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1. Introduction and preliminaries

Let H be an invertible n ×n Hermitian matrix. On Cn we consider the indefinite inner 
product generated by H, given by [x, y] = 〈Hx, y〉, where 〈· , ·〉 denotes the standard inner 
product. Linear algebra in spaces with an indefinite inner product has been an area of 
active research over the past few decades, and many basic elements of the theory are 
summarized in [5]. An n × n matrix B is called H-selfadjoint if it is selfadjoint in the 
indefinite inner product given by H, or equivalently, if HB = B∗H. The problem studied 
in this paper is that of finding H-selfadjoint mth roots of a given H-selfadjoint matrix 
B. This problem has been investigated in [1] for m = 2 where it plays a role in polar 
decompositions in an indefinite inner product space. Stability of H-selfadjoint square 
roots was studied in [17].

A matrix A is called an mth root of a matrix B if Am = B. The problem of finding 
mth roots of a given matrix has been studied in the past; a first characterization can be 
found in the book by Wedderburn [18], and another characterization in [13]. In the book 
by Gantmacher [4] it is shown for the singular case that the function of taking mth roots 
can be applied to each Jordan block. Matrix mth roots have been studied extensively, 
see for example [2,6,15,16].

Obviously, in the case where B is H-selfadjoint, a necessary condition for existence 
of an H-selfadjoint mth root is the existence of an mth root. Thus, this paper will focus 
on the extra conditions needed for the existence of an H-selfadjoint mth root. In [17]
existence and uniqueness of H-selfadjoint square roots of an H-selfadjoint matrix are 
studied, along with stability of such square roots when they exist.

More restrictive conditions on the H-selfadjoint square root can be imposed, for in-
stance it is natural to impose the condition that the eigenvalues of A are in the open 
right half-plane, possibly including zero as well. In more generality than in the present 
setting such polar decompositions and square roots have been studied extensively in a 
sequence of papers by Higham, Mackey, Mackey, Mehl and Tisseur [7,8,11]. It turns out 
that imposing this extra condition on the eigenvalues of the square root leads to a square 
root which is unique and is computable using iterative methods. However, it restricts 
the class of matrices for which such a square root exists to those for which the struc-
ture of the zero eigenvalue is semisimple (if one includes the possibility of zero being an 
eigenvalue, but insists on uniqueness) or to those which are non-singular (if one insists 
on the eigenvalues of the square root lying in the open right half-plane). Square roots 
for other classes of structured matrices have been considered as well in [7,8,11]; see also 
[3] for the case of Hamiltonian square roots of skew-Hamiltonian matrices.

1.1. Notation

The notation 〈· , ·〉 stands for the standard inner product in either Cn or Rn, i.e.,

〈x, y〉 =
n∑

xj ȳj ,

j=1
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where x = [x1 · · · xn ]T , y = [y1 · · · yn ]T ∈ Cn or Rn. The following definition 
and notation is taken from [5]. A function [· , ·] from Cn×Cn to C is called an indefinite 
inner product in Cn if it is linear in the first argument, anti-symmetric and nondegener-
ate. Therefore, the only possible difference with the standard inner product is that [x, x]
may be nonpositive for x �= 0. Clearly, for every n ×n invertible Hermitian matrix H (or 
real symmetric H) the formula [x, y] = 〈Hx, y〉, x, y ∈ Cn, defines an indefinite inner 
product on Cn. Conversely, for any indefinite inner product [· , ·] on Cn, there exists an 
invertible Hermitian matrix H such that [x, y] = 〈Hx, y〉 for all x, y ∈ Cn.

The H-adjoint of a square matrix A, denoted by A[∗], is the unique square matrix 
such that [Ax, y] = [x, A[∗]y] for all x, y ∈ Cn. Observe that A[∗] = H−1A∗H.

We denote a single n × n Jordan block with eigenvalue λ ∈ C by

Jn(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . λ 1
0 0 · · · 0 λ

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We will use the standard notation σ(A) for the spectrum of A, i.e. for the set of eigen-
values of a matrix A, including nonreal eigenvalues of real matrices. Furthermore, we 
denote by Qn the n × n matrix with ones on the main anti-diagonal, which is called the 
backward identity matrix, or standard involutionary permutation (sip) matrix.

We need the following well-known notation and result on Hermitian matrices. The 
inertia of a Hermitian matrix H is a triple consisting of the number of positive, neg-
ative and zero eigenvalues, respectively, and will be denoted by (i+(H), i−(H), i0(H)). 
According to Sylvester’s law of inertia two Hermitian matrices have the same inertia if 
and only if they are congruent, see [10].

1.2. Important concepts

A subspace M of Cn is called H-nondegenerate if x ∈ M and [x, y] = 0 for all y ∈ M
implies that x = 0. If [x, y] = 0 for all x, y ∈ M, then M is called H-neutral.

A complex matrix A is H-selfadjoint if A[∗] = A, that is, if HA = A∗H. Thus, any 
H-selfadjoint matrix A is similar to A∗. If we consider, for example, a single Jordan block 
Jn(λ) with real eigenvalue λ and if Qn is as defined above, then Jn(λ) is Qn-selfadjoint. 
Furthermore, the spectrum σ(A) of an H-selfadjoint matrix A is symmetric relative to 
the real axis. Also, the sizes of the Jordan blocks in the Jordan normal form of A with 
eigenvalue λ are equal to the sizes of the Jordan blocks with eigenvalue λ̄. A proof of 
this result can be found in [5, Proposition 4.2.3].

A matrix A is called H-unitary if A is invertible and A[∗] = A−1, i.e., A∗HA = H. The 
pairs (A1, H1) and (A2, H2) are said to be unitarily similar (following the terminology 
of [5]) if there exists an invertible matrix S such that A2 = S−1A1S and H2 = S∗H1S. 
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If H = H1 = H2, then S is H-unitary and we say that A1 and A2 are H-unitarily 
similar. Note that if (A1, H1) and (A2, H2) are unitarily similar, it implies that A1 is 
H1-selfadjoint if and only if A2 is H2-selfadjoint.

If a matrix A is H-selfadjoint, then any power Ak of A is also H-selfadjoint since if 
we use HA = A∗H repeatedly we have

HAk = (HA)Ak−1 = A∗HAk−1 = (A∗)2HAk−2 = · · · = (A∗)kH = (Ak)∗H,

for any positive integer k.

1.3. Canonical form

The following theorem for the canonical form of H-selfadjoint matrices is taken from 
[1].

Theorem 1.1. Let H be an invertible Hermitian n × n matrix over the field C, and let A
be an n ×n H-selfadjoint matrix over C. Then there exists an invertible n ×n matrix S
over C such that S−1AS and S∗HS have the form

S−1AS = Jk1(λ1) ⊕ · · · ⊕ Jkα
(λα)

⊕ [Jkα+1(λα+1) ⊕ Jkα+1(λα+1)] ⊕ · · · ⊕ [Jkβ
(λβ) ⊕ Jkβ

(λβ)], (1)

where λ1, . . . , λα are real and λα+1, . . . , λβ are nonreal with positive imaginary parts; 
and

S∗HS = ε1Qk1 ⊕ · · · ⊕ εαQkα
⊕Q2kα+1 ⊕ · · · ⊕Q2kβ

, (2)

where ε1, . . . , εα are ±1. For a given pair (A, H), where A is H-selfadjoint, the canonical 
form (1) and (2) is unique up to permutation of orthogonal components in (2) and the 
same simultaneous permutation of the corresponding blocks in (1).

The theorem is well-known and can be traced back to Weierstrass and Kronecker, see 
e.g. Chapter 5 in [5], and the references given there.

The signs ε1, . . . , εα in (2) form the sign characteristic of the pair (A, H). Therefore, 
the sign characteristic consists of signs +1 or −1 attached to every partial multiplicity 
(equivalently, the size of a real Jordan block in the Jordan normal form) of A corre-
sponding to a real eigenvalue. If εi = 1 (resp. εi = −1) for some i, we say εiQki

is a 
positive (resp. negative) block in S∗HS.

1.4. The main theorem

We need a definition and more notation before stating the main result. Recall the 
following definition from [14].
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Definition 1.2. Let A be a square matrix with Jordan blocks 
⊕r

i=1 Jni
(λ) at λ in 

its Jordan normal form and assume that n1 ≥ n2 ≥ n3 ≥ . . . ≥ nr > 0. The 
Segre characteristic of A corresponding to the eigenvalue λ is defined as the sequence 
n1, n2, n3, . . . , nr, 0, 0, . . ..

Throughout the paper this sequence will only be used when looking at the Jordan 
blocks associated with the eigenvalue zero. Let n′

1, n
′
2, . . . , n

′
pm, 0, . . . be some reordering 

of the Segre characteristic of a nilpotent H-selfadjoint matrix B, where p is the number 
of nonzero m-tuples in this reordering. The kth m-tuple is

(n′
m(k−1)+1, n

′
m(k−1)+2, . . . , n

′
mk).

Now let

B(k)
ν := {i | n′

i = ν ; m(k − 1) + 1 ≤ i ≤ mk}, (3)

so that 
∣∣B(k)

ν

∣∣ represents the number of blocks in H (or A) of size ν which corresponds 
to the kth m-tuple, i.e. k = 1, . . . , p and ν can be any number in the Segre characteristic 
of B.

Let us partition the canonical form (J, HB) of (B, H) as follows:

J = J0 ⊕ J1 ⊕ J2 and HB = H0 ⊕H1 ⊕H2,

where J0 is a direct sum of blocks of the form Jkj
(0) for some kj , J1 is a direct sum 

of blocks of the form Jkj
(αj) for some kj and αj < 0, and J2 is a matrix in Jordan 

normal form with all eigenvalues not in (−∞, 0], and where the matrices H0, H1 and H2
correspond to the matrices J0, J1 and J2.

In the next section, the search for necessary and sufficient conditions for existence of 
an H-selfadjoint mth root is reduced to the treatment of the same problem for the pairs 
(J0, H0), (J1, H1) and (J2, H2) separately. These cases are then studied, and the results 
are summarized in the following main theorem. In addition, for each of these cases, in 
the next section an explicit construction is given in the case that an H-selfadjoint mth 
root exists.

Theorem 1.3. Let B be an H-selfadjoint matrix. Then there exists an H-selfadjoint ma-
trix A such that Am = B if and only if the canonical form of (B, H), given by (J, HB), 
has the following properties:

1. There exists a reordering, n′
1, n

′
2, . . . , n

′
pm, 0, . . ., of the Segre characteristic corre-

sponding to the zero eigenvalue of B such that for all k the m-tuple (n′
m(k−1)+1, . . . ,

n′
mk) is descending and the difference between n′

m(k−1)+1 and n′
mk is at most one.

2. For some reordering satisfying the first property, the number of positive blocks in H0
of size ν is equal to 

∑p
k=1 πν,k where
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πν,k =

⎧⎨
⎩

1
2

(∣∣B(k)
ν

∣∣) if
∣∣B(k)

ν

∣∣ is even
1
2

(∣∣B(k)
ν

∣∣+ ηk

)
if
∣∣B(k)

ν

∣∣ is odd
,

with ηk either equal to 1 or −1.
3. The blocks in J1 and H1 for an even m, can be reordered in the following way

J1 =
t⊕

j=1

(
Jkj

(αj) ⊕ Jkj
(αj)

)
and H1 =

t⊕
j=1

(
Qkj

⊕ (−Qkj
)
)
.

2. Existence of an H-selfadjoint mth root

Given an H-selfadjoint matrix B, we are interested in finding H-selfadjoint mth roots 
of B, if they exist. It is well-documented (for example in [9, p. 461]) that for finding mth 
roots, one may limit oneself to finding the mth root of the Jordan normal form of any 
matrix. We show that the same is true for finding H-selfadjoint mth roots.

Consider the following result which implies that it is sufficient to start with the pair 
(B, H) in canonical form. It shows how mth roots of matrices which are part of pairs in 
the same equivalent class are related.

Lemma 2.1. Let the pair (X, HX) be unitarily similar to the pair (Y, HY ) where HX and 
HY are invertible Hermitian matrices, i.e. there exists an invertible matrix P such that

P−1XP = Y, and P ∗HXP = HY . (4)

Let the matrix Ã be an HX-selfadjoint mth root of X. Then the matrix A := P−1ÃP is 
an HY -selfadjoint mth root of Y .

Proof. Suppose that the equalities in (4) hold. Let the matrix Ã be an HX -selfadjoint 
matrix such that Ãm = X. Then by writing (P−1ÃP )m = P−1ÃmP = Y , we obtain an 
mth root A := P−1ÃP of Y . It follows that (Ã, HX) and (A, HY ) are unitarily similar 
and therefore the mth root A is HY -selfadjoint. �

The above lemma can be used in the proofs for the existence of an H-selfadjoint mth 
root of a given B, where we only need to construct a matrix Ã whose mth power has 
Jordan normal form equal to B and check that there exists an invertible matrix P such 
that equations (4) hold.

From the literature (for example [9, p. 461]) we also know that when finding mth 
roots of a matrix B in Jordan normal form, we may consider blocks with each eigenvalue 
separately. The situation is a bit more complicated in the case of H-selfadjoint mth 
roots, because of the restriction placed by the canonical form as given in Theorem 1.1. 
We therefore need to group the blocks in B in pairs of complex conjugate eigenvalues, 
except in the case where the eigenvalue is real, in which case it may appear on its own, 
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see also [1] for the case of finding H-selfadjoint square roots. We discuss the existence 
of H-selfadjoint mth roots for the cases where B has only positive real eigenvalues, only 
nonreal eigenvalues, only eigenvalue zero, and only negative eigenvalues separately in the 
next few subsections.

Note that although functional calculus can be used for the case where B has neither 
negative nor zero eigenvalues, we prefer to give a detailed proof using only linear algebra 
techniques.

2.1. The case where B has only positive eigenvalues

In this subsection we find conditions for the existence of an H-selfadjoint mth root of 
an H-selfadjoint matrix which has only positive real numbers as eigenvalues. We start 
with a discussion which leads to the main result of this subsection.

Let B = Jn (λ) and H = εQn, where ε = ±1 and λ is a positive real number. Let 
Ã = Jn (μ), where μ is the positive real mth root of λ. Then the Jordan normal form 
of Ãm is equal to B. Note that the matrix Ã is HA-selfadjoint where HA = δQn, for 
δ = 1 or δ = −1. Take δ = ε. Next, we construct an invertible matrix P such that the 
equations

P−1ÃmP = B and P ∗HAP = H (5)

hold and then Lemma 2.1 can be applied. Therefore we examine the structure of the 
matrix P ∗HAP where the columns of P form a Jordan basis for the matrix Ãm. Recall 
that, see e.g. [12, p. 594], the matrix P will be of the form

P =
[
(Ãm − λI)n−1y · · · (Ãm − λI)y y

]
, (6)

where y = (y1, . . . , yn)T ∈ Ker(Ãm − λI)n but y /∈ Ker(Ãm − λI)n−1. Note that in this 
case Ker(Ãm − λI)n = Cn.

We write pi = (Ãm − λI)n−iy and let the entries of the matrix P ∗HAP be denoted 
by φi,j(y). Then, see for example the proof of Theorem 1.1 in [5], the matrix P ∗HAP is 
an anti-lower triangular Hankel matrix and can be uniquely determined by using only 
the n values in its last row. Therefore P ∗HAP = H if and only if

φj(y) = φn,j(y) = [pj , pn] = y∗HA(Ãm − λI)n−jy =
{

1 if j = 1,
0 if j = 2, . . . , n.

(7)

Since the matrix (Ãm−λI) is upper triangular with zeros on the diagonal, the matrix 
(Ãm − λI)n−j will have zeros in the first n − j columns and in the last n − j rows. This 
implies that the entry φj(y) := φn,j(y) = y∗HA(Ãm − λI)n−jy for each j = 1, . . . , n, is 
an expression in the variables yn, . . . , yn−j+1, that is,
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φ1(y) = φ1(yn)

φ2(y) = φ2(yn, yn−1)

φ3(y) = φ3(yn, yn−1, yn−2)
...

...

φn(y) = φn(yn, . . . , y1),

where each one is a sum of terms of the form cȳiyj , c ∈ R, see Example 2.2.
Hence, using the first equation in (7) to find the nth entry in y and the other equations 

in (7) to write each of the other entries in y in terms of the nth entry, we construct the 
vector y and consequently find a matrix P using (6) such that equations (5) hold. It now 
follows from Lemma 2.1 that the matrix A := P−1ÃP is an H-selfadjoint mth root of 
B.

The procedure is illustrated in the following example.

Example 2.2. Let B = J3(λ) where λ is a positive real number and let Ã = J3(μ) where 
μ is the positive real mth root of λ. The matrix B is H-selfadjoint where H = Q3 and 
the matrix Ã is HA-selfadjoint where HA = H = Q3. Then the Jordan form of

Ãm =

⎡
⎣λ mμm−1 1

2m(m− 1)μm−2

0 λ mμm−1

0 0 λ

⎤
⎦

is B and therefore we know that the invertible matrix P for which the equality 
P−1ÃmP = B is true will be of the form

P =
[
(Ãm − λI)2y (Ãm − λI)y y

]

=

⎡
⎣(mμm−1)2y3 mμm−1y2 + 1

2m(m− 1)μm−2y3 y1
0 mμm−1y3 y2
0 0 y3

⎤
⎦ ,

where y = (y1, y2, y3)T ∈ Ker (Ãm − λI)3 = C3 but y /∈ Ker (Ãm − λI)2. Then by 
equating the entries in the third row, P ∗HP = H holds if and only if the following 
equations hold:

1 = φ1(y3) = (mμm−1)2ȳ3y3,

0 = φ2(y3, y2) = mμm−1ȳ2y3 + 1
2m(m− 1)μm−2ȳ3y3 + mμm−1ȳ3y2,

0 = φ3(y3, y2, y1) = ȳ1y3 + ȳ2y2 + ȳ3y1.

Assume that y is real, then we can solve the first equation for y3, choose the positive value 
and substitute into the second equation to find y2, and lastly solve the third equation 
for y1. Therefore, one solution to these equations is as follows:
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y1 = −(m− 1)2

32mμm+1 ; y2 = −(m− 1)
4mμm

; y3 = 1
mμm−1 . �

In the case where B consists of more than one block, the construction may be applied 
to each block separately. We have thus proved the following theorem.

Theorem 2.3. Let B be an H-selfadjoint matrix with a spectrum consisting only of positive 
real numbers. Then there exists an H-selfadjoint matrix A such that Am = B.

2.2. The case where B has only nonreal eigenvalues

In this subsection we give a proof for the existence of an H-selfadjoint mth root in 
the case where B has only nonreal eigenvalues.

Theorem 2.4. Let B be an H-selfadjoint matrix with a spectrum consisting only of nonreal 
numbers. Then there exists an H-selfadjoint matrix A such that Am = B.

Proof. Let B be a 2n × 2n H-selfadjoint matrix with nonreal eigenvalues. Assume that 
the pair (B, H) is in canonical form and that B has only one number and its complex 
conjugate as eigenvalues, each with a geometric multiplicity of one. Thus, with λ being 
a nonreal number,

B = Jn
(
λ
)
⊕ Jn

(
λ̄
)

and H = Q2n.

Let μ be any mth root of λ and

Ã = Jn (μ) ⊕ Jn (μ̄) ,

then the Jordan normal form of Ãm is equal to B. Note that the matrix Ã is HA-
selfadjoint where HA = Q2n. We once again construct a 2n × 2n invertible matrix P
such that P−1ÃmP = B and P ∗HAP = H hold. For the first equality to hold, the 
columns of P have to form a Jordan basis for the matrix Ãm, and therefore P = P1 ⊕P2
where

P1 =
[(

(Jn(μ))m − λI
)n−1

y · · · y
]

and

P2 =
[(

(Jn(μ̄))m − λ̄I
)n−1

z · · · z
]
,

where y ∈ Ker ((Jn(μ))m − λI)n = Cn but y /∈ Ker ((Jn(μ))m − λI)n−1, and z ∈
Ker

(
(Jn(μ̄))m − λ̄I

)n = Cn but z /∈ Ker
(
(Jn(μ̄))m − λ̄I

)n−1. Take z = ȳ, i.e. P2 = P1. 
Then by a simple calculation one finds that P ∗HAP = H if and only if PT

1 QnP1 = Qn, 
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and by following a similar process as in Section 2.1 one can see that this is true if and 
only if

φj(y) = φn,j(y) = yTQn((Jn(μ))m − λI)n−jy =
{

1 if j = 1,
0 if j = 2, . . . , n.

Note that, similarly to case in Section 2.1, each φj(y) is an expression in the variables 
yn, . . . , yn−j+1, and a solution to these equations can be found by solving the first equa-
tion for yn and substituting back into the other equations. Therefore, there exists a 
solution to P ∗HAP = H which also satisfies P−1ÃmP = B, and hence by Lemma 2.1
the matrix A := P−1ÃP is an H-selfadjoint mth root of B. In the case where B consists 
of more than one pair of blocks, the construction can be applied to each pair of blocks 
separately. �
2.3. The case where B has only eigenvalue zero

In this section we consider the case where B has only zero in its spectrum, so that B
is nilpotent. Obviously the mth roots of B will then be nilpotent as well.

The main theorem concerning H-selfadjoint mth roots in this case is given. The first 
property is necessary for the existence of an mth root in general and this is well-known 
(see for example [9]).

Theorem 2.5. Let B be a nilpotent H-selfadjoint matrix. Then there exists an H-
selfadjoint matrix A such that Am = B if and only if the canonical form of (B, H), 
given by (J, HB), has the following properties:

1. There exists a reordering, n′
1, n

′
2, n

′
3, . . . , n

′
pm, 0, . . ., of the Segre characteristic of B

such that for all k the m-tuple (n′
m(k−1)+1, . . . , n

′
mk) is descending and the difference 

between n′
m(k−1)+1 and n′

mk is at most one.
2. For some reordering satisfying the first property, the number of positive blocks in HB

of size ν is equal to 
∑p

k=1 πν,k where

πν,k =

⎧⎨
⎩

1
2

(∣∣B(k)
ν

∣∣) if
∣∣B(k)

ν

∣∣ is even,
1
2

(∣∣B(k)
ν

∣∣+ ηk

)
if
∣∣B(k)

ν

∣∣ is odd,
(8)

with ηk either equal to 1 or −1.

The proof will follow after some results and two examples.

Lemma 2.6. Let the matrix A be equal to Jn(0). Then Am has Jordan normal form

r⊕
Ja+1(0) ⊕

m−r⊕
Ja(0), (9)
i=1 i=1
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where n = am + r, for a, r ∈ Z, 0 < r ≤ m.

Note that if m ≥ n, then a = 0 and r = n, i.e. (9) is equal to 
⊕n

i=1 J1(0), which is 
the n × n zero matrix.

Proof. Let A = Jn(0). If m ≥ n, then Am = (Jn(0))m = 0 =
⊕n

i=1 J1(0). Let m < n, 
then by raising A to the mth power, we have

Am =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 1
. . .

. . .
. . .

. . .
. . . 1

. . . 0
. . .

...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the one in the first row is in the (m + 1)th column. It can easily be seen that the 
Jordan chains of Am are

C1 = {ei | i ≡ 1 (mod m); i = 1, . . . , n},

C2 = {ei | i ≡ 2 (mod m); i = 1, . . . , n},
...

... (10)

Cm−1 = {ei | i ≡ m− 1 (mod m); i = 1, . . . , n},

Cm = {ei | i ≡ 0 (mod m); i = 1, . . . , n}.

Use the division algorithm to write n = am + r where a, r ∈ Z, 0 < r ≤ m. Then the 
number of elements in each set Cj is

|Cj | =
{
a + 1 for 1 ≤ j ≤ r,

a for r + 1 ≤ j ≤ m.
(11)

Let S be the n ×n invertible matrix with columns consisting of the vectors in the Jordan 
chains C1, . . . , Cm. Then since the lengths of Jordan chains coincide with the sizes of the 
corresponding Jordan blocks and by using (11) we have the Jordan normal form of Am:

S−1AmS =
m⊕
j=1

J|Cj |(0) =
r⊕

i=1
Ja+1(0) ⊕

m−r⊕
i=1

Ja(0). �

An interesting corollary that we obtain from this result, is the following.
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Corollary 2.7. If the number of Jordan blocks at zero of a matrix B is not divisible by m, 
and there are no J1(0) blocks, i.e., no entry in the Segre characteristic of B corresponding 
to the zero eigenvalue is equal to one, then B does not have an mth root.

The following result shows the relation between the canonical forms as will be illus-
trated in the examples.

Lemma 2.8. The pair (A, H) has canonical form (Jn(0), ηQn), η = ±1, if and only if 
(Am, H) has canonical form

(
r⊕

i=1
Ja+1(0) ⊕

m−r⊕
i=1

Ja(0),
r⊕

i=1
εiQa+1 ⊕

m−r⊕
i=1

εr+iQa

)
,

where the signs are as follows: If r (resp. m − r) is even, the number of signs εi, where 
i = 1, . . . , r (resp. i = r + 1, . . . , m), which are equal to η is r

2 (resp. m−r
2 ). If r (resp. 

m − r) is odd, the number of signs εi, where i = 1, . . . , r (resp. i = r + 1, . . . , m), which 
are equal to η is r+1

2 (resp. m−r+1
2 ). In both cases the rest of the signs are equal to −η.

The next two examples illustrate much of the general case to be proved after the 
examples.

Example 2.9. Let the matrix

B =
3⊕

i=1
J4(0) ⊕

7⊕
i=1

J3(0) ⊕
2⊕

i=1
J2(0)

be H-selfadjoint where

H =
3⊕

i=1
εiQ4 ⊕

7⊕
i=1

ε3+iQ3 ⊕
2⊕

i=1
ε10+iQ2

for some εj = ±1. B has Segre characteristic 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 0, . . .. We wish 
to determine for which values of εj the matrix B would have an H-selfadjoint fourth 
root. Thus, in terms of notation of Theorem 1.3, n = 37 and m = 4. For the purpose 
of this example, we just consider the following grouping of the Segre characteristic into 
4-tuples:

(4, 4, 4, 3), (3, 3, 3, 3), (3, 3, 2, 2), (0, 0, 0, 0), . . . . (12)

Then p = 3 with p as in Theorem 1.3. (The other possibilities for reordering the Segre 
characteristic are (4, 4, 3, 3), (4, 3, 3, 3), (3, 3, 2, 2), (0, 0, 0, 0), . . . and (4, 4, 4, 3), (3, 3, 3, 2),
(3, 3, 3, 2), (0, 0, 0, 0), . . ..)
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Any fourth root of B will be similar to A =
⊕q

j=1 Jnj
(0) for some integers q and nj , 

since it will also be nilpotent. If nj = 4aj + rj for some aj , rj ∈ Z, 0 < rj ≤ 4, then by 
Lemma 2.6 we have that A4 has Jordan form

q⊕
j=1

(
rj⊕
i=1

Jaj+1(0) ⊕
4−rj⊕
i=1

Jaj
(0)
)
. (13)

We also know that A4 is similar to B and therefore we know the number of blocks of 
order 4, 3 and 2 in (13). If we restrict ourselves to the ordering (12), it can easily be 
seen that a1 = 3, r1 = 3, a2 = 2, r2 = 4, a3 = 2 and r3 = 2, which then give the 
values n1 = 15, n2 = 12 and n3 = 10 from the division algorithm. Compare the exercises 
6.4.10-6.4.13 in [9]. Hence, using the ordering (12), any fourth root of B will have the 
form A = J15(0) ⊕ J12(0) ⊕ J10(0). By Theorem 1.1, the pair (A, HA) is in canonical 
form, with HA = η1Q15 ⊕ η2Q12 ⊕ η3Q10 for some η1 = ±1, η2 = ±1 and η3 = ±1. We 
wish to find a fourth root (which is similar to A) that is H-selfadjoint and to this end 
we construct a matrix P satisfying (4) where X = A4, Y = B, HX = HA and HY = H. 
Write down the Jordan chains of the matrix A4 by using the notation in (10) adapted 
for more blocks:

C1 = {e1, e5, e9, e13}, C2 = {e2, e6, e10, e14}, C3 = {e3, e7, e11, e15},
C4 = {e4, e8, e12}; C16 = {e16, e20, e24}, C17 = {e17, e21, e25},
C18 = {e18, e22, e26}, C19 = {e19, e23, e27}; C28 = {e28, e32, e36},
C29 = {e29, e33, e37}, C30 = {e30, e34}, C31 = {e31, e35}.

Note that the matrix having these Jordan chains as columns does not satisfy the equa-
tions (4), since the only Jordan chains spanning HA-nondegenerate spaces are C2 and 
C4. All the other Jordan chains span HA-neutral spaces. Therefore a change of basis 
is necessary on these Jordan chains to ensure that all Jordan chains in the new basis 
span HA-nondegenerate spaces. This is done in the following way: let P be the invertible 
37 × 37 matrix whose columns consist of the following (new) Jordan chains

C+
1 = {(e1 + e3)/

√
2, (e5 + e7)/

√
2, (e9 + e11)/

√
2, (e13 + e15)/

√
2},

C2 = {e2, e6, e10, e14},
C−

1 = {(e1 − e3)/
√

2, (e5 − e7)/
√

2, (e9 − e11)/
√

2, (e13 − e15)/
√

2},
C4 = {e4, e8, e12},
C+

16 = {(e16 + e19)/
√

2, (e20 + e23)/
√

2, (e24 + e27)/
√

2},
C+

17 = {(e17 + e18)/
√

2, (e21 + e22)/
√

2, (e25 + e26)/
√

2},
C−

17 = {(e17 − e18)/
√

2, (e21 − e22)/
√

2, (e25 − e26)/
√

2},
C−

16 = {(e16 − e19)/
√

2, (e20 − e23)/
√

2, (e24 − e27)/
√

2},
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Table 1
Signs of all εi corresponding to each combination of ηj .

4-tuples 4 4 4 3 3 3 3 3 3 3 2 2
εi ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12

η1 η2 η3 +η1 +η1 −η1 +η1 +η2 +η2 −η2 −η2 +η3 −η3 +η3 −η3
1 1 1 + + − + + + − − + − + −
1 1 −1 + + − + + + − − − + − +
1 −1 1 + + − + − − + + + − + −
1 −1 −1 + + − + − − + + − + − +

−1 1 1 − − + − + + − − + − + −
−1 1 −1 − − + − + + − − − + − +
−1 −1 1 − − + − − − + + + − + −
−1 −1 −1 − − + − − − + + − + − +

C+
28 = {(e28 + e29)/

√
2, (e32 + e33)/

√
2, (e36 + e37)/

√
2},

C−
28 = {(e28 − e29)/

√
2, (e32 − e33)/

√
2, (e36 − e37)/

√
2},

C+
30 = {(e30 + e31)/

√
2, (e34 + e35)/

√
2},

C−
30 = {(e30 − e31)/

√
2, (e34 − e35)/

√
2}.

Then P−1A4P = B holds, and comparison of entries in P ∗HAP and H gives us the 
relationship between the signs of εj for j = 1, . . . , 12 and those of ηj for j = 1, 2, 3. 
In order to determine which combinations of εj could rise to H-selfadjoint B with H-
selfadjoint fourth roots, we consider all eight combinations of ηj and determine the 
possible values of εj that would correspond to these ηj for each of the blocks associated 
with the 4-tuples in (12).

Consider Table 1 which gives the signs of the blocks Qn′
i

in H corresponding to each 
entry n′

i in the Segre characteristic of B by specifying ηj from HA.
To explain Table 1 we look at the first row which shows that if η1, η2 and η3 are all 

equal to +1, then ε1 = ε2 = ε4 = ε5 = ε6 = ε9 = ε11 = +1 and ε3 = ε7 = ε8 = ε10 =
ε12 = −1 and that gives H = Q4 ⊕ Q4 ⊕ −Q4 ⊕ Q3 ⊕ Q3 ⊕ Q3 ⊕ −Q3 ⊕ −Q3 ⊕ Q3 ⊕
−Q3 ⊕Q2 ⊕−Q2.

Furthermore, we can see that for the first four choices of η1, η2 and η3, H consists of 
two positive Q4 blocks, four positive Q3 blocks and one positive Q2 block. For the last 
four choices of η1, η2, η3, H consists of one positive Q4 block, three positive Q3 blocks 
and one positive Q2 block.

Thus for the chosen ordering (12) the H-selfadjoint matrix B will have an H-
selfadjoint fourth root only if the total number of positive Q4 blocks in H is one or 
two, the total number of positive Q3 blocks in H is three or four, and there is only one 
positive Q2 block in H.

If the pair (B, H) was given, and therefore εj is known for all j = 1, . . . , 12 where 
some permutations are allowed, Table 1 then gives all possible sets of signs ηj for HA

such that (A, HA) is the canonical form for any H-selfadjoint fourth root of B, associated 
with the ordering (12), if it exists. For example if εj = 1 for all j = 1, . . . , 12, then no 
set of signs ηj for HA exist, i.e. there does not exist an H-selfadjoint fourth root of B
associated with this ordering.
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We also illustrate the use of (3) in this example for the ordering (12):

B(k)
ν = {i | n′

i = ν; 4k − 3 ≤ i ≤ 4k}

where k = 1, 2, 3 and ν = 4, 3, 2 (the sizes of the blocks in H). Then |B(1)
4 | = 3, |B(2)

4 | =
|B(3)

4 | = 0, |B(1)
3 | = 1, |B(2)

3 | = 4, |B(3)
3 | = 2, |B(1)

2 | = |B(2)
2 | = 0, |B(3)

2 | = 2. �
The following example shows how the sign characteristic differs by using different 

reorderings of the Segre characteristic.

Example 2.10. Let B =
⊕6

i=1 J3(0) ⊕
⊕6

i=1 J2(0) and be H-selfadjoint where (B, H) is 
in canonical form. Then the Segre characteristic of B is 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 0, . . .. 
We illustrate finding the signs of the blocks in H for which an H-selfadjoint sixth root 
of B exists. For this we consider all of the possible reorderings of the Segre characteristic 
such that for each 6-tuple, the maximum difference between any two numbers is one. In 
terms of the notation of Theorem 1.3, n = 30 and m = 6, and in all of the reorderings 
p = 2.

We follow a similar process as the one in Example 2.9 to determine the canonical form 
for (B, H) that is necessary for the existence of an H-selfadjoint sixth root of B for each 
possible reordering of the Segre characteristic.

1. Reordering: (3, 3, 3, 3, 3, 3), (2, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 0), . . .. Canonical form of the 
H-selfadjoint sixth roots of B: (J18(0) ⊕ J12(0), η1Q18 ⊕ η2Q12). Then

H = η1Q3 ⊕ η1Q3 ⊕ η1Q3 ⊕−η1Q3 ⊕−η1Q3 ⊕−η1Q3

⊕ η2Q2 ⊕ η2Q2 ⊕ η2Q2 ⊕−η2Q2 ⊕−η2Q2 ⊕−η2Q2.

Thus, for any choice of η1 and η2, the number of positive Q3 blocks in H and the 
number of positive Q2 blocks in H are both three.

2. Reordering: (3, 3, 3, 3, 3, 2), (3, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 0), . . .. Canonical form of the 
H-selfadjoint sixth roots of B: (J17(0) ⊕ J13(0), η1Q17 ⊕ η2Q13). Then

H = η1Q3 ⊕ η1Q3 ⊕ η1Q3 ⊕−η1Q3 ⊕−η1Q3 ⊕ η1Q2

⊕ η2Q3 ⊕ η2Q2 ⊕ η2Q2 ⊕ η2Q2 ⊕−η2Q2 ⊕−η2Q2.

Thus, for the choice η1 = 1 and η2 = 1, the number of positive Q3 blocks in H and 
the number of positive Q2 blocks in H are both four. For both the choices η1 = 1, 
η2 = −1, and η1 = −1, η2 = 1, the number of positive Q3 blocks and the number 
of positive Q2 blocks are both three. If both η1 and η2 are chosen as −1, then the 
number of positive Q3 blocks and the number of positive Q2 blocks are both two.

3. Reordering: (3, 3, 3, 3, 2, 2), (3, 3, 2, 2, 2, 2), (0, 0, 0, 0, 0, 0), . . .. Canonical form of the 
H-selfadjoint sixth roots of B: (J16(0) ⊕ J14(0), η1Q16 ⊕ η2Q14). Then
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H = η1Q3 ⊕ η1Q3 ⊕−η1Q3 ⊕−η1Q3 ⊕ η1Q2 ⊕−η1Q2

⊕ η2Q3 ⊕−η2Q3 ⊕ η2Q2 ⊕ η2Q2 ⊕−η2Q2 ⊕−η2Q2.

Thus, like with the first reordering, for any choice of η1 and η2, the number of positive 
Q3 blocks in H and the number of positive Q2 blocks in H are both three.

4. Reordering: (3, 3, 3, 2, 2, 2), (3, 3, 3, 2, 2, 2), (0, 0, 0, 0, 0, 0), . . .. Canonical form of the 
H-selfadjoint sixth roots of B: (J15(0) ⊕ J15(0), η1Q15 ⊕ η2Q15). Then

H = η1Q3 ⊕ η1Q3 ⊕−η1Q3 ⊕ η1Q2 ⊕ η1Q2 ⊕−η1Q2

⊕ η2Q3 ⊕ η2Q3 ⊕−η2Q3 ⊕ η2Q2 ⊕ η2Q2 ⊕−η2Q2.

Again, the total number of positive blocks in H is the same as with the second 
reordering. Thus, for the choice η1 = 1 and η2 = 1, the number of positive Q3 blocks 
in H and the number of positive Q2 blocks in H are both four. For both the choices 
η1 = 1, η2 = −1, and η1 = −1, η2 = 1, the number of positive Q3 blocks and the 
number of positive Q2 blocks are both three. If both η1 and η2 are chosen as −1, 
then the number of positive Q3 blocks and the number of positive Q2 blocks are both 
two.

Note that we have covered all of the possibilities for the sixth root A of B as well as for 
the corresponding matrix HA. Therefore this example shows the only options of matrices 
H that we can start with in canonical form (B, H) from which we will be able to find 
H-selfadjoint sixth roots. �

We are now ready to prove the theorem giving the conditions of the existence of an 
H-selfadjoint mth root of nilpotent matrices.

Proof of Theorem 2.5. Let B be a nilpotent H-selfadjoint matrix with Segre character-
istic n1, n2, . . . , nr, 0, . . . and assume there exists an H-selfadjoint matrix A such that 
Am = B. Let A be similar to 

⊕p
k=1 Jtk(0) for some tk, then from Lemma 2.6 we have 

that the Jordan normal form of Am is equal to

J =
p⊕

k=1

[
rk⊕
i=1

Jak+1(0) ⊕
m−rk⊕
i=1

Jak
(0)
]
, (14)

where tk = akm + rk, ak, rk ∈ Z and 0 < rk ≤ m by using the division algorithm. 
Since Am = B, this matrix J is also the Jordan normal form of B and therefore will 
have the same Segre characteristic as B, possibly reordered. From (14) one can see that 
this reordering, say n′

1, n
′
2, . . . , n

′
pm, 0, . . ., has the property that in each m-tuple the 

difference between the highest and the lowest number is at most one.
From Theorem 1.1 the pair (

⊕p
k=1 Jtk(0),

⊕p
k=1 ηkQtk) is in canonical form for ηk =

±1. Let the blocks of HB in the canonical form (J, HB) after a permutation of blocks 
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according to the reordering n′
1, n

′
2, . . . , n

′
pm, 0, . . ., be given by εiQn′

i
for εi = ±1. The 

conditions on these signs can be found by a change in Jordan basis. The Jordan chains 
of Am which correspond to different Jordan blocks of A, or equivalently, to different 
m-tuples in the above reordering, are considered separately. Among the Jordan chains 
of Am of a certain length, say ν, which correspond to a single Jordan block of A, there 
will be at most one Jordan chain spanning an H-nondegenerate space, and that will 
happen when there is an odd number of Jordan chains of this length since the other 
Jordan chains of length ν which do not span H-nondegenerate spaces, occur in pairs. 
By making combinations with these Jordan chains in a similar way as illustrated in 
Example 2.9, we obtain the desired change in Jordan basis. Compare also the proof of 
Theorem 4.4 in [1]. Each pair of Jordan chains delivers opposite signs of blocks in HB

and the blocks in HB corresponding to the H-nondegenerate spaces will have the same 
sign as that obtained from the mth root. Hence by using B(k)

ν as introduced in (3) we 
can determine the number of blocks in HB for each sign. If for some k the number 

∣∣B(k)
ν

∣∣
is even, then both the number of i ∈ B(k)

ν such that εi = ηk and the number of i ∈ B(k)
ν

such that εi = −ηk is equal to 1
2
(∣∣B(k)

ν

∣∣). If for some k the number 
∣∣B(k)

ν

∣∣ is odd, then 

the number of i ∈ B(k)
ν such that εi = ηk is 1

2
(∣∣B(k)

ν

∣∣ + 1
)
, and the number of i ∈ B(k)

ν

such that εi = −ηk is 1
2
(∣∣B(k)

ν

∣∣ − 1
)
. Hence the number of positive blocks in HB of size 

ν is equal to

p∑
k=1

πν,k,

where πν,k is given by (8).
Conversely, suppose that (B, H) is in canonical form and that it satisfies Properties 1 

and 2, and suppose the reordering of the Segre characteristic of matrix B that satisfies 
the second property is given by n′

1, n
′
2, . . . , n

′
pm, 0, . . .. Let Ã =

⊕p
k=1 Jtk(0) where tk =∑m

i=1 n
′
m(k−1)+i. If we have by the division algorithm that tk = akm + rk, ak, rk ∈ Z, 

0 < rk ≤ m, then from Lemma 2.6 the matrix Ãm =
⊕p

k=1(Jtk(0))m has the Jordan 
normal form

p⊕
k=1

[
rk⊕
i=1

Jak+1(0) ⊕
m−rk⊕
i=1

Jak
(0)
]
.

Thus the Segre characteristic of this matrix is

(a1 + 1, . . . , a1 + 1, a1 . . . , a1), . . . , (ap + 1, . . . , ap + 1, ap, . . . , ap), 0 . . . . (15)

Since for all k = 1, . . . , p we have that

rk∑
(ak + 1) +

m−rk∑
ak = tk =

m∑
n′
m(k−1)+i and n′

m(k−1)+1 − n′
mk ≤ 1,
i=1 i=1 i=1
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it then follows that the Segre characteristic in (15) is equal to the sequence n′
1, n

′
2, . . . ,

n′
pm, 0, . . .. This means that B is also the Jordan normal form of Ãm since they have 

the same Segre characteristic, or reordering thereof. Note also that the matrix Ã is HA-
selfadjoint where HA =

⊕p
k=1 εkQtk . If we let εk = ηk for each k from Property 2 which 

was assumed for (B, H), then there exists an invertible matrix P , formed in the same 
way as explained above, such that P−1ÃmP = B and P ∗HAP = H. Therefore, by 
Lemma 2.1, the matrix A := P−1ÃP is an H-selfadjoint mth root of B. �
2.4. The case where B has only negative eigenvalues

We now look at the case where the eigenvalues of B are negative real numbers, firstly 
for the case where m is even and secondly where m is odd.

Consider the following example regarding negative eigenvalues.

Example 2.11. Let H = εQ2, where ε = ±1. Suppose that the H-selfadjoint matrix

B = J2(−1) =
[
−1 1
0 −1

]

has a square root A which is H-selfadjoint. We know that σ(A) ⊆ {i, −i} since i and 
−i are both square roots of −1. According to Theorem 1.1 the Jordan normal form of A
should be

J =
[
i 0
0 −i

]
,

which is Q2-selfadjoint. Let A = S−1JS for an invertible matrix S, then

A2 = (S−1JS)2 = S−1
[
−1 0
0 −1

]
S,

which is not similar to B. This gives a contradiction. Therefore B does not have a square 

root which is H-selfadjoint. Note however, that 
[
i −1

2 i

0 i

]2
= B, so B does in fact have 

a square root. �
This illustrates the fact that there do not exist H-selfadjoint mth roots of matrices of 

the form Jn(λ) where m is even and λ is a negative real number. Suppose in general that 
B = Jn(λ), with λ a negative real eigenvalue. We know from Theorem 1.1 that (B, εQn)
is in canonical form. But the mth roots of λ, where m is even, are all nonreal numbers, 
since no real number raised to the mth power can be negative if m is even. Therefore the 
eigenvalues of any mth root A of B are nonreal numbers. From Theorem 1.1 we know 
that the Jordan normal form of A should contain pairs of Jordan blocks of equal size 
that correspond to complex conjugate pairs. This implies that the Jordan normal form 
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of A should consist of a direct sum of at least two blocks of equal size, but such a matrix 
raised to the mth power is not similar to B. Hence the blocks of the canonical form of 
(B, H) corresponding to negative real eigenvalues should occur in pairs.

Now we present a lemma that will be useful in the proof of the subsequent theorem.

Lemma 2.12. Let T be an upper triangular complex n × n Toeplitz matrix with λ ∈ R on 
the main diagonal, and a nonzero number on the superdiagonal. Let B = T⊕T . Then B is 
Q2n-selfadjoint, and the pair (B, Q2n) is unitarily similar to (Jn(λ) ⊕Jn(λ), Qn⊕−Qn).

Proof. Let

T =

⎡
⎢⎢⎢⎣
λ t2 · · · tn

. . .
. . .

...
. . . t2

λ

⎤
⎥⎥⎥⎦ ,

with t2 �= 0. Then

Q2nB =
[

0 Qn

Qn 0

] [
T 0
0 T

]
=
[

0 QnT
QnT 0

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ

. .
.

t2

. .
.

. .
. ...

λ t2 · · · tn
λ

. .
.

t2

. .
.

. .
. ...

λ t2 · · · tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is clearly selfadjoint. Hence B is Q2n-selfadjoint.
Because t1 = λ is real and t2 �= 0 the Jordan normal form of both T and T is Jn(λ). 

Thus the canonical form of the pair (B, Q2n) is given by (Jn(λ) ⊕ Jn(λ), ε1Qn ⊕ ε2Qn). 
Therefore there exists an invertible matrix S such that S−1BS = Jn(λ) ⊕ Jn(λ) and 
S∗Q2nS = ε1Qn⊕ε2Qn. By using these equations and letting Q = ε1Qn⊕ε2Qn we have 
the following congruence:

S∗Q2nBS = S∗Q2nSS
−1BS = Q (Jn(λ) ⊕ Jn(λ)),

which leads to

S∗Q2n(B − λI)S = Q (Jn(0) ⊕ Jn(0)),
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and then by multiplying (S−1(B − λI)S)n−2 from the right, we have

S∗Q2n(B − λI)n−1S = Q (Jn(0) ⊕ Jn(0))n−1. (16)

Note that the matrix Q2n(B − λI)n−1 has only two nonzero entries: tn−1
2 in the (2n, n)

position and its complex conjugate in the (n, 2n) position. Consequently Q2n(B−λI)n−1

has only one positive and one negative eigenvalue, namely ±(t2t2)
n−1

2 , and the matrix 
on the right side of (16) has eigenvalues ε1 and ε2. Hence by Sylvester’s law of inertia 
ε1 = −ε2, and by reordering the Jordan blocks if necessary we have that the pair (B, Q2n)
is unitarily similar to (Jn(λ) ⊕ Jn(λ), Qn ⊕−Qn) as claimed. �

First we consider the case where m is even.

Theorem 2.13. Let B be an H-selfadjoint matrix with a spectrum consisting of only 
negative real numbers. Then there exists an H-selfadjoint matrix A such that Am = B, 
for m even, if and only if the canonical form of (B, H), given by (J, HB), has the following 
form:

J =
t⊕

j=1

(
Jkj

(λj) ⊕ Jkj
(λj)

)
, λj ∈ R− (17)

and

HB =
t⊕

j=1

(
Qkj

⊕ (−Qkj
)
)
. (18)

Proof. Let B be an H-selfadjoint matrix with a spectrum consisting of only negative 
real numbers and assume there exists an H-selfadjoint matrix A such that Am = B, 
with m even. Then the eigenvalues of A, which are mth roots of negative real numbers 
λj ∈ σ(B), will be nonreal numbers. Since A is H-selfadjoint, the eigenvalues of A must 
be symmetric relative to the real axis. Therefore by Theorem 1.1 the canonical form of 
(A, H) is of the form

⎛
⎝ t⊕

j=1

(
Jkj

(μj) ⊕ Jkj
(μ̄j)

)
,

t⊕
j=1

Q2kj

⎞
⎠ ,

where μj is an mth root of λj ∈ R−. This means that there exists an invertible matrix 
S such that

S−1AS =
t⊕(

Jkj
(μj) ⊕ Jkj

(μ̄j)
)

and S∗HS =
t⊕

Q2kj
.

j=1 j=1
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Consider S−1BS = (S−1AS)m =
⊕t

j=1
((
Jkj

(μj)
)m ⊕

(
Jkj

(μ̄j)
)m), which is S∗HS =⊕t

j=1 Q2kj
-selfadjoint. By Lemma 2.12 it follows that the canonical form of (B, H) is

⎛
⎝ t⊕

j=1

(
Jkj

(λj) ⊕ Jkj
(λj)

)
,

t⊕
j=1

(
Qkj

⊕ (−Qkj
)
)⎞⎠ .

Conversely, let B be an H-selfadjoint matrix and assume that the canonical form of 
(B, H) is as in (17) and (18). We first consider the case of just one pair of blocks, so 
assume

B = Jn(λ) ⊕ Jn(λ) and H = Qn ⊕ (−Qn),

with λ a negative real number. Let μ be an arbitrary mth root of λ, and let Ã =
Jn(μ) ⊕ Jn(μ̄). Since m is even and λ < 0 we have that μ is nonreal; therefore the 
matrix Ã is Q2n-selfadjoint. Now, note that Ãm has λ on the main diagonal and then 
Lemma 2.12 implies that the pairs (Ãm, Q2n) and (B, H) are unitarily similar. Hence, 
there exists an invertible matrix P such that the equations

P−1ÃmP = B and P ∗Q2nP = H

hold. From Lemma 2.1 the matrix A := P−1ÃP is an H-selfadjoint mth root of B. In the 
case where B consists of more than one pair of blocks, the construction can be applied 
to each pair of blocks separately. �

For the case where m is odd the following result holds.

Theorem 2.14. Let B be an H-selfadjoint matrix with a spectrum consisting only of 
negative real numbers. Then, for m odd, there exists an H-selfadjoint matrix A such 
that Am = B.

Proof. Let B be an n × n H-selfadjoint matrix with negative real eigenvalues. Assume 
that the pair (B, H) is in canonical form and that B consists of a single Jordan block, 
i.e.

B = Jn (λ) and H = εQn,

where ε = ±1 and λ is a negative real number. Let μ be the real mth root of λ, and let 
Ã = Jn(μ). Then the Jordan normal form of Ãm is equal to B. Note that the matrix Ã
is HA-selfadjoint where HA = δQn, with δ = 1 or δ = −1. Take δ = ε. Similarly as in 
Section 2.1, construct an invertible matrix P such that the equations

P−1ÃmP = B and P ∗HAP = H
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hold. Finally, it follows from Lemma 2.1 that the matrix A := P−1ÃP is an H-selfadjoint 
mth root of B. In the case where B consists of more than one block, the construction is 
applied to each block separately. �

We illustrate Theorem 2.14 with the following example.

Example 2.15. Let m = 5 and let the matrices B and H be given by

B =
[−1 1 0

0 −1 1
0 0 −1

]
and H = Q3 =

[0 0 1
0 1 0
1 0 0

]
.

Then (B, H) is in canonical form. The eigenvalues of any fifth root of the matrix B are 
fifth roots of −1. Construct the following matrix by using the real fifth root of −1, i.e. 
let Ã = J3(−1). Note that Ã is HA-selfadjoint, where HA = Q3. Then

Ã5 =
[−1 5 −10

0 −1 5
0 0 −1

]
.

Using the notation in Section 2.1, one can easily see that

p1 =
[25y3

0
0

]
, p2 =

[5y2 − 10y3
5y3
0

]
and p3 = y =

[
y1
y2
y3

]
,

so we obtain the equations

1 = φ1(y) = y∗HA(Ã5 + I)2y = 25ȳ3y3,

0 = φ2(y) = y∗HA(Ã5 + I)y = 5ȳ3y2 − 10ȳ3y3 + 5ȳ2y3,

0 = φ3(y) = y∗HAy = ȳ3y1 + ȳ2y2 + ȳ1y3.

One solution of these equations is the real vector y where y3 = 1/5, y2 = 1/5 and 
y1 = −1/10. Thus we have a matrix

P =

⎡
⎣5 −1 −1

10
0 1 1

5
0 0 1

5

⎤
⎦

such that the equations P−1Ã5P = B and P ∗HAP = H hold. Finally, we note that the 
matrix

A = P−1ÃP =

⎡
⎣−1 1

5
2
25

0 −1 1
5

0 0 −1

⎤
⎦

is an H-selfadjoint fifth root of B. �
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