <2 <

Labour & Payroll

Computer Charges

Purchase Orders

Supplier Deliveries

Combined Field Ops.

\/

\/

\/

\/

Customer Reln. Mgmnt

2| | =] 2| | 2| | 4 < <] < 2 <] < < 2| < [Time

\/

\/

‘j

\/

2| 2| | < 2| <] < 2| < <] <] <] < < < <

2| 2| <] <] <] <2 <] <

4<<<L¢¢Z\<4<A<<<<‘Z‘Location

2| <] <] <20 <2

< |]| 2] 2| <2

\/

Customer Profit

<

\/

N

\/

v

<

<

<

2| 2] 2| < <] <

\/

Figure 5-6 The Data Warehouse Bus Architecture matrix for a telephone company
(Kimball et al., 1998:271)

The rows of the above Figure 5-6 are the data marts and the columns the dimensions.

The mark on the intersections indicates where a dimension exists for a data mart.

111

Chapter 5 — Data Warehouse Development

Advantages of the matrix are the following (Kimball et al., 1998:272):
¢ |t forces the question whether each candidate dimension might in some way be
linked to a given data mart.
¢ It determines how important a dimension is by looking down the column,
Once all the potential data marts and dimensions are identified, the four-step method
can be applied. The discussion on the four-step method for designing an individual fact
table is based on Kimball et al. (1998:273).

Step 1: Choose the Data Mart

The data mart is selected. The following is recommended:
o The data warehouse designer should implement only single-source data marts
first. This reduces the number of lengthy extract development tasks.
e Implement data marts in the context of a set of conformed dimensions to allow

the plug in of the data marts into the data warehouse bus.

Step 2: Declare the Grain

The grain specifies the level of detail. It is advisable to be very precise when defining
the fact table grain. The grain should be as low as possible to accommodate a more
robust design. There are many advantages in choosing a low-level grain, such as

individual transactions, individual day snapshots or individual document line items.

Step 3: Choose the Dimensions

The grain itself will often determine the primary or minimal set of dimensions needed. At
this stage, the designer will examine all the data resources available and preferentially

attach the single-valued descriptors as dimensions.

Step 4: Choose the facts

Add as many facts as possible within the context of the declared grain. The grain of the
fact table allows the individual facts to be chosen and clarifies the scope of the facts.
The facts should always be specific to the grain of the fact table.

112

Chapter 5 — Data Warehouse Development

5.3.1.4. Data Track: Physical Design

This phase focuses on the physical database design. The emphasis is on structures

supporting the logical database design. Primary elements of this process will include

defining, naming standards and setting up the database environment. Preliminary

indexing and partitioning strategies are also determined (Kimball et al., 1998:543).

A proper set of aggregated records that coexists with the primary base records,

improves query performance. Four design goals should be kept in mind when
aggregating a data mart (Kimball et al., 1998:556):

Aggregates must be stored in their own fact tables. The aggregated table should
be separate from the base atomic data. Each distinct aggregation level must
occupy its own unigue fact table.

The dimension tables attached to the aggregate fact tables must be shrunken
versions of the dimension tables associated with the base fact table.

The base atomic fact table and its related aggregated fact tables must be
associated with one another. This is to allow the aggregate navigator to know
which tables are related to one another.

All created queries by any end user data access tool or application must be

forced to refer exclusively to the base fact table and its full-size dimension tables.

To summarise the above discussion on completing the physical design, Kimball et al.

(1998:571) recommends the following steps:

Developing standards - this includes database-naming standards, using

synonyms for all tables accessed by users, and develop standards for physical
file locations.

Developing the physical data model.
Developing the initial index plan.
Designing and building the database instance.

Developing the physical storage structure.

113

Chapter 5 — Data Warehouse Development

¢ Implementing usage monitoring.

5.3.1.5. Data Track: Data Staging Design and Development

The data staging design and development phase of the business dimensional lifecycle

represents the bulk of the data warehouse project (Kimball et al., 1998:609).

A ten-step plan is followed to accomplish the data staging design and development. The

discussion on the ten-step plan is based on Kimball ef al. (1998:612-652).

The plan is divided into three sections:
e The plan
o Dimension loads

o Fact tables and automation.

The plan involves the following activities:

o Create a high-level, one-page schematic plan of the source-to-target flow. This
schematic plan should be very simple. It should highlight what the developer
knows about the source-to-target flow, where the data originates from, and
annotate the major challenges that the developer may face. Figure 5-7 illustrates

a typical example of this plan.

The three steps in data staging, namely extract, transform and load are
highlighted in this high level plan by illustrating the sources, transformations and
targets.

114

Chapter 5 — Data Warehouse Development

Sources
DMR system (COBOL ;
Customer Geography flat file, 2000 fields, Meters Period
Master (RDBMS)| |Master (RDBMS) one row per customer) (MS Access) (Spreadsheef)}
Howby whom
Slowly changing 15 000 “Unbucketize” maintained 7?

on demagraphics geogs from 13 months
and account status in one row

25M Customers,

-10k new or
Missed meter

changed customer Check
per day Rl
reads, estimated

Labels need bills, restatement
cosmetic work of bills
l
CUSTOMER K
Electricity

‘ Geography ‘ Usage

Old {pre-1872) meter
Types are not in the
meter Group's system)

Process 750k
customers /
day

There are 73 known
meter types

Electric
} Meter ‘ ‘ Meter read date

Targets

Figure 5-7 Basic high-level data staging plan schematic (Kimball et al., 1998:613)

This is followed by testing, choosing and implementing a data staging tool. The
decision of which tool to use, is based on the nature of the environment, cost and
functionality.

Create a detailed plan. A drill down by target table (changing the view of the data
to a greater level of detail) and a graphical sketch detailing complex data
restructures or transformations. The plan graphically illustrates the surrogate-key

generation process which includes developing preliminary job sequencing.

Dimension loads involve the following activities.

Build and test a static dimension table load. The primary goal of this step is to
work out the infrastructure links, including connectivity, file transfer, and security
problems.

Build and test the slowly changing process for one dimension

Build and test the remaining dimensions.

Fact tables and automation involves the following activities.

115

Chapter 5 — Data Warehouse Development

Build and test the historical fact table loads (on base tables only) including
surrogate-key lookup and substitution.

Build and test the incremental load process and aggregate table loads.

Design, build and test the staging automation.

5.3.1.6. Technology Track: Technical Architecture Design

An architectural plan is a technical translation of the business requirements. The

essence of this phase is to identify the capabilities most important to the organisation.

This is an iterative process, and as one moves forward, relevant information is

uncovered and applied.

The value of architecture entails the following (Kimball et al., 1998:318):

Communication — provides a platform to communicate the project to
management.

Planning — provides a cross check for the project plan.

Flexibility and maintenance — anticipate many possible issues and provide

mechanisms for the possible issues.
Learning — plays an important role as documentation for the system.
Productivity and re-use — the architecture takes advantage of tools and metadata

as the primary enablers of productivity and re-use.

The business requirements serve as the primary guide to what should be in the

architecture and which parts should be prioritised. Once these are defined, the high-
level technical architecture can be modelled (Kimball et al., 1998:328). Figure 5-8
illustrates a high-level technical architecture.

116

Chapter 5 — Data Warehouse Development

Metadata
Source
> -
Systems Data Catalog Query O Standaﬁ)zipomng —l
Staging Services

Staging

The Back Room The Front Room

|

Services Presentation Servers - Warehouse Browsing) Desklop Data
-Barect ... e, - Access and Security Access Tools

- Transform "‘ ™ - Query Management T
\ .
-Load ! Dimenslonal Data Marts with H - Standard Reporting Application Models
-Job Control H Only Aggregated Data 4 - Activity Monitor
i
Data ! h T

Conformed

:> VJ:rir?:lﬁe Dimensions & Downstream /

Area i Bus Conformed : Operational Systems
_/ :

Facts

'

H "

i Dimensional Data Marts H

' Including Atomic Data H

" ’
*, ’
A .

Key

[=

Service

Data C 1
Element I:> Element

Figure 5-8 High-level technical architecture model (Kimball et al., 1998:329)

The model provides a logical separation between the internal working of the warehouse,

namely the back room and the front room. The back room is known for the area where

the process of data acquisition is executed.

The backroom consists of the following (Kimball et al., 1998:336):

Source systems — these are typical transaction systems within the business,
which can range from client/server ERP systems, reporting systems to operation
data store.
Data staging — described as the construction site of the warehouse, is the area
where most of the data transformation takes place. Much of the value of the data
warehouse is added at this stage. The advantages of using the data staging area
are the following:

o It provides a place for keeping emergency backup of the data.

o The conformed dimensions are kept in flat files ready for export.

o ltis the source of most atomic transactional data.
Presentation Servers — the target platform where direct querying is executed by

end users. The Data Warehouse Bus in the presentation servers allows for

117

Chapter 5 — Data Warehouse Development

parallel development of business process data marts. The ability to integrate
these data marts ensures the existence of conformed dimensions. The data
marts found in the presentation servers do not show significant differences
between the atomic data marts and the aggregated data marts, since all of the

queries are still made in a dimensional format.

The second logical separation, the front room, is the part business interfaces with. The

primary goal of the warehouse is to make information as accessible as possible; this is

the function of the data access services layer. This layer reduces complexities between
the data warehouse and the end users (Kimball et al., 1998:373).

The access services provide for the following (Kimball et al., 1998:378):

Warehouse browsing — the data warehouse catalogue is used to support the
users in their efforts to find and access information needed.
Access and security services — facilitate the end user’s connection to the data
warehouse. These services rely on authentication from authentication services, a
major design and management challenge.
Activity monitoring services — involve capturing information about the usage of
the data warehouse. This can be used for monitoring performance, user support,
marketing and planning.
Query management services — a set of capabilities that manages the exchange
between query formulation, execution and results returned. These services are
metadata driven, and services that are managed, are:

o Content simplification

o Query reformulation

o Query retargeting and multi-pass SQL

o Aggregate awareness

o Data awareness

o Query governing

118

Chapter 5 — Data Warehouse Development

e Standard reporting services — provide the ability to create a production style,
fixed format report that has limited user interaction, a broad audience and regular

execution schedules. It is described as a standard report of some sort.

Kimball et al. (1998:409) regards the front room development as vital, as this is the part

of the data warehouse the business users interface with.

Figure 5-9 depicts the theory behind the architecture and illustrates the process flow of

the architectural design. The high level model is entailed in the architecture process

Modefs

flow.
Data Technical Infrastructure
Business Requirements
(Including business, data, and Infrastructure issues)
l 5 !
Bus i Technical Infrastructure
Architecture i Requirements Doc and Issues Doc (and
Matrix Technical Basic Model)
Architecture Model
BUSi”e[S)S Product Evaluation Infrastructure
Process Data Matrices Plan
Model
Logical and
Physical Data Select Products

Implement

Figure 5-9 Architecture development process flow chart (Kimball et al., 1998:503)

The layer enclosed in the dashed-line box is the technical architecture; the process that
needs to be followed in creating the technical architecture. The major deliverables in
this process are the technical architecture plan and the infrastructure plan (Kimball et
al., 1998:504).

119

Chapter 5 — Data Warehouse Development

The process of creating the technical architecture should be executed once the

requirements are clearly defined. This process includes (Kimball et al., 1998:505):

Form an architecture task force.

Gather architecture-related requirements.

Create a draft architecture requirements document.
Create a technical architecture model.

Determine the architecture implementation phases and deliverables for each

phase.

Create a technical architecture plan document.

5.3.1.7. Technology Track: Product Selection and Installation

During the selection of products, four major purchase areas for a typical warehouse
must be considered (Kimball et al., 1998:515):

Hardware platforms
DBMS platform
Data staging tool

Data access tools

To evaluate a product, the following evaluation process techniques are recommended
(Kimball et al., 1998:516):

Production evaluation matrix — this contains certain product criteria that are
evaluated to give an indication of which product is best suited to a certain
situation.

Market research

Once the above evaluation is completed, the selection can be narrowed down to no

more than five products. The selected product can be installed and tested after an

120

Chapter 5 — Data Warehouse Development

agreement has been reached. Thorough testing is required to ensure end-to-end

integration of the data warehouse.

5.3.1.8. Application Track: End User Application Specification

The end user application fills a critical gap in meeting the data access needs of the
organisation (Kimball et al., 1998:666).

Four steps are identified to aid the specification process (Kimball et al., 1998:670):

e Determine initial template set — including report candidate identification, as well
as consolidation and prioritising of the list.

e Develop the navigation strategy — to assist users in finding what they need
quickly. Using the template, metadata can also be useful.

e Determine template standards — naming and placing of objects and receiving an
output that is satisfactory to the organisation.

e Develop detailed specifications — two parts of specifications are identified,
namely the definition and the lay-out.

5.3.1.9. Application Track: End User Application Development

After the end user application specifications have been identified, the development of

these applications can commence.

The development phase involves configuring the metadata tool and constructing the
specified reports. This is done by using a data access tool. Kimball et al. (1998:678)
states that the development lifecycle of the application depends on the organisation and
the data access tool used.

5.3.1.10. Deployment Planning

Deployment planning is defined as “the convergence of technology, data and
applications on the business users’ desks, along with the necessary education and user
support structure” (Kimball et al., 1998:691).

121

Chapter 5 — Data Warehouse Development

Extensive planning is required before the actual deployment can commence. The

following steps should be followed when planning deployment of a data warehouse
(Kimball et al., 1998:692):

Determine desktop installation readiness — Kimball et al.(1998) point out that
technology residing on the user’s desktop, is the last piece that needs to be in
place prior to deployment.
Develop the end user education strategy — business users’ education must
address three key aspects of the data warehouse, namely:

o Data content

o End user application

o The data warehouse access tool
Develop an end user strategy — determining a support organisation structure,
anticipation of data reconciliation support and end user application support,
establishing support communication and feedback and lastly, providing support
documentation.
Develop the deployment release framework — including an alpha release, beta

release and a production release framework.

5.3.1.11. Maintenance and Growth

Maintenance and growth are entered into, as soon as the data warehouse is

operational. The following must be done to maintain the data warehouse (Kimball et al.,
1998:719):

Manage the existing data warehouse environment — this focuses on the business
users using the data warehouse and includes continued support and education.

Manage the data warehouse operations — this includes managing the technical
infrastructure, tuning the database performance and maintaining data and

metadata management processes.

122

Chapter 5 — Data Warehouse Development

e Measure and market the data warehouse success — It is important to measure
the performance of the data warehouse against the agreed success- and
satisfaction criteria. In order to achieve this, one must do the following:

o Monitor success and service metrics.
o Capture the decisions made from using the data warehouse.
o Proactively market the data warehouse.

e Communication — The maintenance plan should include an extensive
communication strategy. This strategy should include the business sponsors and
drivers, the business users, the general business community, the IS

management and the data warehouse team.

5.3.1.12. Maintain and grow the data warehouse

A data warehouse is bound to evolve and grow; it is stated that “this is a sign of
success, not failure” (Kimball et al., 1998:727). To facilitate the ongoing development of
the data warehouse, several strategies can be followed (Kimball ef al., 1998:728):

e Establishing a data warehouse steering committee.

e Prioritising growth and evolution opportunities.

e Managing iterative growth and evolution by using the business life cycle

approach.

5.3.1.13. Project Management
Kimball et al. (1998:77) discusses the following techniques for keeping the data

warehouse project on track.

e Conduct the project team kick-off meeting — The purpose of this “is to get the
entire project team on the same page in terms of where the project currently
stands and where it hopes to go” (Kimball et al., 1998:78).

e Monitor project status — It should be monitored on a regular basis, by means of
the following:

o Project status meetings

o Project status reports

123

Chapter 5 — Data Warehouse Development

Maintain the project plan and project documentation — The integrated project plan
mentioned earlier, should be updated weekly to accurately reflect progress and
should be shared with the core project team.

Manage the scope — There will be changes to the data warehouse project. They
originate from two sources, namely previously unidentified issues and additional

user requests.

The following techniques are recommended to track issues and change requests.

Track issues — It is critical to ensure that nothing slips between the “cracks” and
that everyone’s concerns have been heard, also that the rationale used to
resolve issues has been captured for future reference. Two classes of issues
exist, firstly, those known to have an overall impact on the project and secondly,
those known to be task-oriented. It is recommended that a log be kept to capture
all issues.

Control changes — “Formal acknowledgement of project changes is critical to
overall project success. Any issues resolution that impacts the project schedule,
budget or scope should be considered a change. If a change does not affect the
schedule or budget, it is often not documented. However, these changes may still
impact the overall scope. By formally documenting and communicating the
change, users’ expectations will be readjusted as well.” (Kimball et al., 1998:86)
Document Enhancement requests — log/capture requests for future action, rather
than expanding the current project scope.

Develop communication plan to manage expectations — Establish a successful
and robust communications plan (“game plan”) to address the needs of different
audiences. The overall plan should outline general message, content, format,
and frequency of communication for each group of constitutes. Developing a
communications plan, forces the project manager to fully consider the
organisation’s requirements. The following parties should engage in the

communications plan:

124

Chapter 5 — Data Warehouse Development

o Project team

o Sponsor and drivers

o Business user community

o Other interested parties — these include executive management, IS

organisation and the organisation at large.

5.3.2. Data driven methodology

Inmon (1996) follows the so-called data driven methodology to build data warehouses

and defines a data warehouse as “a subject-oriented, integrated, non-volatile, and time-

variant collection of data in support of management’s decisions.”

To better understand this definition, one needs to investigate the key words. These are

explained as follows: (Inmon, 1996:33)

Subject-Orientation — A data warehouse is oriented around the major subjects of
the organisation. It is organised around subjects such as customer, vendor,
product and activity. The grouping around subject areas affects the design and
implementation of the data found in the data warehouse.

Integration — Data found in the data warehouse environment is integrated. This is
the essence of the data warehouse environment. Integration can be implemented
in different ways, such as consistent naming conventions, consistent
measurement of variables, consistent encoding structures, consistent physical
attributes of data and so forth.

Non-volatile — Inserts, deletes and changes are done regularly to the operational
environment on a record-by-record basis. Data manipulation occurring in the data
warehouse is much simpler. There are only two kinds of operations that occur in
the data warehouse, i.e. the initial loading of data and the access of data. There
is no update of data.

Time variance — All data in the data warehouse is accurate as of some moment
in time. This basic characteristic of data in the warehouse is very different from

data found in the operational environment. In the operational environment, data

125

Chapter 5 — Data Warehouse Development

is accurate as of the moment of access. In the data warehouse, data is accurate
as of some moment in time. Data found in the data warehouse is said to be

"time-variant".

Inmon (1996:291) makes it clear that the Decision Support System (DSS) does not take

on a normal operational development life cycle, starting with requirements and ending

with the code, as it starts with data and ends with requirements.

Inmon presents the methodology in three parts;

The first part is aimed at operational systems and processing — It includes
interviews to produce a “soft core” of what the production system does, as well
as determining the opinion of middle management and data gathering, detailed to
“fill in the gap” in the requirements process. Furthermore, Joint Application
Design (JAD) sessions to execute group brainstorming for spontaneous flow of
ideas and strategic business planning to manifest the system in business.
(Inmon, 1996:317)

The second part is aimed at DSS systems and processing — This is the
methodology used to create the data warehouse.

The final part is aimed at the heuristic component of the development process —
It focuses on the usage of the data warehouse for the purpose of analysis. This
main difference in this phase is that the development process always starts with
the data from the data warehouse. Secondly, the requirements are not known at
the beginning of the development process and thirdly, the processing is done in a

very iterative heuristic fashion. (Inmon, 1996:344)

This research will be focussing on the second part of Inmon’s (1996) data driven

methodology, namely the development of DSS systems, which entails the following:

Data model analysis

Breadbox analysis

126

Chapter 5 — Data Warehouse Development

Technical analysis

e Subject area analysis

e Data warehouse design
e Source system analysis
e Specifications

e Programming

e Population

5.3.2.1. The data model analysis

The data model analysis is the first activity in the development of a DSS system.
According to Inmon (1996:335), the data model takes on different levels of modelling
(Figure 5-10), called corporate modelling, operational data modelling and data

warehouse modelling.

== Corporate
(=] model

Data model =]
Dat: =
Data model = =] ata
(—] warehouse
Data data model
Operational data warehouse

model
Oper

Data model

Figure 5-10 The relationship between the corporate data model and the operational model and
data warehouse model (Inmon, 1996:83)

The corporate model only contains primitive data and is constructed with no distinction

between existing operational systems and the data warehouse. Performance factors are

127

Chapter 5 — Data Warehouse Development

added to the corporate model to transport it to the operational data model. The last
model is the data warehouse model, which contains a fair number of changes. It is also

developed in an iterative fashion.

The following changes are applied to the data warehouse model:

e Data used purely in the operational system, is removed.

e The key structures of the corporate data model are enhanced with an element of
time.

e Derived data is added to the corporate data model where the derived data is
publicly used and calculated once only and not repeatedly.

¢ Data relationships in the operational environment are turned into artefacts in the
data warehouse.

o A stability analysis is performed to the data warehouse data model.

A stability analysis is a technique to identify attributes with similar characteristics. Figure
5-11 is an example of a stability analysis. It illustrates the following attributes:

e Description

e Leadtime

e Acceptable credit rate

¢ Shipping manifest

These attributes do not change frequently, thus they are grouped together. The next set
of attributes (Primary substitute, Safety stock, Primary supplier, Expediter) changes
more frequently than the first group and is therefore grouped together. The last group
(Quantity on hand, Order unit, Last order date, Last delivery and Order amount)
changes most frequently and is grouped together. The Part-id attribute serves as a key

and is included in all the groups.

128

Chapter 5 — Data Warehouse Development

A data model has three levels (Inmon, 1996:85):
¢ High level modelling
¢ Mid level modelling

¢ Low level modelling

High level modelling is called the Entity Relationship Diagram (ERD). It represents the
entity relationship level. Entities shown in the ERD are at the highest level of
abstraction. The choice of what entities belong to the scope of the model and what
entities do not is determined by what Inmon calls the “scope of integration”. The so-
called scope of integration defines the boundaries of the data model and needs to be
defined before the modelling process commences. The scope of integration should be

agreed upon by the modeller, management and the ultimate user of the system.

Part-id

Description

Primary substitute
Qty on hand
Order unit
Safety stock

Primary supplier

Lead time

Acceptable credit rate

Expediter

Last order date

Last delivery to

Shipping manifest

Order amount

Part-id

Description

Lead time
Acceptable credit rate
Shipping manifest

..................... Part-id

Primary substitute Part-id

Safety stock Qty on hand

Primary supplier Order unit

Expediter Last order date

............................ Last delivery to

Order amount

Figure 5-11 Stability Analysis performed on a table (Inmon, 1996:84)

129

Chapter 5 — Data Warehouse Development

Mid level modelling is called the Data Item Set (DIS). This is the next model after the
high level model. For each subject area or entity identified in the high level model, a mid

level model is created. Figure 5-12 is an example of a data item set.

Primary
grouping of
data
Key Key
XXRXXX XXXKXX
XXXXXX XXXXXX
Key
Key ’ Key
XXXXXX ' —XXXXXX [dt;f: of
XXXXXX XOOXXX
' Connector Key
Secondary data | oo
grouping of
data XXXXXX

Figure 5-12 Example of a data item set (Inmon, 1996:89)

The primary grouping exists only once for each major subject area and holds attributes
that exist only once for each subject area. The primary grouping contains attributes and
keys. The secondary grouping of data holds data attributes that can exist multiple times
for each major subject area. The secondary grouping is indicated by a line emanating
downward from the primary grouping of data. The connector relates data from one
grouping to another. The “type of” data is indicated by a line leading to the right of a
data grouping. The grouping of data to the left is the super type of data. The grouping of
data to the right is the sub-type of data.

130

Chapter 5 — Data Warehouse Development

The lowest level is the low level model. This is called the physical model. This model is
created from the mid level data model. Inmon (1996:96) indicates that this model may

look like relational tables. Figure 5-13 is an example of a physical model.

Deposit table

Acct= 1234
Banking activity Deposit Date = Jan 5
Instrumenl tnstrument = check
Acctno X
oo Posling requested? Posting request = no
Time Withdraw table
Amount
i Acct = 1234
Location Withdraw o
Type Date = Jan 5
teller 1D number Time = 1:31 pm
Limit request exceeded Balance verified = yes
. L, Exact lime stamp =
Banking activity D used = yes
table check
Acct= 1234 ATM ATM table
Date = Jan 2 Balance verified ? Acct = 1234
Time = 1:31 pm ID used ? Date = Jan 5
Amount = $25 Cash/check/other? Time = 1:31 pm
Type = wid)
TYT . 1D number =Ab00191S
eller = atm
Limit exceeded = no
Teller Exact timeslamp = 1:31:35:05
Acct= 1234
Date = Jan 2 Tefler 14 Teller table
T 2 318 Automated verification
ime = 3: m -
P Sequence number Acct = 1234
Amount = §1000 Gashbox balance Date = Jan 5
Type = desposit Time = 1:31 pm
Teller = Teller Teller Id = JLC

Automated verffication = no
Sequence number = 901
Cashbox balance = $112,109.32

Figure 5-13 Example of a physical model (Inmon, 1996:93)

Inmon (1996:335) states that a data model (data warehouse) is successful when it
satisfies the following requirements:
e Major subject areas are identified
o Boundaries of the model are clearly defined
¢ Primitive data is separated from derived data
o The following are identified for each subject area:
o Keys
o Attributes
o Groupings of attributes

o Relationships among groupings of attributes

o Multiple occurring data

131

Chapter 5 — Data Warehouse Development

o Type of data

The end result of the data model is a series of tables, each of which contains keys and
attributes. To save input/output, tables can be normalised/de-normalised. Unfortunately,
there is no strategy to follow, and as Inmon explains ‘it is answering this question that

the physical database designer earns his or her reward” (Inmon, 1996:93).

5.3.2.2. Breadbox analysis

After the data analysis is completed, the next step is to carry out a breadbox analysis. A
breadbox analysis is a sizing (in terms of gross estimates) of the DSS environment and
the project, as well as how much data the data warehouse will hold (Inmon,
1996:336).The parameter for success is to estimate the amount of data (in terms of
number of rows) on both the one-year and five-year horizons for the entire data-
warehouse environment. Based on the results of the estimate, one decides whether
different levels of granularity are needed. If the data warehouse needs to contain large
amounts of data, multiple levels of granularity should be considered. If the data

warehouse is small, multiple levels are not required.

5.3.2.3. Technical assessment

Inmon (1996:337) argues that the technical requirements for managing the data
warehouse are different from the technical requirements for managing an operational
database. Consideration is needed for managing data and processing it in the

operational environment.

To be successful, the technical functionality of the data warehouse must be able to:
¢ Manage large amounts of data.
¢ Allow data to be accessed flexibly.
¢ Organise data according to a data model.
¢ Both receive and send data to a wide variety of technologies.

¢ Have data periodically loaded in masses.

132

Chapter 5 — Data Warehouse Development

e Access a set at a time, or a record at a time

5.3.2.4. Subject area analysis
During the subject area analysis, the subjects to be populated are selected. The subject
area should be large enough to be meaningful and small enough to be implemented
with ease (Inmon, 1996:339). The populations should start small and can follow larger
subjects, or even sub-sets of subjects. The output from this phase should serve as a

definition of what data is to be populated.

5.3.2.5. Data warehouse design

The core step in the development of the data warehouse is the data warehouse design.
The data warehouse design should not be done in a heuristic manner, but should be
done using the feedback loop (Inmon, 1996:73):

¢ Portion of the data is populated.

e The data is then used and scrutinised by the DSS analyst.

e Based on the feedback of the end user, the data is modified, or other data is

added to the data warehouse

It is argued that the requirements of the data warehouse cannot be identified, thus
requirements driven approaches will not help. For this reason, loop needs to be

continued throughout the entire life of the data warehouse.

The data warehouse design is based on the data model. This model represents the
needs of the organisation and is a technology in dependent view (Inmon, 1996:276). A
few aspects of the data model need to be changed to turn the data model into a data
warehouse design (Inmon, 1996:278):

e An element of time needs to be added to the key structure if it is not already

present.
e All purely operational data needs to be eliminated.
e Referential integrity relationships need to be turned into artefacts.

o Derived data frequently used, is added to the design.

133

Chapter 5 — Data Warehouse Development

e The structure of the data needs to be altered when appropriate for:
o Adding arrays of data.
o Adding data redundantly.
o Further separating data under the right conditions.
o Merging tables when appropriate.

¢ Stability analysis of the data is done.

The data warehouse design will typically be organised around the subject areas
identified.

Data in the data warehouse is stored in a multidimensional perspective (Inmon,
1996:140). Figure 5-14 illustrates a three dimensional view of data in the data
warehouse; it illustrates that the entities (vendor, customer, order, shipment and

product) do not contain equal amounts of records.

vendor :
customer order product

Figure 5-14 A three dimensional view of data in the data warehouse (Inmon, 1996:140)

One shortcoming of a data model is that it cannot represent data that should be
muitidimensional (Inmon, 1996:139).This shortcoming is resolved by using a technique
called star joins (Inmon, 1996:140).The star joins-technique enables one to manage
large amounts of data residing in an entity in the data warehouse. Figure 5-15 shows a

simple star join in which one entity is populated.

134

Chapter 5 — Data Warehouse Development

vendor
Vendor id

Vendor data
Vendor data

customer

order

cust id
Cust data
Cust data

Order id
Order data
Order data

Vendor is
Nonkey data
Cust id
Nonkey data
Order id
Nonkey data

product id
Nonkey data

shipment
Order id
Order data
Order data

product
product id
product data
product data

Figure 5-15 A star join of the order entity (inmon, 1996:141)

In Figure 5-15, ORDER is at the centre of the star join. ORDER is the entity that will be
heavily populated. Surrounding ORDER, are entities PART, DATE, SUPPLIER and
SHIPMENT. Each of the surrounding entities will have only a modest number of
occurrences of data. The centre of the star join, ORDER, is called a “fact table”. The
surrounding tables are called “dimension tables”. The fact table contains unique
identifying data for ORDER, as well as data unique to order itself. The fact table also
contains pre-joined foreign key references to tables surrounding it, the dimension
tables. Derived data frequently needed, is added to the design. This data will be added
to the fact table. Inmon (1996:142) highlights that textual data is located in the

dimension tables, whereas numeric data is located in the fact table.

The above step should produce a physical database design of the data warehouse. The
entire data warehouse needs not to be designed in detail. It is entirely acceptable to
initially design the major structures of the data warehouse, and then fill in the detail at a

later point in time (Inmon, 1996:340).

135

Chapter 5 — Data Warehouse Development

5.3.2.6. Source system analysis

In this activity, one should define the system of record. The so-called system of record
is defined as “nothing more than the identification of the “best” data the corporation has”
(Inmon, 1996:276). The “best” source of data is determined by the following criteria in
the existing systems environment (Inmon, 1996:276):

¢ What data is the most complete?

¢ What data is the most timely?

¢ What data is the most accurate?

e What data is the closest to the source of entry into the existing systems

environment?
e What data conforms closest to the structure of the data model in terms of keys,

attributes, or groupings of data attributes together?

This is also the point where issues of integration are addressed. These issues include
(Inmon, 1996:341):

o Key structure/key resolution for the data that passes from the operational
environment to the DSS environment.
Attributes:

o How to choose from multiple sources.

o How to handle situations where no sources are available to choose from.

o How to transform selected data for the DSS environment.

o What transformations are needed e.g. encoding/decoding, conversions,
etc, or must be made as data is selected for transport to the DSS
environment?

How the time variance will be created from current data.

How the DSS structure will be created from the operational structure.

How operational relationships will show in the DSS environment.

136

Chapter 5 — Data Warehouse Development

The activity discussed, will provide a mapping of data from the operational environment

to the DSS environment.

5.3.2.7. Specifications

Once the interface between the operational environment and the DSS environment has

been outlined, the next step is to formalise it in terms of programming specifications.

Some of the major issues include the following: (Inmon, 1996:342)
e Which operational data should be scanned?
o |s the operational data time stamped?
o Is there a delta file?
o Are there system logs/audit logs that can be used?
o Can existing source code and data structure be changed to create a delta
file?
o Do before- and after image files have to be rubbed together?
¢ How should the output be stored once scanned?
o Is the DSS data reallocated, preformatted?
o |s data appended?
o |s data replaced?
o Are updates in the DSS environment made?
Inmon (1996:342) advises that the output from this step is the actual program
specifications that will be used to bring data over from the operational environment to

the data warehouse.

5.3.2.8. Programming

Once the source system analysis is completed and the actual program specifications
are gathered, one can commence with the programming phase. According to Inmon,
this includes activities such as the following (Inmon, 1996:343):

e Development of pseudo code

¢ Coding

137

Chapter 5 — Data Warehouse Development

e Compilation
e Walkthroughs

e Testing

5.3.2.9. Population

In population, the programs previously developed for the DSS are executed. Inmon
(1996:281) recommends that the smaller subject area shouid be populated first, whilst
the larger subject area should be partially populated. It is done because of a significant
possibility that the requirements may change. The population of subject areas typically
works in the feedback loop process. Figure 5-16 is an illustration of the feedback loop.

B ﬁ Data warehouse

Existing systems environment)

\ L

Data architect

Figure 5-16 The feedback loop (Inmon, 1996:283)
The following issues are addressed in the feedback loop. (Inmon, 1996:283)

e “Frequency of population.
e Purging populated data.
e Aging populated data (i.e. running tally summary programs).

o Managing multiple levels of granuiarity.

138

Chapter 5 — Data Warehouse Development

¢ Refreshing living sample data (if living sample tables have been built).”

The result of this phase should provide a populated functional data warehouse.

5.4. Summary

This chapter covered the development approaches used in data warehouse

development.

Although these approaches seem to be quite contrasting, Kimball et al. (1998:18)
respond by stating that they do not believe there are two “contrasting” points of view

about top-down and bottom-up data warehouses.

According to Kimball et al. (1998) the extreme top-down perspective is a completely
centralised, tightly designed master database that must be completed before the parts

are summarised and published as individual data marts.

The second approach mentioned by Kimball et al. (1998) is that the extreme bottom-up
perspective is an enterprise data warehouse that can be assembled from disparate and
unrelated data marts. The authors also state that neither of these approaches taken to

the limit is feasible and that the only workable solution is to blend the two.

139

Chapter 6 — Data Warehouse and the Object Oriented Approach'

Chapter 6 - Data Warehouse and the Object Oriented
Approach

6.1. Introduction

This chapter illustrates how to develop data warehouses by using (OO) concepts, tools

and techniques where possible.

In Chapter 4, OO analysis as the first phase of OO development was discussed. Booch
(1994:155) states that analysis is to model the world by discovering the classes and
objects that form the vocabulary of the problem domain. In design, one invents the

abstraction and mechanisms that provide the behaviour the model requires.

The data warehouse (DW) business dimensional lifecycle approach (Kimball et al.,
1998:33) starts with the business requirements definition in an attempt to gather the
requirements needed for the development. The business dimensional lifecycle approach

is a requirements-based methodology.

The DW data-driven methodology (Inmon, 1996:291) on the other hand starts with the
data and does not follow a requirements-driven approach in its development
methodology. The fact that the data-driven methodology is not requirements-driven

does not necessarily mean that it is not compatible with OO development methodology.

6.2. The OO model
Chapter 4 covered the OOA, OOSP, RUP and OMT methodologies. It concluded with a

comparison between the different methodologies and the commonalities found between

them. Figure 6-1 is an illustration of the common activities found in each phase.

140

Chapter 6 — Data Warehouse and the Object Oriented Approach

Phase Activity
g « Essential Use Case Diagram
2 g Essential Use Case
35 User Interface Prototyping
1] £ = . .
€ =] Domain Modelling
g o & Supptementary Documentation
o
3
g 2
c
x g g Use Case Scenario Testing
SS9 User Interface Walkthrough
§ ;!_)_ Requirements Review
x
2 System Use Case
= Sequence Diagram
£ Conceptual Class Modelling
3 Activity Diagram
€ User Interface Prototyping
2 Supplementary Specifications
o User Documentation
8 Organise Packages
o
(e}
S Class Modelling
K State Chart Modelling
[S] Collaboration Maodelling
E Component Modelling
S Deployment Modelling
5 Relational Persistence Modelling
5 User Interface Design
%
(e}
]
85
; ::: Code development
oa Component packaging
g E Deploy packages
A
SE
o
= D o
_i €S Unit test compaonents
R
Ok (2
S+

Figure 6-1 Summary of requirements, analysis, design, implementation and testing.

This chapter describes the phases of the DW lifecycle following an OO approach. The
OO approach is based on the phases and techniques illustrated in Figure 6-1.

6.3. Data warehouse (DW) development using the Business
dimensional lifecycle approach phases and an OO approach.

The objective of this discussion is to describe how a data warehouse (DW) is built,

should one use the approach of Kimball et al. (1998) and implement it in an OO fashion.

141

Chapter 6 — Data Warehouse and the Object Oriented Approach

The Business Dimensional Lifecycle of Kimball et al. (1998, 33) is illustrated in Figure

6-2. The figure also shows the paragraph numbers of the following discussion.

633 Product

Technical Selection &
Architecture Installation
Design

li 6.3.1 l

Business
Project Requirements 6.3.2 6.3.4 6.3.5 637 6.3.8
Planning [« J

—

Definition Dimensional Physical Data staging Deployment Maintenance
Modeling Design design & and growth
development

6.3.6 6.3.6

End-User End-User
Application Application
Specification Development

——DI Project Management |

—

Figure 6-2 Business Dimensional Lifecycle diagram (Kimball et al., 1998:33)

The discussion on project planning and project management given by Kimball et al.
(1998) is generic and not focused on DW projects exclusively. This chapter focuses on
DW-specific development techniques from an OO perspective, therefore project

planning is omitted from this discussion.

The discussion of building a DW using the Kimball et al. (1998) approach and

implementing it in an OO fashion follows the structure illustrated in Figure 6-2.

The first part of the discussion (section 6.3.1) concentrates on OO methods for
acquiring the business requirements needed to build the DW. This is followed by a
discussion on OO methods used to analyse and design the DW dimensional models
(section 6.3.2) and the technical architecture (section 6.3.3) relevant to the defined
business requirements. Following on, are discussions on the physical design of the DW
(section 6.3.4) and the design, implementation and testing of the data staging area
(section 6.3.5). The section is concluded by short discussions on the full development
lifecycle of the end user applications (section 6.3.6), deployment of the DW (section

6.3.7), as well as its maintenance and growth DW (section 6.3.8).

142

Chapter 6 — Data Warehouse and the Object Oriented Approach

6.3.1. Business Requirements Definition

The Business Requirements Definition determines:
¢ Data that should be available in the DW.
e How it should be organised.

¢ How often it should be refreshed (Kimball et al., 1998:95).

In OO terms, gathering the business requirements starts with a requirements modelling
team (Ambler, 2001:34). An interview team (Kimball et al., 1998:98) is used to gather
requirements for the DW. From a DW perspective, both these terms focus on

generating business requirements information.

Requirements gathering techniques are:
¢ Interviewing
¢ Facilitated sessions

¢ Brainstorming

In conjunction with interviewing and brainstorming, techniques in the requirements
model derived in chapter 4, can be applied. Figure 6-3 is an illustration of these

techniques.

Phase Activity
o Essential Use Case Diagram
£ Essential Use Case
1) 29 User Interface Prototyping
5 g 3 Domain Modelling
g &’ Supplementary Documentation
E 2
2 o . .
o = Use Case Scenario Testing
98 User Interface Walkthrough
T2 Requirements Review
e
(14

Figure 6-3 Requirements Model in OOD

143

Chapter 6 — Data Warehouse and the Object Oriented Approach

The requirements phase in object orient development (OOD) consists of two sub-
phases, namely:
e Requirements gathering

¢ Requirements validation

The following discussion will explain each technique in the requirements model, as well

as an application of the technique in terms of data warehouse development.

6.3.1.1. Essential use case diagram

An essential use case diagram is a technology-independent view of behavioural
requirements and describes the details between the user and the system (Ambler,
2001:44). As discussed in chapter 4, its function is to illustrate the interaction between

actors and concepts in the problem domain.

A DW is a system that allows the user to access the “bigger picture” of the business
data. To make DW development achievable, limits must be set to what should be

included in the “bigger picture”, as well as to the inputs and outputs of components that

make up the “bigger picture”.

The essential use case diagram can be altered to illustrate which components of the
“bigger picture” are represented in the data warehouse, and who will use what
information. To avoid confusion between the essential use case diagram representing a
specific business problem domain and the essential use case diagram used to
represent the “bigger picture” of the business, they will be referred to as the business
process use case diagram and the data warehouse use case diagram respectively.

Figure 6-4 is an example of a data warehouse use case diagram.

144

Chapter 6 — Data Warehouse and the Object Oriented Approach

T T

Product Product
modelling i
depl. staff

: " Product Medelling

Sales dept.
staff

3
8
a
e
@

Manager

Sales dept.
Manager

Claims
depariment
dept. staff

N
0

> o

Finance dept.
staff

X

Billing dept.
staff manager

Figure 6-4 Data warehouse use case diagram

The ellipses in the data warehouse use case diagram represent the different
departments within the organisation. An analysis is done on the departments in order to
identify specific business processes that will be supported by the data warehouse. The
actors on the left hand side of the diagram represent the parties responsible for
generating the information. The information technology (IT) department is excluded as
the responsibility of this department is to process information, not to generate it. In
cases where the IT department is responsible for generating information, it will be
included. The actors on the right hand side represent the parties who need to receive
the information from the data warehouse. They will typically include the manager of the
respective departments and in some cases the board of directors, depending on how
the company is structured. The concept of the data warehouse use case diagram is to
create a picture of the different business units (departments), indicating who is
responsible for generating inputs for a business unit and who is using the output of a
business unit (users). Table 6-1 is an example of the use cases generated from the data

warehouse use case diagram.

145

Chapter 6 — Data Warehouse and the Object Oriented Approach

DW Use Case Department Party Responsible for Users

Number providing information

DWUCO01 Product modeliing Product modelling staff | Product modelling
manager

DWUCO02 Sales Sales staff Product modelling
manager, Sales
manager, Marketing
manager and Finance
manager.

DWUCO03 Marketing Marketing staff Marketing manager

DwuUC04 Claims Claims staff Claims manager,
Finance manager

DWUCO05 Finance Finance staff Finance manager

DWUC06 Billing Billing staff Finance manager and

Billing manager

Table 6-1 Example of a list of data warehouse use cases generated from the data warehouse use

Each of the DW use cases contains one or multiple business processes. The business
essential use case diagram represents these business processes. Figure 6-5 illustrates

an example of an essential business process use case diagram representing the

case diagram.

process of quoting for insurance cover for an insurance company.

Figure 6-5 Essential business process use case diagram example for an insurance company

Broker
é % -
Underwriter

L

Assessor

.

Apply for insurance
quote

Pay broker
commission

Accept insurance

quote T

Decline insurance k/

quote /
Billing of policy

premiums

Claim against
policy

Policyholder

146

Chapter 6 — Data Warehouse and the Object Oriented Approach

The link between the actor and the ellipse in the diagram represents an interaction.
From this interaction one is able to create an essential use case. Essential use cases

are created for every interaction in the diagram

Use case number Description

uco1 Broker requests a quote for insurance policy for a
prospective policy holder

ucoz2 Broker receives commission for a successful
application

uco3 Prospective policyholder accepts insurance policy
quote

uco4 Prospective policyholder declines insurance policy
quote

UCo05 Insurance company bills policyholder for monthly
premiums

UCo6 Policyholder claims against policy

uco8 Assessor assesses policy claim

Table 6-2 Exampie of a list of essential use cases generated from the use case diagram

Table 6-2 illustrates the use cases that can be generated from the essential use case
diagram. The idea of the essential use case diagram is to make the requirements team

aware of all possible use cases within the problem domain.

The essential use case diagram illustrated in Figure 6-5 represents the business from a
production point of view. The purpose of this illustration is to identify the core business

processes, as well as the actors involved in these processes.

6.3.1.2. Essential use case

The essential use case is also divided into a business essential use case containing the
derived information from the business process use case diagram and a data warehouse

essential use case derived from the data warehouse use case diagram.

Data warehouse essential use case

Data warehouse essential use case contains the name, description, inputs, outputs and

the grain needed for this use case. Figure 6-66 is an example of a DW use case.

147

Chapter 6 — Data Warehouse and the Object Oriented Approach

Name: DWUC 02 Sales

Description; Sales department responsible for sales of a product

Basic inputs

Sales staff should provide the following:
1. Sales of each product

2. Possible dates of sold product

3. Possible regions of sold product

4. Possible brokers responsible for sales in regions
Basic outputs

1. Regional sales figures

Possible grain(s)

1. The sale of a product.

Figure 6-6 Data warehouse use case example for sales department
The inputs and outputs are derived from the DW use case diagram. The possible grain
heading is added to the DW essential use case to serve as an indication of the lowest

level of information contributing to the core function of the department.

For example, the grain in Figure 6-66 is recorded as the sale of a product, thus one sale
of one item equals the grain. If all of the items sold are added up, they will make up the

total sales. Grain is a DW-specific addition to the standard use case definition.

Business essential use case

The business essential use case contains the name of the use case, the description of
the use case, the precondition, post conditions and the course of action. Action
between components in the use case is hereby explained. Figure 6-7 illustrates the

business essential use case for a member requesting a quote for insurance purposes.

148

Chapter 6 — Data Warehouse and the Object Oriented Approach

Name: UC 01 Quote for insurance.
Description: Broker requests a quote for insurance policy for a prospective policy holder
Preconditions (Business rules):

Policyholder must be older than 21 years
Policyholder must be female for maternity products
Policyholder can only have one life assurance product

Policyholder must be quoted via an accredited broker

Post conditions:
Member accepts the quote and the application moves to underwriting
Member rejects quote

Basic course of action
1. Broker requests quote for product on behalf of the policyholder
Broker selects the product

2
3. System requests member details according to product specification and rules
4

Broker enters the required information and requests the monthly premium for a sum assured

amount
5. System validates the information and returns a quote
6. If the policyholder accepts the quote, the quote is moved to the underwriters
7. The use case ends
Alternative Course A:
1. Member rejects the quote

2. The use case ends

Figure 6-7 Use case example for quoting business

6.3.1.3. Data warehouse user interface prototyping

In terms of OO, the user interface serves as the visual interface between the system

and the user, whereas in DW the user interface is in the form of outputs from the data

warehouse to a downstream system. Most of the use interfaces are based on the

outputs of the different DW use cases.

149

Chapter 6 — Data Warehouse and the Object Oriented Approach

The user interfaces that should be prototyped are:
e Reports (departmental)
e End user desktop applications
o Data mining models

e Downstream operational systems

Reports are typically information on business processes received by managers (or
users) of the different departments, or generated from a reporting platform. This
reporting platform is an end user system built on top of the data warehouse. The
purpose is to model the report according to the needs of the manager or user of the
department in question. A typical example of a report would be a sales report containing
relevant elements, such as product name, date of sale, quantities of the product sold
and the region where it is sold.

An end user desktop applicatiqn only needs specified types of data. The department
using the specific application should provide the requirements for that application. Data
mining models also depend on specific data available, the correct data requirements to

be provided by the mining modeller.

The same logic as with desktop application and mining models can be applied to the
downstream application requirements. User interface prototyping should provide an idea
of what information is needed by the different parties. After all the interfaces are

prototyped, the domain modelling can start.

6.3.1.4. Domain Modelling

Domain modelling seeks to identify classes and objects common to all applications
within the domain (Booch, 1991:157). Concepts (classes) are derived from nouns and

noun phrases in the OO business essential use cases.

150

Chapter 6 — Data Warehouse and the Object Oriented Approach

Class Responsibility Collaborator Cards (CRC) is a useful technique for discovering the
classes that represent concepts. The technique, which should be used in a

brainstorming session, is explained in Chapter 4.

In normal OO development, three types of classes are created:
e Actor classes <<Actor>>
e Business classes

e User interface classes <<UI>>

The above types of classes can be used in conjunction with the following classes to
model the DW domain:

e Reports <<Report>>

e End user desktop applications <<End user app>>

e Data mining models <<Data mining>>

e Downstream operational system interfaces <<Downstream Ops>>

Figure 6-8 provides an example of these types of classes. The CRC domain is called
the DW CRC model in order to avoid confusion with the operational CRC domain
model. Figure 6-8 is an example of the DW CRC cards involved in quoting for

insurance.

151

Chapter 6 — Data Warehouse and the Object Oriented Approach

Policyholder Quote Report <<Report>> Product
Name (No Actions} *Get total Products Quote Record. Product name (No Actions}
Surname quoted for member Benefit
Age *Get total Products Quote Record. Premiums
Gender quote for term
Smoking Status
Address
Broker <<Actor>> Policyholder Model <<Data Mining>> Quote Record
*Provider Quote Application *Get potential Policyholder Policyholder (No Actions)
information of self member credentials Broker
+Provider Product
information of Sum assured
policyholder Premium
*Request for quote
Sales Department <<Actor>> Quote Application<<U|>> Broker
*Request Report Quote Report *Get broker info Broker Name (No Actions)
*Request Model Policyholder Model *Get policyholder info| Policyholder Sumame
*Get product and Broker number
sum assured Product Commission received
*Request quote Quote Record

Figure 6-8 Example of a DW CRC model

Figure 6-8 illustrates the business classes as follows:

Broker — contains the information about the broker
Policyholder — contains the information about the policyholder
Product — contains the information about the product

Quote Record — contains the information about the actual quote

Responsibilities in the business classes are candidates for attributes in the class, which

in turn is also a potential dimensional model.

The actor classes are:

Broker — the individual who requests the quote

Sales Department — the department who requests the reports and data mining

model

152

Chapter 6 — Data Warehouse and the Object Oriented Approach

The actor classes’ responsibilities collaborate with the Quote Report, Policyholder

model

and the Quote Application classes. The actor cards initiate the process.

The user interface classes are:

Quote Report of class report — the information displayed by the report

Policyholder Model of class data mining model — the information needed by the
model |

Quote Application of class user interface — the information displayed on the user
interface

6.3.1.5. Supplementary Documentation

The specification documentation forms part of the requirements phase. The following is

an ove

The sp
.
.
.

rview of these documents, while a detailed discussion will follow at a later stage.

ecification documentation should contain the following:
Business rules

Outline of the data warehouse maintenance and growth
Initial project plan

Outline of the technical architecture design

Business rules

Busine

ss rules documentation contains the rules for the business, as well as for the

product. Table 6-3 illustrates the rules that are specified in Figure 6-7.

Rule no Description

BRO1 Policyholder must be older than 21 years

BR02 Policyholder must be female for maternity products
BRO03 Policyholder can only have one life assurance product
BR04 Policyholder must be quoted via an accredited broker

Table 6-3 Business rules

153

Chapter 6 — Data Warehouse and the Object Oriented Approach

The business rules serve as a base on which the Extract-Transform-Load (ETL)

process will be built.

Outline of the data warehouse maintenance and growth.

The document on data warehouse maintenance and growth should specify the
department or group responsible for the maintenance and development of the data
warehouse. The document should also specify the formal procedure for maintaining

change control (Figure 6-9).

Data warehouse maintenance and growth

The maintenance and growth of the data warehouse is the responsibility of the data warehouse
department within the information technology (1T) department.

Task definition: Debugging, enhancements, maintenance.

Debugging

A defect must be logged via a logging system.

Enhancement

An enhancement request must be logged viathe same logging system
Maintenance

The data warehouse department will maintain the data warehouse.

Figure 6-3 Documentation on data warehouse maintenance and growth
Initial project plan.
The initial project plan should contain the tasks needed by the development- and
infrastructure teams, as well as estimations for these tasks.
Outline of the technical architecture design.

This documentation should contain the initial requirements needed by the technical
architecture design team. It should contain detail of the following:
o Data staging

e Deployment

154

Chapter 6 — Data Warehouse and the Object Oriented Approach

Data Staging
Documentation on the software and the source systems available are needed. For
example, the database management system will be written in Oracle on a UNIX

platform. The extract, transform and load tool will be a tool called Data Stage.

The available sources for data staging are:
¢ Policy administration application
e Billing and payment application

e Policy quote application.

Deployment
Physical requirements will include the procedure for deployment and a description of the
environments. The requirements gathering phase is an iterative phase; as development

proceeds, new requirements are discovered and documentation amended accordingly.

6.3.1.6. Requirements validation
Once the requirements are gathered, it should be validated. This can be done using the
following techniques (discussed in chapter 4):
e Use case scenario testing
e User interface walkthroughs

¢ Requirements reviews

After validation of the requirements, the analysis of technical architecture, dimensional

modelling and end user applications can be done.

The section on DW requirements concludes with a discussion on the suitability of OO

techniques for DW requirements.

155

Chapter 6 — Data Warehouse and the Object Oriented Approach

6.3.1.7. The Data Warehouse requirements based on OO approach

In terms of the requirements phase, the difference between the traditional Kimball et al.
(1998) data warehouse development and the Object-Oriented Data Warehouse
(OODW) is the following:

¢ OODW uses the technique of a normal OO essential use case diagram and the
DW use case diagram to provide the detail, as well as the bigger picture of the
company.

e OODW uses the technique of a normal OO essential use case and the DW
essential use case which explain the inputs, outputs and the grain of the
department.

o OODW uses the technique of user interface prototyping to form ideas of what is
needed from the data warehouse in terms of DW outputs.

e OODW uses the technique of domain modelling to define the different objects

and classes that will be used in the DW.

Traditional Kimball et al. (1998) DW development does not use any of the above

techniques for gathering requirements.

6.3.2. Dimensional modeling

Dimensional modelling is defined as “a logical design technique that seeks to present
the data in a standard framework that is intuitive and allows for high performance
access. It is inherently dimensional and adheres to a discipline that uses relational
model with some important restrictions” (Kimball et al., 1998:144).

The dimensional modelling phase should allow for an analysis and design activity in

order to follow a typical OO development approach.

The discussion will concentrate firstly on the analysis of the dimensional modelling and

thereafter on the design thereof.

156

Chapter 6 — Data Warehouse and the Object Oriented Approach

Figure 6-10 illustrates an outline of the activities in OO analysis.

o
=
j))
(2l
®

Activity
System Use Case

Sequence Diagram
Conceptual Class Modelling
Activity Diagram

User Interface Prototyping
Supplementary Specifications
User Documentation
Organise Packages

Object Oriented
Analysis

Figure 6-10 Object Oriented Analysis activities

6.3.2.1. Dimensional modelling analysis — DW System use case

Up to this point two types of use cases were developed, namely:
e Business process essential use cases

¢ Data warehouse essential use cases

As with essential use cases, the system use case is also divided into a business
process system use case and a DW system use case. Both the business and DW

system use cases are evolved from their respective essential use cases.
The DW system use case foliows the same pattern as the DW essential use case,
except that it entails more specific information with regard to inputs, outputs and the

grain of the department. It also specifies the users and their requirements.

Figure 6-11 is an example of a DW system use case for the sales department.

157

Chapter 6 — Data Warehouse and the Object Oriented Approach

Name: DWUC 02 Sales
Description: Sales department is responsible for the sales of a product
Basic inputs

Sales staff should provide the following:
1. 1™ line managers provide sales figures via sales_mm_dd_yyyy.mdb file on network drive

2. sales_mm_dd_yyyy.mdb contains the following information:
a. Sales of each product (unit in each)
b. Dates of sold product (format dd-mm-yyyy)
¢. Regions of sold products
d. Brokers responsible for sales in regions (format: Title Name Surname)
Basic outputs
1. Regional sales figures (RPT_S01)
2. Broker sales quota (RPT_S02)
3. Quarter sales (RPT_S03)
Possible grain(s)
1. The sale of a product
Users
1. Product modelling manager requires the following — (RPT_S01, RPT_S03)
2. Sales manager requires the following — (RPT_S01,RPT_S02,RPT_S03)
3. Finance manager requires the following — (RPT_S01, RPT_S03)

Figure 6-11 Data warehouse system use case example for sales department

6.3.2.2. Dimensional modelling analysis — Business process system use
case

The business process system use case is similar to the business process essential use
case with the exception that it includes high-level implementation decisions, such as
screen numbers and properties, such as includes, extends and inherits.

Figure 6-12 is an example of a business process system use case

158

Chapter 6 — Data Warehouse and the Object Oriented Approach

Name: Quote for insurance

Identifier: UCO1

Description: Broker requests a quote for insurance policy for a prospective policy holder
Preconditions:

Post conditions:

Member accepts the quote and the application moves to underwriting

Member rejects the quote

Extends: —
Includes: —

Inherits from: -

Basic course of action
1. Broker requests quote for product on behalf of the policyholder via “Ul01 Request quote for
insurance”
2. System requests member details according to product specification and rules according
business rules BR0O1 — Policyholder must be older than 21 years
3. Broker enters the required information and requests the monthly premium for a sum assured
amount
4. System validates the information and returns a quote with the business rules BR02 — BR04
5. If the policyholder accepts the quote, the quote is moved to the underwriters
6. The use case ends
Alternative Course A:
3. Member rejects the quote

4. The use case ends

Figure 6-12 Business process system use case example for quoting business

6.3.2.3. Dimensional modelling analysis — Sequence diagrams

Sequence diagrams are developed from use cases. Jacobson et al. (2001:251) states
that the function of sequence diagrams is to model the logic of usage scenarios. A
usage scenario is a description of a potential way the system can be used; this may
include use cases or alternative courses. It provides a bridge between the business

system use cases and the class models.

159

Chapter 6 — Data Warehouse and the Object Oriented Approach

Figure 6-13 is an example of a sequence diagram derived from the business process

system use case in Figure 6-12.

Broker Quote App Quote App Broker Policyholder Product QuoteRecord
<<Actor>> <<controller>> <<yl>>

Request a quate

1. Broker prepare quate far
policyholder
2. Broker enters broker and

<<creale>>

Broker detsils
Falicyholder details

verifyBroker(namesurnage}

3. Broker enlers amaunt of Product and cover_amount £ 3 theBroker
1

2

y!
thePalicyholder

cover and requests premium

provideListOlProducisAndBe efits()
theProducts

caleulateMonihlyPremiums{policyholder, product)
thePremiums

theQuote

€L

Figure 6-13 Sequence diagram for quoting for insurance
In terms of interaction, the sequence diagram (Figure 6-13) illustrates that there is an
interaction between:
e The broker
e The policyholder
e The policy

¢ The quote record

The significance of this interaction will be explained in the following discussion.

The function of the data warehouse use cases is to provide an overview of the “big
picture” of the company as opposed to the process flow in the business. It therefore will
be senseless to create a sequence diagram from the data warehouse use cases, as the

function of a sequence diagram is to model the interaction between classes in a

process.

For purpose of the dimensional modelling, the logic flow is not all that important, but
rather important to discover which classes interact with one another and what that

interaction entails.

160

Chapter 6 — Data Warehouse and the Object Oriented Approach

6.3.2.4. Dimensional modelling analysis — The Data Warehouse Bus

Architecture Matrix

The Data Warehouse Bus Architecture Matrix is a tool introduced by Kimball (et al.,
1998:271) to decide which dimensional models to build. The matrix forces to name all
the data marts that can possibly be built, as well as the dimensions implied by those
data marts.

The business process system use case contains the concepts entailed in the business,

thus giving an indication of the possible data marts and dimensions on hand.

For the purpose of creating a data warehouse bus matrix, the sequence diagram serves

as an indicator of which classes interact with one another.

The following discussion illustrates how to create a data warehouse bus matrix from the

DW system use case, business process system use case and the sequence diagram.

Identifying the data marts and dimensions

The department column in Table 6-1 lists the potential data marts that can be used for
the matrix. In some cases the department name can be too encompassing and should
be divided into smaller units. This should be highlighted by the business essential use

case in its business processes.

To gain a better understanding of the company, a table should be created combining
the DW use cases with the business use cases. Table 6-4 is an example of such a
table.

161

Chapter 6 — Data Warehouse and the Object Oriented Approach

DW Use Case Department Business Use Case Business Process

Number Number

DWUCO1 Product modelling

DWUC02 Sales ucC 01 Quote

DWUCO03 Marketing

DWUC04 Claims ucCo5 Claim on policy

ucCo6 Assessment of policy

DWUCO05 Finance uco2 Commission paid to
broker

DWUCO06 Billing ucC 04 Billing of policy
premiums

Table 6-4 Combination of the DW use cases with the business use cases

From Table 6-4, the following can be derived:

¢ DWUCO01 does not contain any business use cases that match the DW use case.

One can therefore do a future analysis on this department to be included in the
DW, or it can be left out of the development scope of the DW.

¢ DWUCO02 contains only the quoting business process.

¢ DWUCO3 is similar to DWUCO1; it can be investigated further of left out for now.

e DWUCO04 contains two business processes, namely claiming against the policy

(UCO05) and assessment of the policy (UC06). These business processes can be

grouped together in the data mart.

e DWUCOS5 contains only the commission business process.

¢ DWUCO06 contains only the billing business process.

The conclusions above will serve as the subject areas in the data warehouse matrix.

The next step is to identify the dimensions of the data warehouse matrix. The following

example illustrates the evaluation process for finding dimensions. The business classes

identified in the insurance company example are:

¢ Policyholder

¢ Product

¢ Quote Record

162

Chapter 6 — Data Warehouse and the Object Oriented Approach

e Broker

The actor classes are:
e Broker

e Sales Department

The user interface models are:
¢ Quote Report <<Report>>
¢ Policyholder Model <<Data Mining>>

e Quote Application <<UI>>

These classes are potential dimensions for the data warehouse. The sequence diagram
created in Figure 6-13 illustrates the sequence of tasks for the quoting process. It
interacts with the following classes:

e Policyholder

e Product

¢ Quote Record

o Broker

o Broker <<Actor>>

o Sales Department <<Actor>>

e Quote Report <<UI>>

e Policyholder Model <<UI>>

Each class describing the process can qualify as a dimension. These classes should
also be specified in the sequencing diagram. The following classes qualify as
dimensions:

¢ Policyholder — describes the policyholder in terms of the quote process

e Product — describes the policyholder in terms of the quote process

o Broker — describes the policyholder in terms of the quote process

163

Chapter 6 — Data Warehouse and the Object Oriented Approach

The following classes do not qualify as dimensions:

¢ Quote Record — does not qualify as it does not tie the classes together; it does
not describe the quote process implicitly or data mart

e Broker <<Actor>> — does not qualify as it does not identify the processes and
does not describe the quote process or data mart implicitly

e Sales Department <<Actor>> — does not qualify as it does not describe the quote
process or data mart

¢ Policyholder Model <<Actor>> — does not qualify as it does not describe the
quote process or data mart

An evaluation process should be completed for every process or data mart. A time

dimension, indicating when a certain process occurred, should be added.

A data warehouse bus matrix is created with the data marts and dimensions derived

from the evaluation process. The dimensions are listed as columns and the data marts
as rows.

164

Chapter 6 — Data Warehouse and the Object Oriented Approach

Figure 6-14 is an example of a data warehouse matrix created for the insurance

company.
c
2
B
£ [‘.6 a E
o| T| 8| 3| E| 8
£ 5| el ol = B
= S)
Quote N AN
Underwrite NV Y ¥
Commissions NN AN
Billing VoA V
Claims N[V N

Figure 6-14 The Data Warehouse Bus Architecture matrix for the insurance

company example.
As previously discussed, the sequence diagram indicates which processes interact with
which classes. This information can be used to derive which data marts interact with

which dimensions. The interaction is indicated by the tick in the matrix.

Once all the potential data marts and dimensions are identified, the four-step method of
Kimball et al. (1998:273) can be applied to develop dimensional models. The theory on
the four-step method for designing an individual fact table was discussed in chapter 5
(Section 5.1.2.1).

The following illustrates the four-step method applied for one data mart.

Step 1: Choose the Data Mart
The data mart selected is the quote data mart. For the insurance company example, the

quote data mart is selected.

Step 2: Declare the Grain
The grain specifies the level of detail of the model; the grain for the dimensional model
will be a one record per quote transaction. This is defined as a record with details of the

broker, policyholder, the product quoted on, the sum assured and the premiums.

165

Chapter 6 — Data Warehouse and the Object Oriented Approach

Step 3: Choose the Dimensions
The data mart selected in the data warehouse bus architecture matrix will indicate which
dimensions can be used. According to Figure 5-6 the quote data mart should have the
following dimensions:

e Time

¢ Policyholder

o Broker

e Product

Step 4: Choose the facts

Facts in the fact table are usually numerical values. The numerical values in the quote
record, in Figure 6-8 is the premiums and the sum assured values. The numerical value
in the attributes of the classes in the CRC diagram serves as a starting point, as many
facts should be generated within the context of the grain. Based on the four-step

method, a dimensional model can be developed.

At this stage it is advisable to do an analysis on the technical architecture, the reason
being that the dimensional model and technical design closely correlate with one
another. A discussion on the analysis of the technical architecture will follow after

design of the dimensional models has been dealt with.

6.3.2.5. Dimensional modelling analysis — Dimension table detail

The dimension table diagram needs to be completed for each single dimension. it
illustrates the grain of each dimension, as well as the cardinality of each dimension
attribute, with a top down view of all the hierarchies (Kimball et al., 1998:281). Figure

6-15 is an example of a dimension table detail diagram for the time dimension.

166

Chapter 6 — Data Warehouse and the Object Oriented Approach

M

@)

(12)

Future (52)

Attribute

(14)

Multiple
Hierarchies
i Calendar
Fiscal Year Year ("
Fiscal Calendar) Attributes
Quarter Quarter
Fiscal Month Calendar
Month (12)
Fiscal Week Calendar
Week
\ (365)
Holiday Day Day of Week
Possible Futura Hour Dimension Grain
Dimension Grain

(8,760)

(62)

Figure 6-15 Dimension table diagram (Kimball et al., 1998:281)

In Figure 6-15, the rectangles represent the attributes specified for the dimension, while
the cardinality is shown in parentheses. The arrows between the rectangles represent
the drill paths for the hierarchy. Post-dated attributes can also be specified on the
diagram. In the above case, one can follow the hierarchy Fiscal Year — Fiscal Quarter

— Fiscal Month — Fiscal Week — Day, or the hierarchy Calendar Year — Calendar

Quarter — Calendar Month — Day.

Alongside the diagram is the attribute detail description. Figure 6-16 is an example of an

attribute detail description for the time dimension table diagram.

167

Chapter 6 — Data Warehouse and the Object Oriented Approach

The attribute detail description consists of five columns:

Figure 6-17 is an example of a fact table diagram for the quote fact. The fact table
diagram illustrates the specific fact table within its own context and also serves as an

overview of all the dimensions that have been identified. The names and descriptions of

corporate year.

Attribute Name Attribute Description Cardinality Slowly Changing Sample Values
Dimension Policy
Day Represents the specific date. 365 Not Updated 01/14/1998
Holiday Represents calendar holidays. 14 Overwritten Easter, Thanksgiving
Day of Week Name of the day in the week. 7 Not Updated Thursday
Calendar Week Represents the week ending Saturdays, 53 Not Updated WE01/17/1898
Calendar Month Represents the calendar month. 12 Not Updated 1998/01, 1998/02
Calendar Quarter Represents the calendar quarter. 4 Not Updated 1998/Q1. 1998/Q2
Calendar Year Calendar Year, 1 Not Updated 1998
Fiscal Week Collection of days by week ending Sundays, as defined by 53 Not Updated F01/18/1998,
the corporate calendar. F01/25/1998
Fiscal Month Gollection of fiscal weeks rolled up to fiscal months as 12 Not Updated F1998/01,
defined by the corporate calendar. Follows a 4-4-5 patiern. F1998/02
Fiscal Quarter The coliection of three fiscal months that are reported as 4 Not Updated F1998 Q1,
corporate quarters, F1998 Q2
Fiscal Year The collection of fiscal quarters that are reported as the 1 Not Updated F 1998

Figure 6-16 Dimension attribute detail description (Kimball et al., 1998:283)

Attribute name — official name of the attribute.

Attribute description — a description of the attribute.

Cardinality — an estimation of the distinct values of the attribute.

Slowly changing policy — is the type of slowly changing attribute, e.g. Type 1 —

overwritten, Type 2 — new version of the attribute and Type 0 — the value is never

updated.

Sample data — Sample value of the attribute.

6.3.2.6. Dimensional modelling analysis — Fact table diagram

these dimensions are shown (Kimball et al., 1998:277).

168

Chapter 6 — Data Warehouse and the Object Oriented Approach

Business
Unit

Region

Policy-

holder

Customer quote
line jtem fact
table

Grain:
Line item on
quote

Under-
writer

Broker

oC
be

Claim
Description

Policy-
halder

Figure 6-17 Quote fact table diagram

All dimensions are illustrated in the fact table diagram. Only those dimension tables that

interact with the fact table are connected to the latter, the others not.

Once the fact table diagrams are done for each fact, the fact table details can be
created. Figure 6-18 illustrates the fact table detail for quote; it includes the keys and

the facts. The fact with an asterisk represents a derived fact.

Quote line item fact

Product_Key
Policyholder_key
Underwriter_key
Broker_key
Insured_Amount
Monthly_Premium
Loading_Amount
Rider_Benefit_Amount
Total_Premium*

Figure 6-18 Fact table detail for quote fact table.
The following illustrates how the attributes are generated for fact table detail (Figure
6-18).
Product_key > derived from the fact table diagram (key for product dimension)
Policyholder_key - derived from the fact table diagram (key for policyholder dimension)
Underwriter_key > derived from the fact table diagram (key for underwriter dimension)
Broker_key - derived from the fact table diagram (key for broker dimension)
Insured_Amount > derived from DW CRC model (Sum Assured in Figure 6-8 quote
record)

169

Chapter 6 — Data Warehouse and the Object Oriented Approach

Monthly_Premium - derived from DW CRC model (Premium in Figure 6-8 quote
record)

Loading = derived from DW CRC model (Premium in Figure 6-8 quote record)
Rider_Benefit Amount - derived from DW CRC model (Premium in Figure 6-8 quote
record)

Total_Premium is a derived premium that sums the monthly loading and rider benefit

premiums.

6.3.2.7. Dimensional modelling analysis — Identify sources
Two types of data sources need to be identified (Kimball et al., 1998:296):
¢ Informal sources — Data captured on a user’s database

e Formal sources — Data maintained by IS

Both sources are subject to a process of cleaning and manipulation before they can be
stored in the data warehouse. A data source list also needs to be created.

Figure 6-19 is an exarnple of such a source list.

Source Business Owner IS Owner Platform Location Description

Biliings Tom Owens Alison Jones Unix JHB Customer Billing

Sales Sandra Phillips None Windows CPT Sales figures on policies.

Intermediaries Sylvia York None Windows CPT Details on all intermediaries.

Policy Administration Craig Bennet Steve Dill Unix JHB All information regarding the policyholders
and beneficiaries.

Figure 6-19 Data source definition
The data source list contains the following (Kimball et al., 1998:298):

e Source — name of the source system

+ Business owner — the primary contact person responsible for this information
e IS Owner — the contact person responsible for the source system

e Platform — the operating system on which the system runs

e Location — the location of the system

¢ Description — a brief description of the system

170

Chapter 6 — Data Warehouse and the Object Oriented Approach

Once the data source definition list is available, it can be investigated and analysed.
From this, a source-to-target mapping is created, indicating which fields in what sources
need to go to which dimension table field.Figure 6-20 is a source-to-target data map
example for the period, product and quote dimensions.

Tabie Column Name Data Len Target Column Description Source Source Tabie / Source Data
Name Type System File Column/ Transform
Field

Period PERIOD_KEY Date . The unique primary key for New New New New

Dimension the period dimension table

Product PROD_KEY Int 8 The unique primary key for PA PROD_INFO SH_ID Get

Dimension the product dimension table. member

Number

Product PROD_DESC CHAR 255 Description of the product PA PROD_INFO DESC Direct

Dimension

Quote Fact QUOTE_KEY Int - The unique primary key for PQS QUOTE_INFO QUOTE_ID Direct
each quote generated.

Quote Fact QUOTE_DATE Date - The date that the quote was PQs QUOTE_INFO Q_DATE Direct
generated

Figure 6-20 Source-to-target data map
The source-to-target data map contains the following columns (Kimball et al.,
1998:305):

¢ Table name — the name of the logical table in the data warehouse.

e Column name - the name of the logical column in the data warehouse.
o Data type — the data type of the column in the data warehouse.

e Length —the length of the field of the column.

o Target column description — a description of the target column.

e Source table / file — the name of the source system where data feeds the target
column.

e Source column / field — the name of the specific column within the source table
where the data feeds from.

¢ Data transform — any information needed to translate the source information to the
format of the target system.

6.3.2.8. Dimensional modelling design — Development of dimensional
tables

The development of the dimensional tables requires the following analysis documents:

171

Chapter 6 — Data Warehouse and the Object Oriented Approach

¢ Data warehouse matrix — illustration of the data marts and the dimensions
available for the specific data mart.

¢ Fact table diagram - illustration of the fact table detail within its context.

« Dimensional table detail — illustration of the hierarchies in the dimension tables.

¢ Sources detail — a list of available source data and the owners of the data.

e Source-to-target mapping — mapping from the source data to the target

dimensional tables.

On compiletion of the documents, a dimensional model can be created, as illustrated in
Figure 6-21.

Dim_Time 3 5 Dim_Policyholder
Date_Key, int (PK) Dimensional Model for Quote Policyholder_Key, int (PK)
Fiscal_Year, int Policyholder_Name, varchar{20)
Fiscal Quarter, int Policyholder_Lastname, varchar(20)
Fiscal_Month, int Fact_Quote Date_of_birth, date
Fiscal_Week, int Date_Key, int (FK) Identitynumber, varchar(20)
Calendar_Year, int Product_Key, int (FK) Gender, varchar(2)
Calendar_Quarter, int Policyholder_key, int (FK) Telephone_No, varchar(20)
Calendar_Month, int Broker_key, int (FK) Address_1,varchar(20)
Calendar_Weex, int Instred_Amount, numeric Address_2,varchar(20)
Day_Of_Week, int Monthly_Premium, numeric Address_3,varchar(20)

Day, varchar{20) Loading_Amount, numeric
Rider_Benefit_Amouant, numeric i
Dim_Product Total_Premium*, numeric Broker_Key Iijr:‘rrgﬁi;oker
::ggﬂg}gzs’smt/gyar(m] Broker_Name, varchar(20)
— N Broker_Lastname, varchar{20)
Product_Name, varchar(20) Region, varchar(20)

City, varchar(20)
Company_Name, varchar(20)

Figure 6-21 Quote dimensional model

Figure 6-21 is a dimensional model for the quote data mart and contains four
dimensions with the attributes (being the design of the dimensional model). The
dimensions created for the quote fact table corresponds with the ticked data warehouse
matrix (Figure 6-14). A dimensional model for each data mart listed in the data

warehouse matrix should be created.

Kimball ef al. (1998:309) recommends that a modelling tool should be used to develop
the data model, the reasons for this being:
e Consistency in naming.

e Documentation can be created from the objects.

172

Chapter 6 — Data Warehouse and the Object Oriented Approach

Generation of the physical data definition language (DDL).

Supportive user interface.

This section on DW modelling concludes with a discussion on the applicability of OO

techniques for DW modelling.

6.3.2.9. The Data Warehouse dimensional modelling based on an OO
approach

In terms of the dimensional phase in data warehouse development, the difference

between the traditional Kimball et al. (1998) data warehouse development and the OO
Data Warehouse (OODW) is the following:

OODW splits the dimensional modelling into two sub-phases, namely the
analysis of the dimensional model and the design of the dimensional model.

In the analysis phase of the OODW dimensional model, the DW essential use
cases and the business essential uses cases are combined to obtain the
potential subject areas for the DW. Traditional Kimball DW development does not
use a technique to derive the subject areas. Instead, it analyses the business
processes and based on these results, they are grouped into subject areas.

In the analysis phase of the OODW dimensional model, the selected essential
use case classes are used as the dimensions. These are combined with the
subject areas to create the DW matrix. Traditional Kimball DW development does
not use a technique to derive the dimensions.

OODW uses the same design techniques than for traditional Kimball DW
development, as it is advisable to adhere to traditional DW designs in line with

industry standards.

6.3.3. Technical Architecture modelling

Technical architecture modelling comprises an analysis and design phase. Based on

the OO activities listed in Figure 6-1, the activities shown in Figure 6-22 will be carried

out.

173

Chapter 6 — Data Warehouse and the Object Oriented Approach

Phase Activity
System Use Case

Sequence Diagram
Conceptual Class Modeliing
Activity Diagram

User Interface Prototyping
Supplementary Specifications
User Documentation

+ Organise Packages

Object Oriented
Analysis

g
=3
D
@]
(]

Activity

Class Modelling

State Chart Modelling
Collaboration Modelling
Component Modelling
Deployment Modelling
Relational Persistence
Modelling

» User Interface Design

Object Oriented
Design

Figure 6-22 Object Oriented analysis and design

Figure 6-23 illustrates a high-level technical architecture of a typical data warehouse.

The Back Room The Front Room
. Source MCeat?jg;a P
st andard Reporting
Systems Data Query O Tools
Staging Services —
Services Presentation Servers -Warehouse Browsing O Desitap Data
- Extract [P e, - Access and Security Access Tools
- Transform ‘\‘ - Query Management 1
- Load ' Dimensional Data Marts with - Standard Reporting Application Models
- Jab Confrot | Only Aggregated Data - Activity Monifor
Data ; -
. y Conformed
Staging d The Data Dimentions & Downstream /
' Warehouse)
Area H Bus Conformed Operational Systems
Y, ' Facts

0
H
i .
3 : v
' Bimensional Data Marts H
i Inciuding Atomic Data H
. i
\ /

Key

Data l:l Service
Element

Figure 6-23 High-level technical architecture model (Kimball et al., 1998:329)

The model provides for a logical separation between the internal working of the

warehouse and the user front end (Kimball et al., 1998:329). The analysis and design of

174

Chapter 6 — Data Warehouse and the Object Oriented Approach

such architecture should therefore be separated according to the back and front room of

the model.

The analysis and design of the back room entail the following activities:
e Source system analysis
e Data staging services analysis

e Data staging services design

The analysis and design of the front room consist mainly of the query services.

6.3.3.1. Technical Architecture back room OO analysis — Source systems

The analysis needed for the architecture is done during the identification of sources for
the dimensional models. The sources of the different dimensional models should be

consolidated and used in the data staging area development.

6.3.3.2. Technical Architecture back room OO analysis — Data staging

services
The data staging services consist mainly of the services listed below. The OO
development of these services is discussed in section 6.3.5.
e Extract
e Transform
e Load

e Job control

Extract

The analysis of the extraction of data requires the following analysis documents
(Kimball & Caserta, 2004:55):

e Source-to-target mapping for all the dimensions

e Entity relational (ER) model of the source data

¢ Business rules that influence the Extract-Transform-Load (ETL) process

175

Chapter 6 — Data Warehouse and the Object Oriented Approach

The source-to-target mapping is done during the dimensional model analysis. This list
should be consolidated into a master list. The entity relationship model of the source
systems must be obtained and analysed, in order to determine how the data will be

extracted from the database. However, data can also be extracted from flat files.

The purpose of the source system ER model is to understand what that source data
looks like and to determine what the system of record is. Kimball and Caserta,
(2004:66) simply defines the system of record as the originating source of data. Figure

6-24 is an example of an ER model of a database.

TBL_POLICY_INFO TBL_ TN DTL TOL_TXN_PREMIUM_IHSTORY.
PK | SH Member ID PKFK2 SH Member (D PK.FK?
PK | Boficy & PK,FK1,FK2 | Policy 1D PK -
I P — PK Offerjoa 1D

Policy_Issuc_Dt PK Txa 10 Rate

Policy_Cnet_Dt

Membership_iD

Last_Modified_On Offering_Type Baslc_Premium
Aval_ID Biz_Key_ID Effective_DL
limestamp Txn_Type End_Dt
1S_MIGRATED_DATA Offering_Quantity Las(_Modified

Insurance_Company_Ind Timestar

mp
1S_MIGRATED_DATA
dit_I

Effective_Quawtily
[x]

AN

Age_Flecive_Dt
Txn_Dt

Effective_Dt
PR_User
Last_Modified_On
Aud_ID

timestamp
IS_MIGRATEG_DATA

Version
ROLLED. BACK_TXN_10

TBL_POLICY OFFERING INFO
PK

Offering_Type
Offering_Start_o1
Offernng_End_DI
Share_Quanlity
Last_Modificd_On
Augit_ID

timestamp
IS_MIGRATED_DATA
Shacz_Camp_Ind.

TBL_MEMBERSHIP_DTL.

§H Member 1D
Policy 1D

Last_Modified_On

Audi_D

umestamp

1S_MIGRATED_DATA
1_Nbr

Membership_ID
Start_Ot
End_Dt
1Last_Modiicd_On
Audil 1D

timestamp
(S_WMIGRATED_DATA
Reason

A 4

Figure 6-24 Entity Relationship model of a sample database
Based on the ER model in Figure 6-24, the source of record is the policy offering table.
The beginning of the dataflow starts with the policy entry.

During the requirements phase, the business rules are defined. The rules identified
should be investigated, as this can have an influence on the formatting of data. Table

6-5 is an example of such rules.

176

Chapter 6 — Data Warehouse and the Object Oriented Approach

Rule no Description

BR0O5 Dates are in the format of YYYY-MM-DD.

fBROG The member has a stakeholder ID that is converted to a member number.
Table 6-5 Technical Business rules

Kimball and Caserta (2004:63) uses a so-called “source system tracking report” to list
the different source systems, the function of the source data and the parties involved. A
similar report is generated during the identification of a data source in dimensional

modelling analysis.

Transform

Transformation requires two types of documents:
e Basic high level data stage schema plan
e Detailed plan
o List of derived facts

e List for changing dimensions

The basic level data stage schema plan illustrated in Figure 6-25, shows the sources
(top) and the targets (bottom). The lines between the sources and the targets represent
transformations. The major issues associated with a transformation are described in the
rectangle on the line.

Sources

Bitting intermediary
Master (RDBMS)| |Master (RDBMS)

Slowty changing 15000
an demographics. ntermediaria:
and acoount it status

: " Sales
Posicy Admin (MS Access)

Old (pre-1872) Policy
Numbers are In

Process 750k dillerent format

CUSTOMER

Geography
Targets

Figure 6-25 High level data stage schema plan

Policy ‘ Quote

177

Chapter 6 — Data Warehouse and the Object Oriented Approach

A detail plan should be created for each flow of data (from source to target) in the high
level plan. Figure 6-26 is an illustration of such a detail plan. The source is shown in the
top left hand corner, and the major transformation issues are listed as indicated by the
arrows. In the bottom right hand corner, the final fact /dimension table, to where the
data should be loaded, is shown. The tests on the lines contain critical processing
information.

Sales *Use ODBC to extract data
(MS Access) from file —————>{ sales_ MMYYYY.madb
L-File format ftp fites

sales_ MMYYYY.mdb

Fact Stage 2 1 Fact Stage 1

«Includes geographical «Fields needed for fact table

surrogate key Sortby with surragate keys Process
geo- dimension

Sort by graphical

customer

look:
lookup I?ey up
key

Fact Stage 3 Fact Stage 4 Bu:k Io:::d rr‘no
~Customer surrogate keys Sortby «Includes date surrogate key ales_Fac
date Sales_Fact

lockup
key

Figure 6-26 Detail schematic plan for fact table load

The list of derived facts is gathered during the analysis of the dimensional tables. The
same is done for the list of slowly changing dimensions, also gathered during the
dimensional table analysis. Both these lists should be consolidated for the design of the

extract.

Load
For loading of data into the data warehouse, there are three kinds of loading processes
(Kimball et al., 2000:358):
¢ Incremental loads — involves processing monthly snapshots of the source system
and uploading this information.
¢ Transaction events — involves processing the transactions one by one as it

happens.

e Full refresh — involves taking the whole source database, processing and
uploading it.

178

Chapter 6 — Data Warehouse and the Object Oriented Approach

The source definition in conjunction with the dimensional table should provide the

analysis with the type of upload needed. A list of sources and types of upload should
be created (Figure 6-27).

Source Upload Type Platform Description

Billings Transactional Unix Customer Billing

Sales Transactionat Windows Sales figures on policies.

Intermediaries Full refresh Windows Details on all intermediaries.

Policy Administration Full refresh Unix All information regarding the policyholders and beneficiaries.

Figure 6-27 List of sources with the upload type

Job control

The job control services of the ETL process ensures that it is properly managed. Kimball

ef al.

(1998:364) recommends that it should include the following:
Job definition — definition of the series of steps needed to perform the job.
Job scheduling — scheduling of the job should be done. This can be time or event
based.
Monitoring — ways to monitor the system while the ETL process is in progress.
Logging — ways to collect information about the entire ETL process.

Exception handling — ways to determine whether some of the processes failed.

6.3.3.3. Technical Architecture back room OO design - Data staging

services

The analysis documents (gathered for the back room architecture) give the developer

clear instructions as to how this architecture should perform. The design can be done by

employing integrated ETL design tools, which will be discussed in section 6.3.5.

6.3.3.4. Technical Architecture front room OO analysis — Query services

The front room is a vital part of the model, as this is the part the users see and use to

access the data warehouse (Kimball et al., 1998:409). The types of users and interfaces

are determined during the user interface prototyping and grouped into use cases. These

use cases should be analysed to determine the common front end interfaces.

179

Chapter 6 — Data Warehouse and the Object Oriented Approach

6.3.3.5. Technical Architecture front room OO design — Query services

The design of the front room architecture should be of such a nature that it supports the
front end application. An appropriate development methodology therefore would depend
on the nature of the front end. For example, if the front end is a customer desktop utility
that is being developed, the design should follow an OO methodology.

This section on DW technical architecture concludes with a discussion on the

applicability of OO techniques to DW technical architecture.

6.3.3.6. The Data Warehouse technical architecture based on an 0O
approach

In terms of the technical architecture phase in data warehouse development, the
differences between the traditional Kimball et al. (1998) data warehouse development
and the Object Oriented Data Warehouse (OODW) are the following:
e OODW splits the modelling of each of the services in the technical architecture
into two sub-phases, namely analysis and design.
¢ The technical architecture model itself does not differ from the traditional Kimball
model, but the method used to analyse and design the technical architecture
differs. OODW uses an OO approach to the analysis and design of the technical

architecture, whereas Kimball does not.

6.3.4. Physical Design

The physical design involves the design of the logical database, as well as its
implementation. The process is as follows:

¢ Define naming standards

e Design physical tables and columns

o Estimate database size and index plan

¢ Develop aggregation plan

180

Chapter 6 — Data Warehouse and the Object Oriented Approach

6.3.4.1. Physical Design — Define standards

A document explaining the naming standards for tables, attributes, synonyms and file
locations should be created. The type of platform should also be documented.

Examples of naming standards are displayed in Table 6-6.

Standard No Description
SRO1 All dimensional tables should start with “Dim_".
SR02 All fact tables should start with “Fact_".

Table 6-6 Standards with descriptions

The design of the physical model should follow the standards document.

6.3.4.2. Physical Design - Design physical tables and columns

The dimensional table design serves as a logical model for the physical design. The
physical design should be as close as possible to the logical model, except for the
inclusion of the physical database specification and naming standards. Figure 6-28 is a

physical data model based on the quote dimensional model.
Physical Database Design

Tabte / Column Permit | Prim.
name Data Type nulls? | Key Comment
| Dim_Product Product di
Product Key Integer N 1 Surrogate key
Product_Class Varchar(20) N Descriptive name of the class of the
product
Product Name Varchar(20) N Descriptive name of the praduct

Permit | Prim.
Table/ Column name | Data Type nulis? | Key | Comment
Fact_Quote Fact table with quotes by insured
amount, monthly premium,
oading premium and total
premium
Date_key Integer N 1 Foreign key to
Dim_Product.Date Key
Product_key Integer N 2 Foreign key to
Dim_Product.Praduct Key
Policyholder_key integer N 3 Foreign key to
Dim_Policyholder.Policyholder Ke:
Broker_key Integer N 4 Foreign key to
Dim_Broker.Broker Key
Insured_Amount Numeric N The amountinsured for the quote
(18,2)
Monthily_Premium Numeric N The premium for the quote
(18,2)
Loading_Arnount Numeric N The loading amount on the quote
(18.2)
Rider_Benefit_Amount | Numeric N The rider benefit amount on the
(18,2) quote
Total_Premium Numeric N Total premium payable on the quote
(18,2)

Figure 6-28 Partial physical model for quote

181

Chapter 6 — Data Warehouse and the Object Oriented Approach

The naming standards should reflect in the physical model. Examples of these are the
names of tables starting with “Dim” for dimension and “Fact” for fact, as well as the

suffix “key” for key attributes.

The physical model contains the names of the attributes, the data types, null values and

the combination of the primary key.

6.3.4.3. Physical Design - Estimate database size and index plan

An estimation of the correct database size is not easy and should be done by a qualified
database administrator (DBA). Indexing of the table should also be done by the DBA.
Thereafter, the DBA should produce a plan similar to Figure 6-29.

Database size and Index Plan

Table Name Initial row Grows with Estimated Initial Table Size | Comment

count Monthty Table Size | :(8 months)

Growth
Dim_Time 1,826 | Static 0 0.2MB 0.2MB
Dim_Product 24 | New products 0 0.2MB 0.2MB
Dirn_Policyholder 4,000 | New 5% 250 MB 370 MB
policyholders
Dim_Broker 2,500 | New brokers 1% 100 MB 106 MB
Fact_Quote
Consists of
SourceSys1 2,143,322 | Forsach quote 5% 5GB 6.5GB Keep one year history
SourceSys2 2,323,430 | Foreachquote | 3% 3GB 3.5GB Keep one year history
All Tables 8.354GB 10.480 GB
rﬁn table indexes Key

Indexes
Dim_Time_idx 1 0.1 MB 0.1MB
Dim_Product_idx 1 0.1MB 0.1MB
Dim_Policyholder_idx 1 50MB 65MB
Dim_Broker_idx 1 10 MB 11MB
Facl_Quote_{dx 4 1GB 1.1GB
Total Indexes 1,06 GB 1.176GB
Temp space needed 2GB 2.5GB
Total Space 11.414GB | 14.156 GB

Figure 6-29 Database size and index plan

The database size and index plan reflects the following:
o Names of the tables in the data warehouse

e Estimated rows

182

Chapter 6 —~ Data Warehouse and the Object Oriented Approach

e Potential growth
e Growth rate
e [|nitial size

e Estimated size over 6 months

Indexes and their estimates figure in the bottom half of the list. Partitioning information

can also be included in the database size and index plan.

6.3.4.4. Physical Design ~ Develop aggregation plan

The business requirements that were gathered should highlight what needs to be
aggregated. Based on this, a separate physical model similar to Figure 6-28 should be
created with the necessary aggregate fields. It also should be sized and indexed, as
was done for the atomic data table in Figure 6-29.

6.3.4.5. The Object Oriented Data Warehouse physical design

Owing to the nature of relational databases, OODW uses the same physical design as
traditional Kimball DW development.

6.3.5. Data staging

Kimball et al. (1998:610) follows the under-mentioned ten-step overview when planning
and implementing a data staging environment:

Plan:
1. Create one page source-to-target schematic flow

2. Test, choose and implement data staging tool
3. Create schematic plan to illustrate complex data restructuring and transformation
and job sequencing
Dimension loads:
4. Build and test static dimension load
5. Build and test the slowly changing process
6. Build and test the remaining dimension

183

Chapter 6 — Data Warehouse and the Object Oriented Approach

Fact table and automation:
7. Build and test historical fact table loads
8. Build and test the incremental load process
9. Build and test the aggregate table loads

10.Design, build and test the staging application automation”

In order to use the ten-step overview, the following main OO phases should be
investigated:

¢ Requirements gathering

e Requirements analysis

¢ Design

¢ Implementation

e Testing

The requirements are gathered at the beginning of the project, followed by the analyses
thereof. The latter is done during the dimensional modelling and technical architecture
modelling stages.

The analysis of the backroom architecture serves as the planning part for the ten-step
overview (steps 1 — 4). It provides the developers with the one page schematic flow, the
strategy of the data stage tool to be implemented and a detail schematic plan of the

data restructuring and transformation process.

In terms of OO phases, the dimension loads (step 4 — 6) and the fact table and
automation (steps 7 — 10) consist of a design-, implementation-, and testing phase.

Data staging in terms of OO phases will be discussed in the in the rest of section 6.3.5.

6.3.5.1. Data Staging — OO Design

The data staging environment has two major design areas:

+ Dimension table loading

184

Chapter 6 — Data Warehouse and the Object Oriented Approach

¢ Fact table loading and automation

The analysis documents available for the designs are:
e Dimension model designs
¢ Entity Relationship models of the source systems
¢ High level schematic plan
¢ Detail schematic plans

e Business rules

Based on the analysis documents listed above, the following need to be created for
each dimensional load and fact table load in the data staging area:

e State chart model

e Entity relationship model

e Collaboration model between ETL processes

The state chart model should illustrate extraction of the data from its starting point (the
source) to the transformation and from its conditions to the end point (the dimensions or

fact tables). Figure 6-30 is an example of a state chart diagram for one dimension.

185

Chapter 6 — Data Warehouse and the Object Oriented Approach

Extract Sales (MS Access)
Sales_mmyyyy.mdb

Populate table
#temp_Sales

— e
Verify Broker details with

Failed

SCO01 — Use case 01
State Chart for Sales exiract
for Dim_Broker

Noles
* This ETL prepares
fact_Quote slage 1 thisis a
dependancy for

fact

quole_stage 2

Policy Admin syslem

Add broker region details
{rom Policy admin
#temp Brokel

Process slowly changing
dimension for broker region
(ftemp_Broker)

Process slowly changing
dimension for broker tity
#temp Broker

Pracess slowly changing
dimension for broker
Company Name
(#temp_Broker)

Write broker delails into

failed results table
#temp Exception Tabl

* Popurlate sales figures to
table #temp_Sales_SIg1

Populale Dim_Broker with

U

surrogate keys

Figure 6-30 State chart model {SC01) extract for broker dimension {part of use case 01)

Figure 6-30 illustrates one ETL process that is derived from the detail schematic plan in
Figure 6-26. The latter illustrates the source (Extract Sales (MS Access)) and different

processes applied to the data up to the doughnut mark (bottom right hand corner). The

ok

ETL process.

Accompanied with the state chart model, is an entity relationship model that illustrates

the underling structure supporting the ETL. Figure 6-31 is an example of the ER model

required to support the state chart model in Figure 6-30.

populate sales figures to table #temp_Sales _stg1” process is a preparation for a next

186

Chapter 6 — Data Warehouse and the Object Oriented Approach

#emp_Sales #temp_Exception_Table
PK [ID PK (1D
BrokerNumber Description
PolicyholderNumber DateTime
ProductNumber
#emp_Broker InsuredAmount
SumAssuredAmount
PK |1D. LoadingAmount
RiderBenefitAmount
BrokerNumber DateOfSale
FirstName EffectiveDateOfPolicy
MiddleName #itemp, PolicyDeseription
LastName
(DNumber PK,FK1 1D
#temp_Sales_Stg1
DescriptiveName
PK (ID MinimumAmount
el MaxAmount
- FK1 | SalesBrokerFKID MinPolicyholderAge
#temp_Policyholder FK2 | PolicySoldToPolicyholderFKID MaxPalicyholderAge
PK | ID FK3 | ProductSoldFKID
InsuredAmount
FirstName ¢ SumAssuredAmounl
MiddleName LoadingAmount
RiderBenefitAmount A
LasiName [N
DOB DateQISaIe) #emp_Policy Classes
\DNumber EffectiveDateOfPolicy
PK |ID
Gender
PolicyName
PolicyClass

Figure 6-31 ER Model for staging environment for sales ETL

The reasons why an OODW uses a relational database system are the following:

¢ OO databases are not used commercially, while relational databases are mostly
used.

e To create a flat file system is less appealing, as a file management system is
needed for this. Relational databases come with very robust database management
systems.

¢ A relational database uses industry standard query languages (SQL) and drives to
access information, OO databases do not.

The collaboration model is created once all state chart models and entity relationship
models are done for each dimension and fact table. The collaboration model provides a
graphical representation of the interaction between the ETL processes and their

dependencies. Figure 6-32 is an example of a collaboration diagram for a data
warehouse.

187

Chapter 6 — Data Warehouse and the Object Oriented Approach

Prepare fact
table sales
sig1

Exlracl Sales

Get sales data

Get sales
facts

\ Populate Get A Fact Table

Dim_Broker broker Quole
Jookup ———>

Extract
Policy Admin

—>

Getdata on Get salas /

onsi
dimensions facts per

\ Prepars fact region
table sales
sig2 /‘/

Get pollcy
Paopulate lookup
Dim_Policy-
holder

Get
Populate product Fact Table

Dim_Product lookup ——3{ Monthly
Pramium

Gel premium

facls Extract

Bliling

7

Generated
Dim_Time | Gettime
lookup

Figure 6-32 Collaboration diagram on the ETL for the data warehouse

Figure 6-32 illustrates that the Sales fact table is dependent on the following tables:
e Temp_sales_stage 1
e Temp_sales stage 2
e Dim_Broker
e Dim_Policyholder
e Dim_Product

e Dim_Time

The flow of data is from left to right therefore tables listed on the right hand side of the
collaboration diagram is dependant on tables connected to its left. The above tables
(except for Dim_time) in turn are dependent on the sales extract and the policy admin
extract. The Monthly premium fact table is dependent on all of the listed tables (except
for the sales fact tables) and the billing extract. This gives the developer a clear

indication of the dependency and priority of each ETL job.

188

Chapter 6 — Data Warehouse and the Object Oriented Approach

6.3.5.2. Data Staging — OO Implementation

The implementation of the dimension and fact table loads is supported by the state
chart and ER model designs created. The ER model is implemented by using structured
query language (SQL) scripts. Figure 6-33 is an example of a piece of SQL script that
implements the #temp_broker table.

Figure 6-33 Example of SQL script to create the #temp_broker table

The state chart model and the ER model can be implemented by employing a data
manipulation tool, such as data transformation services (DTS) in Microsoft SQL Server,
or shell scripting in UNIX.

Figure 6-34 is a typical DTS screen shot used to populate a dimension or fact table. The
DTS package is implemented according to the designs of Figure 6-30 (state chart
model) and Figure 6-31 (ER model).

189

Chapter 6 — Data Warehouse and the Object Oriented Approach

Packege Edit Cormection Task Workflow B &5 4 By aib ¥ R 0Y

Microsoft Excel 67,

Conreection

D w

@i &

Task

Vi &

i | (
' 3 %

ST

HERY E
Bl d
yiraod®

B &1

Figure 6-34 DTS Example for populating dimension broker

Kimball et al.(1998:617) recommends that the static dimensions should be implemented

firstly, followed by the remaining dimensions and the fact table.

6.3.5.3. Data Staging — OO Testing
Kimball et a/.(1998:631) suggests that audit statistics should be kept on all loads, thus

allowing the following techniques to be applied for data quality assurance (Kimball et al.
1998:658):
o Cross footing — different queries are executed against the source system at
different levels to compare the results
e Manual examination — consolidate data from different systems and investigate
critical data points for acceptable ranges or exceptions
e Process validation — involves investigating the process flow of the data in the
data warehouse

The testing can be done in phases with each load serving as a phase.

This section on DW data staging concludes with a discussion on the applicability of OO

techniques to DW data staging.

190

Chapter 6 — Data Warehouse and the Object Oriented Approach

6.3.5.4. The Data Warehouse data staging based on an OO approach

In terms of the data staging phase, the differences between the traditional Kimball et al.
(1998) data warehouse development and the Object Oriented Data Warehouse
(OODW) are the following:
e OODW splits the modelling of data staging into three phases, namely OO design,
OO implementation and OO testing.
e OODW uses OO techniques such as state chart modelling and collaboration
modelling to design the ETL loads.
Traditional Kimball DW development does not make use of the above in developing
data warehouses. However, like in Kimball DW development, OODW also uses the
following techniques:
e Dimensional models, ER models of the source systems, high level schematic
plans, detail schematic plans and business rules.
e Testing, which in OODW is seen explicitly as a separate sub-phase, whereas in
traditional Kimball DW, it forms an integrated part of the data staging
development.

6.3.6. End use application
The end user application supports the front end query services of the data warehouse.
These services are:
e Warehouse browsing
e Access and security
¢ Query management

¢ Reporting

The requirements of the end user applications are gathered within the business
requirements definition phase. This determines whether a custom development or an

off-the-shelf product is viable for implementation.

191

Chapter 6 — Data Warehouse and the Object Oriented Approach

Not all requirements can be met with an off-the-shelf product. In such cases, a custom
development is preferable. The development should follow the normal OO pattern, as it
is regarded a project within its own right (Figure 6-1). These applications use the data

warehouse as an input source to provide a service to the end user.

6.3.7. Deployment

According to the OO model defined in section 6.2. , the implementation phase involves

the activities listed in Figure 6-35.

0
=
O
I3
[

Activity

Code development
Component packaging
Deploy packages

Object Oriented
Implementation

Figure 6-35 Implementation model

The code development involves creating the scripts that support the data warehouse.
These scripts are packaged into components. The components should correspond to
the use cases, thus allowing the use case facilitating the quote business process, to

contain all the code involved in implementing the latter.

The deployment of these packages should be implemented by using different
environments. For example, the development should first be done on a development
platform and on completion, promoted to a quality assurance (QA) environment for
thorough testing. Once the package has passed all necessary tests, it can be promoted

to the production data warehouse.

6.3.8. Maintenance and growth

Kimball et al. (1998:718) stresses that the data warehouse should serve the needs of
the business users for it to be successful. This statement implies that the data
warehouse lifecycle should follow a spiral approach to its development. OO
development also follows an iterative lifecycle approach. Figure 6-36 is an illustration

suggesting the life cycle of developing a DW using OO techniques.

192

Chapter 6 — Data Warehouse and the Object Oriented Approach

Gather Business J

Requirements

Use the initial business requirements
to analyse / design DM

Initial DM design {(Analysis /

Design)
*Choose DM
«Design Dimension tables
*Design Facts table
*Design and populate star diagram.
Revised business Revise feasibly of business Assess the analysis/design against the
Requirement requirement technical environment
Repeat DM Analysis / Design | agsess the revised
«Choose DM analysis/designs against the
+Design Dimension tables technical environment

Technical Environment
*Check available data
«Check data frequency
«Check data granularity
«Check data platform

*Design Facts table
*Design and populate star
diagram.

Revise the analysis/designs to comply
with the technical environment

Figure 6-36 Lifecycle of a data mart development

Figure 6-36 suggests that the lifecycle start with the requirements gathering phase.
Thereafter the analysis is done. Based on the assessment of the technical environment
the design is done. This step is not a once off step and is iteratively done until the
design is compatible with the technical environment. In some cases if the design is not

technically feasible one should reconsider some of the business requirements.

This section concludes with a discussion on the business dimensional lifecycle

approach and the applicability of OO techniques to the methodology in question.

193

Chapter 6 — Data Warehouse and the Object Oriented Approach

6.3.9. Summary: The business dimensional lifecycle approach based

on an OO approach

The business dimensional lifecycle approach is a top down approach, starting with the
requirements and working towards a solution. This concept works well with the OO

model defined, as this model follows a similar lifecycle.

The techniques of the requirements phase of the OO model can as such be
implemented in the business requirements definition phase of the business dimensional
lifecycle. The OO techniques working with the business requirements definition are:

e Essential use case diagram

o Essential use case model

e User interface prototyping

e Domain modelling

e Supplementary documentation

The concepts of an essential use case diagram and model can be altered to
accommodate two levels of analysis. The first type of use case can be seen as a data
warehouse use case containing the inputs, departments or units of business and users
of the business. Each of the departments or units of business contains one or multiple
processes of business documented in the process use case diagram and process use

case model.

The OO technigues used in the dimensional modelling phase of the Business
dimensional lifecycle are more discrete. The dimensional modelling phase can be used
during the analysis and design phases. The following OO techniques are recommended
for the analysis phase of dimensional modelling:

e System use case

e Sequence diagram

194

Chapter 6 — Data Warehouse and the Object Oriented Approach

The system use cases can also be used to create a DW system use case and a
business system use case. The DW system use case contains the technical
specification for the inputs, outputs and the grain of the use case. The business system
use case contains high-level implementation decisions, such as the screen numbers

and properties needed in the use case.

From here onwards, the following analysis techniques in the business dimensional
lifecycle are used:

e Data warehouse bus architecture matrix (derived from the DW use case list and
business process use case list)

e Fact table diagram

* Dimension table detail

¢ Identify source data
Based on the above analysis techniques, the dimensional tables are developed.

The technical architecture model can be implemented in an analysis and design
fashion. The technical architecture model is divided into two parts, i.e. the back room

architecture and the front room architecture.

The back room architecture of the technical architecture model involves the analysis of
the following:

e Source systems

o Data staging services

Based on the analysis, the backroom designs can be done. Most of these designs are
done during the physical design phase of the business dimensional lifecycle.

195

Chapter 6 — Data Warehouse and the Object Oriented Approach

The analysis of the front room architecture of the technical architecture model is based
on the business requirements definition. Depending on the requirement of the business,
the front room architecture application can involve a full OO development lifecycle. The

same argument is valid for the design of the front room architecture applications.

The physical design phase in the business dimensional lifecycle approach is
implemented by using a design, implementation and testing phase. The design involves

the design of the data warehouse, as well as the design of the data staging area.

The design of the data warehouse entails the following:
e Defining standards
¢ Designing physical tables and columns
¢ Estimating database size and index plan

¢ Designing aggregates

The design of the data staging area entails the following:
e Designing a state chart diagram based on the analysis of the data staging
services in the technical architecture
¢ Designing an ER model that supports the state chart model

¢ Designing a collaboration model that depicts the overall ETL schema

The implementation of the data warehouse and the data staging involves coding of the
designs created.

The testing of the data staging phase follows the same approach than the OO
approach. The testing of ETL jobs are done in phases suggesting that it is unit tested.
Audit statistics is used to test the data staging.

196

Chapter 6 — Data Warehouse and the Object Oriented Approach |

The end user application supports the front end of the technical architecture design. As
previously indicated, a complete OO model can be applied to the development of these

applications.

Deployment of the Business dimensional lifecycle approach follows a similar approach

than the OO model. The implementation is done in phases and not in total.

6.4. Data warehouse development using the d ata-driven
methodology phases

The objective of this discussion is to describe how a data warehouse should be built if

the approach of Inmon (1996) is implemented in an object-oriented manner.

The data-driven methodology (Inmon, 1996) illustrated in Figure 6-37 is discussed in the
following section.

For each subject

DSS1
Data model
analysis Subject Source | specs | programming || Population |

systems
area analysis

DSS6 /

Breadbox Data warehouse
analysis database design

DSS3 DSS4 /

Technical Technical environment
assessment preparation

DSS5 | [oss? | [osss | [Dsse | [pss1o |

DSS2

Figure 6-37 Data driven methodology (Inmon, 1996:344)

Unlike the business dimensional lifecycle approach (Kimball et al., 1998) which follows
a requirements-driven approach, the data-driven methodology does not start with the
business requirements for a data warehouse, but with the data from the operational

systems.

197

Chapter 6 — Data Warehouse and the Object Oriented Approach

The lifecycle of OO development follows the following phases sequentially and
iteratively:
Requirements — Analysing requirements — Designing solution — Implementing

solution — Testing solution.

In terms of OO phases, the data-driven approach can be assumed to follow the phases
in the following sequence:
Analysis (of the environment) — Technical requirements gathering® — Designing

solution — Implementing solution — Testing solution.

Technical requirements gathering is regarded as the requirements needed to build the

data warehouse and not the requirements needed from the end user.

The rest of the discussion will elaborate on the sequence of the data-driven

methodology.

6.4.1. Data model analysis

Inmon (1996:81) argues that there are three types of data models applying to the
architectural environment:
e Corporate data model — the model containing the primitive data elements used
within the corporate.
e Operational data model — the model based on the corporate data model with
operational data included.
e Data warehouse model — the model based on the corporate data model with
added elements, such as:
o Time
o Derived data where needed

o Artefacts for relationships

198

e N -~ — r YAl L i T bt SWIAAE OSriAamtAad Annranarh

Chapter 6 — Data Warehouse and the Object Oriented Approach

The data-driven methodology assumes the existence of a corporate model and an

operational data model on which the data warehouse can be developed.

Inmon (1996:85) also argues that a data model has three levels:
o High-level model — the entity relational model (ER) highlighting the entities and
the relationship between these entities in the corporation.
e Mid-level model — the data item set model (DIS) detailing the major subject

areas.

e Low-level model — the physical model, based on the DIS model and containing
relational tables and keys.

The rest of the discussion will be based on the corporate ER model illustrated in Figure
6-38.

o Entity or subject area _Poficyholder

—> 1:nrelationship
— 111 relationship
<—> mn relationship

Figure 6-38 Corporate entity relationship diagram for insurance company example

The above ER model can be transformed into a UML class diagram. Figure 6-39 is an
example of such a transformed class model.

199

Chapter 6 — Data Warehouse and the Object Oriented Approach

Policyholder

Broker

Quote

[

product Underwriter

Policy

Figure 6-39 UML class diagram

From Figure 6-38, the following subject areas or entities can be identified:

Policyholder
Broker
Quote
Underwriter
Policy

Product

A subject area should be treated as a use case, and therefore a list of possible use

cases should be created (refer Table 6-2 Example of a list of essential use cases

generated from the use case diagram). The description of the use case should provide

more detailed information on what the subject area entails. Each subject area has a DIS

defined. Figure 6-40 is an example of a DIS for the product entity.

200

Chapter 6 — Data Warehouse and the Object Oriented Approach

Life

Product Type Product Type
Sum A d iaries
Premium Max life assurance limit

Ceded

Product Loading

Health

Entity Type 1— Producl Type
Name Hospital rate

Exclusion
Loading

Porsonal

Entity Type
First name
| | Middie name
Surname

Age

Group

Entity Type
Insured first name
Insured middie name

Insured last name
Insured age

Policyholder first name
Policyholder middle name
Policyholder last name

Figure 6-40 Corporate data item set for product
The product entity in Figure 6-40 serves as the key. The primary grouping of the product
entity is the product type and the secondary grouping is the entity type. The product
type can be a life product or a health product. The entity type can be a personal type or
group type. For the purpose of this discussion, the DIS for all the entities or subject

areas will not be expanded.

The physical model is based on the DIS of each entity of a subject area. Figure 6-41 is
an example of the physical data model for the product DIS.

201

Chapter 6 — Data Warehouse and the Object Oriented Approach

The product type table contains an example of the two types of products, i.e. life and
health. The entity type table reflects entries for both personal and group types of cover.

Each of the table types (life, health, personal and group) contains sample data.

The purpose of the data model analysis is to identify the major subject areas. For each

Life product table

Beneficiaries = Sue

Max life assurance limit= R 5m
Ceded = yes

Loading = 0c

Product type table

Product Type

Sum Assured = R100000
Premium = R1000

Type = Life

Life
Product Type Product Type
Sum Assured Beneficiaries
Premium Max life assurance limit
Ceded
Health
Entity Type Product Type
Name Hospital rate

Exclusion
Loading

_Health producttable
Hospital rate = R200 p/d
Exclusions = none
Loading = 0c

Personal

Product Type
Sum Assured = R100000
Premium = R1000
Type = Health

Entity Type
First name
Middle name
Surname
Age

Entity type table

Group

Entity Type
name = Personat

Entity Type

name = Group

Entity Type
Insured first name
Insured middle name
Insured last name
Insured age
Policyholder first name
Policyholder middle name
Policyholder last name

Personal table

First name = Ben
Middle name = Joe
Surhame = Smart
Age = 35

Group table

Insured first name = Ben
Insured middle name = Joe
Insured tast name = Smart
Insured age = 35
Policyholder first name = Sue

Policyholder last name = Smart

Figure 6-41 Physical data model for product DIS

subject area, the following should be identified (Inmon, 1996:335):

Based on the corporate ER model shown in Figure 6-38, the subject areas can be
defined as quote and policy, as these entities contain the information of a process. The

function of the DIS model is to define the sub-types, groupings, attributes and keys.

Sub-types
Attributes

Groupings of data

202

Chapter 6 — Data Warehouse and the Object Oriented Approach

For the purpose of data model analysis, it is not possible to apply an OO technique, but
the analysis can be categorised to become part of an OO analysis phase.

6.4.1.1. Breadbox analysis

The function of the breadbox analysis is to estimate the required level of granularity of
data in the data warehouse (Inmon, 1996:336).

A document (database index and sizing), similar to the one illustrated in Figure 6-29,
should be created. The main difference between the data-driven approach and the
business dimensional lifecycle approach is that tables listed in the document will not

contain tables for the data warehouse, but tables listed in the corporate data model.

This analysis should produce a document specifying that grain of the data. Figure 6-42

is an example of such a document.

ltem Number Subject Description

1 Quote All quotes up to one year old should contain one transaction per quote

2 Quote All quote transactions older than one year up to 5 years should be grouped by
month

3 Quote All quotes older than 5 years should be grouped by year.

Figure 6-42 Document containing the different grains needed for the subject area

6.4.1.2. Technical assessment
The technical assessment involves investigating the requirements for managing the
following (Inmon, 1996:337):
e Large volumes of data
e Access to data
¢ Sending and receiving of data to a wide variety of technologies
¢ Data loading and manipulation

e Access to a set of data

203

Chapter 6 — Data Warehouse and the Object Oriented Approach

Managing large volumes of data — OO Analysis

The database index and sizing document (Figure 6-29), in conjunction with the
breadbox analysis document (Figure 6-42) should facilitate an estimation of the data
volumes of the different subjects. The main difference between the database index and
sizing document specified in the business dimensional lifecycle, and the data-driven
methodology, is that specific table names to be used in the data warehouse will not be

detailed. Therefore, only the subject areas specified in the data model should be used.

Managing access to data — OO Analysis

Managing access to data involves specifying the security level of the different subjects.
For example, it is not advisable for brokers to access policyholders listed under other
brokers. A document specifying users or groups allowed to access specific data should

be created.

Sending and receiving data to a wide variety of technologies — Analysis

This analysis involves specifying the current layout of the organisation’s environment,
as well as the flow of data and technologies used. Figure 6-43 is a diagram of the layout

and data flow for the insurance company.

Production system layaut

Billing engine (Oracle DB) Billing engine (App server End User desktop -

— Unix T JBoss) —~ Unix PoiBiling

Quote system (SQL Server e Billing engine (App server End user web site -

DB)~ Windows 15T 1s) - unix PolQuote
Policy Administration Policy Administration (App End User desktop clients -
(Oracle DB) — Unix server JBoss) ~ Unix PolAdmin

-i Reporting DB e——

Figure 6-43 Example of the production system layout

In Figure 6-43, the data flow specifies three production systems i.e. the billing engine,

the quoting system and the policy administration. All end user applications flow towards

204

Chapter 6 — Data Warehouse and the Object Oriented Approach

these systems. Both the billing and quote system use information entailed in the policy

administration system.

Manage data loading and manipulation — OO Analysis

This analysis involves specifying the source systems and the extract transformation, as
well as loading of the source data to the data warehouse. For this process, a list of
source systems similar to Figure 6-19 should be defined. Furthermore, a high level
schematic plan similar to Figure 6-23 and based on the source systems and the defined

subject should be created.

Access a set of data — OO Analysis

This analysis involves specifying the types of tools used to access (interface) the data
warehouse. For this analysis, a requirements definition should be created, specifying
the types of users and the tools used to access the data. Examples of these are the
following:

o Typical report writer — SQL tool to access data

¢ Manager has a set of reports to access — these reports use the same query to
access data

The same procedure discussed in section 6.4.1 should be followed to create the

analysis documents for data access.

6.4.1.3. Technical environment preparation
The technical assessment serves as the technical design hosting the data warehouse. It
focuses on the following (Inmon, 1996:338):
e Network
e Amount of disk space required
e Operating system
¢ The interfaces specified for the data warehouse

o Software managing the data warehouse

205

Chapter 6 — Data Warehouse and the Object Oriented Approach

Based on the analysis documents gathered during the technical assessment, a
document containing the technical specifications should be created. The technical
specification document should then be implemented. Figure 6-44 is an example of a

technical specification document.

Technical Specification Document

Network layout
The data warehouse server will be connected on a fiber backbone for fast data transfer
between the operational systems and data warehouse.

Required disk space
According to the database sizing and index plan the average growth expected is 66% and
the initial size is estimated at 10GB. Thus a 100GB will be suitable for 5 years.

Operating system
The operating system will be UNIX

Interfaces
TCP /IP ports and web services.

Database management system (DBMS)
*The required DBMS for the data warehouse will be Oracle 9i.

Figure 6-44 example of a technical specification document

6.4.1.4. Subject area

For each subject area, the following must be done:

e Source system analysis

¢ Data warehouse design

e Program specification

¢ Population
Inmon (1996:339) explains that the subject area selected first, should be small enough
to allow easy changes and large enough to be meaningful. This statement implies that
the processes applied to each subject area will be iterative, while the resuit of the

population process will serve as a testing environment.

206

Chapter 6 — Data Warehouse and the Object Oriented Approach

Up to this stage, no specific use case was focused on, as the use case should be
chosen during the subject area phase. For the purpose of this discussion, the quote

subject area will be used as in the business dimensional lifecycle approach.

6.4.1.5. Source system analysis

The source system analysis identifies the source data that will be used for the star join.
A source data list identifying all the source data should be created. This list should look
similar to the source data list in Figure 6-27. The ER model of the source data should be
investigated to identify the tables and attributes that form part of the subject area in

question (Figure 6-31).

Once the source data is identified, the design of the star join for the subject can be
created, and this design can then be integrated into the data warehouse design. This

will be discussed in section 6.4.1.6.

6.4.1.6. Data warehouse database design

The data warehouse database design is subject to the design of the subject areas. It
therefore should not be treated as a sequential phase in the development of the subject

areas, but rather be designed iteratively as the design of the subject area progresses.

The analysis documents required for the design of the data warehouse are the following
(Inmon, 1996:339):

o Breadbox analysis
e Source system analysis

o Data model analysis

Inmon explains that the design of the data warehouse should be based on the corporate
data model (Inmon, 1996:81) and should have the following characteristics (Inmon,
1996:339):

o Accommodate different levels of granularity

207

Chapter 6 — Data Warehouse and the Object Oriented Approach

e Subject-oriented
e Contain only primitive and derived data and no operational data

¢ Time variance on every record

Based on the subject area in question, the star joins should be created. A star join, as
discussed in chapter 4, is the same as a dimensional diagram, both these concepts
making use of dimensional tables (the tables describing the fact) linking to a fact table
(the table containing all the numeric facts). See Figure 6-21 for an example of a star join
or dimensional model.

Based on the logical design of the star join, the physical design is done. A physical data
model is then used (as with the business dimensional lifecycle) to implement the star
joins (Figure 6-28).

The design of the star joins for each subject area in the data warehouse should be the
same grain, as these star joins should be compatible and fit into the data warehouse
architecture. For example, the level of grain of the product subject area is per product. If
the quote subject area is per quote (which contains multiple products), it cannot be
compared on an one to one basis and therefore requires a finer level for such a
comparison.

6.4.1.7. Specification

The specifications phase serves as the analysis and design of the data warehouse ETL
process (Inmon, 1996:342).

Specification — OO Analysis

The section on managing data loading and manipulation discussed the analysis of
managing the loading of data and also referred to the high-level schematic plan. The

specification analysis details the high-level schematic plan (Figure 6-26) into a detailed

208

Chapter 6 — Data Warehouse and the Object Oriented Approach

6.4.1.9. Population

Inmon defines the population phase as “nothing more than the execution of the decision
support system programs previously developed” (Inmon, 1996:343). This step produces

a fully functional data warehouse.

Population — OO Testing

Although population is seen as the last phase, it should be considered as the testing
ground. A series of steps is followed to develop a subject area in the data warehouse.
Once the subject area is developed, it should be tested. Testing a specific subject area
at a time ensures unit testing. Unit testing on a subject area can be accomplished by

using audit statistics (section 6.3.5.3.) on the star joins.

6.5. Summary

This chapter deals with the development of data warehouses using OO concepts, tools
and techniques. The phases of the b usiness dimensional lifecycle approach and the
data-driven methodology are used in an OO model derived from chapter 4. For the
purpose of this summary, the derived model will be referred to as the OO model.

The Business dimensional lifecycle approach is a top down approach, starting with the
requirements and working towards a solution. This concept works well with the OO
model defined, as the model follows a similar lifecycle.

The techniques of the requirement phase of the OO model can as such be implemented
in the business requirements definition phase of the Business dimensional lifecycle. The
OO0 technigues working with the business requirements definition are:

e Essential use case diagram

e Essential use case model

e User interface prototyping

e Domain modelling

210

Chapter 6 — Data Warehouse and the Object Oriented Approach

¢ Supplementary documentation

The concepts of an essential use case diagram and model can be altered to
accommodate two levels of analysis. The first type of use case can be seen as a data
warehouse use case containing the inputs, departments or units of business and the

users of the business.

Each of the departments or units of business contains one or multiple processes of

business documented in the process use case diagram and process use case model.

The OO techniques used in the dimensional modelling phase of the Business
dimensional lifecycle are more discrete. The dimensional modelling phase can be used
during the analysis and design phases. The following OO techniques are recommended
in the analysis phase of dimensional modelling:

e System use case

e Sequence diagram

The system use cases can also be used to create a DW system use case and a
business system use case. The DW system use case contains the technical
specification for the inputs, outputs and the grain for the use case. The business system
use case contains high-level implementation decisions, such as the screen numbers

and properties needed in the use case.

From here on, the following analysis techniques in the Business dimensional lifecycle
are used:
e Data warehouse bus architecture matrix (derived from the DW use case list and
business process use case list)
¢ Fact table diagram

¢ Dimension table detail

211

Chapter 6 — Data Warehouse and the Object Oriented Approach

plan for the subject area in question. The analysis of the specification also includes

business rules applying to, or affecting the transformation of data.

Specification — OO Design

The analysis documents available for the specification design are:
e Starjoins
¢ ER models of the sources systems
¢ High level schematic plan
e Detail schematic plans

e Business rules

Based on the above analysis documents, the specification design for the subject area in
question can be created. The design includes the following documents:
o State chart model for the extract to star joins (Figure 6-30)

¢ ER model to support the state chart model (Figure 6-31)

Although the specification design focuses only on one subject area at a time, the
possibility of reusing dimensions should be investigated. If dimensions can be reused, a
collaboration model should be created to depict the dependencies of the star joins and
prioritise the ETL (Figure 6-32).

6.4.1.8. Programming

The programming of the specifications mainly involves utilising the technology specified
to implement the designs for the subject area in question. The ER model created for the
state chart model can be implemented by using SQL scripts (Figure 6-33). The state
chart model can be implemented by using DTS packages (Figure 6-34).

The collaboration model (Figure 6-32) serves as a guide to know which ETL jobs to

implement and when it should be done.

209

Chapter 6 — Data Warehouse and the Object Oriented Approach

¢ Identify source data

Based on the above analysis techniques, the dimensional tables are developed.

The technical architecture model can be implemented in an analysis and design
fashion. The technical architecture model is divided into two parts, i.e. the back room

architecture and the front room architecture.

The back room architecture of the technical architecture model involves the analysis of
the following:
e Source systems

¢ Data staging services

Based on the analysis, the backroom designs can be done, as most of these designs

are done during the physical design phase of the Business dimensional lifecycle.

The analysis of the front room architecture of the technical architecture model is based
on the business requirements definition. Depending on the requirements of the
business, the front room architecture application can involve a complete OO
development lifecycle. The same argument is valid for the design of the front room

architecture applications.

The physical design phase in the Business dimensional lifecycle approach is
implemented using a design, implementation and testing phase. The design involves

the design of the data warehouse, as well as the design of the data staging area.

The design of the data warehouse entails the following:
¢ Defining standards

¢ Designing physical tables and columns

212

Chapter 6 — Data Warehouse and the Object Oriented Approach

o Estimating database size and index plan

e Designing aggregates

The design of the data staging area entails the following:
+ Designing a state chart diagram based on the analysis of the data staging
services in the technical architecture.
e Designing an ER model supporting the state chart model.

¢ Designing a collaboration model depicting the overall ETL schema.

The implementation of the data warehouse and the data staging involves the coding of
the designs created.

The testing of the data staging phase uses the same approach than the OO approach.
The testing of ETL jobs are done in phases suggesting that it is unit tested. Audit

statistics is a technique used to test the data staging.

The end user application supports the front end of the technical architecture design, and

a complete OO model can be applied to the development of these applications.

The deployment phase in the Business dimensional lifecycle approach is similar to that

of the OO model. The implementation is done in phases and not in total.

The second methodology to be discussed is the Data-driven methodology. This
methodology is less compatible with the OO model. The main reason for this being that
both the OO model and the Business dimensional lifecycle approach start with and
depend on the requirements defined. The Data-driven methodology on the other hand
does not start with the requirements, but rather focuses on the data available for the

data warehouse as starting point.

213

Chapter 6 — Data Warehouse and the Object Oriented Approach

The following phases in an OO approach can not be used:
e Data model analysis
o Breadbox analysis

e Technical assessment

The above phases focus on the data warehouse design as a whole. Based on these

analysis documents, the techrical environment is prepared.

The data model analysis can be used to create a list of use cases to which the subject

areas correspond.

There are certain phases in the Data-driven methodology following the same approach
than the OO model. These are:

e Subject area

e Source system analysis

e Data warehouse design

e Specification analysis

e Programming

e Population

The subject area involves selecting the subject area to be developed. A subject area

can also be regarded as one use case.

The source system analysis phase is a phase identifying the sources needed for the

subject area. This phase does not use any of the techniques in the defined OO model.

The design of the data warehouse follows an OO analysis and design phase. It does not
use the OO analysis and design techniques, but rather techniques specific to databases

and data warehouses, i.e. ER models and star joins (dimensional models).

214

Chapter 6 — Data Warehouse and the Object Oriented Approach

The specifications phase is a design phase specifying how the implementation should
be done. This phase follows a design phase in the defined OO model and uses the
state chart and collaboration techniques.

The programming phase involves implementing the designs for the subject area.
The population phase is the product of all the phases in the Data-driven methodology,

the outcome of which should be used as the testing platform. The testing can follow a
unit testing approach as per OO testing.

215

Chapter 7 — Research design and the IS Prototype

Chapter 7 - Object-oriented implementation of a data

warehouse

7.1. Introduction

In the first part of this chapter the research design for the study is discussed, followed
by the study’s action taking in the form of a DW prototype. A short discussion on the
nature of the study follows as this has an impact on the research design. The research
design involves choosing the research method and environment for implementing the
research method. The detail of how the action plan is implemented is covered. The
action plan is in the form of a DW prototype. A report on the research evaluation follows

in the next chapter.

7.2. Research question and scope of study

The aim of the study is to develop a data warehouse using object-oriented techniques in
a data warehouse development methodology. Thus the research question is:
Can a data warehouse be developed using a data warehouse methodology and

incorporating object-oriented techniques?

To answer the above question, the researcher needs to implement the business
development lifecycle approach using object-oriented techniques (discussed in chapter
6). The data-driven methodology can be used for further studies and will not be

implemented for this research.

7.3. Nature of the study

The study focuses on the data warehouse development methodologies with the aim of
incorporating different techniques from object-oriented development. Chapter 6
discussed methods to develop data warehouses using object-oriented concepts, tools

and techniques where possible. Two approaches were covered, i.e. The Business

216

Chapter 7 — Research design and the IS Prototype

Development Lifecycle Approach (Kimball et al., 1998) and the Data Driven approach
(Inmon, 1996).

Very little literature on the OO development of DW is available. The work presented in
chapter 6 will be used as a guideline for the development of the DW. OO methods will

be explored in every phase of the systems development lifecycle.

7.4. Research method

Based on the nature of the study discussed in the previous section, one can use action
research as a research method. Baskerville (1999:11) explains that the ideal situations
for action research are:

e Research environment where the researcher is actively involved, with the
expectation that both the researcher and the organisational benefits.

e Research environment were the knowledge obtained can be applied
immediately.

o Research environment where research is a process of linking theory and
practice.

The research environment for this study satisfies all of the above situations with the
following reasons.

e The researcher was actively involved in the development lifecycle of the data
warehouse and both the researcher and the organisation’s expectations were set
during the requirements meetings.

e The environment was favourable due to the OO development culture in the
organisation and the need for a data warehouse.

e The need for a OO DW requires a study on OO DW as it is not commonly done
in practice.

7.5. Research design

The discussion on the research design is according to the action research cycle in

Figure 7-1. The theory on action research was discussed in chapter 2.

217

Chapter 7 — Research design and the |IS Prototype

Action
Planning

Specifying
Learning

Action Taking

Figure 7-1 The Action Research Cycle (Baskerville, 1999:14)

Diagnosing — is the process of identifying the primary reasons why change is needed.
The research question of this study aims to discover the benefits of using OODW to
DW. OO has already proven to be very successful in organisations, although DW
systems are traditionally not based on OO. The diagnosing environment for this

research is discussed in section 7.6.1.

Action Planning — involves the researchers and practitioners to collaborate and produce
actions that should relieve or improve the problems identified. A plan containing the
necessary actions is created and carried out by means of a theoretical framework. The

plan should establish the target and approach for change.

The study serves as the action plan. It starts with a literature study of what a
methodology is and how it can be classified. It then studies common object-oriented
methodologies, as well as common data warehouse methodologies. Based on the
literature studies of object-oriented and data warehouse methodologies, a theory is
created. This theory was discussed in chapter 6 and covered data warehouse
development and the object-oriented methodologies. Therefore, the discussion in

chapter 6, the data warehouse and object-oriented approach, serves as the action plan.

Action Taking — implements the action plan. The action is the proposed methodologies

discussed in chapter 6 (Data warehouse and OO approach). The method of how a data

218

Chapter 7 — Research design and the IS Prototype

warehouse can be created using the business lifecycle approach in an OO environment

will be implemented. This is discussed in detail in section 7.6.

Evaluating — the outcomes of the action plan are evaluated. The evaluation determines
whether the theoretical effects were realised and whether the problems identified are
relieved, or not. If the changes implemented were successful, it must be determined
whether the changes are the sole cause of the success. If the changes implemented
were unsuccessful, a framework for a next iteration should be established. The detailed
discussion on the evaluation of the study follows in chapter 8. The evaluation for the
DW implemented is based on feedback from areas in business, such as service desks

and managers of the affected departments.

Specifying Iearnihg — is the knowledge gained from the research. This is detailed in
chapter 8.

7.6. Implementing the business lifecycle approach in an object-
oriented fashion.

This section discusses the process that was followed to implement a data warehouse
using one of the proposed methods described in the study. The development
methodology used to create the data warehouse was described in section 6.3 (Data

warehouse development using the Business dimensional lifecycle approach phases).

7.6.1. Diagnosis and Background to the data warehouse prototype
implemented

The development of the data warehouse (DW) was done for a leading insurance

company based in Johannesburg, South Africa.

The company uses several operational systems for its daily operations and had a need
for a consolidated source of information. The main operational systems are mostly in-

house developed systems using object-oriented (OO) methodologies and technologies.

219

Chapter 7 — Research design and the IS Prototype

The company has in excess of 200 000 policyholders and more than 600 000 policies
worth of data. For certain insurance products, such as the Income Protector policy,
transitional data is kept, thereby increasing the volume of data tremendously. The

production systems total around 5 TB of data.

The company in need of a data warehouse and geared towards OO development, lends
itself to being an ideal candidate for implementing the theory created in chapter 6 (Data
warehouse and the object-oriented approach). The DW is implemented to be used as a
reporting platform. This allows report writing, easy access to data and serves as a
medium for running monthly reports, which previously had a negative impact on

production systems.

The DW was developed by the researcher, a business analyst, the manager from the
application support department and various key managers (the users) from different
departments.

Project duration for the core analysis and development was about 6 months, while
further development is planned for the DW.

The requirements for overall functionality of the DW were done by the manager of
application support. The specific requirements for the data marts and reports were

prepared through interviews with relevant parties and by the business analyst and
researcher.

7.6.2. Business requirements definition
As described in section 6.3.1, the business requirements definition determines the
following:
¢ Which data should be available in the DW?
e How this data should be organised?
¢ How often it should be refreshed?

The OO techniques described in the same section are illustrated in Figure 7-2.

220

Chapter 7 — Research design and the IS Prototype

Phase Activity
2|+ Essential Use Case Diagram
£2 Essential Use Case
@ 2 9| - Userlinterface Prototyping
S g 2| *+ Domain Modelling
5 | ¢ Supplementary Documentation
2 2
(0] o5 . 5
x £ 2| + Use Case Scenario Testing
S 8| + Userinterface Walkthrough
§ % * Reguirements Review
1 d

Figure 7-2 Requirements Model

The first activity was to create the essential use case diagram.

7.6.2.1. Essential use case diagram

The essential use case diagram is an activity discussed in chapter 4. Its function is to
illustrate the interaction between actors and concepts in the problem domain. For this
case study, the problem domain needed to be established. An in-depth study was done
about the company’s structure and the interaction between departments. The structure
of the company is illustrated in Figure 7-3.

221

Chapter 7 — Research design and the IS Prototype

Chief Feacntive

Kanager

it se bl B aliidv g

I

Loleol SErdes

CaltCentat and
Support

Zhort Term
AT ar

yarre £ oles
CIpaatans

Byziness
Applicaticns

el 2pplication Support

Fperational Fisanca

Officar
—

I 1} | | I 1 1
Genarathianager, Chied Financial Genecat anager. Mo e Hatisnal 3afes Chist Cperations hiefperavans
Human Recources {HECer De-.,&]opu_\;m Deswalopment Cirector Ciffreer Officer

. o Hembarstip Praduct Pacty Sdmunisteation ~ Cage

pational Troining Investments R = - . foond tdackabicrg o ot oty Compianes
and Diewaloprznt Executive Cevelopmert snd Claims
. Ackiarialé Procuct L

Frefessional Corperate Finance PES ttamitia Developmzrt Ssiana flesmyor | et iz y Arrainist atic Fagaviiva

Sendees and Support i

Adreinistration

intermediary
Retentizns Ratatanstip Lep Servicas

Figure 7-3 Insurance company organisational structure (human resources department)

Figure 7-3 was supplied by the human resources department. This organisational
structure served as the basis for creating the essential use case diagrams. Section
6.3.1.1 introduces the concept of splitting the essential use case diagram into a data

warehouse use case diagram and a business process use case diagram. The concept

of the data warehouse use case diagram is to illustrate the “big picture”.

Data warehouse use case diagram

222

Chapter 7 — Research design and the IS Prototype

Figure 7-4 shows the data warehouse use case diagram created. This was done with

the help of the organisational structure (Figure 7-3) and by facilitated sessions with a

business analyst in the application support department.

-Inputs

Sales Department - Intermediary Relationship
Consultants

-Inpuls

Claims Department - Underwriters

-inputs

Investments Deparlment - Invesiment Consultanls

Data warehouse use case
diagram

N
Product development

Corporate Finance

Product Development - Acluarial Consuitants,

-Inpy

Coroporale Finance Depariment - Staff

Divisional Manager or National Saies Director

-Uses

Party and Claims Manager or COO

-Uses

{nvestments Portfolic Manager or CFO

-Uses

Product Development Manager or Head of Acturial

CFO

Figure 7-4 Data warehouse use case diagram for the insurance company

Figure 7-4 iliustrates the following facts:

e The intermediary relationship consultants are responsible for providing the input

to sales. The divisional manager and national sales director use the sales

figures.

e The underwriters are responsible for providing the input to claims. The party and

claims manager and chief of operations director (COO) use the claims figures.

e The investment managers are responsible for providing the input to investments.

The investment portfolio managers and the chief financial officer (CFO) use the

investment figures.

223

Chapter 7 — Research design and the IS Prototype

e The actuarial consultants are responsible for providing the input to product

development. The product development manager and head of actuaries use the

product development figures.

e The finance clerks are responsible for providing the input to corporate finance.

The chief financial officer (CFO) uses the corporate finance figures.

The above facts are summed in Table 7-1.

DW Use Case Department Party responsible for Users

Number providing information

DWUCO1 Sales department | intermediary relationship | Divisional manager and national

consultants sales director

DWUCO02 Claims Underwriters Party and claims manager and
chief of operations director (COQO)

DWUCO03 Investments Investment managers Investment portfolio managers
and the chief financial officer
(CFO)

DWUC04 Claims Actuarial consultants Claims manager, Finance
manager

DWUCO05 Finance Product development Product development manager
and head of actuaries

DwUCO06 Finance clerks Corporate finance

Chief financial officer (CFQ)

A second session

Table 7-1 List of data warehouse use cases.

was held with the application support department to determine the

scope and phases of the data warehouse. The outcome of this meeting determined the

following:

s The data warehouse should support the following departments and should be

considered as phase 1:

o Sales

¢ The following departments should be considered as future phases of the data

warehouse development:

o Claims

o}

o Product development

Investments

224

Chapter 7 — Research design and the IS Prototype

o Corporate finance

Data warehouse essential use case

Resulting from the discussion, the scope of the project was based on data warehouse
use case 1 (DWUCO01). The following is the DW use case created from the DW use
case diagram. Table 7-2 illustrates the summary of DWUCO1.

DW Use Case: Sales (DWUCO01) version 1.3

Brief Description This use case contains the high-level description of the sales department’s

inputs and outputs.

Business function Sales department is responsible for the following.

inputs ltem Brief Description
Product The product name
Date The date when product is sold
Division The division where the product is sold
Division Manager The manager of that division
Area The regional office name
Area Manager The manager of the regional office
Consultant The consultant representing the brokers
Broker The broker description
Policyholder The policyholder

Outputs e Sales report

Possible grains The sale of a product. (finest grain)

The sale per product (rolled up)

The sale of products per time line (rolled up)
The sale of products per region (rolled up)

The sale of products per consultant (rolled up)

Table 7-2 DWUCO01 - Sales

The following is a discussion on the business process use case diagram.

Business process use case diagram

The business process use case diagram required facilitated sessions with the manager
of the sales department. Figure 7-5 illustrates the business processes within the sales
department.

225

Chapter 7 — Research design and the IS Prototype

Sales

M -Requesis
Reports To
-Reports v

Asea Manager Divisonal Manager

A = Consultant
Broker

Equests

Policyholdes / Client

Figure 7-5 Business process diagram for Sales department

Based on the business process use case diagram in Figure 7-5, a list of use cases was

created (illustrated in Table 7-3), which needed to be investigated further.

Use case number

Description

uco1

Area managers report to the divisional manager on sales key performance
indicators (KPI).

uco?2 Area manager sets annual performance indicators (APl) and new head
count per consultant.

UCo3 Consultant claw back commission paid to broker based on policy
agreement.

uco4 Consultant pays commission to broker based on policy agreement.

Ucos Consultant provides training and product support to broker.

UCO06 Broker quotes the policyholder or client for insurance.

Table 7-3 list of use cases in sales busines process diagram

The following section is a discussion on the business process use cases already listed

in Table 7-1.

Business process use cases

226

Chapter 7 — Research design and the IS Prototype

The following tables (Table 7-4 to Table 7-10) illustrate the business process (BP) use

cases created from the list in Table 7-1.

A typical business process contains information about the business process identified,

as well as information on the supporting mechanisms in the process, i.e. reports.

BP Use Case: Reports To (UC01) version 1.1

Brief Description of

business process

Area managers report to the divisional manager on sales key performance
indicators (KPI).

Actors

e Area manager
o Divisional manager

Precondition

Report requested

Post condition

Report delivered

Basic course of

Divisional manager requests performance reports.
The foliowing reports are identified as performance reports.

action e Head count report
s APl report
Report information ¢ Head count report ¢ APl report
- Date - Date
- Division - Division
- Divisional manager - Divisional manager
- Area - Area
- Area manager - Area manager
- Consultant - Consultant
- Head count - Product
- Target - APl count
- TargetYTD - Target
- Achieved - TargetYTD
- Achieved total - Achieved
- Total - Achieved total
- Total

Table 7-4 Reports To business process use case

BP Use Case: Set APl / heads (UC02) version 1.1

Brief Description of

business process

Area manager sets annual performance indicators (API) and new head count per
consultant.

Actors

¢ Area manager
s Consultant

Precondition

n/a

Post condition

New APl and head target set.

Basic course of

action

Area manager defines targets for consultants according to formula.
Reports identified:
» New target report

Table 7-5 Set APl / Heads business process use case

227

Chapter 7 — Research design and the IS Prototype

Report information

¢ Head count report e APl report
- Date - Date
- Division - Division
- Divisional manager - Divisional manager
- Area - Area
- Area manager - Area manager
- Consultant - Consultant
- Target achieved - Product
- New target - Target achieved
- New target

Formulas defined

e New head target formula

- New target = target achieved * 1.2

- if new consultant then default is 100
o New API target formula

- New target = target achieved * 1.3

- if new consultant then default is 2500

Table 7-6 (Continued) Set APl / Heads business process use case

BP Use Case: Claw back Commission (UC03) version 1.1

Brief Description of

business process

Consultant claw back commission paid to broker based on policy agreement.

Actors

e Consultant
e Broker

Precondition

Policyholder cancels policy within 2 years of the issue date of policy.

Post condition

Claw back commission

Basic course of

action

Consultant claw back commission from broker.
Reports identified:
o Claw back report

Report information

e Claw back report
- Date
- Division
- Divisional manager
- Area
- Area manager
- Consuitant
- Broker
- Policy number
- Product
- Amount

Table 7-7 Claw back commission business process use case

228

Chapter 7 — Research design and the IS Prototype

BP Use Case: Pay Commission (UC04) version 1.1

Brief Description of

business process

Consultant pays commission to broker based on policy agreement.

Actors

e Consultant

e Broker

Precondition

Policyholder needs to take out a policy.

Post condition

Paid commission

Basic course of

action

Consultant pays broker commission
Reports identified:
s Commissions report

Report information

s Commissions report Date

Division

Divisional manager

Area

Area manager

Consultant

Broker

Policy number

Product

Amount for Year 1

Amount for Year 2 (if applicable)

Table 7-8 Pay commission business process use case

BP Use Case: Training (UC05) version 1.1

Brief Description of

business process

Consultant provides training and product support to broker.

Actors

¢ Consultant

o Broker

Precondition

Broker needs to be registered with a financial services provider and should
not have any mandates with the insurance company.

Post condition

Mandate to sell products

Basic course of

action

Broker needs to register on learning site.

Once registered the broker needs to work through the guides and assignments
The broker needs to pass the required tests on each product to get a mandate to
sell products.

Report identified:
o Broker test report

Report information

o Broker test report

Date

Broker

Test number
Product name
Score

Table 7-9 Training business process use case

229

Chapter 7 — Research design and the IS Prototype

BP Use Case: Quote (UC06) version 1.1

Brief Description of

business process

Broker quotes the policyholder or client for insurance.

Actors

o Broker
¢ Policyholder

Precondition

Broker needs to be registered with a financial services provider and should have
the required mandate with the insurance company.

Post condition

Quote for insurance

Basic course of

action

Policyholder request quote for insurance to broker.
The broker uses an online application to quote for the required insurance
The policyholder accepts or rejects the quote.

Reports identified
e Product quote report

Report information

e Product quote report Broker
- Date
- Broker
- Product name
- Sum Assured
- Premium

Table 7-10 Quote business process use case

User interface prototyping

Section 6.3.1.3 determines that user interfaces should be prototyped and that they can

be in the form of:

e Reports (on the department)

o End user desktop applications

o Data mining models

o Downstream operational systems

No further user interfaces other than reports were identified in the requirements

sessions. The reports identified are listed in Table (Continued) 7-12.

Report name

Report fields

Sales Stats report

- Date sold
- Division
- Divisional manager
- Sales area
- Sales area manager
- Consultant
- Broker
Product

Table 7-11 List of reports identified

230

Chapter 7 — Research design and the IS Prototype

Report name

Report fields

- AP

- New Head

- Target API

- Target Head

- Target API YTD

- Target YTD Head
- Achieved API

- Achieved Head

Claw back report

- Claw back date

- Division

- Divisional manager
- Area

- Area manager

- Consuitant

- Broker

- Policy number

- Product

- Amount

Commission Incentive
report

- Date

- Division

- Divisional manager

- Area

- Area manager

- Consultant

- Broker

- Policy number

- Product

- Amount for Year 1
Amount for Year 2 (if applicable)

The lists of reports identified above (Table (Continued) 7-12), were documented in the

business process use cases. The next activity was to create the domain model. The

Table (Contlnued) 7-12 List of reports identified

following is a discussion of the domain model.

Domain modelling

As described in section 6.3.1.4, domain modelling seeks to identify classes and objects
common to all applications within the domain (Booch, 1994:157). The concepts are

derived from nouns and noun pareses in the business essential use cases and the data

warehouse user interface prototypes.

231

Chapter 7 — Research design and the IS Prototype

Class Responsibility Collaborator Cards (CRC) is a useful technique for discovering
classes representing concepts. This technique should be used in a brainstorming

session.

it is also explained in section 6.3.1.4 that the CRC for DW development should be
referred to as DW CRC, thereby avoiding confusion between operational systems
(CRC) and DW systems (DW CRC). The business CRCs created, are listed from Table
7-13to Table 7-22.

CRC: Policyholder (or Insured) (Version 1.2)

Class of policyholder (no actions)
Initials

Last name

First names

Date of birth

First Language

Disposable Income

Education level

Employment status

Gender

Marital Status

Ethnicity

Is doer of occupations

Is doer of habit

Is subject of medical conditions
Is subject of assessment results
External reference

Contact Preferences

Table 7-13 Policyholder CRC

CRC: Broker (Version 1.2)

Initials (no actions)
Last name

First names

Date of birth

First Language
Gender

Marital Status
Ethnicity

External reference
Contact Preferences
Reports to consultant

Table 7-14 Broker CRC

232

Chapter 7 — Research design and the |S Prototype

CRC: Consultant (Version 1.1)

Initials

Last name

First names

Date of birth

First Language
Gender

Ethnicity

External reference
Contact Preferences
Belongs to area
Reports to area manager
API Target

Head Count Target

(no actions)

Table 7-15 Consultant CRC

CRC: Area Manager (Version 1.1)

Initials

Last name

First names

Date of birth

First Language
Gender

Ethnicity

External reference
Contact Preferences
Belongs to division
Reports to divisional manager

(no actions)

Table 7-16 Area Manager CRC

CRC: Divisional Manager (Version 1.1)

Initials

Last name

First names

Date of birth

First Language

Gender

Ethnicity

External reference

Contact Preferences

Belongs to insurance company

(no actions)

Table 7-17 Divisional Manager

233

Chapter 7 — Research design and the IS Prototype

CRC: Product (Version 1.4)

Start Date (no actions)
End Date

External reference

Product Kind

Product Components

Product Properties

Product Roles (include the sum assured and
premium)

Table 7-18 Product CRC

CRC: Quote and Statement of benefits (Version 1.1)

Policyholder external reference (no actions)
Broker external reference
Product external references

Table 7-19 Quote and statement of benefits CRC

CRC: Learn Student module (Version 1.1)

Broker external reference (no actions)
Module description
Assignment date
Evaluation date
Points earned
Result

Table 7-20 Learn student moduie CRC

CRC: Commission Paid(Version 1.2)

Broker external reference (no actions)
Policyholder external reference
Product start date

Product external reference
Product kind

Product Sum Assured

Product Premium

Commission Year 1
Commission Year 2

Table 7-21 Commission Paid

234

Chapter 7 — Research design and the IS Prototype

CRC: Commission claw back(Version 1.1)

Broker external reference
Policyholder external reference
Product end date

Product external reference
Product kind

Product Sum Assured

Product Premium

Commission Year 1
Commission Year 2

(no actions)

Table 7-22 Commission claw back

The actor CRCs created is illustrated from Table 7-23 to Table 7-26.

Policyholder (or Insured) (Version 1.1) <<Actor>>
Request for Insurance Broker
Provides party information Policyholder

Apply for insurance
Cancel insurance

Table 7-23 Policyholder actor CRC

Broker (Version 1.1) <<Actor>>
Provides party (broker and policyholder) Broker
information Policyholder

Request quote for insurance

Request training

Provide commission incentive received
Do commission claw back

Reports to

Quote Application
Training Application
Commission Paid
Commission claw back
Consultant

Table 7-24 Broker actor CRC

Consultant (Version 1.0)

<<Actor>>

Provides party (consultant) information
Pays commission incentive
Claw back commission

Consultant
Commission Paid
Commission claw back

Table 7-25 Consultant actor CRC

Area Manager (Version 1.1) <<Actor>>
Provides party (area manager) information Area manager
Set targets Consultant
Reports sales stats Sales Stats

Table 7-26 Area manager actor CRC

235

Chapter 7 — Research design and the IS Prototype

The user interface CRCs (all in the form of reports), are illustrated in Table 7-27 to

Table 7-29.

Sales Stats (Version 1.3) <<Report>>

Date sold Policyholder
Division Broker

Divisional manager Consultant

Sales area Area manager
Sales area manager Divisional manager
Consultant Quote and Statement of benefits
Broker

Product

APl

New Head

Target AP

Target Head

Target API YTD
Target YTD Head
Achieved API
Achieved Head

Table 7-27 Sales stats report CRC

Commission Incentive (Version 1.3) <<Report>>

Date Policyholder

Division Broker

Divisional manager Consultant

Sales area Area manager

Sales area manager Divisional manager
Consultant Quote and Statement of benefits
Broker Commission Incentive paid
Product

Policyholder

Product start date

Product external reference
Product kind

Product Sum Assured
Product Premium
Commission Year 1
Commission Year 2

_

Table 7-28 Commission incentive report CRC

236

Chapter 7 — Research design and the IS Prototype

Commission claw back {(Version 1.4) <<Report>>

Date Policyholder

Division Broker

Divisional manager Consultant

Sales area Area manager

Sales area manager Divisional manager
Consultant Quote and Statement of benefits
Broker Commission claw back
Product

Policyholder

Product start date

Product end date

Product external reference
Product kind

Product Sum Assured
Product Premium
Commission Year 1
Commission Year 2

Table 7-29 Commission claw back report CRC

Supplementary documentation

Section 6.3.1.5 requires the business rules to be investigated. For this study, only the
business rules applicable to reporting were investigated. Business rules eligible for
members and products were not investigated, as these rules form part of the company’s
production line. Table 7-30 to Table 7-34 illustrate the rules applicable to the CRCs
created (Table 7-13 - Table 7-29).

237

Chapter 7 — Research design and the IS Prototype

BRRV01 - External reference

Description of Rule: Determines the nature of the external reference

Test Parameters

1. External reference

Condition for which
Rule is True

If external reference start with a numeric number it can be
linked to the following:

e Broker agreement

e Consultant agreement

e Area Manager agreement

If external reference start with a date i.e. 20010101 then it
qualifies as a product:

e Sick pay and permanent incapacity product —
follows a Q1 after the date and 4 digits. i.e.
20010101011234

¢ Life assurance follows a 02 after the date and four
digits i.e. 20010101021234

¢ Health assurance follows a 03 after the date and
four digits i.e. 20010101031234

¢ Retirement annuity follows a X after the date and
four digits i.e. 20010101X1234

Category

Report Validity

Table 7-30 External reference business rule

BRSHO01 —- Broker validity

Description of Rule: Broker can only report to one consultant

Test Parameters

1. External reference (of broker agreement)

Condition for which
Rule is True

If external reference is a broker

Category

Sales hierarchy

Table 7-31 Broker validity business rule

BRSHO02 — Consultant validity

Description of Rule: Consultant can only report to one area manager and have

multiple brokers.

Test Parameters

1. External reference (of consultant agreement)

Condition for which
Rule is True

if external reference is a consultant

Category

Sales hierarchy

Table 7-32 Consultant validity business rule

238

Chapter 7 — Research design and the IS Prototype

BRSHO03 — Area manager validity

Description of Rule: Area manager can only report to one divisional manager and
have multiple consultants.

Test Parameters

1. External reference (of area manager)

Condition for which
Rule is True

If external reference is a area manager

Category

Sales hierarchy

Table 7-33 Area manager validity rule

BRSH04 - Area

Description of Rule: Area can have only one area manager

Test Parameters

1. External reference (of area manager agreement)

Condition for which
Rule is True

If area manager then only one assigned area

Category

Sales hierarchy

Table 7-34 Area business rule

BRRC01 - Target YTD Calculation

Description of Rule: Target

Test Parameters 1. Month
2. Target
Calculation Target YTD = Target / 12 * Month

definition rule

i.e.
1000/ 12 * 3 (for March) = 250

Category

Report Calculation

Table 7-35 Target Year To Date Calculation business rule

BRRCO02 — Achieved Calculation

Description of Rule: Target Achieved

Test Parameters

1. Month
2. Target
3. Actual figure (API or Head)

Calculation
definition rule

Actual figure / (Target / 12 * Month) * 100
i.e.
200 /(1000 /12 * 3 (for March)) *100 = 80%

Category

Report Calculation

Table 7-36 Achieved Calculation business rule

239

Chapter 7 — Research design and the IS Prototype

Outline on the DW maintenance and growth

DW maintenance and growth determines the protocol followed for maintaining and
developing the DW. In the following sections, DW maintenance and growth is
discussed.

Debugging
Any bug detected on the system should be logged as a bug at the service desk. A
service desk number will be issued. A bug is defined as any existing development not

functioning correctly.

Change Request
Any change request for the system should be logged as a change request at the service
desk. A change request number will be issued. A change request is defined as any new
development needed to change existing functionality or introduce new functionality.
All bugs and change requests need to be tested on the following environments:

e Staging — once the developers involved are happy with the development, it

should be promoted to quality assurance (QA).
¢ QA - once business testing is completed, it can be promoted to production.
¢ Production — all production changes will require approval from both the business

owner and application support manager.

Source control
All development will be stored in a repository, while two streams of source control are
used:
¢ Development stream - contains all the source code and designs for
development.
e Head stream - contains all the source code and designs for development
approved by business and application support.

In the foliowing section, dimensional modelling for the DW is discussed.

240

2419

Chapter 7 — Research design and the IS Prototype

7.6.3. Dimensional modelling
Section 6.3.2 explains the dimensional modelling phase. An analysis and design activity
allows for a typical object-oriented development approach. The following discussion will

concentrate firstly on the analysis and secondly on the design of the dimensional

modelling.

Phase Activity
System Use Case

B + Sequence Diagram

T o + Conceptual Class Modelling

'5 < Activity Diagram .

5 2 * User Interface Prototyping

% < Supplementary Specifications

o) User Documentation
Organise Packages

Figure 7-6 Object-Oriented Analysis diagram

7.6.3.1. Dimensional modelling analysis — DW System use case

Up to this point two types of use cases have been developed, i.e.:
¢ Data warehouse essential use cases

e Business process essential use cases

According to Section 6.3.2.1, the DW system use case contains more system
dependent information. This study focused on one DW use case, namely DWUCO01
illustrated in Table 6-1. Table 7-38 shows the DW systems use case created for
DWUCO01.

DW System Use Case: Sales (System - DWUCO01) version 1.3

Brief Description This use case contains the high-level description of the sales department’s
inputs and outputs.

Business function Sales department is responsible for the following

Table 7-37 System DWUCO01 - Sales

241

Chapter 7 — Research design and the IS Prototype

Inputs

Item DataType Brief Description

Product Product Type The product name

Date Date The date when product is sold
Division Varchar(255) The division where the

_product is sold

Divisional Manager PartyType

The manager of that division

Area Varchar(255)

The regional office name

Area Manager PartyType The manager of the regional
office

Consultant PartyType The consultant representing
the brokers

Broker PartyType The broker description

Poaticyholder PartyType The policyholder

Maney Provision Currency Contains the premium and

sum assured

Input Source

Production databases:

s SPF
s PARTY
o« FTX

Outputs

Sales Stats (Version 1.3)
Commission Incentive (Version 1.3)
Commission claw back (Version 1.4)

Formats for the reports should be in CSV and PDF

Possible grains

Product level

Table 7-38 (Continued) System DWUCO01 - Sales

The data types illustrated in Table 7-38 contain both primitive and custom data types.

The customer data types are defined as shown in Table 7-39 to Table 7-42.

Data Type Definition — ProductType

Brief Description

Contains the product data agreement

ProductType Item DataType Brief Description
StartDate Date Start date of the product
EndDate Date The date when product is sold
Kind Varchar(255) Is the kind of product
LifeCycleStatus Int Defines that status of the

roduct.

Properties PropertyType[] Array of PropertyType
ExternalReference Varchar(255) External Reference
Rales PartyTypel[] Array of partyType
Components ProductType[] Array of ProductType[]

Table 7-39 Data type definition of ProduciType

242

Chapter 7 — Research design and the IS Prototype

Data Type Definition — PropertyType

Brief Description Contains the property type data

ProductType Item DataType Brief Description
Kind Varchar(255) Is the kind of the property
Value Varchar(255) Property value

Table 7-40 Data type definition of PropertyType

Data Type Definition — PartyType

Brief Description Contains the party agreement data
ProductType Item DataType Brief Description
Class Varchar(255) Specifies that class of
party
BirthDate Date Date of birth
Language Varchar(255) Primary language of party
Disposablelncome Double Amount of income.
EducationLevel Int Level of education (0-6)
EmploymentStatus Varchar(255) Employment status
MaritalStatus Varchar(255) Marital status
Ethnicity Varchar(255) Ethnicity of party
Occupations Varchar{](255) Occupations of party
DefaultName Varchar(255) Default name of party
FirstNames Varchar[](255) Names of party
LastName Varchar(255) Last name of party
DefaultContactPreference | ContactPreference The default contact
preference of party.
ContactPreferences ContactPreference[] | Array of
ContactPreferences

Table 7-41 Data type definition of PartyType

Data Type Definition — ContactPreference
Brief Description Contains the contact preference data type
ProductType Iltem DataType Brief Description
Kind Varchar(255) Kind of contact preference
Address Varchar(255) If contact preference is an
address.
PhoneNumber Varchar(255) If contact preference is a
phone number.
EmailAddress Varchar(255) If contact preference is an
email address.

Table 7-42 Data type definition of ContactPrefrence

7.6.3.2. Dimensional modelling analysis — Business process system use

case

Section 6.2.2.2 explains that the business process essential use case model is evolved

into a system use case. It is similar to the business process essential use case with the

243

Chapter 7 — Rese

arch design and the IS Prototype

exception that it

includes high-level implementation decisions, such as the screen

numbers and properties, as well as includes and inheritance.

The business process systems use cases are defined in Table 7-43 to Table 7-49.

BP Use Case: Reports To (Systems - UC01) version 1.0

Brief Description of
business process

Area managers report to the divisional manager on sales key performance
indicators (KPI).

Actors

e Area Manager
e Divisional manager

Precondition

Report requested

Post condition

Report delivered

Basic course of

action

Divisional manager requests performance reports.

The following reports are identified as performance reports.
e Head count report
e APl report

Report information

Report defined in Report CRC as Sales Stats (Version 1.3)

Table 7-43 Reports To business process systems use case

| BP Use Case: Set

API | heads (Systems - UC02) version 1.0

Brief Description of
business process

Area manager sets annual performance indicators (API) and new head count per
consultant.

Actors

e Area Manager
¢ Consultant

Precondition

n/a

Post condition

New API and head target set.

Basic course of

action

Area manager defines targets for consultants according to formula.
Reports identified:
¢ New target report

Report information

Report defined in Report CRC as Sales Stats (Version 1.3)

Formulas defined

New head/AP! target formula defined in BRRCO1

Table 7-44 Set APl / Heads business process systems use case

BP Use Case: Claw back Commission (Systems - UC03) version 1.0

Brief Description of
business process

Consultant claw backs commission paid to broker based on policy agreement.

Actors

e Consultant
s Broker

Precondition

Policyholder cancels policy within 2 years of the issue date of policy.

Post condition

Claw back commission

Table

7-45 Claw back commission business process systems use case

244

Chapter 7 — Research design and the IS Prototype

Basic course of
action

Consultant claw back commission from broker.
Reports identified:
o Claw back report

Report information

Report defined as Commission claw back (Version 1.4)

Table 7-46 (Continued) Claw back commission business process systems use case

BP Use Case: Pay Commission (Systems - UC04) version 1.0

Brief Description of
business process

Consultant pays commission to broker based on policy agreement.

Actors

¢ Consultant
e Broker

Precondition

Policyholder needs to take out a policy.

Post condition

Paid commission

Basic course of
action

Consultant pays broker commission
Reports identified:
e Commissions report

Report information

Report defined as Commission Incentive (Version 1.3)

Table 7-47 Pay commission business process systems use case

BP Use Case: Training (Systems - UCO05) version 1.0

Brief Description of
business process

Consultant provides training and product support to broker.

Actors

Consultant
Broker

Precondition

Broker needs to be registered with a financial services provider and should
not have any mandates with the insurance company.

Post condition

Mandate to sell products

Basic course of
action

Broker needs to register on learning site.

Once registered, the broker needs to work through the guides and assignments
The broker needs to pass the required tests on each product to get a mandate to
sell products.

Report identified:
o Broker test report

Report information

* Broker test report

- Date
Broker
- Test number
- Product name
- Score

Table 7-48 Training business process use case

245

Chapter 7 — Research design and the IS Prototype

BP Use Case: Quote (Systems - UC06) version 1.0

Brief Description of
business process

Broker quotes the policyholder or client for insurance.

Actors

* Broker
o Policyholder

Precondition

Broker needs to be registered with a financial services provider and should have
the required mandate with the insurance company.

Post condition

Quote for insurance

Basic course of
action

Policyholder requests quote for insurance to broker.
The broker uses an online application to quote for the required insurance
The policyholder accepts or rejects the quote.

Reports identified
» Product quote report

Report information

» Product quote report Broker
- Date

Broker

- Product name

- Sum Assured

- Premium

Table 7-49 Quote business process use case

7.6.3.3. Dimensional modelling analysis — Sequence diagrams

Section 6.3.2.3 explains that the function of the data warehouse use cases is to provide

an overview of the company (the “big picture”) and not the process flow of the business.

Owing to this, it will be senseless to create a sequence diagram from the data

warehouse use cases, as the function of a sequence diagram is to model the interaction

between classes in a process.

For the purpose of dimensional modelling, the logic flow is not all that important,

however, it is important to discover which classes interact with one another and what

that interaction entails.

246

Chapter 7 — Research design and the IS Prototype

The sequence diagrams are illustrated in Figure 7-7 to Figure 7-10.

Policyholder <<Actor>

Requests a quote [

Broker <<Actor>> ‘ Quote <<Contraler>> ‘ Broker ‘ Policyholder } Product ‘ uote Record
1 T 1 T I T
1] 1 1 i
: ! : : :
\ Reguest a quote :) i ‘ :
: .)] t ;
1 verifyBroker 1 t 1 1
: 1 ! : ! :
\ theBroker \ ' '
1 1 I]
| NN =Sty ! ' ¢
(providePolicyholderDetails { '\ {
1 } D= i '
| thePoicyholder : |
: Gmm o v ! !
! requestProducts | I |
(L 1 N I
! | theProducts ! U i
! G oL b |
{ requestPremiumAndSumAssured{product) : |
1] t (]
i ‘II SumAssuredAndPremium L]
) i
—— e m T o= — e m e m
i theQuote i !
'é— I
! 1
| 1
= '
i 1
i i
) 1
1 1

Figure 7-7 Quote Sequence Diagram

if claw back then alertQuoteApplicationSuccessful(success Quote) is false and payCommission is a negative.

Commission <<Controller> ’

Broker <<Actor>> = Policyholder ‘ Broker —‘ Quote Record
T . N N T T T

alertQuoteApplicationSuccessful(success,Quote) | h \
L 5 1 I I
' 1) i i
1 I t ' 1
! 1] 1 1
: : getPolicyholder(quote) : : :
! T thePolicyholder) H '
T P !) 1
' < tBroker(qy { {
! | getBroker(quote)) 1
y 4 LN]
: { theBroker : ll

|
——————————————— Py

', |K~ getCalculatedCommission(guote) :
i | I 4 N
! 1 calculatedCommission | \
1 bt e R R N —— e e 4
: payCommission {
e i
1)
1 |
1 [

Figure 7-8 Commission Sequence Diagram

247

Chapter 7 — Research design and the IS Prototype

Area Manager <<Actor> Set Target <<Controller>
Area Mana & r <<Actor> Set Target <><Con(roller> Area Manager Consuitant Quole Record
- - —
! setTarget ! ! ! !
|———%] L]
{ ‘ getAreaManager : : }
1 1 1
' ! theAreaManager ! ! 1
1 [e A 3 1
! ! getConsultant ! !
1 L 1 N 1
. ! theConsultant ! !
! e dommoe o - J !
| : getMeasurementForConsultant(consultant) 1
! i ! i 2 | Measurement can be Head or API
i 1 theMeasurement 1 1
! P M R 3
: calculateNewTarget({theMeasurement) : :
. '
| —_—]]
: ! newTarget ! { :
1 [t - | !
| newTarget ! ! ! !
K=o 3 ! | g
4]]]]
1 I 1 1 +
Figure 7-9 Set Target Sequence Diagram
Training << > Learn student Module
Broker <<Actors> ainin Controller: Broker Consultant earn student Module
I > I— Record
: requestTrainingOnProduct : : } :
' 5 1 1 1
, ! getBoker)) 1
1 L N 1 1
i ! theBroker \ ' H
! [4 1 I
| y getConsultant . i
| | |){ !
1 g 1
1 : theConsultant | 1
! I ' 1 |
! - mmmm ToTTT oo s 1 |
: 1 : getModule : :
[
! [+ +— N
: } | theModule 1 !
] e] o e e el
! ! getScore(theModule) | :
1 1 1 1 N
i | 1 1 1
)) , theScore L I
[} L e e e R L e 4
| giveScore ! H ! i
_________________ ! ! 1
& | . i |

Figure 7-10 Training Sequence Diagram

7.6.3.4. Dimensional modelling analysis -~ Data Warehouse Bus
Architecture Matrix

Section 6.3.2.4 explains that the business use cases and the DW use cases should be
combined to get a better understanding of the business. Table 7-50 illustrates the
combination of DWUCO01 (DW use case) with the business use cases.

248

Chapter 7 — Research design and the IS Prototype

DW Use Case Department Business Use Case Business Process
Number Number
DWUCO01 Sales department uco1 Reports To
uco2 Set APl / heads
uco3 Claw back Commission
uco4 Pay Commission
UCO05 Training
UC06 Quote

Table 7-50 Combination of the DW use cases with the business use cases

From Table 7-50, one can derive the following conclusions:

UCO1 - Reports To is not a business process that no data can be captured on, thus
it will not be modeled in the data warehouse.

UC02 — Set APl (Annual Performance Indicator)/ heads is a key performance
indicator (KPI) for consultants, thus data needs to capture on this to provide the new
APl / head targets for the consultants.

UCO03 - Claw back Commission is done when the policyholder cancels the policy
agreement prematurely. This can be seen as a negative entry on the broker’s
commission statement.

UC04 — Pay Commission: When a policy is sold, a broker is paid a commission
based on the amount of the sum assured of the policy agreement. This can be seen
as a positive entry on the broker's commission statement.

UCO5 - Training should contain the score of the module of the broker.

UCO06 — Quote should contain the product, sum assured and the premiums for the
requested guote.

Based on the above conclusions, the following subject areas can be created:

¢ Target Annual Performance Incentive (API) / Head
e Commission
e Training

e Quote

Claw back commission and pay commission are modeled together, because they are in

essence the same type of transaction. The one is a negative inventive transaction and

249

Chapter 7 — Research design and the IS Prototype

the other a positive incentive transaction. Training and quote are modeled as own

entities.

The business classes that were identified are:
e Policyholder
e Broker
e Consultant
e Area Manager
e Divisional Manager
e Product
e Quote and Statement of benefits
e Learn student module
e Commission Paid

e Commission claw back

The actor classes that were identified are:
¢ Policyholder
e Intermediary
e Consultant

e Assistant Manager

The interface models that were identified are:
e Sales Stats <<Report>>
¢ Commission Incentive <<Report>>

¢ Commission claw back <<Report>>

Based on the above classes and analysis, the following dimensions were created:
¢ Policyholder
e Intermediary

e Consultant

250

Chapter 7 — Research design and the IS Prototype

e Actual

e Learn student module (only descriptive information)

Based on the links between the classes in the sequence diagrams created (shown inv
Figure 7-7 to Figure 7-10) and the above analysis, Data Warehouse Bus Architect
Matrix can be created. Figure 7-11 represents the Data Warehouse Bus Architect Matrix

for the case study.

2
=
°
0
=
- kS
IR B
Q ° “_“, -
S Bl 35| @
ol 8 £ 2 5| E
El 5 2| o| 8| §
Elal Elo|l <] g
Target APl / Head «/ v
Target API NNV YN
Target Head N VoY
Commission N NN NN
Training NV N v
Quote S A IV A

Figure 7-11 Data Warehouse Bus Architect Matrix for the case study

While having a bird’'s eye view of what the data warehouse should contain, business at
this stage decided to narrow the scope for the development of the data warehouse to
only the highlighted subject areas and dimensions. The development of the data marts
followed the lifecycle illustrated in Figure 7-12.

251

Chapter 7 — Research design and the IS Prototype

Gather Business 4‘

Requirements
Use the inilial business requirements
to analyse / design OM

Initial DM design (Analysis /
Design)

*Choose DM

*Design Dimension tables

<Design Facts table

*Design and populate star diagram.

Revised business Revise feasibly of business Assess the analysis/design against the
Regquirement requirement technical environment

Repeat DM Analysis / Design | asess the revised

*Choose DM analysis/designs against the
+Design Dimension tables technical environment

N i Technical Environment
+Design Facts table *Check available data
<Design and populate star «Check data frequency
diagram. «Check data granufarity

«Check data platform

Revise lhe analysis/designs to comply
with the technical environment

Figure 7-12 Lifecycle of a DM development

The first iteration of the analysis and design was based on the initial requirements. From
the analysis / design, an assessment of the technical environment was done to evaluate
the feasibility of the current analysis / design. Based on the evaluation, the analysis /
design was changed accordingly (an iterative process). Some of the requirements,
being the membership type on IAA (source system), had to be reconsidered.

The next section covers the analysis and design for the Target API subject area.

7.6.3.5. Dimensional modelling analysis — Dimension table detail

Section 6.3.2.6 explains that the dimension table diagram needs to be completed for
each dimension. It illustrates the grain of each dimension, as well as the cardinality of
each dimension attribute, with a top down view of all the hierarchies (Kimball et al.,
1998:281).
The following dimension tables were designed:

e Date

¢ Policyholder

252

Chapter 7 — Research design and the IS Prototype

¢ Intermediary
e Consultant
e Actual

Table 7-52 to Table 7-57 indicate the dimension hierarchy and attribute details.

Dimension Table: Date version 1.0

Hierarchy Top Level YEAR
Level 1 SEMESTER
Level 2 QUARTER
Level 3 MONTH
Level 4 DAY

Table 7-51 Time dimension hierarchy and attribute detail

Attribute Detail

Attribute Name Attribute Description Cardinality | Slowly Sample Value
Changing
Dimension
Policy
YEAR Indicates the caiendar year 10 Not updated 2007
SEMESTER Indicates the calendar semester 2 Not updated 1
QUARTER indicates the calendar quarter 4 Not updated 1
MONTH Indicates the calendar month 12 Not updated 1
DAY Indicates the calendar day 365 Not updated 1
' DISPLAY DATE Full date in yyyy-mm-dd 365 Not updated 2007-01-01
DATE Full date in datetime format 365 Not updated 2007-01-01
DAY_NAME Name of the day 7 Not updated Monday
DAY OF WEEK 1-Monday to 7-Sunday 7 Not updated 1
WEEK OF YEAR | Week of the year 1 to 52 52 Not updated 1

Table 7-52 (Continued) Time dimension hierarchy and attribute detail

Dimension Table: Policyholder version 1.0

Hierarchy Top Level N/A
Attribute Detail
Attribute Name Attribute Description Cardinality | Slowly Sample Value
Changing
Dimension
Policy
MEMBER _NUMBER | Indicates the member number * Type 1 1249954
FIRST NAME Indicates the first name * Type 1 Ralph
MIDDLE_NAMES Indicates the middle names * Type 1 Reeves
LAST_NAME Indicates the last name * Type 1 Kimball
DATE_OF_BIRTH Indicates the birth date 365 Type 1 1950-01-01
LANGUAGE Indicates the language 2 Type 1 English
GENDER Indicates the gender 2 Not updated Male
ETHNICITY Indicates the ethnicity 5 Not updated 1

Table 7-53 Policyholder dimension hierarchy and attribute detail

253

Chapter 7 — Research design and the IS Prototype

Dimension Table: Intermediary version 1.0

Hierarchy Top Level N/A
Attribute Detail
Attribute Name Attribute Description Cardinality | Slowly Sample Value
Changing
Dimension
Policy
MEMBER NUMBER | Indicates the member number * Type 1 1249954
FIRST NAME Indicates the first name * Type 1 David
MIDDLE_NAMES Iindicates the middle names * Type 1 Reeves
LAST NAME Indicates the last name * Type 1 Avison
DATE_OF BIRTH Indicates the birth date 365 Type 1 1950-01-01
Table 7-54 Broker dimension hierarchy and attribute detail
LANGUAGE Indicates the language 2 Type 1 English
GENDER Indicates the gender 2 Not updated Male
FSP Iindicates the financial service * Type 1 Insurance
provider company Brokers A
PTY(Ltd)
REPORTS_TO Indicates the consultant that * Type 1 Consultant, B
the broker reports to
BELONGS_TO Indicates the region that the * Type 1 GAUTENG
broker works under NORTH
AGREEMENT_TYPE | Type of broker 2 Type 1 Insurance
Broker

Table 7-55 (Continued) Broker dimension hierarchy and attribute detail

Dimension Table: Consultant version 1.0

Hierarchy Top Level N/A
Attribute Detail
Attribute Name Attribute Description Cardinality | Slowly Sample Value
Changing
Dimension
Policy
MEMBER NUMBER | Indicates the member number * Type 1 1249954
FIRST NAME indicates the first name * Type 1 David
MIDDLE_NAMES Indicates the middle names * Type 1 Reeves
LAST NAME Indicates the last name * Type 1 Avison
DATE_OF BIRTH Indicates the birth date 365 Type 1 1950-01-01
LANGUAGE Indicates the language 2 Type 1 English
GENDER indicates the gender 2 Not updated Male
REPORTS_TO Indicates the area manager that * Type 1 Manager, A
the consultant reports to
BELONGS_TO Indicates the region that the * Type 1 GAUTENG
consultant works under NORTH
TARGET API Indicates the required API * Type 1 10000
TARGET_HEAD Indicates the required Head * Type 1 200

Table 7-56 Consultant dimension hierarchy and attribute detail

| Dimension Table: Actual version 1.0

254

Chapter 7 — Research design and the IS Prototype

Hierarchy Top Level N/A
Attribute Detail
Attribute Name Attribute Description Cardinality | Slowly Sample Value
Changing
Dimension
Policy
PRODUCT_NAME Indicates the name of the * Type 1 Life Insurance
product
PRODUCT BENEFIT | Indicates the benefit taken in * Type 1 Live Cover
the product.

Table 7-57 Product dimension hierarchy and attribute detail

7.6.3.6. Dimensional modelling analysis — Fact table diagram

Section 6.3.2.5 explains that the fact table diagram illustrates the specific fact table and

its context and also serves as an overview of all the dimensions that have been

identified. Figure 7-13 illustrates both the fact table diagram and fact table detalil

diagram for the case matrix defined in Figure 7-11.

Fact Table: Target API (version 1.0)

Fact table diagram

Fact table detail diagram

FACT_API

PK |ID

Learn
Student
Module

FK5
FK4
FK2
FK3
FK1
FK6

PARTY_INTERMEDIARY_ID
PARTY_CONSULTANT_ID
DIM_DATE
PARTY_AREA_MANAGER_ID
ACTUAL_ID
PARTY_POLICYHOLDER_ID

Commissiol
Area ssion Broker
Manager
Grain:
Line item
target per
quote
Policy-
holder Product

SOURCE_SYSTEM_ID
SOURCE_SYSTEM_EXTRAGCT DATE
EXTRACT DATE
TRANSACTION_ AMOUNT
ALLOCATED AMOUNT
MEMBER_AGE
COMMISSION_TYPE
MONTHS_IN_FORCE
ORIGINAL_REQUEST DATE
REQUESTED_DATETIME
TRANSACTION_DATE

Figure 7-13 Fact table diagram and detail diagram for FACT_API

255

Chapter 7 — Research design and the IS Prototype

7.6.3.7. Dimensional modelling analysis — Identify sources

The data sources identified for the case study were only formal data sources and as
such maintained by the IS department. Table 7-58 illustrates the data source

information.

Data source definition version 1.1

Source Business owner Platform Description

Sales Logix Application support | Windows 2003 / SQL | Contains all sales data of intermediaries and
Server 2000 their consultants.

IAA Application support | Windows 2003 / SQL | Maintains all party information and policy
Server 2000 agreement administration.

Portfolio Sales Windows 2000 / XML | Quoting and member portfolio system.

Table 7-58 Data source definition for the data warehouse

7.6.3.8. Dimensional modelling analysis — Source to target mapping

Section 6.3.2.7 explains that the source to target mapping should be created once the
data sources are defined. The source to target mapping for this case study is contained
in Table 7-59 to Table 7-64.

256

\Jllaplcl ! T INGOTal vl UTOIY Qi 11T 1V] lUlULy'JU

Source to Target Mapping:Fact_API (Version 1.02)

Table Name Column name Data Type Allow Target column description Soaurce System Source Data Notes

NULL DB/ File | transform
FACT API 1D int NO new gets created for each new entry
FACT AP) PARTY_INTERMEDIARY_ID int YES DW links to intermediary dimension
FACT_AP! PARTY _CONSULTANT 1D int YES DW links 1o consultant dimension
FACT _API OiM_DATE varchar(8} YES bW links to date dimension
FACT API PARTY AREA MANAGER ID int YES DW finks fo area manager dimension
FACT APl ACTUAL ID int YES DW links to the policy agreement dimension
FACT AP! PARTY POLICYHOLDER D int YES DW links to the policyholder dimension

indicator o identify souce system

FACT APl SOURCE SYSTEM ID int YES new extract
FACT AP! SOURCE _SYSTEM EXTRACT _DATE datetime YES new date of exiract
FACT_API EXTRACT DATE datefime YES SiX no
FACT_API TRANSACTION_AMOUNT numeric(18,2) YES SLX no
FACT_AP! ALLOCATED _AMOUNT numeric(18,2) YES SLX no
FACT AP MEMBER_AGE int YES SLX no
FACT AP} COMMISSION TYPE varchar(255) YES SLX no
FACT AP MONTHS_IN FORCE int YES SLX no
FACT API ORIGINAL REQUEST DATE datetime YES SLX no
FACT AP REQUESTED_DATETIME datetime YES SLX no
FACT_API TRANSACTION DATE datetime YES SLX no

Table 7-59 Source to Target for Fact APl

257

wilapel | — N\eoaoalull USDIYI alid LIS 1o rivwuvype

Source to Target Mapping:DIM_PARTY_POLICYHOLDER (Version 1.06

Table Name Column name Data Type Allow NULL Target column Source Source DB/ Data Notes

description System File transform
DIM_PARTY POLICHOLDER PARTY POLICYHOLDER ID int IDENTITY{(1,1) NO new gets created for each new entry
DIM_PARTY_POLICHOLDER SOURCE_SYSTEM_ID int YES DW |d of source system
DIM_PARTY POLICHOLDER SOURCE _SYSTEM F\"EFERENCE varchar(255) YES Dw Reference on source system
DIM_PARTY POLICHOLDER SOURCE_SYSTEM START DT datetime YES DW Record start date of source system
DIM PARTY POLICHOLDER SQURCE SYSTEM END DT datetime YES DW Record end date of source system
Did PARTY_POLICHOLDER SOURCE_SYSTEM STATUS varchar(255) YES DW Indicator of source system status
DIM_PARTY _POLICHOLDER IS CURRENT bit YES DW Indicator for current record
DIM PARTY POLICHOLDER PREVIOUS 1D int YES DW Points to previous record
DIM_PARTY_POLICHOLDER RECORD_START DT datetime YES DW Record start date
DIM_PARTY_POLICHOLDER RECORD _END_DT datetime YES DW End date of record
DIM_PARTY_POLICHOLDER EXTERNAL _REFERENCE varchar(255) NO IAA PARTY no
DIM_PARTY POLICHOLDER ROLEPLAYER ID numeric(19,0) NO IAA PARTY no
DIM_PARTY_POLICHOLDER ROLEPLAYER_VERSION numefic(19,0} NG IAA PARTY no
DIM_PARTY_POLICHOLDER ROLEPLAYERTYPE_|D int YES IAA PARTY no
DIM_PARTY_POLICHOLDER BIRTH_DATE datetime YES 1AA PARTY no
DIM_PARTY_POLICHOLDER ISBIRTHDETIALSESTIMATED char(1) YES IAA PARTY no
DIM_PARTY_POLICHOLDER DISPOSABLE_INCOME varchar(255) YES IAA PARTY no
DIM_PARTY_POLICHOLDER DISPOSABLE_CURRENCYCODE varchar(255) YES 1AA PARTY no
DIM_PARTY_POLICHOLDER GROSS_INCOME varchar(255) YES 1AA PARTY no
DIM_PARTY_POLICHOLDER GROSS_INCOME_CURRENCY _CODE varchar(255) YES I1AA PARTY no
DIM_PARTY_POLICHOLDER EMPLOYMENTSTATUS varchar(255) YES IAA PARTY no
DIM_PARTY POLICHOLDER GENDER varchar(255) YES IAA PARTY no

Table 7-60 Source to Target for Dim Party Policyholder

258

Y A

i PRSI W MM T LA I W I i 1 DRy

DIM

PARTY_POLICHOLDER LANGUAGE varchar(255) YES IAA PARTY no
DIM_PARTY_POLICHOLDER MARITAL_STATUS varchar(255) YES 1AA PARTY no
DIM_PARTY_POLICHOLDER INITIALS varchar(255) YES 1AA PARTY no
DIM_PARTY_POLICHOLDER BIRTH_NAME_ID varchar(255) YES I1AA PARTY no
DIM_PARTY_POLICHOLDER FIRST_NAME varchar(255) YES I1AA PARTY no
DIM_PARTY_POLICHOLDER LAST_NAME varchar(255) YES IAA PARTY no
DIM_PARTY_POLICHOLDER MIDDLE_NAMES varchar(255) YES 1AA PARTY no
DIM_PARTY_POLICHOLDER PREFIX_TITLES varchar(255) YES I1AA PARTY no
DIM_PARTY_POLICHOLDER SUFFIX_TITLES varchar(255) YES IAA PARTY no
DIM_PARTY_PQLICHOLDER SHORTFIRSTNAME varchar(255) YES IAA PARTY no
DiM_PARTY_POLICHOLDER SALUTATION varchar(255) YES IAA PARTY no
DIM_PARTY_ POLICHOLDER FULLNAME varchar(1279}) YES IAA PARTY no
DIM_PARTY_POLICHOLDER DESCRIPTION varchar(255) YES IAA PARTY no
DIM_PARTY_POLICHOLDER BIRTH_NAME START DATE datetime YES JAA PARTY. no
DIM_PARTY_POLICHOLDER BIRTH_NAME_TYPE_ID varchar(255) YES 1AA PARTY no
DIM_PARTY_ POLICHOLDER BIRTH_NAME_VERSION varchar(255) YES IAA PARTY no
DiM_PARTY_POLICHOLDER COUNTRY_CODE varchar(255) YES JAA PARTY no
DIM_PARTY_POLICHOLDER PASSPORT_NUMBER2 varchar(255) YES IAA PARTY no
DIM_PARTY_POLICHOLDER PASSPORT NUMBER varchar(255) YES 1AA PARTY no
DiM_PARTY_POLICHOLDER NATIONAL _REGISTRATICN_ID varchar(255) YES AA PARTY no
DIM_PARTY_POLICHOLDER NATIONAL_REGISTRATION PARTY ID | varchar(255) YES IAA PARTY no

Table 7-61 Source to Target for Dim Party Policyholder (Continued)

259

wliapel

I — INCOTCdaAlull UUDIHII alivu uiIc 1w 1

1ULULY VS

Source to Target Mapping:DIM_PARTY_INTERMEDIARY (Version 1.04)

Table Name Column name Data Type Allow NULL Target Source Source DB Data Notes

column System { File transform

description
DIM_PARTY_INTERMEDIARY PARTY_INTERMEDIARY ID int IDENTITY(1,1) NO new gets created for each new entry
DIM_PARTY_INTERMEDIARY SOQURCE_SYSTEM_ID int YES bW Id of source system
DIM_PARTY_INTERMEDIARY SOURCE_SYSTEM_REFERENCE varchar(255) YES DW Reference on source system
DIM_PARTY INTERMEDIARY SOURCE_SYSTEM START DT datetime YES DW Record start date of source system
DIM_PARTY_ INTERMEDIARY SOURCE_SYSTEM_END DT datetime YES DW Record end date of source system
DIM_PARTY INTERMEDIARY SOURCE_SYSTEM STATUS varchar(9) YES DW Indicator of source system status
DIM_PARTY_INTERMEDIARY IS_CURRENT bit YES DW Indicator for current record
DIM_PARTY_INTERMEDIARY PREVIOUS_ID int YES DW Points to previous record
DIM_PARTY_INTERMEDIARY RECORD_START DT datetime YES DW Record start date
DIM_PARTY_INTERMEDIARY RECORD_END DT datetime YES DW End date of record
DIM_PARTY_INTERMEDIARY TITLE varchar(255) YES 1AA PARTY no
DIM_PARTY_INTERMEDIARY FIRST_NAME varchar(255) YES 1AA PARTY no
DIM_PARTY_INTERMEDIARY MIDDLE_NAMES varchar(255) YES 1AA PARTY no
DIM_PARTY_INTERMEDIARY LAST _NAME varchar(255) YES 1AA PARTY no
DIM_PARTY_INTERMEDIARY KIND varchar(32) YES 1AA PARTY no Type of intermediary
DIM_PARTY_INTERMEDIARY KIND_ID int YES IAA PARTY no
DIM_PARTY_INTERMEDIARY FSP varchar(128) YES 1AA PARTY no
DIM_PARTY_INTERMEDIARY FSP_ID bigint YES IAA PARTY no
DIM_PARTY_INTERMEDIARY REPORTS_TO varchar(64) YES 1AA PARTY no Reports to consultant
DIM_PARTY_INTERMEDIARY REPORTS_TO_ID bigint YES 1AA PARTY no
DIM_PARTY INTERMEDIARY BELONGS_TO varchar(64) YES JAA PARTY no Belongs to area
DIM_PARTY_INTERMEDIARY BELONGS _TO _ID bigint YES IAA PARTY no

Table 7-62 Source to Target for Dim Party Intermediary

260

A

R T SR e~ LR TR R TR

ey~

Source to Target Mapping:DIM_PARTY_CONSULTANT (Version 1.04)

Table Name Column name Data Type Allow NULL Target Source Source DB Data Notes

column System / File transform

description
DIM_PARTY CONSULTANT PARTY_CONSULTANT _[D int IDENTITY(1,1) NC new gets created for each new entry
DIM_PARTY CONSULTANT SOURCE_SYSTEM_ID int YES DW 1d of source system
DIM_PARTY CONSULTANT SOURCE_SYSTEM_REFERENCE varchar(255) YES DW Reference on source system
DIM_PARTY CONSULTANT SOURCE_SYSTEM START DT datetime YES DW Record start date of source system
DIM_PARTY_CONSULTANT SOURCE_SYSTEM_END DT datetime YES DwW Record end date of source system
DIM_PARTY_CONSULTANT SOURCE_SYSTEM_STATUS varchar(9) YES DW Indicator of source system status
DIM_PARTY CONSULTANT 1IS_CURRENT bit YES DW Indicator for current record
DIM_PARTY CONSULTANT PREVIOUS_ID int YES DW Points to previous record
DIM_PARTY_CONSULTANT RECORD_START_DT datetime YES DW Record start date
DIM_PARTY _CONSULTANT RECORD_END_DT datetime YES DW End date of record
DIM_PARTY_CONSULTANT TITLE varchar(255) YES 1AA PARTY no
DIM_PARTY _CONSULTANT FIRST_NAME varchar(255) YES I1AA PARTY no
DIM_PARTY_CONSULTANT MIDDLE_NAMES varchar(255) YES 1AA PARTY no
DIM_PARTY _CONSULTANT LAST NAME varchar(255) YES 1AA PARTY no
DIM_PARTY_CONSULTANT REPORTS_TO varchar(64) YES IAA PARTY no Reports {o area manager
DIM_PARTY_CONSULTANT REPORTS TO_ID bigint YES IAA PARTY no
DIM_PARTY CONSULTANT BELONGS TO varchar(64) YES 1AA PARTY no Belongs to area
DIM_PARTY_CONSULTANT BELONGS_TGC 1D bigint YES JAA PARTY no

Table 7-63 Source to Target for Dim Party Consultant

261

/1 IQPI.\.}I

N BNV AV e [V1N | uuolan CATIM LIV NS IUI-UL]H\I

Source to Target Mappin

:DIM_ACTUAL (Version 1.02)

Table Name Column name Data Type Allow NULL Target Source Source DB Data Notes

column System { File transform

description
DIM_ACTUAL ACTUAL _ID int IDENTITY(1,1) NO new gets created for sach new entry
DIM_ACTUAL SOURCE_SYSTEM ID int YES DW |d of source system
DIM_ACTUAL SOURCE_SYSTEM_REFERENCE varchar(255) YES DW Reference on source system
DIM_ACTUAL SOURCE_SYSTEM_START DT datetime YES DwW Record start date of source system
DIM_ACTUAL SOURCE_SYSTEM _END DT datetime YES DW Record end date of source sysiem
DIM_ACTUAL SOURCE_SYSTEM_STATUS varchar(255) YES DW Indicator of source system status
DIM_ACTUAL 1S_CURRENT bit YES DwW Indicator for current record
DIM_ACTUAL PREVIOUS ID int YES DW Points to previous record
DIM_ACTUAL RECCRO_START DT datetime YES Dw Record start date
DIM_ACTUAL RECORD_END DT datetime YES Dw End date of record
DIM_ACTUAL MEMBER _EXTERNAL REFERENCE varchar(255) YES JAA SPF no
DIM_ACTUAL BUSINESS_GROUP varchar(255) YES 1AA SPF no Business area group
DIM_ACTUAL BENFIT _NAME varchar(255) YES |1AA SPF no name of benefit
DIM_ACTUAL OFFERING varchar(255) YES IAA SPF no name of offering
DIM_ACTUAL QFFERING_TYPE varchar(255) YES IAA SPF no
DIM_ACTUAL PRODUCT _TYPE_ID int YES IAA SPF no
DIM_ACTUAL PRODUCT DESCRIPTION varchar(255) YES 1AA SPF no Product description

Table 7-64 Source to Target for Dim Actual

262

Chapter 7 — Research design and the IS Prototype

7.6.3.9. Dimensional modelling design — Develop dimensional tables

Section 7.6.3.8. explains that the development of dimensional tables requires the

following analysis documents:

Data warehouse matrix — illustration of the data marts and the dimensions
available for the specific data mart (Figure 7-11).

Fact table diagram — illustration of the fact table detail within its context (Figure
7-13).

Dimensional table detail — illustration of the hierarchies in the dimension tables
(Table 7-52 to Table 7-57).

Sources detail — a list of available source data and the owners of the data (Table
7-58).

Source to target mapping — mapping from the source data to the target
dimensional tables (Table 7-59 to Table 7-64).

Figure 7-14 illustrates the star diagrams for the case study.

Star diagram — Fact Target API (version 1.0)

Links to dimensions:

Dim Time

Dim Consultant
Dim Policyholder
Dim Intermediary

Dim Actual

A Dim

Consultant
Fact Target
API
Dim Dim
Policyholder Intermediary

Dim Actual

*Refer to source to target mapping for table detail.

Figure 7-14 Star diagram for Fact Target API

Once all the dimensional models are created, the technical architecture model can be

created.

263

Chapter 7 — Research design and the IS Prototype

7.6.4. Technical Architecture modelling

After completion of the dimensional model, the technical architecture modelling is done.

Figure 7-15 illustrates a high-level technical architecture of a typical data warehouse.

The Back Room The Front Room
. Source N(I:eat?;ilzga Standard Reporti
ard Reporting
Systems Dat_a QU?W O Tools
Staging Services T
Services ; Desktop Data
Presentation Servers -Warehouse Browsing O P
“Extract e e ~ Access and Security Access Tools
- Transform / N - Query Management =
-Load H Dimensional Data Marts with ! - Standard Reporting Application Models |
-Job Control H Only Aggregated Data ! - Activity Monitor
Data ; ; T
s Conformed
Staging ' J:;?:;:e Di & | Downstream / L
Area ! Conformed ' Operational Systems
. H Bus Facts :

:

Y '
1 Dimensional Data Marts
i including Atomlc Data
\
\

Key

Data
D Element :> Element

Figure 7-15 High-level technical architecture model (Kimball et al., 1998:329)
Section 6.3.3 explains that the model (Figure 7-15) provides a logical separation
between the internal working of the warehouse and the user front end. Therefore, the
analysis and design of such architecture should be separated according to the back
room and the front room. The analysis and design of the back room entail the following:
e Source system analysis
¢ Data staging services analysis

¢ Data staging services design

7.6.4.1. Technical Architecture back room OO analysis — Source systems

Section 6.3.3.1 indicates that the analysis needed for the architecture is done during the

identification of sources for the dimensional models. The source systems are listed in
Table 7-58.

264

Chapter 7 — Research design and the IS Prototype

7.6.4.2. Technical Architecture back room OO analysis — Data staging

services
Section 6.3.3.2 explains that the data staging services mainly consist of the following:
e Extract
e Transform
e Load

e Job control

Extract
Section 6.3.3.2 explains that the following documentation is needed to analyse the
extract design for the data warehouse:
e Source to target mapping for all the dimensions. (Already defined in Table 7-57
to Table 7-64 as part of the discussion)
o Entity relational (ER) model of the source data. (lllustrated in Figure 7-16 to
Figure 7-18)
o Business rules that influence the ETL process. (Already defined in Table 7-30 to
Table 7-34)

265

99¢ !

(eseqejep vy Jo ped) 34S-VVI 104 weibelp y3 91~ ainbiy ‘ |

T AT 3|
ALNFIONS HVISINL 8L

IMYA”ALYALOYd
arx Ad ~ IN3'Md
ASHFIOYSBITINI L

MVA ALY 20N
Y ATITIORT W3 | idd'Nd
ALE3d08d"NYA008 8L

|
30WA ALEFS0Yd]
T RETIONT | D
ALAg0ud TWAIOIGIE 8L !

3MWA ALHId0ud 3002 AQNIWEND _

A RITITOTTNI | waned 3a19A” LNNOY
ALYRdOHTONOT!TEL T AITIAOIT FF| AN

ALU3E0H INDOWYAINZMEND HaL

INWA ALYIHOUd

AlHadongToMui sy

anwA addaoud[|

ALHIHOUS IONINIAUTS T8

AebEatiud T THENOa EL

IMVATALIION

3MvA AiE3e084] AFITIIOTT | g
¢ i ENFIOAY™
STHITOUT T | 1ad ALHAGONCINMONY TEL
Addzdowararva a8l
Q" 3dAL N _3NTYA_ALY3dOYd
FONIYIZY TYNBILXT _X3QNFT0A03S1T zmoa_mm%wmu IWYNTSSVID IATYA ALNTON
2Uva Lavis QTWLOY ATNO N [1>id SN vA a3oNod o AreEaTs | v
AL _LNINIOVTY 3NWA NOILLYN VAT -
arf xd R s _ i HOILYDI123dS ApNaEond 40380 SINIVALSINOIY TaL.
SNINRIOVEINGISHINTTEL 2U¥T LuvLS ATIVILIY AINNLINALE N | 14
INYNWANG 100N a
Q" ININITH DY QINOISHIA A | S8 A HANT 31040341 LEN
> NOISIA SNOIATYJ M | THA T R
NOISHIA LXAN N3 | Zud § T 4 L1053y Za0n ey
NOISHZA GZLYASNIZU S | ¥ “SNIVLS F1940840 4L
_QUAXIINGD M | 13 ” Y'Yy
NOISHIA SNOIATHG ILYLSNITUNYO A NOILY D102 dS Q" LNINOJOD_IMIVAITUrE0
NOISH3A LXAN ALVIHD NYO QTIVNIDY aINNIONNLS U Q@ 3JALTINVAIBTEO
- HIANON NOISHIA — aranis a"193r80"INVALTNrE0
ANVN_NOSVIY_LNIWIOVISIN _arany
Q1 NOSYIH_(NIWIOV 143N QlTIVALOY Hd | W FTEII0NS W3 | IAI'Nd
AN INIWEOV I QNOLYINOIIE — = ——
I NOILYIUD 01"1X3INDD Wi Afuagous I8l ALHA4OUY RONIHAITALOBGO TEL
| xd
[el ST Y IR _ &
153N0IBOISIVE XAl
™ QUIVNLOY AINO A | 2xd
_ — — _ ATWNLOY NI T08 i |y
QI INNOJWOD d3AY1d” 3108 — QI LSIININOGNOO” BUISOIWOD DI | exd
_ar 3dAL"HBAY TS TI0H aran Q" 1§3n03Y NIDWEO i | 13
Q103780 ¥3Avd 3108 WYLV ATNO M | 24 ar3dAl
AU IX3INGo yd| Xy I KOILYOI0TdS QN
= — = 3L¥Q ON3 ATAXIINODITHE | I FdALTIVALSY
QT NOISNIA ININAZOY 33| 2 VO Luvis
FONIGIAT WNEILXI QTNOILYDIAIOAdE | wa Wi N4
MW ASIT ANBNON0D IaL SIVIEDY OVHLSEY 8L
4
INSNIZIONIAATIE0L 284 L WLOVINI 30 f 1 41 3WIL31¥0ga1N0axXa
3WILILVQ ILSANOIY
IWILILYA 1SINDTA
- I OT4S LTIV
al NOWLVDIdI53dS
T WALV LTASTY A ZHd
— YLV L39HYL NS EMd
210 oN3
ALVA ABVLS B
T NOLYDHIIOAAS T IeIOR L
o] piawd
ANINITYRY Tes
A Lamnnms « o m oA mm i RiAan A A A i s AwmT A . .

A IUPL\JI

L}

[N TAS AL SR VI | U\J\lell CAL I LI I

IWuvLy v

[occuranon |

T8
2

PARTY

PREF_§)
EXTERNALREFERENCE
15_DELETED

FYMNT_MTHD

TBL_ORG_MCMBERS
prrxz | pERSON 10
PICFKT (DRG 1D

1L, PERION

PRER2 [ID

—

TEL_ORGANISATION_UNIT

PLOYMENT POSITION

Er—
. —

THL_EWP_POSHION,_ ASSIGNMENT
M

PRIMARY_OCC_ID

X _AMOUNT
(05 INCOME_CURRENCY_CODE
ETHIICTY.

1BL_ONCI_PREF

TYPE D
Fks | ROLE_PLAYER_D

#xt | DFLT CNGT_PNT 1D

TBL_PTY_NAME
PR [
VERSION

START_DATE
END_DATE

FYPEID
FK1 |ROLE_PLAYER 1D

TAL_PTY_REG

PrFR2 (IR

BiFK1|REG_PTY_NavEID

TBL_ORGANISATION

et (2

ASSIGNMENT.

SSIGNMENT_TING
CUPLOYMENT_POSTION 1O

FK2 | DFT_PTY_NANE_ID

ORG_START_DT

BL,_CHLO_ORGS

THi_GRG_STAT TL_REGRTRATION
[o [

version vension

STATE SSULLDATE

STARF_DATE DESCRIPTION

£ DATE EXTERNAL REFERENCE

RODIIONAL DESCRIPTION WHE D

RESOLYE PENDNG.DATE et [Pai

) FASSPORT NUMBER
et |oreiD STaRT DATE

“1BL_CARE_OF _ADDR

PREKT |

18P IY_ROLe:

—p] TBL_CONTAGT_POINT

Bl POSTAL ADORESS
i [

X_NUMBER
POSTAL_ADDRESS_TYPE_ID
POSTNET_SUITE

TBL_PHYSICAL ADDRESS

PKFK1 | EARENT 1D
PKFR2 [HID 16 oo
i PRFRT |12

v
Souniry

TALPARENT_ORGS RecioN
Sve AEGion
So8TAL Co0E

3

P 10

VERSION
EXIERNALREFERENCE
STARI_DATE

END_DATE
—» Ioveeo
ARE_OF_CNCT_PN1_ID
I

FK2 | CARE_OF_ADDRS

T8L_EDN_CERT_REG

PKFK2

Iy

FK1
3

CNTXT_COMPONENT_ID
NDXI TYPE D

TRET_ROLE PLAYERID

TB_UNSIRUGI_RANE

PICFKS |10

Th_ELEL)_ADDR IBL_JEL UM
FLOGR_NUMBER
BUILDING_NAME PRAKT IR
ADDRESS. CNTRY_ PHONE_COE
EMAIL_TYPE arca_Eon

FK3 'S_BRT_NAMI
K& |WIFE_BRT_NAME,
k2 |HUSEAND IO
ki |wiFED

TEL MARRIAGE REG

MARITAL_REGIME

D
1)

TBLAN_ACC_DETAL THL_PRSCNZNANE
PIFRI |10 PReR1 |
EXTERNALREFERENCE. FIRST_NAME
{_NAME T R
PE MIODLE_NAMES
ACC_NUMBER PREFIX TITLES
ox SUFFIX_TITLES
7_FRST_NAME
REF SALUTATION

FNACC_DET VP

FAL_INCONE_TAX,_REG.
|

Figure 7-17 ER diagram for IAA-Party (Part of IAA database)

[_meeaingomRy]

REG_DEATH_DATE

TBL_BIRTH_CRY

267

file:///UuUUIVM

NS IUHLUI

L]

R AL LS SR V]) \.‘U\)lsll CALINA LI INs NS]

TUwJLy v

SALES_STATS

PK

SALES STATSID

PROVINCE_tD
PROVINCE
PROVMAN_ID
SALES_MANAGER

SALES_PERFORMANCE

REGION
CONSULTANT_ID
CONSULTANT
USER_TYPE
SH_AS_SALES_PERSON
CONTACT_ID
ADVISER
INTERMEDIARY_TYPE
FIN_SERV_PROVIDER
BUS_TYPE
TRX_YEAR
TRX_MONTH
TRX_TYPE

PRODUCT
TARGET_CODEID
TOTAL_PREMIUM
TOTAL_LOADING
VALUE

PQINTS

SALES_TRANSACTION

SALES_EARNING

PK | SALES EARNINGID

CONTACTID
CREATEUSER
CREATEDATE
MODIFYUSER
MODIFYDATE
COMP_PARAMETERID
TRANSACTION_STATUS

VAT_AMOUNT
EARNING

COMPETITION_PAYMENT_ID

SALES TRANSACTIONID
PK PK | SALES STATSID
s NGI
COMP_YEAR c;éi%i’;g“' GID PROVINCE_ID
PROVINCE_DESCRIPTION PROVINCE
CREATEDATE
USERID MODIFYUSER PROVMAN_ID
CONSULTANT MODIFYDATE SALES_MANAGER
CONTACTID < s N ED B REGION
SH_AS_PPS_SALES_PERSON | - H_AS_ENROLLED_MEMBER CONSULTANT_ID
AS.FPS ! MEMBER_APP_FORM_SEQ
ADVISER MEMBER AGE CONSULTANT
TOTAL_POINTS TRANSACTION DATE USER_TYPE
TIER_STATUS DATE GRANTED » SH_AS_SALES_PERSON
ACTUAL_EARNING END DATE CONTACT_ID
ALTERNATE_EARNING = ADVISER
DATE_CANCELLED
BONUS_COMMISSION e BUS_TYPE
MEMBER_AGREEMENT_SEQ
FK1 | SALES_STATSID TRX_YEAR
MEMBER_SHARE_SEQ TRX MONTH
MEMBER_SHARE_LOT_NUMBER TRXCTYPE
MEMBER_GL_SEQ =
SALES_TYPE PRODUCT
MEMBER_GL_LOT_NUMBER TARGET CODEID
PK |SALES TYPEID MEMBERSHIP_TYPE_CODE =
TOTAL_PREMIUM
PPS_BENEFIT_CODE TOTAL LOADING
CREATEUSER PPS_OFFERING_CODE VALUE
CREATEDATE LOT_TYPE_CODE POINTS
MODIFYUSER PM_AGREEMENT_SEQ
MODIFYDATE < SALE_TYPE_ID
SALE_TYPE_DESCRIPTION ;RANSACTION_QUANTITY
PPS_OFFERING_CODE UM_ASSURED Y ————
MEMBERSHIP_TYPE_CODE LOT_END_REASON_CODE SALES_PAY_PERIOD
LOT_TYPE_CODE SH_AS_SALES_PERSON
PPS_BENEFIT_CODE CAMPAIGN_REF_NO
VAT_CALC_ALLOWED gi;g?T::\)/fT_gATE SALES_PAY_PERIODID
DONE | CREATEUSER
PROCESS_STATUS » |CREATEDATE
PREMIUM_VALUE "1 |MODIFYUSER
SALES_COMPANY #&%NG_VALUE MODIFYDATE
PERIOD_YEAR
PK | SALES COMPANYID MEMBER_TITLE PERIOD MONTH
MEMBER_INITIALS START DATE
CREATEUSER < MEMBER_SURNAME END DATE
CREATEDATE MEMBER_ID_NUMBER =
MODIFYUSER FK2 | SALES_STATSID
MODIFYDATE FK3 | SALES_COMPANYID
COMPANY_NAME FK5 | SALES_TYPEID
SH_AS_SALES_COMPANY

SALES_STATS_ARCHIVE

Figure 7-18 ER diagram for SalesLogix

268

file:///oovui
http://wi.wi.jrww

Chapter 7 — Research design and the IS Prototype

Transform
Transformation requires two types of documents:
¢ Basic high level data stage schema plan (illustrated in Figure 7-19)

o Detailed plans (illustrated in Figure 7-19 to Figure 7-24)

IAA-SPF IAA-PARTY SalesLogix
L =
\ B A A
Link External User Reports Use SPF to
to kind to get the Target)
Reference to determine AP| / Head Filter by
SPFid in > determ Target kind
P sales property
arty .
hierarchy value
_r
\ A A A A \ A\
Policyholder Consultant Inermediary Actual TaraztagPl / Target API Target Head

Figure 7-19 High level data stage schema plan for case study

Link External
Referenceto | g |AA-PARTY

SPFidin —
Party

IAA-SPF

Get personal
details

» Policyholder

Figure 7-20 Detail level diagram for policyholder dimension extract

269

Chapter 7 — Research design and the IS Prototype

Link External

Reference to
IAA-SPF —— ! SPFidin IAA-PARTY

— Party

Get personal |

details
Y - ¥
Get reports to Get belongs C)
with kind id »| to with kind id Intermediary
1032 1031

Figure 7-21 Detail level diagram for intermediary dimension extract

Get to level
agreement
IAASPE ™ from exterr.\al — » |AA-SPF
reference link
to
components
Get
components
sum assured [
and premium
money
provision Actual
elements

Figure 7-22 Detail level diagram for actual dimension extract

Get top level
agreement for
IAA-SPF consultant W
link to I

properties
Get property [«
kind 1067 & —
1068 values | Target API/
Head

Figure 7-23 Detail level diagram for Target APl/Head fact extract

270

Chapter 7 — Research design and the IS Prototype

IAMASPE] Linkexternal » 1AA-Party
reference to
SPF ID
I
Link to
SalesLogix <«————— ContactiD
and get
Target type
v value
]
Filter by
Target type » Target Head
/
Target API

Figure 7-24 Detail level diagram for Target API fact and Target Head fact extract
Load
Section 6.3.3.2 explains that the source definition in conjunction with the dimensional
table should give the analysis the type of upload it requires. A list should be created
listing the sources and the type of upload needed. Table 7-65 illustrates the load type

definitions.

Load type definition version 1.0

Source Upload Type Platform Description

Sales Logix Transactional Windows 2003 / SQL | Contains all sales data of intermediaries and
Server 2000 their consultants.

IAA Refresh Windows 2003 / SQL | Maintains all party information and policy
Server 2000 agreement administration.

Table 7-65 Load type definition for DW case study
Job control
The ETL process needs to be managed, thus the job control services of the ETL. This is
done by the deployment team. This team is dedicated toward the following tasks:
o Job scheduling — manage system jobs.
o Monitoring — all databases, application and ETL jobs.

» [ogging — faults highlighted are sent to application support.

271

Chapter 7 — Research design and the IS Prototype

7.6.4.3. Technical Architecture back room OO design - Data staging

services
The analysis documents (gathered for the back room architecture) provide a system
independent view of how it should be designed. The design platform used for the data
staging service was Microsoft SQL Server 2005 Integration Services (SSIS). This tool
was used since all the data bases run on SQL Server 2000 and SQL Server 2005.

7.6.4.4. Technical Architecture front room OO analysis — Query services

The front room is a vital part, as this is the part the users see and use to access the
data warehouse (Kimball et al., 1998:409). The user interfaces are in the form of
reports, the tool used for this being SQL Reporting Services 2005.

7.6.5. Physical designs

The physical design involves the design of the logical database, as well as its
implementation. The process is as follows:

¢ Define naming standards (Table 7-66)

e Design physical tables and columns (Table 7-68 to Table 7-80)

e Estimate database size and index plan

¢ Develop aggregation plan

7.6.5.1. Physical Design — Define standards

A document explaining the naming standard for tables, attributes, synonyms and file

locations should was created.

Standard definitions (Version 1.1)

Name Description

SD01 All dimensional tables start with “DIM_".

SD02 All fact tables start with “FACT _".

SDO03 All table names are in upper case.

SD04 All varchar data is saved in upper case

SD05 Code page 1562 is used on data bases (default SQL code page)

SD06 All id fields are of data type INT Identity(1,1)

SD07 All SQL Server data files (MDF and LDF files) should be under E:\\DATA
SDO08 Table attribute names should be in upper case

Table 7-66 Standards definition for the use case

272

file://E:/DATA

Chapter 7 — Research design and the IS Prototype

7.6.5.2. Physical Design — Design physical tables and columns

The following tables (Table 7-68 to Table 7-80) provide the physical data layout used for

the data warehouse use case.

Physical Data Table Name: IAA_HIERARCHY (Version 1.2)

Note: Used in promote packages to build the reports to and belong to fields

Column Name Data Type Null Aliowed
| SALESDIV_PTY_ID BIGINT YES |
SALESDIV PTY_ROLE ID BIGINT YES
SALESDIV_NAME VARCHAR(64) YES
SALESDIV MGR_PTY ID BIGINT YES
SALESDIV_MGR_NAME VARCHAR(64) YES
SALESAREA_PTY_ID BIGINT YES
SALESAREA PTY_ROLE_ID BIGINT YES
SALESAREA_NAME VARCHAR(64) YES
SALESAREA_MGR _PTY ID BIGINT YES
SALESAREA MGR NAME VARCHAR(64) YES
SALESOQFFICE_PTY_ID BIGINT YES
SALESOFFICE_PARTOF ROLE_ID BIGINT YES
SALESOFFICE_BELONGSTO _ROLE_ID BIGINT YES
SALESOFFICE_NAME VARCHAR(64) YES
SALESOFFICE_MGR_SPF_ID BIGINT YES
SALESOFFICE_MGR_NAME VARCHAR(64) YES
SALESUNIT_PTY_ID BIGINT YES
SALESUNIT_NAME VARCHAR(64) YES
SALESUNIT_MGR _SPF ID BIGINT YES
SALESUNIT_MGR_NAME VARCHAR(64) YES
CONSULTANT_SPF_ID BIGINT YES
CONSULTANT_NAME VARCHAR(64) YES
CONSULTANT _TITLE VARCHAR(12) YES
CONSULTANT_FIRSTNAME VARCHAR(32) YES
CONSULTANT_LASTNAME VARCHAR(32) YES
CONSULTANT_MIDDLENAMES VARCHAR(255) YES
INT_SPF_ID BIGINT NO
INT_TITLE VARCHAR(12) YES
INT_INITIALS VARCHAR(12) YES
INT_FIRSTNAME VARCHAR(32) YES
INT_LASTNAME VARCHAR(32) YES
INT_FULLNAME VARCHAR(64) YES

Table 7-67 Physical table layout for IAA_Hierarchy

273

Chapter 7 — Research design and the IS Prototype

INT_EXT_REF VARCHAR(64) YES
INT_RECORD_START_DATE DATETIME YES
INT_RECORD_END_DATE DATETIME YES
LIFECYCLE_ENUM_ID INT YES
INT_KIND INT YES
INT_KIND_DESCR VARCHAR(32) YES
FSP_SPF_ID BIGINT YES
FSP_NAME VARCHAR(128) YES
LAST_EXTRACT_DATE DATETIME YES

Table 7-68 (Continued) Physical table layout for IAA_Hierarchy

Physical Data Table Name: FACT_CONSULTANT_TARGET_PROPERTIES (Version

1.2)

Note: Used for fact consultant target properties

Column Name Data Type Null Allowed
D INT IDENTITY NO
DIM_DATE VARCHAR(8) YES
PARTY_AREA MANAGER_ID INT YES
PARTY_CONSULTANT_ID INT YES
PARTY AREA ID INT YES
SOURCE_SYSTEM_ID INT YES
SOURCE_SYSTEM_VERSION INT YES
EXTRACT DATE DATETIME YES
API_FACTOR DECIMAL(10,2) YES
APl_PERCENTAGE DECIMAL(10,2) | YES
API_TARGET DECIMAL(10,2) YES
COMMISSION_FACTOR DECIMAL(10,2) YES
INCENTIVE_VARIABLE_PORTION OF SALARY DECIMAL(10,2) YES
INTERMEDIARY_FACTOR DECIMAL(10,2) YES
INTERMEDIARY_START DT DECIMAL(10,2) YES
NEW_HEAD FACTOR DECIMAL(10,2) YES
NEW HEAD PERCENTAGE DECIMAL(10,2) YES
NEW _HEAD TARGET DECIMAL(10,2) YES
REGIONAL FACTOR DECIMAL(10,2) YES
TARGET_API_ AMOQUNT DECIMAL(10,2) YES
TARGET NEW_HEAD AMOUNT DECIMAL(10,2) YES

Table 7-69 Physical table layout for FACT_CONSULTANT_TARGET_PROPERTIES

274

Chapter 7 — Research design and the IS Prototype

Physical Data Table Name: FACT API (Version 1.2)

Note: Used for fact API

Column Name Data Type Null Allowed
ID INT IDENTITY NO
PARTY_INTERMEDIARY_ID INT YES
PARTY_CONSULTANT ID INT YES
DIM_DATE VARCHAR(8) YES
PARTY AREA MANAGER_ID INT YES
ACTUAL ID INT YES
PARTY POLICYHOLDER ID INT YES
SOURCE_SYSTEM _ID INT YES
SOURCE_SYSTEM _EXTRACT_DATE DATETIME YES
EXTRACT DATE DATETIME YES
TRANSACTION_AMOUNT NUMERIC(18,2) YES
ALLOCATED_AMOUNT NUMERIC(18,2) YES
MEMBER_AGE INT YES
COMMISSION_TYPE VARCHAR(255) YES
MONTHS IN_FORCE INT YES
ORIGINAL_REQUEST _DATE DATETIME YES
REQUESTED_DATETIME DATETIME YES
TRANSACTION DATE DATETIME YES

Table 7-70 Physical table layout for FACT_HEAD

Physical Data Table Name: DIM_PARTY_POLICYHOLDER (Version 1.2)

Note: Used for policyholder dimension

Column Name Data Type Null Allowed
PARTY POLICYHOLDER ID INT IDENTITY NO
SOURCE SYSTEM ID INT YES
SOURCE SYSTEM_REFERENCE VARCHAR(255) YES
SOURCE SYSTEM START DT DATETIME YES
SOURCE SYSTEM_END DT DATETIME YES
SOURCE SYSTEM_STATUS VARCHAR(255) YES
IS CURRENT BIT YES
PREVIOUS ID INT YES
RECORD START DT DATETIME YES
RECORD END DT DATETIME YES
EXTERNAL _REFERENCE VARCHAR(255) NO
ROLEPLAYER_ID NUMERIC(19,0) NO
ROLEPLAYER VERSION NUMERIC(19,0) NO
ROLEPLAYERTYPE_ID INT YES

Table 7-71 Physical table layout for DIM_PARTY_POLICYHOLDER

275

Chapter 7 — Research design and the IS Prototype

BIRTH_DATE DATETIME YES
ISBIRTHDETIALSESTIMATED CHAR(1) YES
DISPOSABLE_INCOME VARCHAR(255) YES
DISPOSABLE_CURRENCYCODE VARCHAR(255) YES
GROSS_INCOME VARCHAR(255) YES
GROSS_INCOME_CURRENCY_CODE VARCHAR(255) YES
EMPLOYMENTSTATUS VARCHAR(255) YES
GENDER VARCHAR(255) YES
LANGUAGE VARCHAR(255) YES
MARITAL_STATUS VARCHAR(255) YES
INITIALS VARCHAR(255) YES
BIRTH_NAME_ID VARCHAR(255) YES
FIRST_NAME VARCHAR(255) YES
LAST_NAME VARCHAR(255) YES
MIDDLE_NAMES VARCHAR(255) YES
PREFIX_TITLES VARCHAR(255) YES
SUFFIX_TITLES VARCHAR(255) YES
SHORTFIRSTNAME VARCHAR(255) YES
SALUTATION VARCHAR(255) YES
FULLNAME VARCHAR(1279) YES
DESCRIPTION VARCHAR(255) YES
BIRTH_NAME_START_DATE DATETIME YES
BIRTH_NAME_TYPE_ID VARCHAR(255) YES
BIRTH_NAME_VERSION VARCHAR(255) YES
COUNTRY_CODE VARCHAR(255) YES
PASSPORT _NUMBER2 VARCHAR(255) YES
PASSPORT_NUMBER VARCHAR(255) YES
NATIONAL REGISTRATION_ID VARCHAR(255) YES
NATIONAL_REGISTRATION_PARTY ID VARCHAR(255) YES

Table 7-72 (Continued) Physical table layout for DIM_PARTY_POLICYHOLDER

| Physical Data Table Name: DIM_PARTY_INTERMEDIARY (Version 1.2)

Note: Used for intermediary dimension

Column Name Data Type Null Allowed
PARTY _INTERMEDIARY _ID INT IDENTITY NO
SOURCE_SYSTEM ID INT YES
SOURCE_SYSTEM REFERENCE VARCHAR(255) YES
SQURCE_SYSTEM START DT DATETIME YES

Table 7-73 Physical table layout for DIM_PARTY_INTERMEDIARY

Chapter 7 — Research design and the IS Prototype

SOURCE_SYSTEM_END_DT DATETIME YES
SOURCE_SYSTEM_STATUS VARCHAR(9) YES
IS CURRENT BIT YES
PREVIOUS ID INT YES
RECORD_START DT DATETIME YES
RECORD_END_DT DATETIME YES
TITLE VARCHAR(255) YES
FIRST NAME VARCHAR(255) YES
MIDDLE_NAMES VARCHAR(255) YES _
LAST NAME VARCHAR(255) YES
KIND VARCHAR(32) YES]
KIND_ID INT YES
FSP VARCHAR(128) YES
FSP_ID BIGINT YES
REPORTS TO VARCHAR(64) YES
REPORTS_TO_ID BIGINT YES
BELONGS TO VARCHAR(64) YES
BELONGS TO_ID BIGINT YES

Table 7-74 (Continued) Physical table layout for DIM_PARTY_INTERMEDIARY

Physical Data Table Name: DIM_PARTY_CONSULTANT (Version 1.2)

Note: Used for the consultant dimension

Column Name Data Type Null Allowed
PARTY CONSULTANT ID INT IDENTITY NO
SOURCE_SYSTEM_ID INT YES
SOURCE_SYSTEM_REFERENCE VARCHAR(255) YES
SOURCE_SYSTEM START DT DATETIME YES
SOURCE_SYSTEM_END DT DATETIME YES
SOURCE_SYSTEM_STATUS VARCHAR(9) YES]
IS CURRENT BIT YES

PREVIOUS _ID INT YES
RECORD_START DT DATETIME YES
RECORD_END DT DATETIME YES N
TITLE VARCHAR(255) YES

FIRST NAME VARCHAR(255) YES
MIDDLE_NAMES VARCHAR(255) YES

| LAST NAME VARCHAR(255) YES

REPORTS TO VARCHAR(64) YES

Table 7-75 Physical table layout for DIM_PARTY_CONSULTANT

277

Chapter 7 — Research design and the IS Prototype

REPORTS_TO ID BIGINT YES
BELONGS_TO VARCHAR(64) YES
BELONGS _TO_ID BIGINT YES

Table 7-76 (Continued) Physical table layout for DIM_PARTY_CONSULTANT

Physical Data Table Name: DIM_DATE (Version 1.2)

Note: Used for the date dimension

Column Name Data Type Null Allowed
DIM_DATE VARCHAR(8) NO
YEAR INT YES
MONTH INT YES
MONTH_NAME VARCHAR(50) YES
DAY INT YES
DISPLAY _DATE VARCHAR(10) YES
DATE DATETIME YES
DAY _NAME VARCHAR(50) YES
DAY_OF WEEK INT YES
WEEK _OF YEAR INT YES
SEMESTER INT YES
QUARTER INT YES
Table 7-77 Physical table layout for DIM_DATE
Physical Data Table Name: DIM_ACTUAL (Version 1.2)
Note: Used for actual dimension (or agreement
dimension)
Column Name Data Type Null Allowed
ACTUAL_ID INT IDENTITY NO
SOURCE_SYSTEM_ID INT YES
SOURCE_SYSTEM_REFERENCE VARCHAR(255) YES
SOURCE_SYSTEM_START _DT DATETIME YES
SOURCE_SYSTEM_END DT DATETIME YES
SOURCE_SYSTEM_STATUS VARCHAR(255) YES
IS_CURRENT BIT YES
PREVIOUS ID INT YES
RECORD START DT DATETIME YES
RECORD END DT DATETIME YES
MEMBER _EXTERNAL REFERENCE VARCHAR(255) YES
BUSINESS GROUP VARCHAR(255) YES

Table 7-78 Physical table layout for DIM_ACTUAL

278

Chapter 7 — Research design and the IS Prototype

BENFIT_NAME VARCHAR(255) YES
OFFERING VARCHAR(255) YES
OFFERING_TYPE VARCHAR(255) YES
PRODUCT_TYPE_ID INT YES
PRODUCT _DESCRIPTION VARCHAR(255) YES

Table 7-79 (Continued) Physical table layout for DIM_ACTUAL

Physical Data Table Name: AUDIT LOG (Version 1.2)

Note: Used for audit logging purposes

Column Name Data Type Null Allowed
ID INT IDENTITY NO
START_TIME DATETIME YES
END_TIME DATETIME YES
DURATION INT YES
JOB_CODE VARCHAR(255) YES
JOB_DESCRIPTION VARCHAR(255) YES

Table 7-80 Physical table layout for AUDIT_LOG

7.6.5.3. Physical Design — Estimate database size and index plan

Estimating the database size was done with the assistance of the DBA in the
deployment team. The initial sizes were gathered from the database management
system and the growth was estimated by comparing the table sizes after each
dimension and fact table promotion. Table 7-81 illustrates the tables in the DW with the

sizes and row counts for each table. No aggregation plan was created, as there was no

need for this.

279

A

[N AN L RV

ML LA U s

Ty o

Database size and Index plan for DW

Index Growth Table Growth with
Table Data Space Unused | Expected | Table Size per
Row Size Space Used Space in rows growth Month
Table Name Count (KB) Used (KB) | (KB) (KB) per ETL | (KB) (KB)
Each promotion of
the dimensions
AUDIT_LOG 18 24 16 8 0 18 24 744 | and fact tables.
Each new policy
DIM_ACTUAL 245136 46800 37656 9096 48 5000 955 29592 | contract
DIM_DATE 146099 | 12808 12696 80 32 0 0 o | Static
DIM_PARTY_CONSULT Each new
ANT 88 72 16 16 40 50 41 1268 | consultant
DIM_PARTY_INTERME Each new
DIARY 7938 1800 1760 16 24 500 113 3515 | intermediary
DIM_PARTY_POLICYH New policyholder
OLDER 81537 28112 26216 1816 80 2500 862 26720
Each new policy
FACT API 480583 61320 61032 208 80 2500 319 9889 | sold
FACT_CONSULTANT_T Each target set on
ARGET_PROPERTIES 88 72 16 16 40 100.00 82 2536 | consultant
FACT_HEAD 144019 | 10808 10696 80 32 2000 150 4653 | New policyholder
Any change to
intermediary or
IAA_HIERARCHY 31077 13576 13560 8 8 1000 437 13542 | consultant

Table 7-81 Database size and index plan for the case study DW

280

Chapter 7 — Research design and the IS Prototype

7.6.6. Data staging
Section 6.3.5 furthermore suggests that the main object-oriented phases be
investigated. These are:
e Gather requirements
¢ Analyse requirements
e Design
e Implement

o Test

Gather requirements

Requirements were gathered at the beginning of the project (section 7.6.2.)
while analysis took place during dimensional modelling (section 7.6.3.) and

technical architecture modelling (section 7.6.4.).

Analyse requirements

The analysis of the backroom architecture serves as the planning part for the ten
step overview (steps 1-4). The analysis of the backroom provides the developers
with a one page schematic flow, the strategy of the data stage tool to be
implemented and a detailed schematic of the data restructuring and
transformation process. In terms of object-oriented phases, the dimension loads
(step 4 — 6), as well as fact table and automation (steps 7 — 10) consist of a
design phase, an implementation phase and a testing phase. The rest of section
7.6.6. will deal with data staging for the case study DW.

7.6.6.1. Data Staging — OO Design
The data staging environment has two major design areas:
¢ Dimension table loading
¢ Fact table loading and automation

The analysis documents available for the designs are:

281

Chapter 7 — Research design and the IS Prototype

e Dimension model designs (section 7.6.3.9.)

e Entity Relationship models of the sources systems (section 7.6.3.8.)

¢ High level schematic plan (section 7.6.4.3.)

¢ Detail schematic plans (section 7.6.4.3.)

¢ Business rules (section 7.6.5.1.)
Section 6.3.5.1 explains that based on the analysis documents listed, the
following need to be created for each dimensional load and fact table load in the
data staging area:

e State chart model

o Entity relationship model

e Collaboration model between ETL processes

State chart model

The state chart model should illustrate extraction of the data from its starting
point (the source) to the transformation and its conditions to its end point (the
dimensions or fact tables). Figure 7-25 to Figure 7-30 illustrate the state chart

diagrams used for the data staging logic.

282

Chapter 7 — Research design and the IS Prototype

State chart diagram: SP_Build_IAA_Hierarchy (version 1.0)

Notes:

.— /\,(Start Log (0002 ,BUILD SALES HIERARCHY)
Gxtract Level1 Agents and brokers with the following kind id 1023,1025,1033,1034

\——W

Extract Level2 - Reports 1o builds the sales hierarchy

—

E}pdate table (AA_HIERARCHY

&) &G

N

Stop log (0002)

Figure 7-25 State chart model for SP_BUILD_IAA_HIERARCHY

State chart diagram: SP_Promote_DIM_ACTUAL (version 1.0)

Notes:

VY

Gpdate Dit_ACTUAL. (with reference to old record)

.—%(Skart Log {0006, POPULATE DIM ACTUALD

Gse member numbers and get po!icynumbers)

V (Insert new records to DIM_ACTUAL
l Remove heaith insurance poll‘cies)

Slop Log (0006)

Figure 7-26 State chart model for SP_PROMOTE_ACTUAL

283

Chapter 7 — Research design and the IS Prototype

State chart diagram: SP_Promote_DIM_PARTY_CONSULTANT (version 1.0)

>

‘_.%(Stan Log (0004, POPULATE DIM PARTY CONSULTANT)]

Get external reference of all consultant (kind id 1032) from sales stats records)

\V‘—‘

Link external reference to SPF ID)

Link SPF ID to Party DB to get personal detailsj

ﬂ

Qse IAA HIERARCHY to get Reports To and Belongs To information

v

Gompare current records with PARTY CONSULTANT DIMENSION

Notes:

D Update existing records with reference to old records

Stop Log (0004)

Figure 7-27 State chart model for SP_PROMOTE_PARTY_CONSULTANT

State chart diagram: SP_Promote_DIM_PARTY_INTERMEDIARY (version 1.0)

Notes:

Insert new records

.—:%(Start Log (0003, POPULATE DIM PARTY INTERMEDIARYD

Get external reference of all INTERMEDIARY (kind id 1033) from sales stats records]

Q_ink external reference to SPF le

(Link SPF 1D to Party DB to get personal details

(Compa(e current records with PARTY INTERMEDIARY DlMENS(O@»

> Update existing records with reference to old records

Stop Log (0003}

Figure 7-28 State chart model for SP_PROMOTE_PARTY_INTERMEDIARY

284

Chapter 7 — Research design and the IS Prototype

State chart diagram: SP_Promote DIM_PARTY_POLICHOLDER (version 1.0)

Notes:

Insert new records

2

.—-9(513” Log (0001, POPULATE DIM PARTY POLICYHOLDERD

(Get external reference of all intermediaries (kind id 1033) from sales stats records)

\’/_1

Link external reference to SPF IDj

_W

(Link SPF ID to Party DB to get personal detailg
[Compare current records with DIM PARTY POLICYHOLDER}—

DA Update existing records with reference to old records P&

Stop Log (0001)

Figure 7-29 State chart model for SP_PROMOTE_PARTY_POLICYHOLDER

State chart diagram: SP_Promote_FACT _API (version 1.0)

Notes:
'_.H(Start Log (0007, PROMOTE FACT API))
|
Build lookup tables

Link dimensions with lookup tableg
Insert net facts into FACT_API]

Stop Log (0007)

)

.

Figure 7-30 State chart model for SP_PROMOTE_FACT_API

285

Chapter 7 — Research design and the IS Prototype

Entity relationship model

Accompanied by the state chart models, is an entity relationship model

illustrating the underlying structure that will support the ETL. Figure 7-31 shows
the ER model supporting the ERL processes illustrated in Figure 7-25 to

7-30.

Figure

'AA_HIERARCHY AUDSIT_LOG FACT_CONSULTANT_TARGET. PROPERTIES DIM_PARTY_AREA_MANAGER DIM_PARTY_POLIGYHOLDER
‘ PK |ID PK | PARTY AREA MANAGER ID PK | FARTY POLICYHOLDER ID
SalesDiv_Pty_ID D FK1 | DIM_DATE SOURCE_SYSTEM_ID SOURCE_SYSTEM_ID
SalesDlv_Pty_Role_ID START_TIME FK3 | PARTY_AREA_MANAGER_ID SOURCE_SYSTEM_REFERENCE SOURCE_SYSTEM_REFERENCE
SalesDiv_Name END_TIME FK4 | PARTY_CONSULTANT_ID SOURCE_SYSTEM_START_DT SOURCE_SYSTEM_START_DT
SalesDiv_Mgr_Pty_IO DURATION FK2 | PARTY_AREA_ID SOURCE_SYSTEM_END_DT SQURCE_SYSTEM_END_DT
SalesDN_Mng:gme JOB_CODE SOURGE_SYSTEM_ID SOURCE_SYSTEM_STATUS SOURCE_SYSTEM_STATUS
Selesroa Py 10 JOB DESGRIPTION SOURCE_SYSTEM_VERSION 1S_CURRENT 1S_CURRENT
SalesArea_Pty Role 0 EXTRACT_DATE PREVIOUS_ID PREVIOUS_ID
g::x;::—;‘“,“:w s — API_FAGTOR RECORD_START_DT RECORD_START_DT
oo Mor Y- TBL_SALES_STATS AP PERCENTAGE ¥ [recorD_END_OT RECORD_END_DT
alesArea_Mgr_Name API_TARGET TITLE EXTERNAL_REFERENCE
SalesOffice_Pty_ID COMMISSION_FACTOR FIRST_NAME ROLEPLAYER_ID
SalesOffics_PartOf_Role_ID INCENTIVE_VARIABLE_PORTION_OF _SALARY MIDDLE_NAMES ROLEPLAYER_VERSION
?;z:%g-zz‘:’;gsmﬁmef'o SALES_STATSID INTERMEDIARY_FACTOR LAST_NAME ROLEPLAYERTYPE_ID
SalesOffica_Mgr_SPF_ID PROVINGE 1D INTERMEDIARY_START_DT REPGRTS_TO BIRTH_DATE
SalesOffica_Mar_Name oueE NEW_HEAD_FACTOR REPORTS_TO_ID ISBIRTHDETIALSESTIMATED
SalesUnt Sty ID PROVMAN_ID NEW_HEAD PERCENTAGE BELONGS_TO DISPOSABLE_INCOME
SalesUnit Name SALES_MANAGER NEW_HEAD_TARGET BELONGS_TO_ID DISPOSABLE_CURRENCYCODE
SalesUnit Mar SPF ID REGION REGIONAL_FACTOR REPORTS_TO_DIVISION GROSS_INCOME
vy CONSULTANT_ID TARGET_API_AMOUNT REPORTS_TO_DIVISION_ID GROSS_NCOME_CURRENCY_CODE
SalasntMgr_Nar CONSULTANT TARGET_NEW_HEAD_AMOUNT BELONGS_TO_DIVISION EMPLOYMENTSTATUS
nsultant_SPF | USER_TYPE BELONGS_TO_OIVISION_ID GENDER
ansu;an:,:«“ama $H_AS_SALES_PERSON — LANGUAGE
nautant_ttie CONTACT I
Consultant_Firstame ADV,S';%T- 0 mﬁm._smms
Consultant_Lastame INTERMEDIARY_TYPE BIRTH_NAME_ID
Consuttant’ Miidlenames FIN_SERV PROVIDER FIRST_NAME
Im_SPF_ID BUS_TYPE. I
Int_sP¥ _ LAST_NAME
InCintials Jr-YEAR, MIDDLE_NAMES
int_Firstname TRXMONTH » PREFIX_TITLES
Int_Lastname TRX_TYPE DIM_PARTY_AREA DIM_DATE SUFFIX_TITLES
A PRODUGT b
Int_FuliName PK | DM DATE SHORTFIRSTNAME
_F TARGET_CODEID PK | PARTY _AREA 1D SALUTATION
Int_Ext_Ref TOTAL_PREMIUM FULLNAME
INT_RECORD_START_DATE TOTAL LOADING SOURGE_SYSTEM_ID YEAR DESCH
INT_RECORD_END_DATE VALUE ¥ i MONTH RIPTION
O - vaLE SOURCE_SYSTEM_REFERENCE T NAME BIRTH_NAME_START_DATE
i SOUNGE SYaTEM END O onr - SR TH NAME VERSION
'F"S'}K"S“;’#DTSC’ SOURCE_SYSTEM_STATUS gf]f"ELAYfDATE COUNTRY_CODE
- = IS_CURRENT PASSPORT_NUMBER2
FSP_Name PREVIOUS_ID OAY_NAME PASSPORT_NUMBER
Lasi_Extract_Dale ST DAY _OF_WEEK R
L Extracy | RECORD_START_DT DTl NATIONAL REGISTRATION_ID
RECDRD_END_DT ‘S"’E‘E’ﬁég‘?gﬁ EAR NATIONAL REGISTRATION_PARTY_ID
v ORGANISATION_NAME i
DIM_PARTY_GONSULTANT o
PK | PARTY CONSULTANT ID
SOURGE_SYSTEM_ID
SOURCE_SYSTEM_REFERENCE
SOURCE_SYSTEM_START_DT
SOURCE_SYSTEM END_DT
SOURCE_SYSTEM_STATUS
15_CURRENT
DiM_PARTY_INTERMEOIARY’ PREVIOUS_ID
- RECORD_START_DT FAGT_APL
PARTY INTERMEDIARY 1D RECORD_END_DT
SOURCE_SYSTEM_ID TiRer e ACTUAI D‘: e
URCE M_ FIRST_NAME PK
SOURCE_SYSTEM_REFERENCE MIDDLE_NAMES FK5 | PARTY_INTERMEDIARY_ID
SOURCE_SYSTEM_START_OT LAST_NAME T IS FK4 | PARTY_CONSULTANT iD SOURCE_SYSTEM_(D
SOURCE_SYSTEM_END_DT REPQRTS_TO ACT Fi2 | DIM_DATE SOURCE_SYSTEM_REFERENCE
SOURCE_SYSTEM_STATUS REPQRTS_TO_ID K |Io FK3 | PARTY_AREA_MANAGER_ID SOURGE_ SYSTEM_START_DT
IS_CURRENT BELONGS_TD FK1 | ACTUAL_ID SOURCE_SYSTEM_END_DT
PREVIOUS_ID BELONGS_TO_ID FKS | PARTY_INTERMEDIARY IO FK8 | PARTY_POLICYHOLDER_ID SOURCE_SYSTEM_STATUS
RECORD_START_DT FK2 | PARTY_AREA 1D - SOURCE_SYSTEM ID 1S_CURRENT
RECORO_END_DT £K4 | PARTY CONSULTANT ID SOURCE_SYSTEM_EXTRACT_DATE PREVIOUS_ID
TITLE FK3 | PARTY_AREA_MANAGER_ID EXTRACT_DATE RECORD_START_DT
FIRST_NAME FK1 |DIM DATE - TRANSAGTION_AMOUNT RECORD_END_OT
MIDDLE_NAMES « PARTY_POLICYHOLDER 1D ALLOGATED_AMOUNT MEMBER_EXTERNAL_REFERENCE
LAST_NAME ary - ggMSERS,%iETYPE BUSINESS_GROUP
KIND MMISSION_ BENFIT_NAME
KIND_ID MONTHS N FORGE MONTHS_IN_FORCE OFFERING
£sp ORIGINAL_REQUEST_DATE OFFERING_TYPE
FSP_ID < REQUESTED_DATETIME PRODUCT TYPE_ID
REPORTS_TO TRANSACTION_DATE PRODUCT_DESCRIPTION
REPORTS_TO_D —
BELONGS_TO
BELONGS_TO_ID

Figure 7-31 ER Model for staging environment for sales ETL

Collaboration model

The collaboration model is created once all the state chart models and entity

relationship models are done. The collaboration model provides a graphical

286

http://Sala.DN.~Mg

Chapter 7 — Research design and the IS Prototype

overview of the interaction between the ETL processes and their inter-
dependencies. Figure 7-32 shows the collaboration diagram for the ETL process

in the DW case study.

Get latest Sales —» | Promote
Stats records Dimension Party \

Palicyholders
\ \ Promte
FACT_API

Promote

Dimension Party

Intermediary Promote
FACT_HEAD
/
ats re: Dimension Party Promote
\ Consultants FACT_TARGET

2

Promote
Dimension Actual

Figure 7-32 Collaboration diagram on the ETL for the data warehouse
7.6.6.2. Data Staging — OO Implementation

The implementation of the dimension and fact table loads is supported by the
state chart and ER model designs created. Each stored procedure is grouped as

a package and coded. The packages are stored on the SQL server itself as
stored procedures.

The flow control of these packages is controlled by another stored procedure that
kicks off the ETL stored procedure according to the collaboration diagram
ilustrated in Figure 7-33.

287

Chapter 7 — Research design and the IS Prototype

Progerties
PRLE R tovas £ topn

{GICHREFS-DN E-4859-B20- Hi
BALS B

e
L Spectes the neve W e bl

Figure 7-33 SSIS that controls the flow of the stored procedures

7.6.6.3. Data Staging — OO Testing

Unit testing was done on each package by means of the following:
e Duplication testing
e Reconciliation testing, by comparing figures on reports per time frame to
production report figures.
e Changing dimension testing, by changing key fields in the dimension and

investigating whether a new record is created.

7.6.7. End user applications
The end user application for the case study must support the following groups:
e Application support (IT)

e Business (Sales Department)

288

Chapter 7 — Research design and the IS Prototype

Application support means the creation of ad hoc queries as requested by

various managers in different departments. Microsoft SQL Management Studio

was used to create and run these queries. Ad hoc queries have to go through a

staging phase, followed by QA and finally production for execution. The results of

the production execution are sent to the business. Figure 7-34 is an illustration of

the tool used by developers to create ad hoc reports.

<

J TamencTIVTY

+ 1] LAA-CLATM

+ o] [AA-COMMON

+ 11 IAA APALRICATICN
£ 1] LWAFSA

§ 5 IAAFT

4 19 TAA-INTERMECIARY
¥ 05 IABPARTY

£ ¢ 3 IABPHVIOR]

+ 1 TARRATING

+ 4 ThasPR

£ 14 Murthwind

+ 1 PAC

¥ 1§ Phoenix_Migratian

not connected ..oteFactAPLsgl ' 10.100.17.59.P.., SQLQueryt.sql* - Olgect Evplorer Dietsils - X

SELECT -
S0 {BROKER.PARTY INTERMEDIARY_ID, 1. FARTY_INTERMEDILRY

. CONSULT!AET ID -17 PARTY_COMSULTANT

px) _SS.TRMGSP_CTIONLDATE 1200 '~“'_'

\FEL MANAGER_ID,- 1. FARTY_RREAL_MANAGEE

LCTULL_ID

OLICYHOLDER_IL, 1: FARTY FOLICYE

STENM_ID,

. SYSTEM_EXTRACT_DATE,

3 C TISSIONTYFE, COMMIZSION TYVFE
OHTHS_IN_FORCE

1M PARTY CONSULTANT T1
HCOMSULTANTZ & 3 u0i v

£ Disconnected

Resdy

Figure 7-34 SQL Server Manager Studio used by developers
Regular reports as requested, were created using Microsoft SQL Reporting

Services. The report also needs to go though the development life cycle of

staging, QA and production. Once the report is in production, the end user may

visit a web site on the intranet of the company and request the report. Figure

7-35 is an example of an end user report in the case study.

289

Chapter 7 — Research design and the IS Prototype

fle £t Wew Faventes ook Help #
ack - o b smah g Favaes SRR E * I I
) e L i i i e i+ s e e m
< ke [0, 100, 16, 240 RepaitsPagas Report. aspelremPath=3%2FAPIH Sales+ Stats+Repart ~ L»j G i
Horee .ty Subscriptions | Site Settings | Helg

SOL Server Reporting services
Hame =

API Sales Stats Report

Search for!

=

nsultant Name

ZSEEM KaMROODEEN

" ntermediary Name -&

e THOKOZAKT ZONDIT

i Mews Sule 2
Year 2008 Month 6 |_wizw Report
cear To Cate or Month Tear To Date v Gross or Mot Cross hd
Szles firea IC g Sales Office ID /0
Sales Office Manager (D 0 Consultant 10 0
Intermediary External Reference “ALL. FSP Narne AL
§i o4 e of72 B oeg 100 v wi)mer seledt o format Y a2 A

tAr PIEFPE PREEZ

Mir SLBERT CURTAIN

PE - FU‘F;"F VEUL»“E-E"I;H ﬁEGID[;I;;\L SaLES OFFICES R TIM SHAW 0
STERK CAFE - FORT ELIZARETH REGICMAL SALES OFFICES s JALTA VN HEEF DEN 0
STERN CAPE - PORT ELIZABETH REGICMAL SaLES DFFICES Mr LELRENCE POTRIETER 0o
STERM COPE - FORT ELIZABETH REGIZNAL SALES OFFICES CARL BERNHARD VERMEULER R BRENT KEEVY 924.0
STERM CAFE -~ FORT ELIZARETH REGICNAL SaLES OFFICES C4RL BERNHARD YERMEULEN Mrs LINDS KMOTT-CRALG [¥v)
STERN CAFE - FOPT ELIZSRETH FEGICH ES OFFICES 1ZARL BEFNHAPL VERRMELILEN z g brz JEstINE-RSPIE LOMBARD 43747.7
STERK COFE - FORT ELIZEBETH REGICHAL S4LES OFFICES ZARL BERNHARD YERMEULER 9932475 Winr ABIE KOESELENBER.G n.a
STERN CAPE - PORT ELIZABETH REGIONAL SALES OFFICES | CHRISTORF DU FLESSIS 123976176 1 TREVOR HOFART
ISTERM C4FE - POPT ELIZABETH PEGIOMAL S4LES OFFICES CHRISTORF L F’LESSIg 124195363 M AF‘EV\I‘E;"/TEPC\N
ISTERN CAPE - PORT ELIZABETH REGIOMAL SALES COFFICES CHRISTIORF LU FLE! 124323996 P NICDLASS SDEMDAAL 24153.8
ISTERH CAFE - PORT ELIZABETH REGIGHAL SALES OPFICES CHRISTOFF [FLESEIS 2262462 s CHMILLA COCKS 10
S TERM CAFE - FORT ELIZTABETH REGICNAL SALES OFFICES CHRISTOFF DU FLESSIS QBE4540 Mr PIET BOSZH a0
.':;TERH C&FE - FORT ELIZABETH REGICMSL SALES OFFICES GERRY JOYCE 123556510 Mr BRUCE GRIEVE 1997356
;TERN ZOPE - PORT ELIZABETH REGICHS) OFFI GARRY JOVCE 3Mr pavIDCOLNHAN 1 264.0

STERN CAFE - PORT ELIZABETH REGIOMAL SALE!

S OFFICES,

GAFFY JOVCE

AIE BOEHMKE

<

& Done

FpY
126065.0 ,

*

3f Lacalintrsnet

Figure 7-35 End user app report

7.6.8. Deployment

All end user applications should go through a development stage, i.e. staging,

QA and production. The source files are typically stored on a repository system

called CVS. This repository system supports different streams of development. A

developer needs to checkout code before developing. Once the changes are

done, the developer can check in the code. Figure 7-36 illustrates a CVS’s

checkout module used to get the latest copy of source code on the developer's

PC.

290

Chapter 7 — Research design and the IS Prototype

Modude Re ptions ©
Revision Date
Module P =T T :
#@ha-iaaces-01:fareedn databases/Packages *
‘greedn datah
greedo datab ckagesReparting o o
areedo datab 15/Reparting Cornrnission Migration
‘greedo datab 2rizral Extracts/Extract - G b b
greedo databases(SSIS Cialogue XML creation scripks
: greedo databasesjGeneral ExtractsProducti Onourentun Docbass
i a@ho-iaac fgreedo datsbases/Emal_Report . -
y@ho-iaacvs-01:/greedo databases/Phoenixfdata-fixes 5317 DSB
s@ho-iaacys-01:fgreedn databasesProerixstored-procs/Sta
w5 L Emenl_Rospart
i} i General Extracts
4
I CMSROCT:
Frotocal:
Protocal parameters:
: -1 PACS
i Server: i 4
H ‘ 7+ i Phase 2
Port:
& {7 Phoenisx
Riepositary falder: « (3721 Projects
User nage: Cuarnkuri
f 1 SalesLogic ~
T Bugnumber: Medute: | databases v
| Cancel |

Figure 7-36 CVS as repository system for source code

In this case study scripts are used as a mechanism for packaging code. The
code developed, is tested on a staging server. Once the developer is satisfied
with the code, he/she checks this into CVS. A request is logged with the
deployment team to promote the new code to QA. An appointed person in the
relevant business department then signs off the QA code in QA. The deployment
team promotes all signed off changes twice a month from QA to production.

Dates are scheduled when changes are promoted.

7.6.9. Maintenance and growth

The deployment team is responsible for scheduling the required ETL jobs for the
DW. Any defects in the DW or its end user application are reported to application
support’'s service desk. A service desk call is logged and assigned to the

291

Chapter 7 — Research design and the IS Prototype

responsible person. The code changes need go through the development life

cycle discussed earlier.

All enhancements to the DW are driven by a project manager and plan. All plans

are treated as new development projects.

Currently, there is a need for more information by departments other than the
sales department. Each of these requirements will be treated as a future

development phase.

7.7. Summary

This chapter deals with the research design and implementation of one of the
development methodologies discussed in chapter 6. In the research design, the
research question was to determine whether a data warehouse can be
developed using a data warehouse methodology and incorporating object-
oriented techniques. To answer the above research question, it was necessary to
implement one of the methodologies discussed in chapter 6. This chapter
describes the implementation of OO and the Business dimensional lifecycle

approach to DW development.

An insurance company serves as the research environment requiring multiple
parties for the development of the DW. Based on the methodology
implementation experience, it was found that the following techniques worked

very well in an OO development culture:

e Essential Use case diagram
e User interface prototyping
e Domain modelling

e Supplementary documentation

292

Chapter 7 — Research design and the IS Prototype

Although the concept of a traditional essential use case was altered in chapter 6,
it was still easily understood by business analysts. The rest of the requirements
gathering techniques followed a business and data warehouse structure. Owing
to the nature of the technical environment, as well as analysis and design of the
data marts (described from section 7.6.3.4.), one was forced to repeatedly
reassess the designs of the data marts. In some cases, reassessment of the
requirements was necessary to accommodate the design. One such case was
the change in membership types of the new production system (I1AA) to allow for

temporary members and members only. This is evidence of an iterative approach
common to OO development.

The following techniques from the business dimensional lifecycle are used in
implementation:

e Data warehouse bus architecture
e Fact table diagram
¢ Dimension table detail

s Source identification

Based on the above analysis techniques, the fact and dimensional tables were
developed.

The back room architecture of the technical architecture model involved analysis
of the following:

e Source systems
e Data staging services

The data staging services were based on the source systems identified, as well
as the designs for the star diagrams.

293

Chapter 7 — Research design and the IS Prototype

The front room analysis followed an OO approach on its own, as the reporting
tool used is based on the Microsoft.Net architecture, which is an OO framework.

The physical design phase in the business dimensional lifecycle approach was
implemented using a design, implementation and testing phase. The design
involves the design of the data warehouse, as well as the design of the data

staging area.

The design of the data warehouse entails the following:
e Defining standards
e Designing physical tables and columns
o Estimating database size and index plan
e Designing aggregates — no aggregation tables were defined
The design of the data staging area entails the following:
e Designing a state chart diagram based on the analysis of the data staging
services in the technical architecture
¢ Designing an ER model supporting the state chart model
¢ Designing a collaboration model depicting the overall ETL schema
The implementation of the data warehouse and the data staging involved the

coding of the designs created.

The testing of the data staging phase uses the same approach than the OO
approach. The testing of ETL jobs was done in phases suggesting that it is unit
tested. Audit statistics is a technique used to test the data staging.

The end user application supports the front end of the technical architecture
design, and a complete OO model can be applied to the development of these
applications.

294

Chapter 8 — Evaluation of the IS Prototype

Chapter 8 - Evaluation of the IS Prototype

8.1. Introduction

Baskerville (1999:13) explains that part of the approach to action research is to
evaluate and specify what is learned from the action plan implemented.
Therefore, this chapter will deal with the evaluation and specification of
knowledge gained from the implementation of the data warehouse (DW)

described in chapter 6.

The aim of the evaluation is to determine whether the techniques used to
implement the DW in the insurance company were successful. The evaluation
was done by investigating the incident requests and change requests logged at
the application support service desk of the business. Interviews were also
conducted with the business analyst and the application support manager to

obtain their perception of the techniques used.

The evaluation process is summarised, followed by a discussion on specified
learning based on the feedback received. The specified learning discussion
focuses on each object-oriented (OO) phase, detailing each technique in the

phase used.

8.2. The research question and the evaluation

This section deals with the evaluation of the DW implemented. It forms part of the
evaluation phase of action research as explained in Baskerville (1999:13) and

illustrated in Figure 8-1.

295

Chapter 8 — Evaluation of the IS Prototype

Action
Planning

Specifying
Learning

Evak}aung Action Taking

Figure 8-1 Evaluation in the Action Research Cycle (Baskerville, 1999:14)

The previous chapter dealt with the development of a DW, using a DW

methodology and jointly incorporating object-oriented (OO) techniques.

To measure the success of the above-mentioned implemented DW, the following
key areas need to be defined:

e User acceptance testing

¢ Incident requests from application support

¢ Change requests from application support

¢ Evaluation of OO techniques and DW methods

8.2.1. User acceptance testing

The sponsor of the DW project came from the application support department of
the insurance company. User acceptance testing (UAT) is done by the manager
and assigned testers of that department.
UAT testing involves the following:

¢ Evaluating reports generated from the DW

e Evaluating ad hoc SQL results and comparing these to existing results in

the current production environment.

Normal evaluation is done by means of test packs. A test pack is a set of tests
developed by the testers to evaluate the functionality of the application. No test

packs were available for the DW, as the latter was introduced to the company.

296

Chapter 8 — Evaluation of the IS Prototype

Test packs will be developed at a later stage. Currently, testing is done by
comparing results from the DW in the quality assurance (QA) environment to
those from the DW in the production environment, or in some cases the reporting
system in the production environment. The QA environment is an environment

similar to the production environment but, used for evaluation purposes only.

Each release of the DW is referred to as a build. A build is released to QA where
testers need to sign off or reject the build. A version number is assigned to each
build released to QA. This version number corresponds to the build notes and is
used to track the changes made to the DW.

Build notes typically contain two types of changes:
¢ Incident requests

e Change requests

An incident request refers to a defect in the DW build in production and will be
discussed in detail in the following section. A change request is an enhancement

request to the DW build in production. A discussion on this follows in section
8.2.3.

8.2.2. Incident requests

Qne of the controls in the application support department is incident requests.
This request is logged by a user, if he/she experiences problems with a specific
application (in this case the DW implemented). The request is forwarded to the
appropriate business analyst, who will evaluate the problem and pass it on to the
developer responsible. From here the developer applies the necessary changes
to correct the error and submit them to the deployment process where the

required user acceptance testing is done.

297

Chapter 8 ~ Evaluation of the IS Prototype

The following is a list of general incidents logged at the service desk:
e Report on API did not display the correct API count. This was applicable to
any time period

¢ Head count report did not display correct head count on certain
consultants

¢ Claw back commission report displayed incorrect amounts

The following is a discussion on the use of OO techniques for the DW and the

above logged incident requests.

8.2.2.1. Incident requests and traditional DW methodology

This section explores the possibility of whether the incidents (listed in the
previous section) result from using OO techniques to develop the DW, or not.
The first common incident is a report on API that did not display the correct API
count. This was valid for any time period. The cause of the incident was due to a
party type not loaded in the intermediary dimension. The initial requirements only
highlighted one “broker” type, with the second broker type, “agent”, never catered
for. The above incident was resolved by including the missing broker type “agent”
in the extract transform and loading (ETL). The root cause of the above incident
was due to a missing kind id (referring to the “agent” type) in the state chart
diagram document for the promote sp_promote DIM_PARTY_ INTERMEDIARY
ETL. The requirements collection was done correctly, as the physical data table
DIM_PARTY_INTERMEDIARY has a kind and kind_id field. This indicates that
the design of the above ETL was faulty. As the requirements and the analysis
were done correctly, one cannot state that this type of error is a result of using
OO0 techniques. The chance of getting a similar incident when using another DW
methodology would be greater, as requirements collection techniques in OO
interrogate the business processes. In this case, the requirements collection was
done successfully (as proved by the existence of the fields in the required table),
but the design was overseen.

298

Chapter 8 — Evaluation of the IS Prototype

The second common incident was a head count report not reporting the correct
head count on certain consultants. The cause of the incident was due to a
duplication of policyholder details found in the policyholder dimension table, as
the ETL did not cater for scenarios where a policyholder has cancelled his/hers

membership and then started a new membership thereatfter.

The above incident was resolved by catering for the above scenario in the ETL.

The root cause of the above incident was due to incomplete analysis. This
possibility was not discussed during the requirements gathering as this was not
evident in the requirements documentation. The analysis of the requirements
should have explored the possibility of the above member lifecycle behaviour.
Owing to the missing information on this type of behaviour in the analysis
documentation, the design never catered for it. However, the dimensional tables
in the DW needed no change to accommodate the above behaviour. This
incident could not result from using OO techniques in DW, as the dimensional

tables did make provision for such a scenario.

The last common incident was the claw back commission report reporting
incorrect amounts. The cause of the incident was missing policyholder details,
such as the id number, gender, birth date, or incorrect contact preferences. This
was largely due to corruption of data during previous production system
migrations. Aithough controls were set to bar incorrect data, some of it still got
promoted to the DW. No changes were needed in the DW presentation layer to
accommodate missing data. Most of the changes were made in the ETL for the
dimensions. This incident will occur with any DW methodology because of the
nature of migrated data. Common migration problems were identified during the
analysis of the ETL to cater for scenarios, but not all scenarios are always
identifiable. Therefore, this incident did not occur as a result of using OO
techniques.

299

Chapter 8 — Evaluation of the IS Prototype

8.2.3. Change requests

A change request is an enhancement request logged by a manager of the
requesting department. This request is forwarded to the application support
manager who decides whether the change is needed, and if so, assigns it to a
business analyst. The business analyst gathers the requirements from the
relevant department and supplies the developer with a change request
specification document. This document is a signed-off agreement between the

application support department and the requesting department for the changes
needed.

The only change request was to add a function to the Target API to group it by
division. No changes were needed on the DW, as it already contained the
division in the dimension consultant (this is referred to as “belongs to”). The
changes were needed in the scripts to generate the report.

Figure 8-2 is an illustration of the application used to manage change and
incident requests.

300

Chapter 8 — Evaluation of the IS Prototype

it « History Bookmar! Tools Help
LR SR ricenter fCasdjpdiet, B ’
A5 Most Vished @ Getting Stated 17 Lutest Headings | | Customizalinks Fres Hotmal | § Windows Marketplace 7 Windows Media] Windaws
.1 FPS Insurance Yeb Uniicenter Service Desk s) -
R
LS
Request & Status Open Date v Priority Group Customer Assignee i<
2578 Gpen 26/11/2008 11:47 sra Mans FPS Application Suppart EFT Rantss, Beveriey Assignee: Esterhuyse, lacques
: IT- PPS Adviseurs web problesm - Hardus Janse van Rensburg 22
Oper 25/11/2009 11:14 arn tone PFS Application Suppart EPT McKernan, Handy Assignee: Esterhuyse, Jacques
: Jacques Can vou laok at this far e,
Oper 25/1172005 0 arn Hare PR Application Support EFT wan der Spuy, Rossourt assignze: Esterhuyse, lscques
: Fortalio Errar - 802414
Open 24/1142008 0S:01 prn Nore PPS &pplication Suppart EFI van Wyk, Reths assignee: Esterhuyse, Jacques
P35 IH Eita © 124325854
Open 00 pm thanz FPS apphostion Support ERE van Wk, Reths assigree: Esterhuyse, Jacques
PES: 14 Schrgider @ 1197470
257854 Open 24/11/2008 04:53 pm tlane FPS application Support ER1 van Wk, Retha Assignse: Esterhuyse, Jacques
Summary: E Foeong ; 1093835
236588 Gpen 241172003 © Hune FP3 application Support ERT van der Wwalt, Dirk Assignee: Esterhuyse, Jacques
¥t Portfalio ervor - assistance required
Waiting 20/11/2008 04:13 pra Hane PES Application Support ERT Esterhuyse, Jacques | Esterhuyse, Jacques
803840
Gpen 18/11/2006 01:24 prn Nane FPS Applicstion Suppart EFT Quitondz-Brosd, Colin Assignes: Estechuyss, Jacques
i LA continuation option on Fortfalic
284%54 W siting 18/11/2008 08:29 am Nans PPS Apphcstion Suppart EFT Quitandz-Broad, Calin Assignee: Esterhu sequss
Suramary: members aot showing in portfolio but are in 184
Gpen & pm Hone PPS Application Support ERT Bsbulall, Mitashs Assignes: rhuy s, Jseques
: Mew Standslone Dusability Froduct
aiting 14/11/2008 01:47 pr Narie FRS Application Support EPT tMasime, Sedi | Esterhuyse, lacques
£ : iting 11/11/2008 02:0Z pert Hare FES Application Suppart EPT Quitawitz-Broad, Coln Assignes: Esterhuyse, lacques
+ Small 1253442
Cpen IN/11/2008 63:53 pro Hane PR3 Appheation Support €FT terhingas, Taries
: Add 2008 raasimums o portfolic
Vo aiting 045/11/Z00% D4:07 pm More PPS Application Suppart EPT wan #yk, Retha rhuyse, Jacques
Surnmary: PPE Memher: 124332707
7532 Ve aiting 08/10/2008 10:02 am MNane PPS application Support ERD Jenner, Scott Estarhuyse, Jacques
Sumrnary: 124332707
201t Gpie 07/10/2008 05:40 pea tlane FPS Application Supgart EPT tokarnaa, Mandy Thsyse ., Jacques
: Valuatigns DataMart
Wi siting U?/10/2008 tione PPS Applization Support EPI Mekecnan, Mandy assignee: Esterhuys
Sales Report into SOL Reparting
i aiting 26/0%/2005 thane PFS Applicaticn Suppart ERT Jenner, Scott rhuyse, Jauques
Subyect: 123430019
Waiting 26/03/2008 01:37 pr Hone FPS Apphoation Suppart EPT Jenner, Scott huyse, Jacques
yi 1 need 3 enhancement to be made to portfolio to allow for rmultiple quotes on rulitple Iif s and for merbers with naultiple life coverage benefits ta be shown,

1-20 of 20 ¥

Figure 8-2 Application used to manage incidents and change requests

8.2.4. Evaluation of OO and DW

The parties involved in the development of the DW were the following:
e A developer (the researcher)
e A business analyst

e Application support manager

The above mentioned parties had a good understanding of OO development with
only the developer understanding DW techniques. Therefore, one of the
challenges was to create a DW allowing for individuals with OO background to

understand the methodology.

301

http://Jar.se
http://Quitc.wits-E.road

Chapter 8 — Evaluation of the IS Prototype

Table 8-2 to Table 8-7 represent an interview with the business analyst and the

application support manager to ascertain how they understood the methodology

followed in chapter 7.

Question

Business Analyst

| Application support manager

Requirements gatherin

Was the concept of the
DW use case diagram
used properly?

“The DW use case diagram allows
one to define the different areas to
focus on when deciding to develop
a system. In this case it was
successful.”

From a business point of view, the
DW use case is a very effective
way of communicating with the
different business units and the
people responsible for certain
departments.

In some sense it also illustrates the
collaboration between certain
departments and their managers.

In this sense, the DW use case
diagram did achieve to illustrate
the different areas of the business,
and compared to the DW use case
used in normal development this
diagram did not differ.

Was the concept of the
DW use cases used
properly?

“The DW use cases did differ
slightly from what is used normally
in use cases. A normal DW use
case describes a process in a
sequence of steps.

This seems to provide information
of what data there couid be. If the
idea of a DW use case is to define
what information is available, then
it was used successfully.”

The grain is not a concept used in

normal use cases but “defining the
so-called grain of the use case is a
new concept, but understandable.”

The reasoning of the grain makes
sense, as this seems to be the
“driving force” of the process or
business department that is being
interviewed.

“Defining each input for a
department is somewhat
unnecessary, as this can become
very large and not always useful.”

“Defining the grain is a way of
determining what data is used or
generated for the relevant
department’s job.”

The use case diagram “highlighted
the different areas that one can
focus on for developing data
marts”, and one can easily identify
the relation between the DW use
case diagram and the DW matrix.

Table 8-1 Requirements gathering on development of the DW using OO techniques

302

Chapter 8 — Evaluation of the IS Prototype

Is the concept of a
business process use
case diagram useful?

The business process use case
diagram “seems like another name
for a normal use case diagram.”

The idea of a use case diagram is
to (as previously mentioned)
capture the sequence of steps of a
process.

“This technique does seem to do
Just that.”

The business process use case
diagram “is an excellent tool to
convey what the department does.

It is also a very good starting point
to determine which reports are
needed and what is needed on
these reports.”

Was CRC a “CRC is not a tool that is N/A
meaningful technique commonly used in the
to determine the development culture of this
problem domain? company. Some of the domain
objects were defined but there are
other ways to do this as well.”
Was the Yes it was. “Nothing out of the N/A
supplementary ordinary.”
documentation
meaningful?

Did you understand
the techniques used?

“Mostly yes, as many of these
techniques are based on the
normal development ones.”

The only technique that differed is
“the DW use case diagram and the
DW use cases though similar to
the normal use case”.

“Defining the grain for the DW use
case is a new concept.”

“Yes, these techniques were
successful as a communication
tool between colleagues”, “l was
able to identify the different
business areas and the key
stakeholders within the
departments.”

Table 8-2 (Continued) Requirements gathering on development of the DW using OO

techniques

303

Chapter 8 — Evaluation of the IS Prototype

Question | Business Analyst | Application support manager

Analysis of requirements

Any comments on the
system use cases
used?

“This was similar to the essential
use cases with only system
requirements added.” The DW
systems use cases “seems to be
an unnecessary step, it had only
the data type added, the rest was
exactly the same.”

Most of the technical detail could
have been added during the
essential DW use case.

“It is understandable that the
system use cases are done
separately from the essential use
cases, but one should consider
creating a hybrid type of use case
to save some time.*

“Probably the main reason for the
feeling of using one use case is
because in other projects only one
use case is created. The data
types are defined in a data
extraction definition (DED)
document. The DED is
accompanied by the use case.”

Was the sequence
diagram meaningful?

“No not really, the idea of a
sequence diagram in general is to
describe the follow of a process
and the objects between it. This is
normally down to a systems level
where the objects are defined and
the steps are clearly laid out. This
sequence diagram seemed to
attempt to describe what the link
is between that steps and its
objects, but the level is too high.

N/A

What is your
comments on the data
warehouse bus
architect matrix

“It does seem that the DW use
case with the common objects
identified complements the DW
matrix.”

The matrix was not correct the first
time, but was completed with an
iterative approach between the
object identified and the
dimensions defined in the matrix.

“The matrix does make you think
about what information is really
available for the DW and how this
information corresponds to what
needs to be modelled, in other
words, should dimension x be
available for data mart y.”

“This is an excellent way to
provide a bigger picture of the
project. The matrix helped with
defining project scope, modules fo
the DW and indicates the
dependencies between the data
marts (departments in the
business) and the common
concepts in the business, such as
a broker or a policyholder, etc.”

The matrix also serves as a mean
to test the correctness of the
analysis, for example “to check if
there is interaction between a
policyholder and the product
learning data mart.”

r

Any comments on the | It had to be changed (as used in N/A
dimensional table chapter 7) to be more descriptive
analysis? and meaningful.

Any comments on the | “Not really, was straight forward, N/A

fact table analysis?

the facts were easily identifiable.”

Table 8-3 Analysis phase on development of the DW using OO techniques

304

Chapter 8 — Evaluation of the IS Prototype

Any comments on the
hierarchy analysis and
design?

“In terms of the business it was
clear what needed a hierarchy.”

N/A

Any comments on the
technical architecture
modelling analysis?

N/A

N/A

In terms of OO, were
the techniques used
meaningful?

“Yes, because the system use
cases are definitely used in
traditional OO development. The
sequence diagrams are not used
in the correct way as it should be
used. The reason is because
sequence diagrams describe
objects in a process. This was not
exactly the case, as there was no
real process in the DW
presentation to describe.

The DW bus matrix is a nice
technique to get a top down view
of the proposed DW. The concept
is very simple to understand.”

N/A

Table 8-4 (Continued) Analysis phase on development of the DW using OO techniques

From the researcher's point of view, the dimensional model, fact table and

hierarchy analysis documents provided enough information to implement the
physical tables on the database (DB), although no OO concepts were used. The

technical architecture was purely DW based and did not incorporate any OO

concepts.

Question

[Business Analyst

| Application support manager

Design

What are your
comments on the
dimensional model
techniques used?

“The dimensional model provides a
clear presentation of a business
process.”

The concept of having a table
(dimension) for each entity that
describes a fact helps to “answer
business questions, as well as to
ask new questions about
information in a certain business
process that business never asked
before.”

N/A

Table 8-5 Design phase on development of the DW using OO techniques

305

Chépter 8 — Evaluation of the IS Prototype

How did you find the The “extract is defined very well N/A]
techniques used to with the help of the source to target
design the ETL in the mapping, ER and the business
data staging services? | rules.”

The approach to use a high level to
detail level diagram extract helped
to provide an understanding of
what processes need to go into the
state chart diagram.

“The application of the state chart
diagram to an ETL process came
very naturally and was not
confusing at all.”

“The same can be said about the
coliaboration model that was
created for the DW.”

Table 8-6 (Continued) Design phase on development of the DW using 00 techniques

From the researcher’s point of view, the dimensional model techniques provided
enough information for development. As with all OO development, a form of
iteration was used between the analysis and the design phase. An iterative
development lifecycle approach is a typical characteristic of OO development.
The design techniques used in the ETL, such as the state chart diagrams, entity
relational (ER) diagrams and collaboration diagrams are typical techniques used
in normal OO development. The above mentioned techniques were well suited to
effectively designing the DW.

The implementation of the DW did not involve the business analyst or the
application support manager. Therefore, the discussion on the implementation is
based on the researcher’'s experience. The implementation of the DW presented
no problems. The design documents provided sufficient information for

implementation. Unit testing was possible, as the DW implementation was

306

Chapter 8 — Evaluation of the IS Prototype

grouped in packages. These packages were defined from the DW matrix and the

state chart diagram.

Question

Business Analyst

| Application support manager

Testing

What are your
comments on the
testing of the DW?

“Testing was possible on the
outputs of the DW. Outputs in this
case are the reports and ah hoc
SQL query results. Each report
was tested by comparing itto a
similar report running production.
Only ad hoc queries that are
frequently used in the current
reporting environment were
testable. Unfortunately, ad hoc
queries that did not have a similar
report were not comparable. These
queries were tested using different
approaches where applicable.”

“Currently, most of the production
systems have test packs to test the
functionality of the application.
Because the DW is a new system,
test packs still need to be created.
These test packs will automate the
testing method mentioned earlier.”

“O0 has different testing
strategies for code testing. The
only type of testing that was
evident was unit testing. This did
work well.”

N/A

Table 8-7 Testing phase on development of the DW using OO techniques

8.2.5. Conclusion on the evaluation of the data warehouse

Based on user acceptance testing, incident requests and change requests

generated by application support, there is evidence of the DW being used, while

change requests also ensuring its growth. The following is a summary of the

evaluation of the development approach focusing on the subjects below:

* Requirements gathering

e Analysis of the requirements

e Design

307

Chapter 8 — Evaluation of the IS Prototype

¢ |mplementation
e Testing

8.2.5.1. Requirements gathering

Essential use case diagram

The perception of the essential use case diagram was favourable, as it provided
a high-level overview of the business components available. The parties involved
in requirements gathering were familiar with essential use case diagrams,
therefore very little was needed to explain the concept of DW and business

process (BP) use case diagrams.

Essential use cases

The DW and BP use cases were easily undersiood from the respective
diagrams. Documentation on inputs and outputs, as well as possible grain
needed by the DW use case, revealed no issues. There was also no difference

between the BP use case and the normal OO development use case.

CRC diagram

CRC diagramming was not perceived favourably as use case diagrams. This
technique was successful in identifying objects in the domain and the relationship
requirements between these objects, but the general feeling was that there are

better techniques available for identifying the domain objects and their
relationships.
Gathering supplementary requirements

The documents gathered as supplementary requirements were no different from
that of normal OO development.

308

Chapter 8 — Evaluation of the IS Prototype

Conclusion on requirements gathering

The use case diagram and use cases with the concept of splitting them into DW
and BP use cases worked very well. This is largely due to the fact that the
participants had background knowledge of OO development.

Some negative feedback on the use of CRC as a tool to define the domain model
was received. This however, can be changed by using another domain model
techniqgue. The supplementary documentation used was standard to OO
development. In general, the OO requirements gathering techniques worked very

well for acquiring the necessary DW analysis information.
8.2.5.2. Analysis

System use cases

Like essential use cases, the systems use cases also followed the structure of
DW and BP systems use cases. This also worked very well with the only
negative feedback that the process of creating an essential use case and then a

systems use case is time consuming.

Sequence diagramming

The sequence diagrams were not perceived as very favourable. The general
feeling was that this technique was not suited to this type of analysis. The aim

was to discover relationships and interaction between objects.

The data warehouse bus architecture

The use of data warehouse bus architecture matrix followed easily with the help
of the objects identified (added as dimensions) and the DW use cases (added as
subject areas). To a certain degree, the sequence diagram identified the
interaction between the dimensions and the subject areas in the DW bus

architecture matrix. It can therefore be concluded that the identified domain

309

Chapter 8 — Evaluation of the IS Prototype

objects, the use cases and sequence diagrams (all of which are OO techniques)

complement the development of the DW bus architecture matrix.

The dimensional table analysis

The dimensional table analysis is a DW technique and uses the DW bus
architecture matrix as a starting point. OO concepts such as inheritance or
polymorphism cannot be applied to the dimensional table analysis, as the
industry standard for DB is relational and not OO based.

The fact table analysis

The fact table analysis is also a DW technique using the DW bus architecture
matrix as a starting point. No OO concepts can be applied, for the same reason

as for dimensional table analysis.

The hierarchy analysis

The dimensional table analysis is a DW technique, but hierarchies are identified
during the BP system use cases. It can therefore be stated that the hierarchies -

are identified by the BP system use cases and the dimensional table analysis.

Technical architecture analysis

The technical architecture analysis consists of DW techniques only, none of
which is OO based. This could be due to the type of DB the DW runs on, which is
a relational DB and not OO based.

Conclusion on the analysis of requirements

Systems use cases and sequence diagrams were used to create the DW
architecture bus matrix. Hierarchies were also created by using the systems use
case and dimensional table. This suggests that the flow of analysis starts with
OO techniques and ends with DW techniques. Owing to the nature of relational
DB, it is not possible to implement OO concepts in the DW.

310

Chapter 8 — Evaluation of the IS Prototype

8.2.5.3. Design

Table designs

The design of the DW’s physical tables is not OO based, since the type of DB
used. It is therefore imperative to comply with relational DB table designs. No
comment can be made about the DB size and index plan, as these are used for
operational purposes and not for development. The OO concept of iteration was
done between analysis and design and even the requirements of the DW.

Data staging designs

Based on the information of the analysis documents (dimensional and fact table
designs, ER model and schematic plans), it was possible to design the data
staging with OO techniques, such as state chart models and collaboration
models. Also ER models were used to achieve this. The combination of these

techniques was favoured and proved successful.

Conclusion on the designs

The use of OO concepts in the design of a DW running on a relational DB is not
always possible. However, in data staging, OO techniques can be used to
describe the process of the ETL package, although relational DB techniques are
still required to describe the storage format.

8.2.5.4. Implementation

Implementation of the code was possible with the design documents provided.
The code was implemented in a packaged fashion. This allowed unit testing and
some form of reuse. Reuse forms, such as polymorphism, extends and

inheritance were not possible due to the type of DB used.

311

Chapter 8 — Evaluation of the IS Prototype

8.2.5.5. Testing

Unit testing was possible, as each unit test consisted of duplication testing,

reconciliation testing (where applicable) and changing dimension testing (where
applicable).

Based on the evaluation and feedback of parties involved, the implementation of

the DW may be considered a success.

8.3. Specifying learning

This section deals with specifying learning during evaluation of the DW. This
forms part of the specifying learning phase of action research as explained in
Baskerville (1999:13) and illustrated in Figure 8-3.

“gpecitying.
- Ledming:

Action
Planning

Action Taking

Figure 8-3 Specifying learning in the Action Research Cycle (Baskerville, 1999:14)

The following is a discussion on specifying learning, focusing on the following:

¢ Requirements gathering

Analysis of the requirements

Design

Implementation

Testing

312

Chapter 8 — Evaluation of the IS Prototype

8.3.1. Requirements gathering

The introduction of a DW use case diagram and DW use cases appeared to be
successful. A comment was made about the necessity of DW systems use
cases, the perception being that the information contained in the DW systems
use case is the same as in the essential DW systems use case, only with data
type definitions still to be added to the essential systems use case. For future
iterations, one may consider executing the DW systems use case in the way
commented on, but bearing in mind that both the essential use case and the

systems use case are systems dependent.

Another comment on the DW essential use case was that it did not describe a
sequence of events, but rather the data existing in the use case. The concept
behind the DW essential use case is to discover which information is available
and at what level. Although it worked very well, for future iterations consideration
should be given to using another technique portraying what information is

available within the scope of the business unit.

The concept of a business process use case diagram appeared to be working
well, as this is essentially a normal OO use case diagram with the function of
discovering the business processes within the department. For future iterations,

this should be kept unchanged.

Some negative feedback was received regarding the use of CRC as a tool for
defining the domain model. However, it should also be borne in mind that the
insurance company does not use CRC as a domain modeliing tool and that this
could be the reason for rejection. For future iterations, consideration should be
given to using another domain modelling technique, or to improve on educating
the parties involved.

313

Chapter 8 — Evaluation of the IS Prototype

The supplementary documentation that was used is standard to OO
development. In general, OO requirements gathering techniques worked very
well for acquiring necessary DW analysis information and should be used for

future iterations of the study.

The general perception was that the requirements gathering techniques were

successful, even with negative feedback on the CRC technique.

8.3.2. Analysis of the requirements

As discussed above, the DW systems use case was perceived as tedious.

Negative feedback was received on the sequence diagrams. The general
perception was that it is not suitable for this type of analysis. The interview
suggested that the idea of a sequence diagram is to describe the flow of a
process and the interaction between the defined objects on a systems level. A
comment was made that the sequence diagrams created in this study were on a
higher level. For future iterations, another process technique linking the objects

and the process steps may be considered.

The DW bus architecture matrix was perceived to be successful. The fact that it
is done iteratively, suggested an OO approach to the development of the DW bus
architecture matrix. It was also stated that the DW bus architecture matrix was
complemented by the OO techniques used for requirements gathering and
analysis. These techniques should be used for future iterations.

The dimensional table, fact table, hierarchy analysis and technical architecture
were perceived to be successful, but did not incorporate any OO techniques. The
main reason for this being the underlying relational based DB system, preventing
the application of OO concepts to the techniques used. If available, an OO DB

should be considered for the next iteration of the study.

314

Chapter 8 — Evaluation of the IS Prototype

In general, the OO techniques did complement the analysis of the DW. A
transition from OO structure (the use cases and sequence diagrams) to a more
relational structure (dimensional tables, fact tables and hierarchy analysis) was
perceived.

8.3.3. Design

As with dimensional modelling, design was purely relational-based, mainly
because of the underlying platform (DB) being relational. Therefore, incorporation
of any OO techniques could not be expected. Owing to its non-availability, an
OO DB could not be used for this study, but may be considered for future
iterations.

The design of the ETL was complemented by the state chart diagrams, ER
diagrams and collaboration diagrams as it represents a process of transformation
of data between two systems. These techniques should be used for future

iterations of the study.

8.3.4. Implementation

Feedback on the implementation of the DW is based on the researcher’s
experience. The implementation was possible with the requirements and analysis
documents received. A form of iteration was present between implementation
and analysis and sometimes the requirements documents. This is characteristic
of OO development.

The implementation process cannot be changed, but it can be made more
efficient by means of optimising the analysis documents. Therefore, the

implementation phase will be the same for future iterations.

8.3.5. Testing

Testing was completed by the business analyst, the interview suggesting that

unit testing was possible and that automated testing can be applied to outputs of

315

Chapter 8 — Evaluation of the IS Prototype

the DW. The only shortcoming during the testing phase was that the results of
new ad hoc queries were not verifiable. Unit testing is a form of an OO

technigue, but more testing techniques should be considered for future iterations.

8.3.6. Future iterations of the study

Future iterations of the study are possible, but for financial reasons not feasible.
Information systems, especially DW systems, are expensive to develop, however

this study can be used for future research.

8.4. Conclusion

The research question considered in this study was to determine whether a data
warehouse can be developed by using a data warehouse methodology and

incorporating object-oriented techniques.
The development of the DW generally appeared to be successful.

The following are findings of the research question, as well as an evaluation

thereof, as discussed in this chapter.

The use of OO requirements gathering techniques generally proves to be
successful. The use case diagram and use cases with the concept of splitting
them into DW and business process use cases worked very well. This is largely

due to the fact that the participants had background knowledge of OO
development.

An analysis flow starting with OO techniques and ending with DW techniques
was suggested. The systems use cases and sequence diagrams were used to
create the DW architecture bus matrix. Hierarchies were also created by using

the systems use case and dimensional table.

316

Chapter 8 — Evaluation of the IS Prototype

The use of OO concepts in the design of a DW running on a relational database
is not always possible. However, in the data staging process OO techniques can
be used to describe the process of the ETL package, although relational DB

techniques are still required to describe the storage format.

The only concepts of OO in the implementation process were the modular
implementation of the code developed and the reuse (exact reuse). Other OO
concepts, such as extends, inherits and polymorphism could not be introduced

as the DW was developed on a relational DB.

The only concept of OO testing possible, was unit testing, but automated testing
can be done.

The OO concept of iteration was done between analysis and design and even
the requirements of the DW.

The use of a relational DB restricted OO in the design and implementation
phases of DW development. Researching the use of OO DB management
systems in DW development may therefore be considered.

One limitation was that the results obtained from this study were based on the

experience of the parties involved. With no OO background available, the result
could have been different.

8.5. Summary

The aim of the study was to explore the use of object-oriented methodologies in
data warehouse development. The study followed a qualitative research
approach and action research as the research method. Chapters 3, 4 and 5

discussed the literature needed for this study.

317

Chapter 8 — Evaluation of the IS Prototype

Chapter 3 explained what information systems development methodologies are.
These are defined as a combination of systems development approaches
(ISDA), systems development process models, systems development methods
(ISDM) and systems development techniques.

A discussion on general OO methodologies followed in chapter 4. The following
methodologies were discussed in detail:

¢ Object-Oriented Analysis (OOA)

¢ Object-Oriented Software Process (OOSP)
¢ Rational Unified Process (RUP)

e Object Modeling Technique (OMT)

A table was derived from common techniques and phases in methodologies
listed above.

Chapter 5 was a literature study on the development methodologies for data
warehouses. This chapter covered the business development lifecycle approach
to data warehouse development (Kimball et al., 1998) and data driven
methodologies (Inmon, 1996).

The remainder of the chapters was structured around the Action Research Cycle
(Baskerville, 1999), illustrated in Figure 8-4.

Reported in
Chapter 7

Specifying
Learning

Action
Planning

Chapter 8

Figure 8-4 Chapters according to the Action Research Cycle (Baskerville, 1999:14)

318

Chapter 8 — Evaluation of the IS Prototype

Chapter 6 focused on the action planning phase of the Action Research Cycle.
This chapter attempted to create a method for implementing a data warehouse
by using methods and techniques available in both object-oriented
methodologies and data warehouse methodologies.

Chapter 7 represented the action taking phase of the Action Research Cycle.
This chapter was an interpretive experiment discussing the implementation of the

method created in chapter 6.

The first part of chapter 8 depicted the evaluating phase of the Action Research
Cycle. This part attempted to discover the perception of techniques used to
implement the DW (chapter 7).

The second part of chapter 8 served as the specified learning phase of the Action
Research Cycle. This part discussed the knowledge gained from the study, as
well as possible recommendations for future iterations. Chapter 8 ended with the
conclusion on the study.

319

References
AMBLER, W.P. 2001. The Object Primer 2™ ed.. New York: Cambridge

University Press.

ANONYMOUS. 2007. Design of the data warehouse: Kimball Vs Inmon. [Web:]
http://www.exforsys.com/tutorials/msas/data-warehouse-design-kimball-vs-
inmon.html! [Date of use 31 July 2007]

ANONYMOUS. 2006. Data Warehouse portal basics.
[Web:] http://www.dmreview.com/channels/dw_basics.html [Date of use 1 July
2006]

ANAHORY, S. & MURRAY, D. 1997. Data warehousing in the real world: a
practical guide for building decision support systems. Harlow, England; Reading,
Mass: Addison-Wesley.

AVISON, D.E. & FITZGERALD, G. 2003. Information Systems Development 3rd
Edition: Mc-Graw Hill.

BASKERVILLE, R.L. 1999. Investigating information systems with action
research. Communications of the AIS, vol 2 article 19.

BOAHENE, M. 1999. Information systems development methodologies: Are you
being served? Proceedings of 1999 Australasian Conference on Information
Systems. Wellington, New Zealand, p.88-99.

BOOCH, G. 1994. Object Oriented Design with Applications (2™ ed.): Benjamin-
Cummings.

320

http://www.exforsys.com/tutorials/msas/data-warehouse-design-kimball-vsinmon.html
http://www.exforsys.com/tutorials/msas/data-warehouse-design-kimball-vsinmon.html
http://www.dmreview.com/channels/dw_basics.html

BOOCH, G., RUMBAUGH, J. & JACOBSON, |. 2001. The Unified Modelling
Language Reference Manual: Addison Wesley Longman.

BRINKKEMPER, S., LYYTINEN, K. & WELKE, R.J. 1996. Methood engineering:

Principals of Construction and Tools Support. London: Chapman & Hall,

BURRELL, G. & MORGAN, G. 1979. Sociological paradigms and organizational
analysis. London: Heinemann.

CHUA, W.F. 1986. Radical Developments in Accounting thought. The Accounting
Review, 61:615

COAD, P. & YOURDON, E. 1991. Object oriented analysis, 2nd Edition. New
Jersey: Prentice Hall, England Cliffs.

HARVEY, L. 1990. Critical social research. London: Unwin Hyman.

HUISMAN, M. & IIVARI, J. 2003. Systems development methodology use in
South Africa. Ninth Americas Conference on Information Systems, 1040-1052

IIVARI, J., HIRSCHHEIM, R. & KLEIN H.K.1998. A Paradigmatic Analysis
Contrasting Information Systems Development Approaches and Methodologies.
Information Systems Research, vol. 9. no 2

IIVARI, J., HIRSCHHEIM, R. & KLEIN, H.K. 1999. Beyond Methodologies:
Keeping up with Information Systems Development Approaches through
Dynamic Classification. Proceedings of the 32nd Hawaii Conference on Systems
Sciences

321

IIVARI, J., HIRSCHHEIM, R. & KLEIN, H.K. 2000. A Dynamic Framework for
Classifying Information Systems Development Methodologies and Approaches.

Journal of Management Information Systems, 17(3):179-218

INMON, W.H. 1996. Building the data warehouse 2nd edition: John Wiley and

SONSs.

JACOBSON, 1., BOOCH, G. & RUMBAUGH, J. 2001.The Unified Software

Development Process. Boston: Addison Wesley.

KAPLAN, B. & MAXWELL, J.A. 1994. Qualitative Research Methods for
Evaluating Computer Information Systems. (/n, ANDERSON, J.G. AYDIN, C.E. &
JAY, S.J. (eds.). 1994. Evaluating Health Care Information Systems: Methods
and Applications. CA: Sage, Thousand Oaks. p. 45-68.)

KIMBALL, R. & CASERTA, J. 2004. The Data Warehouse ETL Toolkit.
Indianapolis: Willey.

KIMBALL, R., REEVES, L., ROSS, M. & THORNTHWAITE, W. 1998. The data
warehouse lifecycle toolkit. New York: Wiley.

KLEIN, HK. & MYERS D.M. 1999. A Set of Principles for Conducting and
Evaluating Interpretive Field Studies in Information Systems. MIS Quarterly,
23(1).67-94.

KUHN, T.S. 1970. The structure of Scientific Revolutions, 2nd edition. Chicago:
University of Chicago Press.

322

LEEDY, P.D. & ORMOND, J.E. 2005. Practical research: planning and design:

Pearson/Merrill Prentice Hall

MARCH, S. & SMITH, G. 1995. Design and Natural Science Research on
Information Technology. Decision support systems 15(4):251-266.

MARTIN, PY. & TURNER, B.A. 1986. Grounded Theory and Organizational
Research. The Journal of Applied Behavioral Science, 22(2):141-157.

MOORE, J.M. & BAILIN, S.C. 1988. Position paper on domain analysis. Lauerel,
MD: CTA

MYERS, M.D. 1997. Qualitative Research in Information Systems. MIS
Quarterly, 21(2):241-242. [Web:] http://www.misg.org/discovery/MISQD _isworld/.
[Date of use 8 December 2008]

ORLIKOWSKI, W.J. & BAROUDI, J.J. 1991. Studying Information Technology in
Organizations: Research Approaches and Assumptions. /nformation Systems
Research 2:1-28.

RAMAKRISHNAN, R. & GEHRKE, J. 2003. Database Management Systems
(third edition): McGraw Hill.

RAPOPORT, R.N. 1970. Three Dilemmas in Action Research. Human Relations,
23(6): 499-513.

ROB, P. & CORONEL, C. 2002. Database Systems Design, Implementation, and
Design (5th Edition): Course Technology

323

http://www.misq.org/discovery/MISQD_isworld/

RUMBAUGH, J., BLAHA, J., PREMERLANI, W., EDDY, F. & LORENSEN, W.
1991. Object-Oriented Modelling and Design. Englewood Cliffs, NJ: Prentice
Hall.

SEN, A. & SINHA, AP. 2005. A Comparison of using Data Warehousing
Methodologies. Communications of the ACM, 48(3):79-84.

WALSHAM, G. 1993. Interpreting Information Systems in Organizations. London:
Wiley.

WYNEKOOP, J.L. & RUSSO, N.L. 1993. Systems Development Methodologies:
Unanswered questions and the research-practice gap. (In DEGROSS, J.I.
BOSTROM, R. ROBEY, D. (ed.) 1993. Proceedings of the Fourteenth

International Conference on Information Systems, Orlando, FL. p.181-190.)

324

